
The Haskell School of Expression

– Learning Functional Programming through Multimedia –

by

Paul Hudak

Yale University
Department of Computer Science

Copyright © Paul Hudak, September 1998
All rights reserved.

i

The Haskell School of Expression
– Learning Functional Programming through Multimedia –

by Paul Hudak

Copyright © 1999 by Cambridge University Press. All rights reserved. No
part of this publication may be reproduced or distributed in any form or
by any means, or stored in a data base or retrieval system, without the
prior written permission of the publisher.

ii

This book is dedicated to
Cathy, Cristina, Jennifer, and Rusty.

Chapter 20

Functional Music Composition

In this chapter I will describe a module for expressing musical struc-
tures in the same high-level, declarative style of functional programming
that we have been using for graphics, animation, and other applications.
These musical structures consist of primitive entities (such as notes and
rests), operations to transform musical structures (such as transpose and
tempo-scaling), and operations to combine musical structures to form
more complex ones (such as concurrent and sequential composition).
From these simple roots, much richer musical ideas can be easily devel-
oped.

For convenience, and in the style of Chapters 15 and 19 (where I defined
the languages FAL and IRL, respectively), I will refer to the ideas described
in this chapter as MDL, for music description language. MDL is a simpli-
fied version of a more complete computer music library called Haskore.
In Chapter 21 a module will be developed for interpreting an MDL pro-
gram as an abstract performance, and in Chapter 22 these performances
will be converted into MIDI files, which are a standard way of interchang-
ing electronic music and can be played on any PC with a standard sound
card.1

Details: If you load the Haskell code for Chapter 22 into Hugs you
will be able to play any of the examples presented in this chapter

1Haskore is described in [?, ?]; see also the Haskell Home Page for information on the
latest release. Other approaches to computer music from a functional programming
perspective include [?, ?].

332

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 333

by typing either:

testWin95 m
testNT m
testLinux m

depending on what kind of computer you are using. This command
will convert m (of type Music, to be defined shortly) into a MIDI file,
and then automatically invoke the default MIDI file player on your
PC so that you can hear the result.

module Music where

20.1 The Music Data Type

I will assume that you are familiar with very basic musical concepts such
as notes, rests, scales, and chords. Nothing more will be needed to under-
stand what is going on, but of course the richer your musical background,
the more applications of the ideas will be apparent to you.

Perhaps the most basic musical concept in MDL is that of a pitch, which
consists of a pitch class (i.e. one of 12 semitones) and an octave:

type Pitch = (PitchClass, Octave)
data PitchClass = Cf | C | Cs | Df | D | Ds | Ef | E | Es | Ff | F

| Fs | Gf | G | Gs | Af | A | As | Bf | B | Bs
deriving (Eq, Show)

type Octave = Int

Cf is read as “C-flat” and normally written as C�, Cs is read “C-sharp”
and normally written as C�; and so on. A Pitch is a pair consisting of a
pitch class and an octave. Octaves are just integers, but I have defined a
separate data type for pitch classes, because distinguishing enharmonics
(that is, pitches that sound the same, such as G� and A�) may be impor-
tant in certain contexts. When tuning instruments or entire orchestras
there is a notion of “A440”, which is the note A at 440 Hz; by convention,
I will designate that pitch as (A, 4) in the above design.

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 334

Musical structures are captured in MDL by the Music data type:

data Music = Note Pitch Dur
| Rest Dur
| Music :+: Music
| Music :=: Music
| Tempo (Ratio Int) Music
| Trans Int Music
| Instr IName Music

deriving (Show, Eq)

type Dur = Ratio Int

A Note is its pitch paired with its duration (in number of whole notes). A
Rest also has a duration, but of course no pitch. From these two atomic
constructors we can build more complex musical structures as follows:

• m1 :+: m2 is the “sequential composition” of m1 and m2; i.e. m1
and m2 are played in sequence.

• m1 :=: m2 is the “parallel composition” of m1 and m2; i.e. m1 and
m2 are played simultaneously.

• Tempo a m scales the rate at which m is played (i.e. its tempo) by
a factor of a.

• Trans i m transposes m by interval i (in semitones).

• Instr iname m declares that m is to be performed using instrument
iname, which is one of 129 names shown in Figure 20.1 (these odd
names are from the General MIDI Standard, which is explained in
more detail in Chapter 21).

It is convenient to represent these ideas in Haskell as a recursive data
type because we may wish to not only build musical structures, but also
take them apart, analyze their structure, print them, transform them,
interpret them for performance purposes, etc. This is the same kind of
argument used to justify Shape, Region and other data types in this text.

Note that durations and tempo scalings are represented using rational
numbers; specifically, as ratios of two Haskell Int values. This is more

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 335

data IName
= AcousticGrandPiano | BrightAcousticPiano | ElectricGrandPiano
| HonkyTonkPiano | RhodesPiano | ChorusedPiano
| Harpsichord | Clavinet | Celesta | Glockenspiel | MusicBox
| Vibraphone | Marimba | Xylophone | TubularBells
| Dulcimer | HammondOrgan | PercussiveOrgan
| RockOrgan | ChurchOrgan | ReedOrgan
| Accordion | Harmonica | TangoAccordion
| AcousticGuitarNylon | AcousticGuitarSteel | ElectricGuitarJazz
| ElectricGuitarClean | ElectricGuitarMuted | OverdrivenGuitar
| DistortionGuitar | GuitarHarmonics | AcousticBass
| ElectricBassFingered | ElectricBassPicked | FretlessBass
| SlapBass1 | SlapBass2 | SynthBass1 | SynthBass2
| Violin | Viola | Cello | Contrabass | TremoloStrings
| PizzicatoStrings | OrchestralHarp | Timpani
| StringEnsemble1 | StringEnsemble2 | SynthStrings1
| SynthStrings2 | ChoirAahs | VoiceOohs | SynthVoice
| OrchestraHit | Trumpet | Trombone | Tuba
| MutedTrumpet | FrenchHorn | BrassSection | SynthBrass1
| SynthBrass2 | SopranoSax | AltoSax | TenorSax
| BaritoneSax | Oboe | Bassoon | EnglishHorn | Clarinet
| Piccolo | Flute | Recorder | PanFlute | BlownBottle
| Shakuhachi | Whistle | Ocarina | Lead1Square
| Lead2Sawtooth | Lead3Calliope | Lead4Chiff
| Lead5Charang | Lead6Voice | Lead7Fifths
| Lead8BassLead | Pad1NewAge | Pad2Warm
| Pad3Polysynth | Pad4Choir | Pad5Bowed
| Pad6Metallic | Pad7Halo | Pad8Sweep
| FX 1Train | FX 2Soundtrack | FX 3Crystal
| FX 4Atmosphere | FX 5Brightness | FX 6Goblins
| FX 7Echoes | FX 8SciFi | Sitar | Banjo | Shamisen
| Koto | Kalimba | Bagpipe | Fiddle | Shanai
| TinkleBell | Agogo | SteelDrums | Woodblock | TaikoDrum
| MelodicDrum | SynthDrum | ReverseCymbal
| GuitarFretNoise | BreathNoise | Seashore
| BirdTweet | TelephoneRing | Helicopter
| Applause | Gunshot | Percussion

deriving (Show, Eq, Ord, Enum)

Figure 20.1: General MIDI Instrument Names

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 336

accurate than using floating-point numbers, as long as overflow does
not occur, and for musical structures it is often just the right representa-
tion, where many concepts are often expressed as ratios (“quarter-notes,”
“triplets,” “dotted-notes,” etc.). An alternative to this design is to make
Music polymorphic in the numeric type, but the extra complexity does
not seem to be worth the trouble.

