
Arrows, Robots, and Functional

Reactive Programming

Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson

Yale University�

Department of Computer Science
paul.hudak@yale.edu, antony.courtney@yale.edu,

henrik.nilsson@yale.edu, john.c.peterson@yale.edu

Abstract. Functional reactive programming, or FRP, is a paradigm for
programming hybrid systems – i.e., systems containing a combination of
both continuous and discrete components – in a high-level, declarative
way. The key ideas in FRP are its notions of continuous, time-varying
values, and time-ordered sequences of discrete events.

Yampa is an instantiation of FRP as a domain-specific language embed-
ded in Haskell. This paper describes Yampa in detail, and shows how
it can be used to program a particular kind of hybrid system: a mobile
robot. Because performance is critical in robotic programming, Yampa
uses arrows (a generalization of monads) to create a disciplined style of
programming with time-varying values that helps ensure that common
kinds of time- and space-leaks do not occur.

No previous experience with robots is expected of the reader, although a
basic understanding of physics and calculus is assumed. No knowledge of
arrows is required either, although we assume a good working knowledge
of Haskell.

This paper is dedicated in memory of
Edsger W. Dijkstra

for his influential insight that mathematical logic is and
must be the basis for sensible computer program construction.

1 Introduction

Can functional languages be used in the real world, and in particular for real-
time systems? More specifically, can the expressiveness of functional languages
be used advantageously in such systems, and can performance issues be overcome
at least for the most common applications?

For the past several years we have been trying to answer these questions in
the affirmative. We have developed a general paradigm called functional reactive
� This research was supported in part by grants from the National Science Foun-

dation (CCR9900957 and CCR-9706747), the Defense Advanced Research Projects
Agency (F33615-99-C-3013 and DABT63-00-1-0002), and the National Aeronautics
and Space Administration (NCC 2-1229). The second author was also supported by
an NSF Graduate Research Fellowship.

programming that is well suited to programming hybrid systems, i.e. systems
with both continuous and discrete components. An excellent example of a hy-
brid system is a mobile robot. From a physical perspective, mobile robots have
continuous components such as voltage-controlled motors, batteries, and range
finders, as well as discrete components such as microprocessors, bumper switches,
and digital communication. More importantly, from a logical perspective, mobile
robots have continuous notions such as wheel speed, orientation, and distance
from a wall, as well as discrete notions such as running into another object,
receiving a message, or achieving a goal.

Functional reactive programming was first manifested in Fran, a domain
specific language (DSL) for graphics and animation developed by Conal Elliott
at Microsoft Research [5, 4]. FRP [13, 8, 16] is a DSL developed at Yale that is
the “essence” of Fran in that it exposes the key concepts without bias toward
application specifics. FAL [6], Frob [11, 12], Fvision [14], and Fruit [2] are four
other DSLs that we have developed, each embracing the paradigm in ways suited
to a particular application domain. In addition, we have pushed FRP toward
real-time embedded systems through several variants including Real-Time FRP
and Event-Driven FRP [18, 17, 15].

The core ideas of functional reactive programming have evolved (often in
subtle ways) through these many language designs, culminating in what we now
call Yampa, which is the main topic of this paper.1 Yampa is a DSL embedded
in Haskell and is a refinement of FRP. Its most distinguishing feature is that the
core FRP concepts are represented using arrows [7], a generalization of monads.
The programming discipline induced by arrows prevents certain kinds of time-
and space-leaks that are common in generic FRP programs, thus making Yampa
more suitable for systems having real-time constraints.

Yampa has been used to program real industrial-strength mobile robots [10,
8]2, building on earlier experience with FRP and Frob [11, 12]. In this paper,
however, we will use a robot simulator. In this way, the reader will be able to run
all of our programs, as well as new ones that she might write, without having to
buy a $10,000 robot. All of the code in this paper, and the simulator itself, are
available via the Yampa home page at www.haskell.org/yampa.

The simulated robot, which we refer to as a simbot, is a differential drive
robot, meaning that it has two wheels, much like a cart, each driven by an
independent motor. The relative velocity of these two wheels thus governs the
turning rate of the simbot; if the velocities are identical, the simbot will go
straight. The physical simulation of the simbot includes translational inertia,
but (for simplicity) not rotational inertia.

The motors are what makes the simbot go; but it also has several kinds of
sensors. First, it has a bumper switch to detect when the simbot gets “stuck.”

1 Yampa is a river in Colorado whose long placid sections are occasionally interrupted
by turbulent rapids, and is thus a good metaphor for the continuous and discrete
components of hybrid systems. But if you prefer acronyms, Yampa was started at
YAle, ended in Arrows, and had Much Programming in between.

2 In these two earlier papers we referred to Yampa as AFRP.

That is, if the simbot runs into something, it will just stop and signal the pro-
gram. Second, it has a range finder that can determine the nearest object in any
given direction. In our examples we will assume that the simbot has independent
range finders that only look forward, backward, left, and right, and thus we will
only query the range finder at these four angles. Third, the simbot has what we
call an “animate object tracker” that gives the location of all other simbots, as
well as possibly some free-moving balls, that are within a certain distance from
the simbot. You can think of this tracker as modelling either a visual subsystem
that can see these objects, or a communication subsystem through which the
simbots and balls share each others’ coordinates. Each simbot also has a unique
ID and a few other capabilities that we will introduce as we need them.

2 Yampa Basics

The most important concept underlying functional reactive programming is that
of a signal : a continous, time-varying value. One can think of a signal as having
polymorphic type:

Signal a = Time -> a

That is, a value of type Signal a is a function mapping suitable values of time
(Double is used in our implementation) to a value of type a. Conceptually, then,
a signal s’s value at some time t is just s(t).

For example, the velocity of a differential drive robot is a pair of numbers
representing the speeds of the left and right wheels. If the speeds are in turn
represented as type Speed, then the robot’s velocity can be represented as type
Signal (Speed,Speed). A program controlling the robot must therefore provide
such a value as output.

Being able to define and manipulate continuous values in a programming
language provides great expressive power. For example, the equations governing
the motion of a differential drive robot [3] are:

x(t) = 1
2

∫ t

0 (vr(t) + vl(t)) cos(θ(t)) dt

y(t) = 1
2

∫ t

0 (vr(t) + vl(t)) sin(θ(t)) dt

θ(t) = 1
l

∫ t

0 (vr(t) − vl(t)) dt

where x(t), y(t), and θ(t) are the robot’s x and y coordinates and orientation,
respectively; vr(t) and vl(t) are the right and left wheel speeds, respectively; and
l is the distance between the two wheels. In FRP these equations can be written
as:

x = (1/2) * integral ((vr + vl) * cos theta)
y = (1/2) * integral ((vr + vl) * sin theta)
theta = (1/l) * integral (vr - vl)

All of the values in this FRP program are implicitly time-varying, and thus
the explicit time t is not present.3 Nevertheless, the direct correspondence be-
tween the physical equations (i.e. the specification) and the FRP code (i.e. the
implementation) is very strong.

2.1 Arrowized FRP

Although quite general, the concept of a signal can lead to programs that have
conspicuous time- and space-leaks,4 for reasons that are beyond the scope of
this paper. Earlier versions of Fran, FAL, and FRP used various methods to
make this performance problem less of an issue, but ultimately they all either
suffered from the problem in one way or another, or introduced other problems
as a result of fixing it.

