
4.3.3 Tutorial

module Haskore.Interface.CSound.Tutorial where

import Haskore.Interface.CSound.Orchestra as Orchestra

import Haskore.Interface.CSound.Score as Score

import Haskore.Interface.CSound.Generator

(compSine1, compSine2, cubicSpline, lineSeg1)

import Haskore.Interface.CSound.Render (playCS)

import qualified Haskore.Performance as Performance

import qualified Haskore.Performance.Context as Context

import qualified Haskore.Performance.Player as Player

import Haskore.Music as Music

import Haskore.Melody as Melody

import qualified Haskore.Melody.Standard as StdMelody

import qualified Haskore.Music.Rhythmic as RhyMusic

This brief tutorial is designed to introduce the users to the capabilities of the CSound software syn-

thesizer and sound synthesis in general, and to get users started at using HasSound - the Haskell CSound

interface.

Additive Synthesis Additive synthesis is the most basic, yet the most powerful synthesis technique avail-

able, giving complete control over the sound waveform. The basic premiss behind additive sound synthesis

is quite simple – defining a complex sound by specifying each contributing sine wave. The computer is very

good at generating pure tones, but these are not very interesting. However, any sound imaginable can be

reproduced as a sum of pure tones. We can define an instrument of pure tones easily in Haskore.

CSound requires both an orchestra file and a score file. The score file contains basically two parts,

function table and score.

First we define a function table containing just a sine wave. We can do this using the simpleSine

function defined in module module CSound.Score

pureToneTN :: Score.Table

pureToneTN = 1

pureToneTable :: SigExp

pureToneTable = tableNumber pureToneTN

pureTone :: Score.Statement

pureTone = Score.simpleSine pureToneTN

pureToneTN is the table number of the simple sine wave. We will adopt the convention in this tutorial

that variables ending with TN represent table numbers.

To create an Orchestra, we first create a simple instrument

oscPure :: SigExp -> SigExp -> SigExp

129

oscPure = osc AR pureToneTable

oe1 :: Mono

oe1 = let signal = oscPure (dbToAmp noteVel) (pchToHz notePit)

in Mono signal

This instrument will simply oscillate through the function table containing the sine wave at the appro-

priate frequency given by notePit, and the resulting sound will have an amplitude given by noteVel,

both defined in module module CSound.Orchestra.

We’ll define our own Instrument type as a tuple of a list of parameters (or p-fields, explained in later

parts), and an instrument number.

type InstrNum = Int

type Instrument = ([Float], InstrNum)

instr1, instr2 :: InstrNum

instr1 = 1

instr2 = 2

Note that the oe1 expression above is a Mono, we can turn it into an Orchestra by prefixing it with a

standard header of audio rate 44.1kHz and control rate 4.41kHz.

o1 :: Orchestra.T Mono

o1 = Cons hdr [InstrBlock instr1 0 oe1 []]

hdr :: Orchestra.Header

hdr = (44100, 4410)

where InstrBlock is the constructor for Instrument Block, defined on module

CSound.Orchestra.

We’ll then create a simple tune to play with this instrument. But first of all we have to define our own

melody type to cope with custom velocity and parameters.

type TutMelody = Melody.T TutAttr

data TutAttr = TutAttr {attrVelocity :: Rational,

attrParameters :: [Float]}

tune1 :: TutMelody

tune1 = Music.line (map ($ TutAttr 1.4 [])

[c 1 hn, e 1 hn, g 1 hn,

c 2 hn, a 1 hn, c 2 qn,

a 1 qn, g 1 dhn] ++ [qnr])

tune1 has to be converted to a Rhythmic Music, and then to a Performance and then to a Score.

Because we do not have drums here, () is used instead.

130

type Drum = ()

musicFromMelody :: InstrNum -> TutMelody -> RhyMusic.T Drum Instrument

musicFromMelody instrId = Music.mapNote (

\(Melody.Note (TutAttr vel params) p) ->

RhyMusic.Note vel (RhyMusic.Tone (params, instrId) p))

scoreFromMelody :: InstrNum -> TutMelody -> Score.T

scoreFromMelody i m =

(Score.fromRhyPerformanceMap

(error "no drum map defined") id) $

(Performance.fromMusic Player.fancyMap

(Context.setDur 1 Context.deflt)) $ musicFromMelody i m

scoreFromMelody creates a score that plays the given melody using the given instrument.