Treating pitches simply as integers is useful in many settings, so let’s
also define a notion of absolute pitch:

type AbsPitch = Int

along with some functions for converting between Pitch values and AbsPitch
values:

absPitch :: Pitch → AbsPitch
absPitch (pc, oct) = 12∗ oct + pcToInt pc

pitch :: AbsPitch → Pitch
pitch ap = ([C , Cs, D, Ds, E , F , Fs, G, Gs, A, As, B] !! mod ap 12,

quot ap 12)

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 337

pcToInt :: PitchClass → Int
pcToInt pc = case pc of

Cf → −1 −− should Cf be 11?
C → 0
Cs → 1
Df → 1
D → 2
Ds → 3
Ef → 3
E → 4
Es → 5
Ff → 4
F → 5
Fs → 6
Gf → 6
G → 7
Gs → 8
Af → 8
A → 9
As → 10
Bf → 10
B → 11
Bs → 12 −− should Bs be 0?

Should Cf be interpreted as 11 instead of -1, and Bs as 0 instead of 12?
I don’t know. In most cases it will not matter, but it is an interesting
concern.

Details: (!!) is Haskell’s zero-based list-indexing function; list !! n
returns the (n + 1)th element in list . It is defined in the Prelude as:

infixl 9 !!
(!!) :: [a]→ Int → a
(x :) !! 0 = x
(: xs) !! n | n > 0 = xs !! (n − 1)
(:) !! = error “PreludeList.!!: negative index”
[] !! = error “PreludeList.!!: index too large”

mod and quot are methods in the Integral class. mod x n computes
the value of x modulo n; quot x n computes the integer quotient
of x divided by n.

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 338

We can also define a function trans, which transposes pitches (analogous
to Trans, which transposes values of type Music):

trans :: Int → Pitch → Pitch
trans i p = pitch (absPitch p + i)

Finally, for convenience, let’s create simple names for familiar notes, du-
rations, and rests, as shown in Figure 20.2. Despite the large number of
them, these names are sufficiently arcane that name clashes are unlikely.

Exercise 20.1 Prove that abspitch .pitch = id , and, up to enharmonic equiv-
alences, pitch .abspitch = id .

Exercise 20.2 Prove that trans i (trans j p) = trans (i + j) p.

20.2 Higher-Level Constructions

With this modest beginning, we can already express quite a few musical
relationships in MDL simply and effectively.

Lines and Chords. Two common ideas in music are the construction of
notes in a horizontal fashion (a line or melody), and in a vertical fashion
(a chord):

line, chord :: [Music]→ Music
line = foldr (:+:) (Rest 0)
chord = foldr (:=:) (Rest 0)

For example, from the notes in the C major triad in register 4, I can
construct a C major arpeggio and chord as well:

cMaj = [n 4 qn | n ← [c, e, g]]

cMajArp = line cMaj
cMajChd = chord cMaj

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 339

cf , c, cs, df , d, ds, ef , e, es, ff , f , fs, gf , g, gs, af , a, as, bf , b, bs
:: Octave→ Dur → Music

cf o = Note (Cf , o); c o = Note (C , o); cs o = Note (Cs, o)
df o = Note (Df , o); d o = Note (D, o); ds o = Note (Ds, o)
ef o = Note (Ef , o); e o = Note (E , o); es o = Note (Es, o)
ff o = Note (Ff , o); f o = Note (F , o); fs o = Note (Fs, o)
gf o = Note (Gf , o); g o = Note (G, o); gs o = Note (Gs, o)
af o = Note (Af , o); a o = Note (A, o); as o = Note (As, o)
bf o = Note (Bf , o); b o = Note (B, o); bs o = Note (Bs, o)

wn, hn, qn, en, sn, tn :: Dur
dhn, dqn, den, dsn :: Dur

wnr , hnr , qnr , enr , snr , tnr :: Music
dhnr , dqnr , denr , dsnr :: Music

wn = 1; wnr = Rest wn −− whole
hn = 1%2; hnr = Rest hn −− half
qn = 1%4; qnr = Rest qn −− quarter
en = 1%8; enr = Rest en −− eight
sn = 1%16; snr = Rest sn −− sixteenth
tn = 1%32; tnr = Rest tn −− thirty-second

dhn = 3%4; dhnr = Rest dhn −− dotted half
dqn = 3%8; dqnr = Rest dqn −− dotted quarter
den = 3%16; denr = Rest den −− dotted eighth
dsn = 3%32; dsnr = Rest dsn −− dotted sixteenth

Figure 20.2: Convenient note names and pitch conversion functions.

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 340

3

4 : 3

3

5 : 6

5 3

5 5

33

7 : 6

Figure 20.3: Nested Polyrhythms (top: pr1; bottom: pr2)

Delay and Repeat. Suppose that we wish to describe a melody m accom-
panied by an identical voice a perfect 5th higher. We can write this very
simply as “m :=: Trans 7 m” (seven semitones is a perfect fifth). Simi-
larly, a canon-like structure involving m can be expressed as
“m :=: delay d m,” where:

delay :: Dur → Music → Music
delay d m = Rest d :+: m

Of course, Haskell’s non-strict semantics also allows us to define infinite
musical structures. For example, a musical structure may be repeated ad
nauseum using this simple function:

repeatM :: Music → Music
repeatM m = m :+: repeatM m

Thus an infinite ostinato can be expressed in this way, and then used
in different contexts that extract only the portion that’s actually needed.
This will be explained in more detail later.

Polyrhythms. For some rhythmical ideas, consider first a simple triplet
of eighth notes; it can be expressed as “Tempo (3%2) m,” where m is a

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 341

line of three eighth notes. In fact Tempo can be used to create quite com-
plex rhythmical patterns. For example, consider the “nested polyrhythms”
shown in Figure 20.3. They can be expressed quite naturally as follows
(note the use of the where clause in pr2 to capture recurring phrases):

pr1, pr2 :: Pitch → Music
pr1 p = Tempo (5%6)

(Tempo (4%3) (mkLn 1 p qn :+:
Tempo (3%2) (mkLn 3 p en :+:

mkLn 2 p sn :+:
mkLn 1 p qn) :+:

mkLn 1 p qn) :+:
Tempo (3%2) (mkLn 6 p en))

pr2 p = Tempo (7%6)
(m1 :+:
Tempo (5%4) (mkLn 5 p en) :+:
m1 :+:
Tempo (3%2) m2)

where m1 = Tempo (5%4) (Tempo (3%2) m2 :+: m2)
m2 = mkLn 3 p en

mkLn n p d = line (take n (repeat (Note p d)))

Note that pr1 and pr2 have the same duration: one and one-half beats
(if this is not very obvious, then wait till the function dur , which com-
putes the duration of Music values, is defined below). To play these
polyrhythms in parallel using middle C and middle G, respectively, we
could do the following (middle C is in the 5th octave):

pr12 :: Music
pr12 = pr1 (C , 5) :=: pr2 (G, 5)

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 342

Determining Duration It is sometimes desirable to compute the dura-
tion in beats of a musical structure; we can do so as follows:

dur :: Music → Dur

dur (Note d) = d
dur (Rest d) = d
dur (m1 :+: m2) = dur m1+ dur m2
dur (m1 :=: m2) = dur m1 ‘max‘ dur m2
dur (Tempo a m) = dur m/a
dur (Trans m) = dur m
dur (Instr m) = dur m

For example, dur pr12 is 3%2 (i.e. one and one-half beats).