In Yampa, the problem is solved in a more radical way: signals are simply not
allowed as first-class values! Instead, the programmer has access only to signal
transformers, or what we prefer to call signal functions. A signal function is just
a function that maps signals to signals:

SF a b = Signal a -> Signal b

However, the actual representation of the type SF in Yampa is hidden (i.e. SF
is abstract), so one cannot directly build signal functions or apply them to sig-
nals. Instead of allowing the user to define arbitrary signal functions from scratch
(which makes it all too easy to introduce time- and space-leaks), we provide a set
of primitive signal functions and a set of special composition operators (or “com-
binators”) with which more complex signal functions may be defined. Together,
these primitive values and combinators provide a disciplined way to define sig-
nal functions that, fortuitously, avoids time- and space-leaks. We achieve this by
structuring Yampa based on arrows, a generalization of monads proposed in [7].
Specifically, the type SF is made an instance of the Arrow class.

So broadly speaking, a Yampa program expresses the composition of a possi-
bly large number of signal functions into a composite signal function that is then
“run” at the top level by a suitable interpreter. A good analogy for this idea is a
state or IO monad, where the state is hidden, and a program consists of a linear
sequencing of actions that are eventually run by an interpreter or the operating
system. But in fact arrows are more general than monads, and in particular the
composition of signal functions does not have to be completely linear, as will
be illustrated shortly. Indeed, because signal functions are abstract, we should

3 This implies that the sine, cosine, and arithmetic operators are over-loaded to handle
signals properly.

4 A time-leak in a real-time system occurs whenever a time-dependent computation
falls behind the current time because its value or effect is not needed yet, but then
requires “catching up” at a later point in time. This catching up process can take
an arbitrarily long time, and may or may not consume space as well. It can destroy
any hope for real-time behavior if not managed properly.

be concerned that we have a sufficient set of combinators to compose our signal
functions without loss of expressive power.

We will motivate the set of combinators used to compose signal functions by
using an analogy to so-called “point-free” functional programming (an example
of which is the Bird/Meertens formalism [1]). For the simplest possible example,
suppose that f1 :: A -> B and f2 :: B -> C. Then instead of writing:

g :: A -> C
g x = f2 (f1 x)

we can write in a point-free style using the familiar function composition oper-
ator:

g = f2 . f1

This code is “point-free” in that the values (points) passed to and returned from
a function are never directly manipulated.

To do this at the level of signal functions, all we need is a primitive operator
to “lift” ordinary functions to the level of signal functions:

arr :: (a -> b) -> SF a b

and a primitive combinator to compose signal functions:

(>>>) :: SF a b -> SF b c -> SF a c

We can then write:

g’ :: SF A C
g’ = arr g

= arr f1 >>> arr f2

Note that (>>>) actually represents reverse function composition, and thus its
arguments are reversed in comparison to (.).

Unfortunately, most programs are not simply linear compositions of func-
tions, and it is often the case that more than one input and/or output is needed.
For example, suppose that f1 :: A -> B, f2 :: A -> C and we wish to define
the following in point-free style:

h :: A -> (B,C)
h x = (f1 x, f2 x)

Perhaps the simplest way is to define a combinator:

(&) :: (a->b) -> (a->c) -> a -> (b,c)
(f1 & f2) x = (f1 x, f2 x)

which allows us to define h simply as:

h = f1 & f2

In Yampa there is a combinator (&&&) :: SF a b -> SF a c -> SF a (b,c)
that is analogous to &, thus allowing us to write:

h’ :: SF A (B,C)
h’ = arr h

= arr f1 &&& arr f2

As another example, suppose that f1 :: A -> B and f2 :: C -> D. One
can easily write a point-free version of:

i :: (A,C) -> (B,D)
i (x,y) = (f1 x, f2 y)

by using (&) defined above and Haskell’s standard fst and snd operators:

i = (f1 . fst) & (f2 . snd)

For signal functions, all we need are analogous versions of fst and snd, which
we can achieve via lifting:

i’ :: SF (A,C) (B,D)
i’ = arr i

= arr (f1 . fst) &&& arr (f2 . snd)
= (arr fst >>> arr f1) &&& (arr snd >>> arr f2)

The “argument wiring” pattern captured by i’ is in fact a common one, and
thus Yampa provides the following combinator:

(***) :: SF b c -> SF b’ c’ -> SF (b,b’) (c,c’)
f *** g = (arr fst >>> f) &&& (arr snd >>> g)

so that i’ can be written simply as:

i’ = arr f1 *** arr f2

g’, h’, and i’ were derived from g, h, and i, respectively, by appealing to
one’s intuition about functions and their composition. In the next section we
will formalize this using type classes.

2.2 The Arrow Class

One could go on and on in this manner, adding combinators as they are needed to
solve particular “argument wiring” problems, but it behooves us at some point to
ask if there is a minimal universal set of combinators that is sufficient to express
all possible wirings. Note that so far we have introduced three combinators –
arr, (>>>), and (&&&) – without definitions, and a fourth – (***) – was defined
in terms of these three. Indeed these three combinators constitute a minimal
universal set.

However, this is not the only minimal set. In fact, in defining the original
Arrow class, Hughes instead chose the set arr, (>>>), and first:

class Arrow a where
arr :: (b -> c) -> a b c
(>>>) :: a b c -> a c d -> a b d
first :: a b c -> a (b,d) (c,d)

where first is analogous to the following function defined at the ordinary func-
tion level:

firstfun f = \(x,y) -> (f x, y)

In Yampa, the type SF is an instance of class Arrow, and thus these types are
consistent with what we presented earlier. To help see how this set is miminal,
here are definitions of second and (&&&) in terms of the Arrow class methods:

second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap

where swap pr = (snd pr, fst pr)

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)
f &&& g = arr (\b -> (b,b)) >>> (first f >>> second g)

In addition, here is an instance declaration that shows how Haskell’s normal
function type can be treated as an arrow:

instance Arrow (->) where
arr f = f
f >>> g = g . f
first f = \(b,d) -> (f b, d)

With this instance declaration, the derivations of g’, h’, and i’ in the previous
section can be formally justified.

Exercise 1. Define (a) first in terms of just arr, (>>>), and (&&&), (b) (***)
in terms of just first, second, and (>>>), and (c) (&&&) in terms of just arr,
(>>>), and (***).

2.3 Commonly Used Combinators

In practice, it is better to think in terms of a commonly-used set of combinators
rather than a minimal set. Figure 1 shows a set of eight combinators that we use
often in Yampa programming, along with the graphical “wiring of arguments”
that five of them imply.