Then we’ll complete the score by prefixing the Function Table pureTone to the score from tune1

score1 :: Score.T

score1 = pureTone : scoreFromMelody instr1 tune1

type Example out = (Orchestra.T out, Score.T)

tut1 :: Example Mono

tut1 = (o1, score1)

Or we can have a function to produce tut1 more conveniently by taking a Score and a list of instrument

output, which is either Mono or Stereo, and will be numbered in ascending order as instrument 1, 2,

mkTut :: Output out => Score.T -> [out] -> Example out

mkTut score oes =

let o = Cons hdr (map (\(i, oe) -> InstrBlock i 0 oe []) (zip [1..] oes))

in (o, score)

so that tut1 can be written as

tut1 = mkTut score1 [oe1]

All tutorial examples can be played by function

test :: Output out => Example out -> IO ()

test = uncurry playCS

If you listen to the tune, you will notice that it sounds very thin and uninteresting. Most musical sounds

are not pure. Instead they usually contain a sine wave of dominant frequency, called a fundamental, and

a number of other sine waves called partials. Partials with frequencies that are integer multiples of the

fundamental are called harmonics. In musical terms, the first harmonic lies an octave above the fundamental,

second harmonic a fifth above the first one, the third harmonic lies a major third above the second harmonic

etc. This is the familiar overtone series. We can add harmonics to our sine wave instrument easily using

131

the compSine1 function defined in the module CSound.Score module. The function takes a list of

harmonic strengths as arguments. The following creates a function table containing the fundamental and the

first two harmonics at two thirds and one third of the strength of the fundamental:

twoHarmsTN :: Score.Table

twoHarmsTN = 2

twoHarms :: Score.Statement

twoHarms = Score.Table twoHarmsTN 0 8192 True (compSine1 [1.0, 0.66, 0.33])

We can again proceed to create complete score and orchestra just above:

score2 = twoHarms : scoreFromMelody instr1 tune1

oe2 :: Mono

oe2 = let signal = osc AR (tableNumber twoHarmsTN)

(dbToAmp noteVel) (pchToHz notePit)

in Mono signal

tut2 = mkTut score2 [oe2]

The orchestra file is the same as before – a single oscillator scanning a function table at a given frequency

and volume. This time, however, the tune will not sound as thin as before since the table now contains a

function that is an addition of three sine waves. (Note that the same effect could be achieved using a simple

sine wave table and three oscillators).

Not all musical sounds contain harmonic partials exclusively, and never do we encounter instruments

with static amplitude envelope like the ones we have seen so far. Most sounds, musical or not, evolve and

change throughout their duration. Let’s define an instrument containing both harmonic and nonharmonic

partials, that starts at maximum amplitude with a straight line decay. We will use the function compSine2

from the module CSound.Orchestra module to create the function table. compSine2 takes a list of

triples as an argument. The triples specify the partial number as a multiple of the fundamental, relative

partial strength, and initial phase offset:

manySinesTN :: Score.Table

manySinesTN = 3

manySinesTable :: SigExp

manySinesTable = tableNumber manySinesTN

manySines :: Score.Statement

manySines = Score.Table manySinesTN 0 8192 True (compSine2 [(0.5, 0.9, 0.0),

(1.0, 1.0, 0.0), (1.1, 0.7, 0.0), (2.0, 0.6, 0.0),

(2.5, 0.3, 0.0), (3.0, 0.33, 0.0), (5.0, 0.2, 0.0)])

Thus this complex will contain the second, third, and fifth harmonic, nonharmonic partials at frequencies

of 1.1 and 2.5 times the fundamental, and a component at half the frequency of the fundamental. Their

strengths relative to the fundamental are given by the second argument, and they all start in sync with zero

offset.