Reversing Musical Structure. Using dur we can define a function revM
that reverses any Music value. This is straightforward for most Music
values:

revM :: Music → Music

revM n@(Note) = n
revM r@(Rest) = r
revM (Tempo a m) = Tempo a (revM m)
revM (Trans i m) = Trans i (revM m)
revM (Instr i m) = Instr i (revM m)
revM (m1 :+: m2) = revM m2 :+: revM m1

but the treatment of (:=:) is tricky. The problem is, it is not symetrical
with respect to time. Even if m1 and m2 are single notes, if they have dif-
ferent durations, then the reverse of m1 :=: m2 is not m1 :=: m2; rather,
assuming that dur m1 = d1 >= d2 = dur m2, it is
m1 :=: (Rest (d1− d2) :+: m2). With this observation, you can see that

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 343

the general case is:

revM (m1 :=: m2)
= let d1 = dur m1

d2 = dur m2
in if d1 > d2 then revM m1 :=: (Rest (d1− d2) :+: revM m2)

else (Rest (d2− d1) :+: revM m1) :=: revM m2

Truncating Parallel Composition Note that the duration of m1 :=: m2
is the maximum of the durations of m1 and m2, and thus if one is infinite,
so is the result. Sometimes we would rather have the result be of duration
equal to the shorter of the two. This is not as easy as it sounds, since it
may require interrupting the longer one in the middle of a note (or notes).

I will define a “truncating parallel composition” operator (/=), but first
I will define an auxiliary function cut such that cut d m is the musical
structure m “cut short” to have at most duration d :

cut :: Dur → Music → Music
cut d m | d <= 0 = Rest 0
cut d (Note x d0) = Note x (min d0 d)
cut d (Rest d0) = Rest (min d0 d)
cut d (m1 :=: m2) = cut d m1 :=: cut d m2
cut d (Tempo a m) = Tempo a (cut (d ∗ a) m)
cut d (Trans a m) = Trans a (cut d m)
cut d (Instr a m) = Instr a (cut d m)
cut d (m1 :+: m2) = let m1′ = cut d m1

m2′ = cut (d − dur m1′) m2
in m1′ :+: m2′

Note that cut is equipped to handle a Music value of infinite length.

With cut , the definition of (/=:) is now straightforward:

(/=:) :: Music → Music → Music
m1/=: m2 = cut (min (dur m1) (dur m2)) (m1 :=: m2)

Unfortunately, whereas cut can handle infinite-duration music values,
(/=:) cannot, because computing the minimum of the two durations will
not terminate as written above.

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 344

Exercise 20.3 Define a version of (/=:) that shortens correctly when ei-
ther one of its arguments is infinite in duration (but not both). (Hint:
first define a function minDur that returns the minimum duration of
two Music values, even if one is infinite.) Harder: define a version that
works properly even when both arguments are infinite.

Exercise 20.4 Prove that dur (cut d m) <= d , for all d >= 0.

Trills A trill is an ornament that alternates rapidly between two (usually
adjacent) pitches. The Music value trill i d n will be a trill beginning on
the pitch of note n, with the alternate note being i semitones away, and
with each trill note having duration d . The total duration of trill i d n
should be the same as the duration of n.

trill :: Int → Dur → Music → Music

trill i d n@(Note p nd)
= if d >= nd then n

else Note p d
:+: trill (negate i) d

(Note (trans i p) (nd − d))
trill i d (Tempo a m) = Tempo a (trill i (d ∗ a) m)
trill i d (Trans a m) = Trans a (trill i d m)
trill i d (Instr a m) = Instr a (trill i d m)
trill = error “Trill input must be a single note”

It is simple to define a version of this function that starts on the alternate
note rather than the start note:

trill′ :: Int → Dur → Music → Music
trill′ i sDur m = trill (negate i) sDur (Trans i m)

It is also convenient to define a function roll which generates a trill whose
interval is zero. This feature is particularly useful for percussion.

roll :: Dur → Music → Music
roll dur m = trill 0 dur m

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 345

Exercise 20.5 Define a function trilln :: Int → Int → Music → Music which
is just like trill except that it’s second argument is the number of trill
notes to be generated, rather than the duration of a single trill note. Also
define: (a) trilln′ which is to trilln as trill′ is to trill , and (b) rolln which is
to roll and trilln is to trill .

Here is a simple example of the use of trill and trilln in expressing the
opening flute line in John Philip Sousa’s Stars and Stripes Forever:

ssfMelody = m1 :+: m2 :+: m3 :+: m4

m1 = trilln 2 5 (bf 6 en) :+:
line [ef 7 en, ef 6 en, ef 7 en]

m2 = line [bf 6 sn, c 7 sn, bf 6 sn, g 6 sn, ef 6 en, bf 5 en]

m3 = line [ef 6 sn, f 6 sn, g 6 sn, af 6 sn, bf 6 en, ef 7 en]

m4 = trill 2 tn (bf 6 qn) :+: bf 6 sn :+: denr

ssf = Instr Flute (Tempo 2 (ssfMelody))

Exercise 20.6 Prove that dur (trill i d n) = dur n.

Percussion Speaking of percussion, how do we express that in the MDL
framework? Percussion is a difficult notion to represent in the abstract,
since in a way, a percussion instrument is just another instrument, so
why should it be treated differently? On the other hand, even common
practice notation treats it specially, even though it has much in common
with non-percussion notation. The MIDI standard is equally ambiguous
about the treatment of percussion: on one hand, percussion sounds are
chosen by specifying an octave and pitch, just like any other instrument,
on the other hand these notes have no tonal meaning whatsoever: they
are just a conveneient way to select from a large number of percussion
sounds. Indeed, part of the General MIDI Standard is a set of names for
commonly used percussion sounds.