Yampa also provides many convenient library functions that facilitate pro-
gramming in the arrow framework. Here are some that we will use later in this
paper:

identity :: SF a a
constant :: b -> SF a b
time :: SF a Time

arr :: Arrow a => (b -> c) -> a b c

(>>>) :: Arrow a => a b c -> a c d -> a b d

(<<<) :: Arrow a => a c d -> a b c -> a b d

first :: Arrow a => a b c -> a (b,d) (c,d)

second :: Arrow a => a b c -> a (d,b) (d,c)

(***) :: Arrow a => a b c -> a b’ c’ -> a (b,b’) (c,c’)

(&&&) :: Arrow a => a b c -> a b c’ -> a b (c,c’)

loop :: Arrow a => a (b,d) (c,d) -> a b c

f

(a) arr f

������

(b) sf1 >>> sf2

��

(c) first sf

���

���

(d) sf1 &&& sf2

��

(e) loop sf

Fig. 1. Commonly Used Arrow Combinators

The identity signal function is analogous to the identity function in Haskell,
and in fact is equivalent to arr id. The constant function is useful for generat-
ing constant signal functions, is analogous to Haskell’s const function, and in fact
is equivalent to arr . const. Finally, time is a signal function that yields the
current time, and is equivalent to constant 1.0 >>> integral, where integral
is a pre-defined Yampa signal function with type:5

integral :: SF Double Double

Yampa also defines a derivative signal function.
It is important to note that some signal functions are stateful, in that they

accumulate information over time. integral is a perfect example of such a func-
tion: by definition, it sums instantaneuous values of a signal over time. Stateful
signal functions cannot be defined using arr, which only lifts pure functions to
the level of arrows. Stateful functions must either be pre-defined or be defined
in terms of other stateful signal functions.

Stated another way, stateful signal functions such as integration and differ-
entiation depend intimately on the underlying time-varying semantics, and so
do not have analogous unlifted forms. Indeed, it is so easy to lift unary functions
to the level of signal functions that there is generally no need to provide spe-
cial signal function versions of them. For example, instead of defining a special
sinSF, cosSF, etc., we can just use arr sin, arr cos, etc. Furthermore, with
the binary lifting operator:

arr2 :: (a->b->c) -> SF (a,b) c
arr2 = arr . uncurry

we can also lift binary operators. For example, arr2 (+) has type
Num a => SF (a,a) a.

2.4 A Simple Example

To see all of this in action, consider the FRP code presented earlier for the
coordinates and orientation of the mobile robot. We will rewrite the code for the
x-coordinate in Yampa (leaving the y-coordinate and orientation as an exercise).

Suppose there are signal functions vrSF, vlSF :: SF SimbotInput Speed
and thetaSF :: SF SimbotInput Angle. The type SimbotInput represents the
input state of the simbot, which we will have much more to say about later. With
these signal functions in hand, the previous FRP code for x:

x = (1/2) * integral ((vr + vl) * cos theta)

can be rewritten in Yampa as:

5 This function is actually overloaded for any vector space, but that does not concern
us here, and thus we have specialized it to Double.

xSF :: SF SimbotInput Distance
xSF = let v = (vrSF &&& vlSF) >>> arr2 (+)

t = thetaSF >>> arr cos
in (v &&& t) >>> arr2 (*) >>> integral >>> arr (/2)

Exercise 2. Define signal functions ySF and thetaSF in Yampa that correspond
to the definitions of y and theta, respectively, in FRP.

2.5 Arrow Syntax

Although we have achieved the goal of preventing direct access to signals, one
might argue that we have lost the clarity of the original FRP code: the code
for xSF is certainly more difficult to understand than that for x. Most of the
complexity is due to the need to wire signal functions together using the various
pairing/unpairing combinators such as (&&&) and (***). Precisely to address
this problem, Paterson [9] has suggested the use of special syntax to make arrow
programming more readable, and has written a preprocessor that converts the
syntactic sugar into conventional Haskell code. Using this special arrow syntax,
the above Yampa code for xSF can be rewritten as:

xSF’ :: SF SimbotInput Distance
xSF’ = proc inp -> do
vr <- vrSF -< inp
vl <- vlSF -< inp
theta <- thetaSF -< inp
i <- integral -< (vr+vl) * cos theta
returnA -< (i/2)

Although not quite as readable as the original FRP definition of x, this code is
far better than the unsugared version. There are several things to note about
the structure of this code:

1. The syntax proc pat -> ... is analogous to a Haskell lambda expression
of the form \ pat -> ... , except that it defines a signal function rather
than a normal Haskell function.

2. In the syntax pat <- SFexpr -< expr, the expression SFexpr must be a
signal function, say of type SF T1 T2, in which case expr must have type
T1 and pat must have type T2. This is analogous to pat = expr1 expr2 in a
Haskell let or where clause, in which case if expr1 has type T1 -> T2, then
expr2 must have type T1 and pat must have type T2.

3. The overall syntax:

proc pat -> do
pat1 <- SFexpr1 -< expr1
pat2 <- SFexpr2 -< expr2
· · ·
returnA -< expr

defines a signal function. If pat has type T1 and expr has type T2, then the
type of the signal function is SF T1 T2. In addition, any variable bound by
one of the patterns pati can only be used in the expression expr or in an
expression exprj where j > i. In particular, it cannot be used in any of the
signal function expressions SFexpri.

It is important to note that the arrow syntax allows one to get a handle
on a signal’s values (or samples), but not on the signals themselves. In other
words, first recalling that a signal function SF a b can be thought of as a type
Signal a -> Signal b, which in turn can be thought of as type
(Time -> a) -> (Time -> b), the syntax allows getting a handle on values of
type a and b, but not on values of type Time -> a or Time -> b.

Figure 2(a) is a signal flow diagram that precisely represents the wiring im-
plied by the sugared definition of xSF’. (It also reflects well the data dependencies
in the original FRP program for x.) Figure 2(b) shows the same diagram, except
that it has been overlaid with the combinator applications implied by the unsug-
ared definition of xSF (for clarity, the lifting via arr of the primitive functions
– i.e. those drawn with circles – is omitted). These diagrams demonstrate nicely
the relationship between the sugared and unsugared forms of Yampa programs.

Exercise 3. Rewrite the definitions of ySF and thetaSF from the previous exer-
cise using the arrow syntax. Also draw their signal flow diagrams.

2.6 Discrete Events and Switching

Most programming languages have some kind of conditional choice capability,
and Yampa is no exception. Indeed, given signal functions flag :: SF a Bool
and sfx, sfy :: SF a b, then the signal function:

sf :: SF a b
sf = proc i -> do
x <- sfx -< i
y <- sfy -< i
b <- flag -< i
returnA -< if b then x else y

behaves like sfx whenever flag yields a true value, and like sfy whenever it
yields false.

However, this is not completely satisfactory, because there are many situ-
ations where one would prefer that a signal function switch into, or literally
become, some other signal function, rather than continually alternate between
two signal functions based on the value of a boolean. Indeed, there is often a
succession of new signal functions to switch into as a succession of particular
events occurs, much like state changes in a finite state automaton. Furthermore,
we would like for these newly invoked signal functions to start afresh from time
zero, rather than being signal functions that have been “running” since the

vrSF

vlSF

thetaSF

+

cos

* integral (/2)

vr

vl

theta

iinp

(a) Sugared

vrSF

vlSF

thetaSF

+

cos

* integral (/2)

&&&

&&& v

t
>>>

>>>

>>>

>>>

>>>

(b) Unsugared

Fig. 2. Signal Flow Diagrams for xSF

program began. This relates precisely to the issue of “statefulness” that was
previously discussed.

This advanced functionality is achieved in Yampa using events and switching
combinators.