Now we can proceed as before to create score and orchestra files. We will define an amplitude envelope

to apply to each note as we oscillate through the table. The amplitude envelope will be a straight line signal

132

ramping from 1.0 to 0.0 over the duration of the note. This signal will be generated at control rate rather

than audio rate, because the control rate is more than sufficient (the audio signal will change volume 4,410

times a second), and the slower rate will improve performance.

score3 = manySines : scoreFromMelody instr1 tune1

oe3 :: Mono

oe3 = let ampEnv = Orchestra.line CR 1.0 noteDur 0.0

signal = osc AR manySinesTable

(ampEnv * dbToAmp noteVel) (pchToHz notePit)

in Mono signal

tut3 = mkTut score3 [oe3]

Not only do musical sounds usually evolve in terms of overall amplitude, they also evolve their spectra.

In other words, the contributing partials do not usually all have the same amplitude envelope, and so their

contribution to the overall sound isn’t static. Let us illustrate the point using the same set of partials as

in the above example. Instead of creating a table containing a complex waveform, however, we will use

multiple oscillators going through the simple sine wave table we created at the beginning of this tutorial

at the appropriate frequencies. Thus instead of the partials being fused together, each can have its own

amplitude envelope, making the sound evolve over time. The score will be score1, defined above.

oe4 :: Mono

oe4 = let pitch = pchToHz notePit

amp = dbToAmp noteVel

mkLine t = lineSeg CR 0 (noteDur*t) 1 [(noteDur * (1-t), 0)]

aenv = [Orchestra.line CR 1 noteDur 0] ++

map mkLine [0.17, 0.33, 0.50, 0.67, 0.83] ++

[Orchestra.line CR 0 noteDur 1]

os (ae, p) = oscPure (ae * amp) (pitch * p)

a = map os (zip aenv [0.5, 1.0, 1.1, 2.0, 2.5, 3.0, 5.0])

out = 0.5 * sum a

in Mono out

tut4 = mkTut score1 [oe4]

So far, we have only used function tables to generate audio signals, but they can come very handy in

modifying signals. Let us create a function table that we can use as an amplitude envelope to make our

instrument more interesting. The envelope will contain an immediate sharp attack and decay, and then a

second, more gradual one, so we’ll have two attack/decay events per note. We’ll use the cubic spline curve

generating routine to do this:

coolEnvTN :: Score.Table

coolEnvTN = 4

coolEnvTable :: SigExp

coolEnvTable = tableNumber coolEnvTN

coolEnv :: Score.Statement

133

coolEnv = Score.Table coolEnvTN 0 8192 True

(cubicSpline 1 [(1692, 0.2), (3000, 1), (3500, 0)])

oscCoolEnv :: SigExp -> SigExp -> SigExp

oscCoolEnv = osc CR coolEnvTable

Let us also add some p-fields to the notes in our score. The two p-fields we add will be used for panning

– the first one will be the starting percentage of the left channel, the second one the ending percentage (1

means all left, 0 all right, 0.5 middle. Pfields of 1 and 0 will cause the note to pan completely from left to

right for example).

The two p-fields are attributes per note, and will later be passed as parameters to the instrument as p-

fields p6 and p7 (Note: this is because p1 and p2 are reserved, and p3, p4 and p5 are duration, pitch and

velocity).

tune2 :: TutMelody

tune2 = let attr start end = TutAttr 1.4 [start, end]

in c 1 hn (attr 1.0 0.75) +:+

e 1 hn (attr 0.75 0.5) +:+

g 1 hn (attr 0.5 0.25) +:+

c 2 hn (attr 0.25 0.0) +:+

a 1 hn (attr 0.0 1.0) +:+

c 2 qn (attr 0.0 0.0) +:+

a 1 qn (attr 1.0 1.0) +:+

(g 1 dhn (attr 1.0 0.0) =:=

g 1 dhn (attr 0.0 1.0))+:+ qnr

So far we have limited ourselves to using only sine waves for our audio output, even though Csound

places no such restrictions on us. Any repeating waveform, of any shape, can be used to produce pitched

sounds. In essence, when we are adding sinewaves, we are changing the shape of the wave. For example,

adding odd harmonics to a fundamental at strengths equal to the inverse of their partial number (ie. third

harmonic would be 1/3 the strength of the fundamental, fifth harmonic 1/5 the fundamental etc) would