Since MIDI is such a popular platform, we can at least define some handy
functions for using the General MIDI Standard. We start by defining the

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 346

data PercussionSound
= AcousticBassDrum −− MIDI Key 35
| BassDrum1 −− MIDI Key 36
| SideStick −− ...
| AcousticSnare | HandClap | ElectricSnare | LowFloorTom
| ClosedHiHat | HighFloorTom | PedalHiHat | LowTom
| OpenHiHat | LowMidTom | HiMidTom | CrashCymbal1
| HighTom | RideCymbal1 | ChineseCymbal | RideBell
| Tambourine | SplashCymbal | Cowbell | CrashCymbal2
| Vibraslap | RideCymbal2 | HiBongo | LowBongo
| MuteHiConga | OpenHiConga | LowConga | HighTimbale
| LowTimbale | HighAgogo | LowAgogo | Cabasa
| Maracas | ShortWhistle | LongWhistle | ShortGuiro
| LongGuiro | Claves | HiWoodBlock | LowWoodBlock
| MuteCuica | OpenCuica | MuteTriangle
| OpenTriangle −− MIDI Key 82

deriving (Show, Eq, Ord, Ix, Enum)

Figure 20.4: General MIDI Percussion Names

data type shown in Figure 20.4, which borrows its constructor names
from the General MIDI standard. The comments reflecting the “MIDI Key”
numbers will be explained later, but basically a MIDI Key is the equivalent
of an absolute pitch in our terminology. So all we need is a way to convert
these percussion sound names into a Music value; i.e. a Note:

perc :: PercussionSound → Dur → Music
perc ps = Note (pitch (fromEnum ps + 35))

Details: Recall that fromEnum is a method in the Enum class, and
has type (Ord a, Enum a)⇒ a → Int (see Chapter 24).

Since PercussionSound is a (derived) instance of Enum, fromEnum ps re-
turns (n − 1) if percussion sound ps is the nth constructor in the PercussionSound
data type. Adding 35 to this yields the correct absolute pitch for this
sound according to the General MIDI standard, and converting this into
a pitch allows us to use the Note constructor.

For example, here are eight bars of a simple rock or "funk groove" that

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 347

uses perc and roll :

funkGroove
= let p1 = perc LowTom qn

p2 = perc AcousticSnare en
in Tempo 3 (Instr Percussion (cut 8 (repeatM

((p1 :+: qnr :+: p2 :+: qnr :+: p2 :+:
p1 :+: p1 :+: qnr :+: p2 :+: enr)

:=: roll en (perc ClosedHiHat 2))
)))

Exercise 20.7 Find a simple piece of music written by your favorite com-
poser, and transcribe it into Haskell. In doing so, look for repeating pat-
terns, transposed phrases, etc. and reflect this in your code, thus reveal-
ing deeper structural aspects of the music than that found in common
practice notation.

Exercise 20.8 If you are familiar with the terms, define Haskell functions
invert , retro, retroInvert , and invertRetro to implement the concepts of
inversion, retrograde, retrograde inversion, and inverted retrograde, re-
spectively, as used in twelve-tone music theory. You may assume that
the input is to these functions is created by an application of line above.
Prove that “retro . retro,” “invert . invert ,” and “retroInvert . invertRetro”
are the identity function on values created by line.

Exercise 20.9 A shortcoming of our current design of musical values is
that there is no representation of dynamics; i.e. loudness, or volume.
There are several ways we could deal with this, the most straightforward
being to add a constructor to the Music data type that expressed volume.
Explore some designs for this, including direct numerical representation
of the volume, as well as more traditional notations such as pianissimo,
piano, mezzo piano, mezzo forte, forte, and fortissimo (often abbreviated
pp, p, mp, mf, f, and ff , respectively, and for which a Haskell data type
could easily be defined).

Other notions of dynamics include legato, staccato, slurring, crescendo,
and diminuendo. In addition, with respect to tempo, there are notions of
ritardando and accelerando.

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 348

If these notions are simply captured in the Music data type, then the most
interesting aspect will be their interpretation in Chapter ch : performance.

Exercise 20.10 Define a data type Mode that enumerates the seven scale
modes: ionian, dorian, phrygian, lydian, mixolydian, aeolian, and locrian.
Then define a function scale that, given a mode and tonic (a start note),
generates a scale in that mode starting on the tonic.

20.3 A Final Couple of Examples

In this section I will briefly explore two ideas for “algorithmic composi-
tion:” the idea of writing fairly concise expressions that yield interesting
(hopefully...) music.

Cascades. Here is a function that recursively applies transformations f
(to elements in a sequence) and g (to accumulated phrases) a total of n
times, playing everything in unison:

rep :: (Music → Music)→ (Music → Music)→ Int → Music → Music
rep f g 0 m = Rest 0
rep f g n m = m :=: g (rep f g (n − 1) (f m))

For example, here is a rising arpeggio of perfect fourths beginning on
middle C:

run = rep (Trans 5) (delay tn) 8 (c 4 tn)

Now suppose we use this entire phrase as an argument to rep, transpos-
ing it a major third each time, and delaying each phrase by an eighth
note:

cascade = rep (Trans 4) (delay en) 8 run

Let’s do this again, this time only to repeat the phrase once, a few beats
later:

cascades = rep id (delay sn) 2 cascade

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 349

1

���
1

�
�� �� � � � � �

�
2

� � �� �� �
�� �� �

Figure 20.5: An Example of Self-Similar Music

The result is a “cascade” of sound that has some interesting properties.
All of this was generated from a single starting note. We can create a
final result, a cascade palindrome which I will call a “waterfall,” played
using a vibraphone as follows:

waterfall = Instr Vibraphone (cascades :+: revM cascades)

Exercise 20.11 Experiment with this idea futher, using other fragments
to start the process, and other transformations.

Self-Similar (Fractal) Music. Fractal images were discussed briefly in
Chapter 3. But what does it mean to have fractal music? There are actu-
ally several notions of what this might be. My notion is as follows: start
with a very simple melody of n notes. Now duplicate this melody n times,
playing each in succession, but first performing the following transfor-
mation: the ith melody is transposed by an amount proportional to the
pitch of the ith note in the original melody, and is shifted in tempo by a
factor proportional to the duration of the ith note. For example, Figure
20.5 shows the result of applying this process once to a four-note melody.
Now imagine that this process is repeated infinitely often, yielding an in-
finitely dense melody of infinitesimally shorter notes! To make the result
playable, however, we will stop the process at some pre-determined level.

How can this be represented in Haskell? A tree seems to be the logical

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 350

choice, which I will call a Cluster :

data Cluster = Cluster SNote [Cluster]
type SNote = (AbsPitch, Dur)

This particular kind of tree happens to be called a rose tree. An SNote is
just a “simple note.”

The sequence of SNotes at each level of the cluster is the melodic frag-
ment for that level. The very top cluster will contain a “dummy” note,
the next level will contain the original melody, the next level will contain
one iteration of the process described earlier (e.g. the melody in Figure
20.5), and so forth.

To achieve this I will define a function selfSim that takes the initial melody
as argument and generates an infinitely deep cluster:

selfSim :: [SNote]→ Cluster
selfSim pat = Cluster (0, 0) (map mkCluster pat)

where mkCluster note
= Cluster note (map (mkCluster .addmult note) pat)

addmult (p0, d0) (p1, d1) = (p0+ p1, d0∗ d1)

Note that selfSim itself is not recursive, but mkCluster is.