In previous versions of FRP, including Fran, Frob, and FAL, a significant
distinction was made between continuous values and discrete events. In Yampa
this distinction is not as great. Events in Yampa are just abstract values that are
isomorphic to Haskell’s Maybe data type. A signal of type Signal (Event b)
is called an event stream, and is a signal that, at any point in time, yields
either nothing or an event carrying a value of type b. A signal function of type
SF a (Event b) generates an event stream, and is called an event source.

Note: Although event streams and continuous values are both represented as
signals in Yampa, there are important semantic differences between them. For
example, improper use of events may lead to programs that are not convergent,
or that allow the underlying sampling rate to “show through” in the program’s
behavior. Semantically speaking, event streams in Yampa should not be “in-
finitely dense” in time; practically speaking, their frequency should not exceed
the internal sampling rate unless buffering is provided.6

As an example of a well-defined event source, the signal function:

rsStuck :: SF SimbotInput (Event ())

generates an event stream whose events correspond to the moments when the
robot gets “stuck:” that is, an event is generated every time the robot’s motion
is blocked by an obstacle that it has run into.

What makes event streams special is that there is a special set of func-
tions that use event streams to achieve various kinds of switching. The simplest
switching combinator is called switch, whose type is given by:

switch :: SF a (b, Event c) -> (c -> SF a b) -> SF a b

The expression (sf1 &&& es) ‘switch‘ \e -> sf2 behaves as sf1 until the
first event in the event stream es occurs, at which point the event’s value is
bound to e and the behavior switches over to sf2.

For example, in order to prevent damage to a robot wheel’s motor, we may
wish to set its speed to zero when the robot gets stuck:

xspd :: Speed -> SF SimbotInput Speed
xspd v = (constant v &&& rsStuck) ‘switch‘ \() -> constant 0

It should be clear that stateful Yampa programs can be constructed using switch-
ing combinators.

Exercise 4. Rather than set the wheel speed to zero when the robot gets stuck,
negate it instead. Then define xspd recursively so that the velocity gets negated
every time the robot gets stuck.
6 Certain input events such as key presses are in fact properly bufferred in our imple-

mentation such that none will be lost.

Switching semantics. There are several kinds of switching combinators in
Yampa, four of which we will use in this paper. These four switchers arise out
of two choices in the semantics:

1. Whether or not the switch happens exactly at the time of the event, or
infinitesimally just after. In the latter case, a “d” (for “delayed”) is prefixed
to the name switch.

2. Whether or not the switch happens just for the first event in an event stream,
or for every event. In the latter case, an “r” (for “recurring”) is prefixed to
the name switch.

This leads to the four switchers, whose names and types are:

switch, dSwitch :: SF a (b, Event c) -> (c -> SF a b) -> SF a b
rSwitch, drSwitch :: SF a b -> SF (a, Event (SF a b)) b

An example of the use of switch was given above. Delayed switching is useful
for certain kinds of recursive signal functions. In Sec. 2.7 we will see an example
of the use of drSwitch.

As mentioned earlier, an important property of switching is that time begins
afresh within each signal function being switched into. For example, consider the
expression:

let sinSF = time >>> arr sin
in (sinSF &&& rsStuck) ‘switch‘ const sinSF

sinSF to the left of the switch generates a sinusoidal signal. If the first event
generated by rsStuck happens at time t, then the sinSF on the right will begin
at time 0, regardless of what the time t is; i.e. the sinusoidal signal will start
over at the time of the event.

Useful event functions. Event is an instance of class Functor, and thus
fmap can be used to change the value carried by an event. For example, we can
increment the value of an event e :: Event Double by writing fmap (+1) e.
Sometimes we don’t care about the old value of an event when creating a new
one, so Yampa also provides:

tag :: Event a -> b -> Event b
e ‘tag‘ b = fmap (const b) e

It is often desirable to merge events ; for example, to form the disjunction of
two logical events. The only problem is deciding what to do with simultaneous
events. The most general form of merge:

mergeBy :: (a -> a -> a) -> Event a -> Event a -> Event a

allows the user to decide how to handle simultaneous events by providing a
function to combine the event values. Alternatively, one may choose to give
preference to the left or right event:

lMerge :: Event a -> Event a -> Event a
rMerge :: Event a -> Event a -> Event a

If there is no possibility of simultaneous events, merge may be used, which
generates an error if in fact two events occur together:

merge :: Event a -> Event a -> Event a

So far we have only considered pre-existing events. Some of these may come
from external sources, such as a bumper switch or communications subsystem,
but it is often convenient to define our own events. Yampa provides a variety of
ways to generate new events, the most important being:

edge :: SF Bool (Event ())

The expression boolSF >>> edge generates an event every time the signal from
boolSF goes from False to True (i.e. the “leading edge” of the signal). For
example, if tempSF :: SF SimbotInput Temp is a signal function that indicates
temperature, then:

alarmSF :: SF SimbotInput (Event ())
alarmSF = tempSF >>> arr (>100) >>> edge

generates an alarm event if the temperature exceeds 100 degrees.
Here are a few other useful event generation functions:

never :: SF a (Event b)
now :: b -> SF a (Event b)
after :: Time -> b -> SF a (Event b)
repeatedly :: Time -> b -> SF a (Event b)

never is an event source that never generates any event occurrences. now v
generates exactly one event, whose time of occurrence is zero (i.e. now) and whose
value is v. The expression after t v generates exactly one event, whose time
of occurrence is t and whose value is v. Similarly, repeatedly t v generates an
event every t seconds, each with value v.

To close this section, we point out that the discrete and continuous worlds
interact in important ways, with switching, of course, being the most funda-
mental. But Yampa also provides several other useful functions to capture this
interaction. Here are two of them:

hold :: a -> SF (Event a) a
accum :: a -> SF (Event (a -> a)) (Event a)

The signal function hold v initially generates a signal with constant value v,
but every time an event occurs with value v’, the signal takes on (i.e. “holds”)
that new value v’. The signal function accum v0 is assentially an event stream
transformer. Each input event generates one output event. If fn is the function
corresponding to the nth input event, then the value vn of the nth output event
is just fn vn−1, for n ≥ 1, and with v0 = v0.

For example, the following signal function represents the number of alarms
generated from alarmSF defined earlier:

alarmCountSF :: SF SimbotInput Int
alarmCountSF = alarmSF >>> arr (‘tag‘ (+1)) >>> accum 0 >>> hold 0

Indeed, the accum followed by hold idiom is so common that it is predefined in
Yampa:

accumHold :: a -> SF (Event (a -> a)) a
accumHold init = accum init >>> hold init

Exercise 5. Suppose v :: SF SimbotInput Velocity represents the scalar ve-
locity of a simbot. If we integrate this velocity, we get a measure of how far the
simbot has traveled. Define an alarm that generates an event when either the
simbot has traveled more than d meters, or it has gotten stuck.

2.7 Recursive Signals

Note in Fig. 1 the presence of the loop combinator. Its purpose is to define
recursive signal functions; i.e. it is a fixpoint operator. The arrow syntax goes
one step further by allowing recursive definitions to be programmed directly,
which the preprocessor expands into applications of the loop combinator. In this
case the user must include the keyword rec prior to the collection of recursive
bindings.