produce a square wave which has a raspy sound to it. Another common waveform is the sawtooth, and the

more mellow sounding triangle. The module CSound.Orchestra module already contains functions to

create these common waveforms. Let’s use them to create tables that we can use in an instrument:

triangleTN, squareTN, sawtoothTN :: Score.Table

triangleTN = 5

squareTN = 6

sawtoothTN = 7

triangleT, squareT, sawtoothT :: Score.Statement

triangleT = triangle triangleTN

squareT = square squareTN

sawtoothT = sawtooth sawtoothTN

score4 = squareT : triangleT : sawtoothT : coolEnv :

scoreFromMelody instr1 (changeTempo 0.5 tune2)

134

oe5 :: SigExp -> SigExp -> Stereo

oe5 panStart panEnd =

let pitch = pchToHz notePit

amp = dbToAmp noteVel

pan = Orchestra.line CR panStart noteDur panEnd

oscF = 1 / noteDur

ampen = oscCoolEnv amp oscF

signal = osc AR (tableNumber squareTN) ampen pitch

left = signal * pan

right = signal * (1-pan)

in Stereo left right

tut5 = mkTut score4 [oe5 p6 p7]

This will oscillate through a table containing the square wave. Check out the other waveforms too and

see what they sound like. This can be done by specifying the table to be used in the orchestra file.

Also note that oe5 takes two parameters, which corresponds to the two p-fields: p6 and p7.

As our last example of additive synthesis, we will introduce an orchestra with multiple instruments. The

bass will be mostly in the left channel, and will be the same as the third example instrument in this section.

It will play the tune two octaves below the instrument in the right channel, using an orchestra identical to

oe3 with the addition of the panning feature:

score5 = manySines : pureTone : scoreFromMelody instr1 tune1 ++

scoreFromMelody instr2 tune1

oe6 :: Stereo

oe6 = let ampEnv = Orchestra.line CR 1.0 noteDur 0.0

signal = osc AR manySinesTable

(2 * ampEnv * dbToAmp noteVel) (pchToHz (notePit - 2))

left = 0.8 * signal

right = 0.2 * signal

in Stereo left right

oe7 :: Stereo

oe7 = let pitch = pchToHz notePit

amp = dbToAmp noteVel

mkLine t = lineSeg CR 0 (noteDur*t) 0.5 [(noteDur * (1-t), 0)]

aenv = [Orchestra.line CR 0.5 noteDur 0] ++

map mkLine [0.17, 0.33, 0.50, 0.67, 0.83] ++

[Orchestra.line CR 0 noteDur 0.5]

os (ae, p) = oscPure (ae * amp) (pitch * p)

a = map os (zip aenv [0.5, 1.0, 1.1, 2.0, 2.5, 3.0, 5.0])

left = 0.2 * (sum a)

right = 0.8 * (sum a)

135

in Stereo left right

tut6 = mkTut score5 [oe6, oe7]

Additive synthesis is the most powerful tool in computer music and sound synthesis in general. It can

be used to create any sound imaginable, whether completely synthetic or a simulation of a real-world sound,

and everyone interested in using the computer to synthesize sound should be well versed in it. The most

significant drawback of additive synthesis is that it requires huge amounts of control data, and potentially

thousands of oscillators. There are other synthesis techniques, such as modulation synthesis, that can be

used to create rich and interesting timbres at a fraction of the cost of additive synthesis, though no other

synthesis technique provides quite the same degree of control.

Modulation Synthesis While additive synthesis provides full control and great flexibility, it is quiet clear

that the enormous amounts of control data make it impractical for even moderately complicated sounds.

There is a class of synthesis techniques that use modulation to produce rich, time-varying timbres at a

fraction of the storage and time cost of additive synthesis. The basic idea behind modulation synthesis

is controlling the amplitude and/or frequency of the main periodic signal, called the carrier, by another

periodic signal, called the modulator. The two main kinds of modulation synthesis are amplitude modulation

and frequency modulation synthesis. Let’s start our discussion with the simpler one of the two – amplitude

synthesis.