Next, I define a function to skim off the notes at the nth level, or nth
“fringe,” of a cluster:

fringe :: Int → Cluster → [SNote]
fringe 0 (Cluster note cls) = [note]
fringe n (Cluster note cls) = concat (map (fringe (n − 1)) cls)

Details: Recall that concat appends together a list of lists. It is
defined in the Standard Prelude as:

concat :: [[a]]→ [a]
concat xss = foldr (++) [] xss

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 351

All that is left to do is convert this into a Music value that we can convert
to MIDI:

simToHask :: [SNote]→ Music
simToHask ss = let mkNote (p, d) = Note (pitch p) d

in line (map mkNote ss)

Putting it all together, below is a small composition whose seed is the
four-note melody:

pat :: [SNote]
pat = [(3, 0.5), (4, 0.25), (0, 0.25), (6, 1.0)]

Note that the flute line and acoustic bass line are the reverse of one an-
other; the result is rather interesting.

main
= let s = Trans 60

(Tempo 2
(simToHask (fringe 3 (selfSim pat))))

in Instr Flute s
:=: Instr AcousticBass (Trans (−24) (revM s))

Exercise 20.12 Experiment with this idea futher, using other melodic
seeds, exploring different depths of the clusters, and so on.

Exercise 20.13 fringe is not very efficient, for the following reason:

concat is defined as foldr (++) [], which means that it takes a number of
steps proportional to the sum of the lengths of the lists being concate-
nated; we cannot do any better than this. (If foldl were used instead, the
number of steps would be proportional to the number of lists times their
average length.)

The problem is, concat is being used over and over again, like this:

concat [concat [. . .], concat [. . .], concat [. . .]]

CHAPTER 20. FUNCTIONAL MUSIC COMPOSITION 352

This causes a number of steps proportional to the depth of the tree times
the length of the sub-lists; clearly not optimal.

Define a version of fringe that is linear in the total length of the final list.

Chapter 21

Interpreting Functional Music

In Chapter 20 I defined a language called MDL for describing musical
structures. The question now is, how do we actually interpret the struc-
tures; that is, how do we turn them into real music? (This is analogous
to the question of how to draw a Shape or Region value in a graphics
window.) The approach I will take will be to convert a Music value into
a Standard MIDI File, which can then be played on your computer using
any standard media player. I will do this, however, in three steps:

• First I will convert a Music value into a value of type Performance,
which is an abstract notion of what the music means.

• Then I will convert this into a value of type MidiFile, a data type
imported from the Haskore library1 that represents the structure
of a Standard MIDI File.

• Finally, I will use the outputMidiFile function, also imported from
the Haskore library, to write this MidiFile value to an actual file.

Dividing the problem into separate steps like this allows us to separate
two concerns: interpreting Music values as music, and the details of ren-
dering that music as a MIDI file. It also facilitates readability by having a
cleaner structuring of the code, aids debugging by allowing us to look at

1See the Preface for instructions on how to obtain this module if it is not installed
on your Haskell system.

353

CHAPTER 21. INTERPRETING FUNCTIONAL MUSIC 354

each intermediate result, and makes it easier to later add an interface to
some computer music platform other than MIDI (there are several).

In this chapter I will describe only the first step above; steps two and
three are described in the next (Chapter 22). Also in this chapter I will
discuss how the abstract notion of a performance can be used to uncover
algebraic properties of musical structures.

module Perform where

import Music

21.1 Interpreting Music: A Performance

Our first goal is to interpret a Music value as an abstract performance,
which is a temporally ordered sequence of musical events:

type Performance = [Event]

data Event = Event {eTime :: Time, eInst :: IName,
ePitch :: AbsPitch, eDur :: DurT}

deriving (Eq, Ord, Show)

type Time = Float
type DurT = Float

An event Event s i p d captures the fact that at start time s instrument
i sounds pitch p for a duration d (where now duration and time is mea-
sured in seconds, rather than beats).

To generate a complete performance of, i.e. give an interpretation to, a
musical structure expressed in MDL, we must know the time to begin
the performance, the default instrument to use, and the proper key and
tempo. We can thus model a “performer” as a function perform which
uses all of this information (which I will call the context) to translate a
musical structure into a performance; it can also be thought of as an
interpeter for an MDL program:

perform :: Context → Music → Performance

CHAPTER 21. INTERPRETING FUNCTIONAL MUSIC 355

data Context = Context {cTime :: Time, cInst :: IName,
cDur :: DurT , cKey :: Key}

deriving Show

type Key = AbsPitch

The cDur :: DurT component of the context is the duration, in seconds,
of one whole note. To make it easier to compute this, we can define
a “metronome” function that, given a standard metronome marking (in
beats per minute) and the note type associated with one beat (quarter
note, eighth note, etc.), generates the duration of one whole note:

metro :: Float → Dur → DurT
metro setting dur = 60/(setting ∗ ratioToFloat dur)

For example, metro 96 qn creates a tempo of 96 quarter notes per minute.

metro uses the following coercion function, which will also be used sev-
eral times later:

ratioToFloat :: Ratio Int → Float
ratioToFloat r = intToFloat (numerator r)/intToFloat (denominator r)

intToFloat :: Int → Float
intToFloat = fromInteger . toInteger

Details: numerator and denominator extract the numerator and
denominator, respectively, from a Ratio value.

CHAPTER 21. INTERPRETING FUNCTIONAL MUSIC 356

The definition of perform is relatively straightforward, so I will present
it all at once:

perform c@(Context t i dt k) m =
case m of

Note p d → let d′ = ratioToFloat d ∗ dt
in [Event t i (transpose p k i) d′]

Rest d → []
m1 :+: m2 → perform c m1++

perform
(c {cTime = t + ratioToFloat (dur m1)∗ dt}) m2

m1 :=: m2 → merge (perform c m1) (perform c m2)
Tempo a m → perform (c {cDur = dt/ratioToFloat a}) m
Trans p m → perform (c {cKey = k + p}) m
Instr nm m → perform (c {cInst = nm}) m

where transpose p k Percussion = absPitch p
transpose p k = absPitch p + k

A single note is translated into a single-event performance. Note that the
pitch is transposed to correspond to the key, with one catch: no trans-
position is done to Percussion, since the note corresponds to the actual
percussion instrument. A rest translates into an empty performance.
Note how the Context is used as the running “state” of the performance,
and gets updated in several different ways. For example, the interpre-
tation of the Tempo constructor involves scaling dt appropriately and
updating the cDur field of the context.

In the treatment of (:+:), note that the sub-sequences are appended to-
gether, with the start time of the second argument delayed by the du-
ration of the first. The function dur (defined in Section 20.2) is used to
compute this duration. Unfortunately, this strategy generates a number
of steps proportional to the square of the size of the Music value. A more
efficient solution is to have perform compute the duration directly, re-
turning it as part of its result. This version of perform is shown in Figure
21.1.