For example, a common need when switching is to take a “snapshot” of the
signal being switched out of, for use in computing the value of the signal being
switched into. Suppose that there is an event source
incrVelEvs :: SF SimbotInput (Event ()) whose events correspond to com-
mands to increment the velocity. We can define a signal function that responds
to these commands as follows:

vel :: Velocity -> SF SimbotInput Velocity
vel v0 = proc inp -> do
rec e <- incrVelEvs -< inp

v <- drSwitch (constant v0) -< (inp, e ‘tag‘ constant (v+1))
returnA -< v

Note that v is recursively defined. This requires the use of the rec keyword, and
also the use of a delayed switch to ensure that the recursion is well founded. Also
note that the recurring version of switch is used, because we want the velocity
update to happen on every event. Finally, note the use of tag to update the
value of an event.

The need for a delayed switch is perhaps best motivated by analogy to re-
cursively defined lists, or streams. The definition:

ones = 1 : ones

expresses the usual infinite stream of ones, and is obviously well founded, whereas
the list:

ones = ones

is obviously not well founded. The value of 1 placed at the front of the list
can be thought of as a delay in the access of ones. That is the idea behind a
delayed switch, although semantically the delay is intended to be infinitesimally
small, and in the implementation we avoid introducing a delay that could affect
performance.

Exercise 6. Redefine vel using dSwitch instead of drSwitch, and without using
the rec keyword. (Hint: define vel recursively instead of defining v recursively.)

3 Programming the Robot Simulator

3.1 Robot Input and Output

Generally speaking, one might have dozens of different robots, some real, some
simulated, and each with different kinds of functionality (two wheels, three
wheels, four wheels, cameras, sonars, bumper switches, actuators, speakers, flash-
ing lights, missle launchers, and so on). These differences are captured in the
input and output types of the robot. For example, there is only one kind of
simulated robot, or simbot, whose input type is SimbotInput and whose output
type is SimbotOutput.

[Note: The code described in this section works with Yampa version 0.9 (and
0.9.x patches), but some changes are anticipated for use with future Yampa
versions 1.0 and higher. In particular, the module names will change. In Yampa
0.9 they are still known under their old names (AFrob, AFrobRobotSim, etc.) for
backwards compatibility reasons.]

We refer to the collection of Yampa libraries that are robot-specific as AFrob.
The AFrob library was written to be as generic as possible, and thus it does not
depend directly on the robot input and output types. Rather, type classes are
used to capture different kinds of functionality. Each robot type is an instance
of some subset of these classes, depending on the functionality it has to offer.

For example, SimbotInput is a member of the type classes shown in the
upper half of Fig. 3, and SimbotOutput is a member of the lower ones. The types
Velocity, Distance, Angle, RotVel, RotAcc, Length, Acceleration, Speed,
Heading, and Bearing are all synonyms for type Double. Type Position2 is a
synonym for Point2 Position, where:

data RealFloat a => Point2 a = Point2 !a !a
deriving Eq

We will give examples of the use of many of these operations and type classes
in the examples that follow. Before doing so, however, there is one other detail
to describe about the output classes. Note in Fig. 3 that the methods in the last
two classes return a type MR a, where a is constrained to be a MergeableRecord.
This allows one to incrementally specify certain “fields” of the record, and to
merge them later. There are two key operations on mergeable records:

mrMerge :: MergeableRecord a => MR a -> MR a -> MR a
mrFinalize :: MergeableRecord a => MR a -> a

-- Input Classes And Related Functions

--

class HasRobotStatus i where

rsBattStat :: i -> BatteryStatus -- Curent battery status

rsIsStuck :: i -> Bool -- Currently stuck or not

data BatteryStatus = BSHigh | BSLow | BSCritical

deriving (Eq, Show)

-- derived event sources:

rsBattStatChanged :: HasRobotStatus i => SF i (Event BatteryStatus)

rsBattStatLow :: HasRobotStatus i => SF i (Event ())

rsBattStatCritical :: HasRobotStatus i => SF i (Event ())

rsStuck :: HasRobotStatus i => SF i (Event ())

class HasOdometry i where

odometryPosition :: i -> Position2 -- Current position

odometryHeading :: i -> Heading -- Current heading

class HasRangeFinder i where

rfRange :: i -> Angle -> Distance

rfMaxRange :: i -> Distance

-- derived range finders:

rfFront :: HasRangeFinder i => i -> Distance

rfBack :: HasRangeFinder i => i -> Distance

rfLeft :: HasRangeFinder i => i -> Distance

rfRight :: HasRangeFinder i => i -> Distance

class HasAnimateObjectTracker i where

aotOtherRobots :: i -> [(RobotType, Angle, Distance)]

aotBalls :: i -> [(Angle, Distance)]

class HasTextualConsoleInput i where

tciKey :: i -> Maybe Char

tciNewKeyDown :: HasTextualConsoleInput i =>

Maybe Char -> SF i (Event Char)

tciKeyDown :: HasTextualConsoleInput i => SF i (Event Char)

-- Output Classes And Related Functions

--

class MergeableRecord o => HasDiffDrive o where

ddBrake :: MR o -- Brake both wheels

ddVelDiff :: Velocity -> Velocity -> MR o -- set wheel velocities

ddVelTR :: Velocity -> RotVel -> MR o -- set vel. and rot.

class MergeableRecord o => HasTextConsoleOutput o where

tcoPrintMessage :: Event String -> MR o

Fig. 3. Robot Input and Output Classes

For example, the expression:

sbo :: SimbotOutput
sbo = mrFinalize

(ddVelDiff vel1 vel2 ‘mrMerge‘ tcoPrintMessage stringEvent)

merges the velocity output with a console message.
For simbots, it turns out that velocity control and message output are the

only two things that can be merged, so the use of the MergeableRecord class
may seem like an overkill. However, for other robots there may be many such
mergeable outputs, and the functionality thus offered is quite convenient.

When two common outputs are merged, the result depends on how the
mrMerge and mrFinalize methods are defined to behave. The designer of a par-
ticular instance of these methods might signal an error, accept one output or the
other (for example, merging two calls to ddVelDiff yields the value of the first
one), or combine the two (for example, merging two calls to tcoPrintMessage
results in both messages being printed in order).

3.2 Robot Controllers

To control a robot we must define a robot controller, which, for the case of
simbots, must have type:

type SimbotController =
SimbotProperties -> SF SimbotInput SimbotOutput

SimbotProperties is a data type that specifies static properties of a simbot.
These properties are accessed abstractly in that SimbotProperties is an in-
stance of the HasRobotProperties type class:

class HasRobotProperties i where
rpType :: i -> RobotType -- Type of robot
rpId :: i -> RobotId -- Identity of robot
rpDiameter :: i -> Length -- Distance between wheels
rpAccMax :: i -> Acceleration -- Max translational acc
rpWSMax :: i -> Speed -- Max wheel speed

type RobotType = String
type RobotId = Int

The simulator knows about two versions of the simbot, for which each of these
properties is slightly different. The RobotType field is just a string, which for
the simbots will be either "SimbotA" or "SimbotB". The remaining fields are
self-explanatory.