We have already shown how to supply a time varying amplitude envelope to an oscillator. What would

happen if this amplitude envelope was itself an oscillating signal? Supplying a low frequency (< 20Hz)

modulating signal would create a predictable effect – we would hear the volume of the carrier signal go

periodically up and down. However, as the modulator moves into the audible frequency range, the carrier

changes timbre as new frequencies appear in the spectrum. The new frequencies are equal to the sum and

difference of the carrier and modulator. So for example, if the frequency of the main signal (carrier) is C

= 500Hz, and the frequency of the modulator is M = 100Hz, the audible frequencies will be the carrier C

(500Hz), C + M (600Hz), and C - M (400Hz). The amplitude of the two new sidebands depends on the

amplitude of the modulator, but will never exceed half the amplitude of the carrier.

The following is a simple example that demonstrates amplitude modulation. The carrier will be a 10

second pure tone at 500Hz. The frequency of the modulator will increase linearly over the 10 second

duration of the tone from 0 to 200 Hz. Initially, you will be able to hear the volume of the signal fluctuate,

but after a couple of seconds the volume will seem constant as new frequencies appear.

Let us first create the score file. It will contain a sine wave table, and a single note event:

score6 = pureTone : [Score.Note 1 0.0 10.0 (Cps 500.0) 10000.0 []]

The orchestra will contain a single AM instrument. The carrier will simply oscillate through the sine

wave table at frequency given by the note pitch (500Hz, see the score above), and amplitude given by the

modulator. The modulator will oscillate through the same sine wave table at frequency ramping from 0

to 200Hz. The modulator should be a periodic signal that varies from 0 to the maximum volume of the

carrier. Since the sine wave goes from -1 to 1, we will need to add 1 to it and half it, before multiplying it

by the volume supplied by the note event. This will be the modulating signal, and the carrier’s amplitude

input. (note that we omit the conversion functions dbToAmp and notePit, since we supply the amplitude and

frequency in their raw units in the score file)

136

oe8 :: Mono

oe8 = let modFreq = Orchestra.line CR 0.0 noteDur 200.0

modAmp = oscPure 1.0 modFreq

modSig = (modAmp + 1.0) * 0.5 * noteVel

carrier = oscPure modSig notePit

in Mono carrier

tut7 = mkTut score6 [oe8]

Next synthesis technique on the palette is frequency modulation. As the name suggests, we modulate

the frequency of the carrier. Frequency modulation is much more powerful and interesting than amplitude

modulation, because instead of getting two sidebands, FM gives a number of spectral sidebands. Let us

begin with an example of a simple FM. We will again use a single 10 second note and a 500Hz carrier.

Remember that when we talked about amplitude modulation, the amplitude of the sidebands was dependent

upon the amplitude of the modulator. In FM, the modulator amplitude plays a much bigger role, as we will

see soon. To negate the effect of the modulator amplitude, we will keep the ratio of the modulator amplitude

and frequency constant at 1.0 (we will explain shortly why). The frequency and amplitude of the modulator

will ramp from 0 to 200 over the duration of the note. This time, though, unlike with AM, we will hear

a whole series of sidebands. The orchestra is just as before, except we modulate the frequency instead of

amplitude.

oe9 :: Mono

oe9 = let modFreq = Orchestra.line CR 0.0 noteDur 200.0

modAmp = modFreq

modSig = oscPure modAmp modFreq

carrier = oscPure noteVel (notePit + modSig)

in Mono carrier

tut8 = mkTut score6 [oe9]

The sound produced by FM is a little richer but still very bland. Let us talk now about the role of the

depth of the frequency modulation (the amplitude of the modulator). Unlike in AM, where we only had

one spectral band on each side of the carrier frequency (ie we heard C, C+M, C-M), FM gives a much

richer spectrum with many sidebands. The frequencies we hear are C, C+M, C-M, C+2M, C-2M, C+3M,

C-3M etc. The amplitudes of the sidebands are determined by the modulation index I, which is the ratio

between the amplitude (also referred to as depth) and frequency of the modulator (I = D / M). As a rule of

thumb, the number of significant sideband pairs (at least 1number of sidebands) increases, energy is ”stolen”

from the carrier and distributed among the sidebands. Thus if I=1, we have 2 significant sideband pairs,

and the audible frequencies will be C, C+M, C-M, C+2M, C-2M, with C, the carrier, being the dominant

frequency. When I=5, we will have a much richer sound with about 6 significant sideband pairs, some

of which will actually be louder than the carrier. Let us explore the effect of the modulation index in the

following example. We will keep the frequency of the carrier and the modulator constant at 500Hz and 80