In contrast, the sub-sequences derived from the arguments to (:=:) are
merged into a time-ordered stream. The definition of merge is:

merge :: Performance→ Performance→ Performance

CHAPTER 21. INTERPRETING FUNCTIONAL MUSIC 357

merge a@(e1 : es1) b@(e2 : es2) =
if e1 < e2 then e1 : merge es1 b

else e2 : merge a es2
merge [] es2 = es2
merge es1 [] = es1

Note that merge compares entire events rather than just start times. This
is to ensure that it is commutative, a desirable condition for some of the
proofs used in Section 21.2. Here is a more efficient version that will
work just as well in practice:

merge a@(e1 : es1) b@(e2 : es2) =
if eTime e1 < eTime e2 then e1 : merge es1 b

else e2 : merge a es2
merge [] es2 = es2
merge es1 [] = es1

Exercise 21.1 Prove that the two versions of perform are equivalent.

21.2 An Algebra of Music

A literal performance is a performance in which no aesthetic interpreta-
tion is given to a musical object. The function perform in fact yields a
literal performance for an MDL program.

There are many musical objects whose literal performances we expect
to be equivalent. For example, the following two musical objects are
certainly not equal as data structures, but we would expect their literal
performances to be identical:

(m1 :+: m2) :+: m3
m1 :+: (m2 :+: m3)

Thus I will define a formal notion of equivalence:

CHAPTER 21. INTERPRETING FUNCTIONAL MUSIC 358

perform :: Context → Music → Performance
perform c m = fst (perf c m)

perf :: Context → Music → (Performance, DurT)

perf c@(Context t i dt k) m =
case m of

Note p d → let d′ = ratioToFloat d ∗ dt
in ([Event t i (transpose p k i) d′], d′)

Rest d → ([], ratioToFloat d ∗ dt)
m1 :+: m2 → let (pf 1, d1) = perf c m1

(pf 2, d2) = perf (c {cTime = t + d1}) m2
in (pf 1++pf 2, d1+ d2)

m1 :=: m2 → let (pf 1, d1) = perf c m1
(pf 2, d2) = perf c m2

in (merge pf 1 pf 2, max d1 d2)
Tempo a m → perf (c {cDur = dt/ratioToFloat a}) m
Trans p m → perf (c {cKey = k + p}) m
Instr nm m → perf (c {cInst = nm}) m

where transpose p k Percussion = absPitch p
transpose p k = absPitch p + k

Figure 21.1: An efficient perform function.

CHAPTER 21. INTERPRETING FUNCTIONAL MUSIC 359

Definition: Two musical objects m1 and m2 are equivalent, written
m1 ≡ m2, if and only if:

(∀c) perform c m1 ⇒ perform c m2

(Note the similarity of this to the notion of equivalence of regions defined
in Chapter 8.)

One of the most useful things we can do with this notion of equivalence
is establish the validity of certain transformations on musical objects. A
transformation is valid if the result of the transformation is equivalent (in
the sense defined above) to the original musical object; i.e. it is “meaning
preserving.”

The most basic of these transformation we treat as axioms in an algebra
of music. For example:

Axiom 1 For any r1, r2, and m:

Tempo r1 (Tempo r2 m) ≡ Tempo (r1∗ r2) m

We can prove this axiom by calculation. For clarity I will simplify the
context to just dt , the tempo duration, and will write rtf as shorthand
for ratioToFloat :

perform dt (Tempo r1 (Tempo r2 m))
⇒ { unfold perform }

perform (dt/rtf r1) (Tempo r2 m)
⇒ { unfold perform }

perform ((dt/rtf r1)/(rtf r2)) m
⇒ { arithmetic }

perform (dt/((rtf r1)∗ (rtf r2))) m
⇒ { lemma for ratioToFLoat }

perform (dt/(rtf (r1∗ r2))) m
⇒ { fold perform }

perform dt (Tempo (r1∗ r2) m)

Here is another useful transformation and its validity proof (for clarity I
will simplify the context to just (t , dt), the start time and tempo):

CHAPTER 21. INTERPRETING FUNCTIONAL MUSIC 360

Axiom 2 For any r , m1, and m2:

Tempo r (m1 :+: m2) ≡ Tempo r m1 :+: Tempo r m2

In other words, tempo scaling distributes over sequential composition.

Proof:

perform (t , dt) (Tempo r (m1 :+: m2))
⇒ { unfold perform }

perform (t , dt/rtf r) (m1 :+: m2)
⇒ { unfold perform }

perform (t , dt/rtf r) m1++perform (t1, dt/rtf r) m2
⇒ { fold perform }

perform (t , dt) (Tempo r m1)++perform (t1, dt) (Tempo r m2)
⇒ { arithmetic }

perform (t , dt) (Tempo r m1)++perform (t2, dt) (Tempo r m2)
⇒ { fold dur }

perform (t , dt) (Tempo r m1)++perform (t3, dt) (Tempo r m2)
⇒ { fold perform }

perform (t , dt) (Tempo r m1 :+: Tempo r m2)
where t1 = t + rtf (dur m1)∗ (dt/rtf r)

t2 = t + rtf (dur m1/r)∗ dt
t3 = t + rtf (dur (Tempo r m1))∗ dt

An even simpler axiom is given by:

Axiom 3 For any m:

Tempo 1 m ≡ m

In other words, unit tempo scaling is the identity function for type Music .

CHAPTER 21. INTERPRETING FUNCTIONAL MUSIC 361

Proof:

perform (t , dt) (Tempo 1 m)
⇒ { unfold perform }

perform (t , dt/rtf 1) m
⇒ { arithmetic }

perform (t , dt) m

Note that the above proofs, being used to establish axioms, all involve
the definition of perform. In contrast, we can also establish theorems
whose proofs involve only the axioms. For example, Axioms 1, 2, and 3
are all needed to prove the following:

Theorem 1 For any r , m1, and m2:

Tempo r m1 :+: m2 ≡ Tempo r (m1 :+: Tempo (1/r) m2)

Proof:

Tempo r (m1 :+: Tempo (1/r) m2)
⇒ { by Axiom 2 }

Tempo r m1 :+: Tempo r (Tempo (1/r) m2)
⇒ { by Axiom 1 }

Tempo r m1 :+: Tempo (r ∗ (1/r)) m2
⇒ { arithmetic }

Tempo r m1 :+: Tempo 1 m2
⇒ { by Axiom 3 }

Tempo r m1 :+: m2

Many other interesting transformations of MDL musical objects can be
stated and proved correct via calculation. I leave as an exercise the proofs
of the axioms listed below (which include the above axioms as special
cases). In general, axioms such as these constitute a set of domain-
specific properties that often capture the essence of the domain under
consideration. Indeed, it is possible to start with these properties as the
specification of the system that is being designed. This approach is com-
monly referred to as algebraic semantics, but I will not pursue the idea
here.