To actually run the simulator, we use the function:

runSim :: Maybe WorldTemplate ->
SimbotController -> SimbotController -> IO ()

where a WorldTemplate is a data type that describes the initial state of the sim-
ulator world. It is a list of simbots, walls, balls, and blocks, along with locations
of the centers of each:

type WorldTemplate = [ObjectTemplate]

data ObjectTemplate =
OTBlock { otPos :: Position2 } -- Square obstacle

| OTVWall { otPos :: Position2 } -- Vertical wall
| OTHWall { otPos :: Position2 } -- Horizontal wall
| OTBall { otPos :: Position2 } -- Ball
| OTSimbotA { otRId :: RobotId, -- Simbot A robot

otPos :: Position2,
otHdng :: Heading }

| OTSimbotB { otRId :: RobotId, -- Simbot B robot
otPos :: Position2,
otHdng :: Heading }

The constants worldXMin, worldYMin, worldXMax, and worldYMax are the bounds
of the simulated world, and are assumed to be in meters. Currently these values
are -5, -5, 5, and 5, respectively (i.e. the world is 10 meters by 10 meters, with
the center coordinate being (0, 0)). The walls are currently fixed in size at 1.0m
by 0.1m, and the blocks are 0.5m by 0.5m. The diameter of a simbot is 0.5m.

Your overall program should be structured as follows:

module MyRobotShow where

import AFrob
import AFrobRobotSim

main :: IO ()
main = runSim (Just world) rcA rcB

world :: WorldTemplate
world = ...

rcA :: SimbotController -- controller for simbot A’s
rcA = ...

rcB :: SimbotController -- controller for simbot B’s
rcB = ...

The module AFrob also imports the Yampa library. The module AFrobRobotSim
is the robot simulator.

Note that many robots may be created of the same kind (i.e. simbot A or
simbot B) in the world template, but the same controller will be invoked for all
of them. If you want to distinguish amongst them, simply give them different
RobotID’s. For example, if you have three simbot A robots, then your code for
controller rcA can be structured like this:

rcA :: SimbotController
rcA rProps =
case rpId rProps of
1 -> rcA1 rProps
2 -> rcA2 rProps
3 -> rcA3 rProps

rcA1, rcA2, rcA3 :: SimbotController
rcA1 = ...
rcA2 = ...
rcA3 = ...

3.3 Basic Robot Movement

In this section we will write a series of robot controllers, each of type
SimbotController. Designing controllers for real robots is both an art and a
science. The science part includes the use of control theory and related math-
ematical techniques that focus on differential equations to design optimal con-
trollers for specific tasks. We will not spend any time on control theory here, and
instead will appeal to the reader’s intuition in the design of functional, if not
optimal, controllers for mostly simple tasks. For more details on the kinematics
of mobile robots, see [3].

Stop, go, and turn. For starters, let’s define the world’s dumbest controller –
one for a stationary simbot:

rcStop :: SimbotController
rcStop _ = constant (mrFinalize ddBrake)

Or we could make the simbot move blindly forward at a constant velocity:

rcBlind1 _ = constant (mrFinalize $ ddVelDiff 10 10)

We can do one better than this, however, by first determining the maximal
allowable wheel speeds and then running the simbot at, say, one-half that speed:

rcBlind2 rps =
let max = rpWSMax rps
in constant (mrFinalize $ ddVelDiff (max/2) (max/2))

We can also control the simbot through ddVelTR, which allows specifying
the simbot’s forward and rotational velocities, rather than the individual wheel
speeds. For a differential drive robot, the maximal rotational velocity depends on
the vehicle’s forward velocity; it can rotate most quickly when it is standing still,
and cannot rotate at all if it is going at its maximal forward velocity (because to
turn while going at its maximal velocity, one of the wheels would have to slow
down, in which case it would no longer be going at its maximal velocity). If the
maximal wheel velocity is vmax, and the forward velocity is vf , then it is easy
to show that the maximal rotational velocity in radians per second is given by:

ωmax =
2(vmax − vf)

l

For example, this simbot turns as fast as possible while going at a given speed:

rcTurn :: Velocity -> SimbotController
rcTurn vel rps =

let vMax = rpWSMax rps
rMax = 2 * (vMax - vel) / rpDiameter rps

in constant (mrFinalize $ ddVelTR vel rMax)

Exercise 7. Link rcBlind2, rcTurn, and rcStop together in the following way:
Perform rcBlind2 for 2 seconds, then rcTurn for three seconds, and then do
rcStop. (Hint: use after to generate an event after a given time interval.)

The simbot talks (sort of). For something more interesting, let’s define
a simbot that, whenever it gets stuck, reverses its direction and displays the
message "Ouch!!" on the console:

rcReverse :: Velocity -> SimbotController
rcReverse v rps = beh ‘dSwitch‘ const (rcReverse (-v) rps)
where beh = proc sbi -> do

stuckE <- rsStuck -< sbi
let mr = ddVelDiff v v ‘mrMerge‘

tcoPrintMessage (tag stuckE "Ouch!!")
returnA -< (mrFinalize mr, stuckE)

Note the use of a let binding within a proc: this is analogous to a let binding
within Haskell’s monadic do syntax. Note also that rcReverse is recursive –
this is how the velocity is reversed everytime the simbot gets stuck – and there-
fore requires the use of dSwitch to ensure that the recursion is well founded.
(It does not require the rec keyword, however, because the recursion occurs
outside of the proc expression.) The other reason for the dSwitch is rather sub-
tle: tcoPrintMessage uses stuckE to control when the message is printed, but
stuckE also controls the switch; thus if the switch happened instantaneously,
the message would be missed!

If preferred, it is not hard to write rcReverse without the arrow syntax:

rcReverse’ v rps =
(rsStuck >>> arr fun) ‘dSwitch‘ const (rcReverse’ (-v) rps)
where fun stuckE =

let mr = ddVelDiff v v ‘mrMerge‘
tcoPrintMessage (tag stuckE "Ouch!!")

in (mrFinalize mr, stuckE)

Exercise 8. Write a version of rcReverse that, instead of knowing in advance
what its velocity is, takes a “snapshot” of the velocity, as described in Sec. 2.7,
at the moment the stuck event happens, and then negates this value to continue.

Finding our way using odometry. Note from Fig. 3 that our simbots have
odometry; that is, the ability of a robot to track its own location. This capability
on a real robot can be approximated by so-called “dead reckoning,” in which the
robot monitors its actual wheel velocities and keeps track of its position incre-
mentally. Unfortunately, this is not particularly accurate, because of the errors
that arise from wheel slippage, uneven terrain, and so on. A better technique is
to use GPS (global positioning system), which uses satellite signals to determine
a vehicle’s position to within a few feet of accuracy. In our simulator we will
assume that the simbot’s odometry is perfect.

We can use odometry readings as feedback into a controller to stabilize and
increase the accuracy of some desired action. For example, suppose we wish to
move the simbot at a fixed speed in a certain direction. We can set the speed
easily enough as shown in the examples above, but we cannot directly specify
the direction. However, we can read the direction using the odometry function
odometryHeading :: SimbotInput -> Heading and use this to control the ro-
tational velocity.

(A note about robot headings. In AFrob there are three data types that relate
to headings:

1. Heading is assumed to be in radians, and is aligned with the usual Cartesian
coordinate system, with 0 radians corresponding to the positive x-axis, π/2
the positive y-axis, and so on. Its normalized range is [−π, π).