Hz respectively. The modulation index will be a stepwise function from 1 to 10, holding each value for one

second. So in effect, during the first second (I = D/M = 1), the amplitude of the modulator will be the same

as its frequency (80). During the second second (I = 2), the amplitude will be double the frequency (160),

then it will go to 240, 320, etc:

137

oe10 :: Mono

oe10 = let modInd = lineSeg CR 1 1 1 [(0,2), (1,2), (0,3), (1,3), (0,4),

(1,4), (0,5), (1,5), (0,6), (1,6),

(0,7), (1,7), (0,8), (0,9), (1,9),

(0,10), (1,10)]

modAmp = 80.0 * modInd

modSig = oscPure modAmp 80.0

carrier = oscPure noteVel (notePit + modSig)

in Mono carrier

tut9 = mkTut score6 [oe10]

Notice that when the modulation index gets high enough, some of the sidebands have negative frequen-

cies. For example, when the modulation index is 7, there is a sideband present in the sound with a frequency

C - 7M = 500 - 560 = -60Hz. The negative sidebands get reflected back into the audible spectrum but are

phase shifted 180 degrees, so it is an inverse sine wave. This makes no difference when the wave is on its

own, but when we add it to its inverse, the two will cancel out. Say we set the frequency of the carrier at

100Hz instead of 80Hz. Then at I=6, we would have present two sidebands of the same frequency - C-4M

= 100Hz, and C-6M = -100Hz. When these two are added, they would cancel each other out (if they were

the same amplitude; if not, the louder one would be attenuated by the amplitude of the softer one). The

following flexible instrument will sum up simple FM. The frequency of the modulator will be determined

by the C/M ratio supplied as p6 in the score file. The modulation index will be a linear slope going from 0

to p7 over the duration of each note. Let us also add panning control as in additive synthesis - p8 will be the

initial left channel percentage, and p9 the final left channel percentage:

oe11 :: SigExp -> SigExp -> SigExp -> SigExp -> Stereo

oe11 modFreqRatio modIndEnd panStart panEnd =

let carFreq = pchToHz notePit

carAmp = dbToAmp noteVel

modFreq = carFreq * modFreqRatio

modInd = Orchestra.line CR 0 noteDur modIndEnd

modAmp = modFreq * modInd

modSig = oscPure modAmp modFreq

carrier = oscPure carAmp (carFreq + modSig)

mainAmp = oscCoolEnv 1.0 (1/noteDur)

pan = Orchestra.line CR panStart noteDur panEnd

left = mainAmp * pan * carrier

right = mainAmp * (1 - pan) * carrier

in Stereo left right

Let’s write a cool tune to show off this instrument. Let’s keep it simple and play the chord progression

Em - C - G - D a few times, each time changing some of the parameters:

emChord, cChord, gChord, dChord ::

Float -> Float -> Float -> Float -> TutMelody

quickChord ::

138

[Music.Dur -> TutAttr -> TutMelody] ->

Float -> Float -> Float -> Float -> TutMelody

quickChord ns x y z w = chord $

map (\p -> p wn (TutAttr 1.4 [x, y, z, w])) ns

emChord = quickChord [e 0, g 0, b 0]

cChord = quickChord [c 0, e 0, g 0]

gChord = quickChord [g 0, b 0, d 1]

dChord = quickChord [d 0, fs 0, a 0]

tune3 :: TutMelody

tune3 = transpose (-12) $

emChord 3.0 2.0 0.0 1.0 +:+ cChord 3.0 5.0 1.0 0.0 +:+

gChord 3.0 8.0 0.0 1.0 +:+ dChord 3.0 12.0 1.0 0.0 +:+

emChord 3.0 4.0 0.0 0.5 +:+ cChord 5.0 4.0 0.5 1.0 +:+

gChord 8.0 4.0 1.0 0.5 +:+ dChord 10.0 4.0 0.5 0.0 +:+

(emChord 4.0 6.0 1.0 0.0 =:= emChord 7.0 5.0 0.0 1.0) +:+

(cChord 5.0 9.0 1.0 0.0 =:= cChord 9.0 5.0 0.0 1.0) +:+

(gChord 5.0 5.0 1.0 0.0 =:= gChord 7.0 7.0 0.0 1.0) +:+

(dChord 2.0 3.0 1.0 0.0 =:= dChord 7.0 15.0 0.0 1.0)