CHAPTER 21. INTERPRETING FUNCTIONAL MUSIC 362

Axiom 4 Tempo is multiplicative and Transpose is additive. That is, for
any r1, r2, p1, p2, and m:

Tempo r1 (Tempo r2 m) ≡ Tempo (r1∗ r2) m
Trans p1 (Trans p2 m) ≡ Trans (p1+ p2) m

Axiom 5 Function composition is commutative with respect to both tempo
scaling and transposition. That is, for any r1, r2, p1 and p2:

Tempo r1 .Tempo r2 ≡ Tempo r2 .Tempo r1
Trans p1 .Trans p2 ≡ Trans p2 .Trans p1
Tempo r1 .Trans p1 ≡ Trans p1 .Tempo r1

Axiom 6 Tempo scaling and transposition are distributive over both se-
quential and parallel composition. That is, for any r , p, m1, and m2:

Tempo r (m1 :+: m2) ≡ Tempo r m1 :+: Tempo r m2
Tempo r (m1 :=: m2) ≡ Tempo r m1 :=: Tempo r m2
Trans p (m1 :+: m2) ≡ Trans p m1 :+: Trans p m2
Trans p (m1 :=: m2) ≡ Trans p m1 :=: Trans p m2

Axiom 7 Sequential and parallel composition are associative. That is, for
any m0, m1, and m2:

m0 :+: (m1 :+: m2) ≡ (m0 :+: m1) :+: m2
m0 :=: (m1 :=: m2) ≡ (m0 :=: m1) :=: m2

Axiom 8 Parallel composition is commutative. That is, for any m0 and
m1:

m0 :=: m1 ≡ m1 :=: m0

Axiom 9 Rest 0 is a unit for Tempo and Trans, and a zero for sequential
and parallel composition. That is, for any r , p, and m:

Tempo r (Rest 0) ≡ Rest 0
Trans p (Rest 0) ≡ Rest 0
m :+: Rest 0 ≡ m ≡ Rest 0 :+: m
m :=: Rest 0 ≡ m ≡ Rest 0 :=: m

CHAPTER 21. INTERPRETING FUNCTIONAL MUSIC 363

Exercise 21.2 Establish the validity of each of the above axioms.

Exercise 21.3 Prove that:

(m0 :+: m1) :=: (m2 :+: m3) ≡ (m0 :=: m2) :+: (m1 :=: m3)

if dur m0 = dur m2.

Exercise 21.4 Recall the function revM defined in Chapter 20, and note
that, in general, revM (revM m) is not equal to m. However, the following
is true:

revM (revM m) ≡ m

Prove this fact by calculation.

Chapter 22

From Performance to MIDI

MIDI is shorthand for “Musical Instrument Digital Interface,” and is a
standard protocol for describing electronic music. In this chapter I will
describe how to convert an abstract performance as defined in Chapter
21 into a MIDI file that can be played on any modern PC with a standard
sound card.

module MDL where

import Music
import Perform
import Haskore (MidiFile (..), MidiChannel, ProgNum, MEvent ,

MFType, Velocity , MEvent (..), MidiEvent (..),
MetaEvent (..), Division (..), MTempo,
outputMidiFile)

import List (partition)
import System (system)

As mentioned in Chapter 20, Haskore is a library for computer music that
is more extensive than MDL, and I will borrow much of the basic MIDI data
types defined there, as well as the low-level function outputMidiFile, to
be described later.

364

CHAPTER 22. FROM PERFORMANCE TO MIDI 365

22.1 An Introduction to MIDI

MIDI is a standard adopted by most, if not all, manufacturers of electronic
instruments. At its core is a protocol for communicating musical events
(note on, note off, key press, pedal press, etc.) as well as so-called meta
events (select synthesizer patch, change volume, etc.). Beyond the logical
protocol, the MIDI standard also specifies electrical signal characteristics
and cabling details. In addition, it specifies what is known as a Standard
MIDI File, which any MIDI-compatible software package should be able to
recognize.

Over the years musicians and manufacturers decided that they also wanted
a standard way to refer to common or general instruments such as “acous-
tic grand piano,” “electric piano,” “violin,” and “acoustic bass,” as well as
more exotic ones such as “chorus aahs,” “voice oohs,” “bird tweet,” and
“helicopter.” A simple standard known as General MIDI was developed
to fill this role. It is nothing more than an agreed-upon list of instrument
names along with a program patch number for each, a parameter in the
MIDI standard that is used to select a MIDI instrument’s sound. The con-
structor names in the IName data type (see Figure 20.1 in Chapter 20)
come directly from this standard.

Most sound cards on conventional PC’s know about MIDI and General
MIDI. The sound generated by such modules, even through the typically-
scrawny speakers on most PC’s, is pretty good these days. For the best
sound, an outboard keyboard or tone generator, attached to a computer
via a MIDI cable at one end, and to a nice stereo system on the other,
will provide the best sound. It is possible to connect several MIDI in-
struments to the same computer, with each assigned a different channel.
Modern keyboards and tone generators are quite amazing little beasts.
Not only is the sound quite good, they are also usually multi-timbral,
which means they are able to generate many different sounds simulta-
neously, as well as polyphonic, meaning that simultaneous instantiations
of the same sound are possible.

If you decide to use the General MIDI features of your sound-card, you
need to know about one other convention, namely that Channel 10 (9
in our 0-based numbering) is dedicated to percussion. I will use this as-
sumption in this chapter.

CHAPTER 22. FROM PERFORMANCE TO MIDI 366

22.2 The Conversion Process

Figure 22.1 is a specification, imported from the Haskore library, that
contains as much of the MidiFile datatype that we will need. The details
of this datatype are unimportant, except for the following points:

1. There are three types of MIDI files; the value of MFType makes the
distinction:

(a) A Format 0 MIDI file stores its information in a single track of
events, and is best used only for monophonic music.

(b) A Format 1 MIDI file stores its information in multiple tracks
that are played simultaneously, and offers the advantage of
being able to devote each track to one voice in a polyphonic
piece.

(c) A Format 2 MIDI file also has multiple tracks, but they are
temporally independent.

In this chapter we will only use Format 1, so the MFType field will
always be 1.

2. The Division field refers to the “time-code division,” or timing strat-
egy, used by the MIDI file. We will always use 96 time divisions, or
“ticks,” per quarter-note, and thus this field will always be Ticks 96.

3. The main body of a MIDI file is a list of Tracks, each of which in
turn is a list of time-stamped (using the ElapsedTime field) MEvents.
There are two kinds of MEvents: MidiEvents and MetaEvents. Fig-
ure 22.1 shows just those instances of these events that we are
interested in:

(a) NoteOn ch p v turns on note (pitch) p with velocity (volume) v
on MIDI channel ch. NoteOff ch p v performs a similar func-
tion in turning the note off. The volume is an integer in the
range 0 to 127; we will always use the maximum volume 127.

(b) ProgChange ch pr sets the program number for channel ch to
pr . This is how an instrument is selected.

(c) SetTempo t sets the tempo to t . For Format 1 MIDI files, t is
the time, in microseconds, of one whole note. Using 120 beats
per minute as the norm, or 2 beats per second, that works out

CHAPTER 22. FROM PERFORMANCE TO MIDI 367

to 500,000 microseconds per beat, which is the default value
that we will use.

With this structure in mind, our goal is to define a function performToMidi
which converts a Performance into the MidiFile data type:

performToMidi :: Performance→ MidiFile
performToMidi pf =

MidiFile mfType (Ticks division)
(map performToMEvs (splitByInst pf))

mfType = 1 :: Int
division = 96 :: Int

There are two yet-to-be-defined functions here: performToMEvs and splitByInst .