2. Bearing is assumed to be in degrees, and is aligned with a conventional
compass, with 0 degrees corresponding to north, 90 degrees to east, and so
on. Its normalized range is [0, 360).

3. Angle is assumed to be in radians, but is a relative measure rather than
being aligned with something absolute.

AFrob also provide conversion functions between bearings and headings:

bearingToHeading :: Bearing -> Heading
headingToBearing :: Heading -> Bearing

However, in this paper we only use headings and relative angles.)

Getting back to our problem, if hd and ha are the desired and actual headings
in radians, respectively, then the heading error is just he = hd − ha. If he is
positive, then we want to turn the robot in a counter-clockwise direction (i.e.
using a positive rotational velocity), and if he is negative, then we want to turn
the robot in a clockwise direction (i.e. using a negative rotational velocity). In
other words, the rotational velocity should be directly proportioonal to he (this
strategy is thus called a proportionate controller). One small complication to
this scheme is that we need to normalize hd − ha to keep the angle in the range
[−π, π). This is easily achieved using Yampa’s normalizeAngle function. Here
is the complete controller:

rcHeading :: Velocity -> Heading -> SimbotController
rcHeading vel hd rps =

let vMax = rpWSMax rps
vel’ = lim vMax vel
k = 2

in proc sbi -> do
let he = normalizeAngle (hd - odometryHeading sbi)
let vel’’ = (1 - abs he / pi) * vel’
returnA -< mrFinalize (ddVelTR vel’’ (k*he))

lim m y = max (-m) (min m y)

The parameter k is called the gain of the controller, and can be adjusted to give
a faster response, at the risk of being too fast and thus being unstable. lim m y
limits the maximum absolute value of y to m.

Before the next example we will first rewrite the above program in the fol-
lowing way:

rcHeading’ :: Velocity -> Heading -> SimbotController
rcHeading’ vel hd rps =
proc sbi -> do
rcHeadingAux rps -< (sbi, vel, hd)

rcHeadingAux :: SimbotProperties ->
SF (SimbotInput,Velocity,Heading) SimbotOutput

rcHeadingAux rps =
let vMax = rpWSMax rps

k = 2
in proc (sbi,vel,hd) -> do

let vel’ = lim vMax vel
let he = normalizeAngle (hd - odometryHeading sbi)
let vel’’ = (1 - abs he / pi) * vel’
returnA -< mrFinalize (ddVelTR vel’’ (k*he))

In the original definition, vel and hd were constant during the lifetime of the
signal function, whereas in the second version they are treated as signals in

rcHeadingAux, thus allowing for them to be time varying. Although not needed
in this example, we will need this capability below.

As another example of using odometry, consider the task of moving the sim-
bot to a specific location. We can do this by computing a trajectory from our
current location to the desired location. By doing this continually, we ensure
that drift caused by imperfections in the robot, the floor surface, etc. do not
cause appreciable error.

The only complication is that we must take into account our simbot’s trans-
lational inertia: if we don’t, we may overshoot the target. What we’d like to
do is slow down as we approach the target (as for rcHeading, this amounts to
designing a proportionate controller). Here is the code:

rcMoveTo :: Velocity -> Position2 -> SimbotController
rcMoveTo vd pd rps = proc sbi -> do

let (d,h) = vector2RhoTheta (pd .-. odometryPosition sbi)
vel = if d>2 then vd else vd*(d/2)

rcHeadingAux rps -< (sbi, vel, h)

Note the use of vector arithmetic to compute the difference between the de-
sired position pd and actual position odometryPosition sbi, and the use of
vector2RhoTheta to convert the error vector into distance d and heading h.
vel is the speed at which we will approach the target. Finally, note the use
of rcHeadingAux defined above to move the simbot at the desired velocity and
heading.

Exercise 9. rcMoveTo will behave a little bit funny once the simbot reaches its
destination, because a differential drive robot is not able to maneuver well at
slow velocities (compare the difficulty of parallel parking a car to the ease of
switching lanes at high speed). Modify rcMove so that once it gets reasonably
close to its target, it stops (using rcStop).

Exercise 10. Define a controller to cause a robot to follow a sinusoidal path.
(Hint: feed a sinusoidal signal into rcHeadingAux.)

Exercise 11. Define a controller that takes a list of points and causes the robot
to move to each point successively in turn.

Exercise 12. (a) Define a controller that chases a ball. (Hint: use the aotBalls
method in class HasAnimateObjectTracker to find the location of the ball.) (b)
Once the ball is hit, the simulator will stop the robot and create an rsStuck
event. Therefore, modify your controller so that it restarts the robot whenever
it gets stuck, or perhaps backs up first and then restarts.

Home on the range. Recall that our simbots have range finders that are able
to determine the distance of the nearest object in a given direction. We will
assume that there are four of these, one looking forward, one backward, one to
the left, and one to the right:

rfFront :: HasRangeFinder i => i -> Distance
rfBack :: HasRangeFinder i => i -> Distance
rfLeft :: HasRangeFinder i => i -> Distance
rfRight :: HasRangeFinder i => i -> Distance

These are intended to simulate four sonar sensors, except that they are far more
accurate than a conventional sonar, which has a rather broad signal. They are
more similar to the capability of a laser-based range finder.

With a range finder we can do some degree of autonomous navigation in
“unknown terrain.” That is, navigation in an area where we do not have a
precise map. In such situations a certain degree of the navigation must be done
based on local features that the robot “sees,” such as walls, doors, and other
objects.

For example, let’s define a controller that causes our simbot to follow a wall
that is on its left. The idea is to move forward at a constant velocity v, and as
the desired distance d from the wall varies from the left range finder reading r,
adjustments are made to the rotational velocity ω to keep the simbot in line.
This task is not quite as simple as the previous ones, and for reasons that are
beyond the scope of this paper, it is desirable to use what is known as a PD
(for “proportionate/derivative”) controller, which means that the error signal is
fed back proportionately and also as its derivative. More precisely, one can show
that, for small deviations from the norm:

ω = Kp(r − d) + Kd(
dr

dt
)

Kp and Kd are the proportionate gain and derivative gain, respectively. Generally
speaking, the higher the gain, the better the reponse will be, but care must be
taken to avoid responding too quickly, which may cause over-shooting the mark,
or worse, unstable behavior that is oscillatory or that diverges. It can be shown
that the optimal relationship between Kp and Kd is given by:

Kp = vK2
d/4

In the code below, we will set Kd to 5. For pragmatic reasons we will also put a
limit on the absolute value of ω using the limiting function lim.

Assuming all of this mathematics is correct, then writing the controller is
fairly straightforward:

rcFollowLeftWall :: Velocity -> Distance -> SimbotController
rcFollowLeftWall v d _ = proc sbi -> do
let r = rfLeft sbi
dr <- derivative -< r
let omega = kp*(r-d) + kd*dr

kd = 5
kp = v*(kd^2)/4

returnA -< mrFinalize (ddVelTR v (lim 0.2 omega))

Exercise 13. Enhance the wall-follower controller so that it can make left and
right turns in a maze constructed only of horizontal and vertical walls. Specifi-
cally:

1. If the simbot sees a wall directly in front of itself, it should slow down as it
approaches the wall, stopping at distance d from the wall. Then it should
turn right and continue following the wall which should now be on its left.
(This is an inside-corner right turn.)