Now we can create a score. It will contain two wave tables – one containing the sine wave, and the other

containing an amplitude envelope, which will be the table coolEnv which we have already seen before

score7 = pureTone : coolEnv :

scoreFromMelody instr1 (changeTempo 0.5 tune3)

tut10 = mkTut score7 [oe11 p6 p7 p8 p9]

Note that all of the above examples of frequency modulation use a single carrier and a single modulator,

and both are oscillating through the simplest of waveforms – a sine wave. Already we have achieved some

very rich and interesting timbres using this simple technique, but the possibilities are unlimited when we start

using different carrier and modulator waveshapes and multiple carriers and/or modulators. Let us include a

couple more examples that will play the same chord progression as above with multiple carriers, and then

with multiple modulators.

The reason for using multiple carriers is to obtain /em formant regions in the spectrum of the sound.

Recall that when we modulate a carrier frequency we get a spectrum with a central peak and a number of

sidebands on either side of it. Multiple carriers introduce additional peaks and sidebands into the composite

spectrum of the resulting sound. These extra peaks are called formant regions, and are characteristic of

human voice and most musical instruments

oe12 :: SigExp -> SigExp -> SigExp -> SigExp -> Stereo

oe12 modFreqRatio modIndEnd panStart panEnd =

let car1Freq = pchToHz notePit

car2Freq = pchToHz (notePit + 1)

car1Amp = dbToAmp noteVel

139

car2Amp = dbToAmp noteVel * 0.7

modFreq = car1Freq * modFreqRatio

modInd = Orchestra.line CR 0 noteDur modIndEnd

modAmp = modFreq * modInd

modSig = oscPure modAmp modFreq

carrier1 = oscPure car1Amp (car1Freq + modSig)

carrier2 = oscPure car2Amp (car2Freq + modSig)

mainAmp = oscCoolEnv 1.0 (1/noteDur)

pan = Orchestra.line CR panStart noteDur panEnd

left = mainAmp * pan * (carrier1 + carrier2)

right = mainAmp * (1 - pan) * (carrier1 + carrier2)

in Stereo left right

tut11 = mkTut score7 [oe12 p6 p7 p8 p9]

In the above example, there are two formant regions – one is centered around the note pitch frequency

provided by the score file, the other an octave above. Both are modulated in the same way by the same

modulator. The sound is even richer than that obtained by simple FM.

Let us now turn to multiple modulator FM. In this case, we use a signal to modify another signal, and the

modified signal will itself become a modulator acting on the carrier. Thus the wave that wil be modulating

the carrier is not a sine wave as above, but is itself a complex waveform resulting from simple FM. The

spectrum of the sound will contain a central peak frequency, surrounded by a number of sidebands, but this

time each sideband will itself also by surrounded by a number of sidebands of its own. So in effect we

are talking about ”double” modulation, where each sideband is a central peak in its own little spectrum.

Multiple modulator FM thus provides extremely rich spectra

oe13 :: SigExp -> SigExp -> SigExp -> SigExp -> Stereo

oe13 modFreqRatio modIndEnd panStart panEnd =

let carFreq = pchToHz notePit

carAmp = dbToAmp noteVel

mod1Freq = carFreq * modFreqRatio

mod2Freq = mod1Freq * 2.0

modInd = Orchestra.line CR 0 noteDur modIndEnd

mod1Amp = mod1Freq * modInd

mod2Amp = mod1Amp * 3.0

mod1Sig = oscPure mod1Amp mod1Freq

mod2Sig = oscPure mod2Amp (mod2Freq + mod1Sig)

carrier = oscPure carAmp (carFreq + mod2Sig)

mainAmp = oscCoolEnv 1.0 (1/noteDur)

pan = Orchestra.line CR panStart noteDur panEnd

left = mainAmp * pan * carrier

right = mainAmp * (1 - pan) * carrier

in Stereo left right

tut12 = mkTut score7 [oe13 p6 p7 p8 p9]