Since we are implementing Type 1 MIDI Files, we must associate each in-
strument with a separate track. That is the purpose of splitByInst , which
takes a performance pf and returns a list of performances, one for each
unique instrument in pf . As part of this process it also assigns a unique
channel number to each instrument, along with the appropriate program
number to select the proper instrument. Thus:

splitByInst :: Performance→ [(MidiChannel, ProgNum, Performance)]

Remember that channel 9 is reserved for percussion, so a special case is
made for that; the other channels are selected sequentially in the range
0 to 15 (excluding 9). With this strategy there can be at most 16 instru-
ments (15 if percussion is not used), and thus an error is signalled if this

CHAPTER 22. FROM PERFORMANCE TO MIDI 368

data MidiFile = MidiFile MFType Division [Track]
deriving (Show, Eq)

type MFType = Int
type Track = [MEvent]

data Division = Ticks Int | SMPTE Int Int
deriving (Show, Eq)

data MEvent = MidiEvent ElapsedTime MidiEvent
| MetaEvent ElapsedTime MetaEvent
| NoEvent

deriving (Show, Eq)

type ElapsedTime = Int

−− Midi Events
data MidiEvent = NoteOff MidiChannel MPitch Velocity

| NoteOn MidiChannel MPitch Velocity
| ProgChange MidiChannel ProgNum
| . . .

deriving (Show, Eq)
type MPitch = Int
type Velocity = Int
type ProgNum = Int
type MidiChannel = Int

−− Meta Events
data MetaEvent = SetTempo MTempo

| . . .
deriving (Show, Eq)

type MTempo = Int

Figure 22.1: Partial Definition of MidiFile Data Type

CHAPTER 22. FROM PERFORMANCE TO MIDI 369

number is exceeded:

splitByInst p
= aux 0 p where

aux n [] = []
aux n pf = let i = eInst (head pf)

(pf 1, pf 2) = partition (\e→ eInst e == i) pf
n′ = if n == 8 then 10 else n + 1

in if i == Percussion
then (9, 0, pf 1) : aux n pf 2
else if n > 15

then error “No more than 16 instruments allowed”
else (n, fromEnum i, pf 1) : aux n′ pf 2

Details: partition is imported from the List Standard Library mod-
ule. It takes a predicate and a list and returns a pair of lists: those
elements of the argument list that do and do not satisfy the predi-
cate, respectively. partition is defined by:

partition :: (a → Bool)→ [a]→ ([a], [a])
partition p xs =

foldr select ([], []) xs
where select x (ts, fs) | p x = (x : ts, fs)

| otherwise = (ts, x : fs)

Note how partition is used to group into pf 1 those events that use the
same instrument as the first event in the performance. The rest of the
events are collected into pf 2, which is passed recursively to the next
iteration of the aux loop.

The crux of the conversion process is performToMEvs, which converts a
Performance into a stream of MEvents (i.e. a Track).

performToMEvs :: (MidiChannel, ProgNum, Performance)→ [MEvent]

CHAPTER 22. FROM PERFORMANCE TO MIDI 370

performToMEvs (ch, pn, perf)
= let setupInst = MidiEvent 0 (ProgChange ch pn)

setTempo = MetaEvent 0 (SetTempo tempo)
loop [] = []
loop (e : es) = let (mev1, mev2) = mkMEvents ch e

in mev1 : insertMEvent mev2 (loop es)
in setupInst : setTempo : loop perf

tempo = 500000 :: Int −− number of microseconds in one beat

An important source of incompatibilty between our abstract notion of a
performance and that of MIDI is that in a performance a note is repre-
sented as one event with an onset and a duration, while in MIDI it is repre-
sented as two separate events, a note-on event and a note-off event. Thus
MkMEvents turns an Event into two MEvents, a NoteOn and a NoteOff .

mkMEvents :: MidiChannel → Event → (MEvent , MEvent)

mkMEvents mChan (Event {eTime = t , ePitch = p, eDur = d})
= (MidiEvent (toDelta t) (NoteOn mChan p 127),

MidiEvent (toDelta (t + d)) (NoteOff mChan p 127))

toDelta t = round (t ∗ 4.0∗ intToFloat division)

The time-stamp associated with an event in MIDI is called a delta-time,
and is the time at which the event should occur expressed in time-code
divisions since the beginning of the performance. Since there are 96 time-
code divisions per quarter note, there are 4 times that many in a whole
note; multiplying that by the time-stamp on one of our Events gives us
the proper delta-time.

In the code for performToMEvs, note that the location of the first event
returned from mkMEvents is obvious; it belongs just where it was created.
However, the second event must be inserted into the proper place in the
rest of the stream of events; there is no way to know of its proper position
ahead of time. The function insertMEvent is thus used to insert an MEvent
into an already time-ordered sequence of MEvents.

insertMEvent :: MEvent → [MEvent]→ [MEvent]

CHAPTER 22. FROM PERFORMANCE TO MIDI 371

insertMEvent ev1 []
= [ev1]

insertMEvent ev1@(MidiEvent t1) evs@(ev2@(MidiEvent t2) : evs′)
= if t1 <= t2 then ev1 : evs

else ev2 : insertMEvent ev1 evs′

22.3 Putting It All Together

We are almost done. All that remains is to write the MidiFile value into
a real file. The details of this are surprisingly ugly, however, primarily
because MIDI files were invented at a time when disk space was precious,
and thus a compact bit-level representation was chosen. Fortunately,
there is a function in the Haskore library that solves this problem for us:

outputMidiFile :: String → MidiFile→ IO ()

To make this easier to use, let’s define a function test that converts a
Music value using a default Context into a MidiFile value, and then writes
that to a file “test.mid”:

test :: Music → IO ()
test m = outputMidiFile “test.mid”

(performToMidi (perform defCon m))

defCon :: Context
defCon = Context {cTime = 0,

cInst = AcousticGrandPiano,
cDur =metro 120 qn,
cKey = 0}

So if you type test m for some Music value m, it will be converted to MIDI
and written to the file “test.mid”, which you can then play using whatever
MIDI-file player is supplied with your computer. If you are running the
Hugs implementation of Haskell on Windows 95/NT or Linux, you can
invoke the standard media player from Haskell by defining one of the

CHAPTER 22. FROM PERFORMANCE TO MIDI 372

following functions (for these to work you must also import system from
the Hugs module System, via import System (system)):

testWin95, testNT , testLinux :: Music → IO ()

testWin95 m = do test m
system “mplayer test.mid”
return ()

testNT m = do test m
system “mplay32 test.mid”
return ()

testLinux m = do test m
system “playmidi -rf test.mid”
return ()

For example, typing:

testNT funkGroove

using Hugs on an NT system will write the funkGroove example from
Chapter 20 into a MIDI file and then automatically fire up the media player
so that you can hear the result. Try the above for other examples from
Chapter 20, such as cMajArp, cMajChd , pr12, waterfall , and main.