2. If the simbot loses track of the wall on its left, it continues straight ahead for
a distance d, turns left, goes straight for distance d again, and then follows
the wall which should again be on its left. (This is an outside-corner left
turn.)

Test your controller in an appropriately designed world template.

Exercise 14. As mentioned in the derivation above, the rcFollowLeftWall con-
troller is only useful once the robot is close to being on track: i.e. at the proper
distance from the wall and at the proper heading. If the robot is too far from
the wall, it will tend to turn too much in trying to get closer, which makes the
left range finder see an even greater distance, and the system becomes unstable.
Designing a more robust wall follower is tricky business, and is best treated as
multi-mode system, where the robot first seeks a wall, aligns itself parallel to the
wall, and then tries to follow it. Design such a controller.

Mass hysteria. As mentioned earlier, the simulator can handle a number of
simbots simultaneously. Groups of robots can exhibit all kinds of interesting and
productive group behavior (or possibly mass hysteria), limited only by the clev-
erness of you, the designer. We will describe one simple kind of group behavior
here, leaving others (such as the soccer match described in Ex. 16) to you.

The behavior that we will define is that of convergence. Assume that all sim-
bots are initially moving in arbitrary directions and speeds. Each simbot will
look at the positions of all of the others, and move toward the centroid (i.e. av-
erage) of those positions. If each robot does this continuously and independently,
they will all end up converging upon the same point.

To achieve this, recall first the HasAnimateObjectTracker class:

class HasAnimateObjectTracker i where
aotOtherRobots :: i -> [(RobotType, RobotId, Angle, Distance)]
aotBalls :: i -> [(Angle, Distance)]

The first of these operations permits us to determine the angle and distance of
each of the other simbots. By converting these measurements to vectors, we can
add them and take their average, then use rcHeading to steer the robot toward
the resulting centroid.

Other than dealing with numeric conversions, the final code is fairly straight-
forward:

rcAlign :: Velocity -> SimbotController
rcAlign v rps = proc sbi -> do
let neighbors = aotOtherRobots sbi

vs = map (\(_,_,a,d) -> vector2Polar d a) neighbors
avg = if vs==[] then zeroVector

else foldl1 (^+^) vs ^/ intToFloat (length vs)
heading = vector2Theta avg + odometryHeading sbi

rcHeadingAux rps -< (sbi, v, heading)
intToFloat = fromInteger . toInteger

When observing the world through robot sensors, one should not make too
many assumptions about what one is going to see, because noise, varying light
conditions, occlusion, etc. can destroy those expectations. For example, in the
case of the simbots, the simulator does not guarantee that all other robots will
be visible through the animate object tracker. Indeed, at the very first time-step,
none are visible. For reasons of causality, sensor data is delayed one time-step;
but at the very first time step, there is no previous data to report, and thus the
animate object tracker returns an empty list of other robots. This is why in the
code above the list vs is tested for being empty.

Exercise 15. Write a program for two simbots that are traveling in a straight
path, except that their paths continually interleave each other, as in a braid of
rope. (Hint: treat the velocities as vectors, and determine the proper equations
for two simbots to circle one another while maintaining a specified distance.
Then add these velocities to the simbots’ forward velocities to yield the desired
behavior.)

Exercise 16. Write a program to play “robocup soccer,” as follows. Using wall
segments, create two goals at either end of the field. Decide on a number of
players on each team, and write controllers for each of them. You may wish to
write a couple of generic controllers, such as one for a goalkeeper, one for attack,
and one for defense. Create an initial world where the ball is at the center mark,
and each of the players is positioned strategically while being on-side (with the
defensive players also outside of the center circle). Each team may use the same
controller, or different ones. Indeed, you can pit your controller-writing skills
against those of your friends (but we do not recommend betting money on the
game’s outcome).

4 Acknowledgements

We wish to thank all the members of the Yale Haskell Group for their support and
feedback on many of the ideas in this paper. In particular, thanks to Zhanyong
Wan, who undoubtedly would have been deeply involved in this work if he had
not been so busy writing his thesis. Also thanks to Greg Hager and Izzet Pembeci
at Johns Hopkins, who believed enough in our ideas to try them out on real
robots. Finally, thanks to Conal Elliott, who started us on our path toward
continuous nirvana, despite discrete moments of trauma.

References

1. Richard S. Bird. A calculus of functions for program derivation. In David A.
Turner, editor, Reseach Topics in Functional Programming. Adison-Wesley, 1990.

2. Antony Courtney and Conal Elliott. Genuinely functional user interfaces. In Proc.
of the 2001 Haskell Workshop, September 2001.

3. Gregory Dudek and Michael Jenkin. Computational Principles of Mobile Robots.
Cambride University Press, New York, 2000.

4. Conal Elliott. Functional implementations of continuous modeled animation. In
Proceedings of PLILP/ALP ’98. Springer-Verlag, 1998.

5. Conal Elliott and Paul Hudak. Functional reactive animation. In International
Conference on Functional Programming, pages 263–273, June 1997.

6. Paul Hudak. The Haskell School of Expression – Learning Functional Programming
through Multimedia. Cambridge University Press, New York, 2000.

7. John Hughes. Generalising monads to arrows. Science of Computer Programming,
37:67–111, May 2000.

8. Henrik Nilsson, Antony Courtney, and John Peterson. Functional Reactive Pro-
gramming, continued. In ACM SIGPLAN 2002 Haskell Workshop, October 2002.

9. Ross Paterson. A new notation for arrows. In ICFP’01: International Conference
on Functional Programming, pages 229–240, Firenze, Italy, 2001.

10. Izzet Pembeci, Henrik Nilsson, and Greogory Hager. Functional reactive robotics:
An exercise in principled integration of domain-specific languages. In Principles
and Practice of Declarative Programming (PPDP’02), October 2002.

11. John Peterson, Gregory Hager, and Paul Hudak. A language for declarative robotic
programming. In International Conference on Robotics and Automation, 1999.

12. John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion: Controlling
robots with Haskell. In First International Workshop on Practical Aspects of
Declarative Languages. SIGPLAN, Jan 1999.

13. John Peterson, Zhanyong Wan, Paul Hudak, and Henrik Nilsson. Yale FRP User’s
Manual. Department of Computer Science, Yale University, January 2001. Avail-
able at http://www.haskell.org/frp/manual.html.

14. Alastair Reid, John Peterson, Greg Hager, and Paul Hudak. Prototyping real-
time vision systems: An experiment in DSL design. In Proc. Int’l Conference on
Software Engineering, May 1999.

15. Zhanyong Wan. Functional Reactive Programming for Real-Time Embedded Sys-
tems. PhD thesis, Department of Computer Science, Yale University, December
2002.

16. Zhanyong Wan and Paul Hudak. Functional reactive programming from first prin-
ciples. In Proceedings of the ACM SIGPLAN ’00 Conference on Programming
Language Design and Implementation (PLDI), pages 242–252, Vancouver, BC,
Canada, June 2000. ACM, ACM Press.

17. Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. In Proceedings
of Sixth ACM SIGPLAN International Conference on Functional Programming,
Florence, Italy, September 2001. ACM.

18. Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven FRP. In Proceedings
of Fourth International Symposium on Practical Aspects of Declarative Languages.
ACM, Jan 2002.