140

In fact, the spectra produced by multiple modulator FM are so rich and complicated that even the mod-

erate values used as arguments in our tune produce spectra that are saturated and otherworldly. And we

did this while keeping the ratios of the two modulators frequencies and amplitudes constant; introducing

dynamics in those ratios would produce even crazier results. It is quite amazing that from three simple sine

waves, the purest of all tones, we can derive an unlimited number of timbres. Modulation synthesis is a

very powerful tool and understanding how to use it can prove invaluable. The best way to learn how to

use FM effectively is to dabble and experiment with different ratios, formant regions, dynamic relationships

betweeen ratios, waveshapes, etc. The possibilities are limitless.

Other Capabilities Of CSound In our examples of additive and modulation synthesis we only used a

limited number of functions and routines provided us by CSound, such as Osc (oscillator), Line and LineSig

(line and line segment signal generators) etc. This tutorial intends to briefly explain the functionality of

some of the other features of CSound. Remember that the CSound manual should be the ultimate reference

when it comes to using these functions.

Let us start with the two functions buzz and genBuzz. These functions will produce a set of har-

monically related cosines. Thus they really implement simple additive synthesis, except that the number of

partials can be varied dynamically through the duration of the note, rather than staying fixed as in simple

additive synthesis. As an example, let us perform the tune defined at the very beginning of the tutorial using

an instrument that will play each note by starting off with the fundamental and 70 harmonics, and ending

with simply the sine wave fundamental (note that cosine and sine waves sound the same). We will use a

straight line signal going from 70 to 0 over the duration of each note for the number of harmonics. The score

used will be score1, and the orchestra will be:

oe14 :: Mono

oe14 = let numharms = Orchestra.line CR 70 noteDur 0

signal = buzz pureToneTable numharms

(dbToAmp noteVel) (pchToHz notePit)

in Mono signal

tut13 = mkTut score1 [oe14]

Let’s invert the line of the harmonics, and instead of going from 70 to 0, make it go from 0 to 70. This

will produce an interesting effect quite different from the one just heard:

oe15 :: Mono

oe15 = let numharms = Orchestra.line CR 0 noteDur 70

signal = buzz pureToneTable numharms

(dbToAmp noteVel) (pchToHz notePit)

in Mono signal

tut14 = mkTut score1 [oe15]

The buzz expression takes the overall amplitude, fundamental frequency, number of partials, and a sine

wave table and generates a wave complex.

In recent years there has been a lot of research conducted in the area of physical modelling. This tech-

nique attempts to approximate the sound of real world musical instruments through mathematical models.

141

One of the most widespread, versatile and interesting of these models is the Karplus-Strong algorithm that

simulates the sound of a plucked string. The algorithm starts off with a buffer containing a user-determined

waveform. On every pass, the waveform is ”smoothed out” and flattened by the algorithm to simulate the

decay. There is a certain degree of randomness involved to make the string sound more natural.

There are six different ”smoothing methods” available in CSound, as mentioned in the CSound module.

The pluck constructor accepts the note volume, pitch, the table number that is used to initialize the buffer,

the smoothing method used, and two parameters that depend on the smoothing method. If zero is given as

the initializing table number, the buffer starts off containing a random waveform (white noise). This is the

best table when simulating a string instrument because of the randomness and percussive attack it produces

when used with this algorithm, but you should experiment with other waveforms as well.

Here is an example of what Pluck sounds like with a white noise buffer and the simple smoothing

method. This method ignores the parameters, which we set to zero.

oe16 :: Mono

oe16 = let signal = pluck 0 (pchToHz notePit)

PluckSimpleSmooth

(dbToAmp noteVel) (pchToHz notePit)

in Mono signal

tut15 = mkTut score1 [oe16]

The second smoothing method is the stretched smooth, which works like the simple smooth above,

except that the smoothing process is stretched by a factor determined by the first parameter. The second pa-

rameter is ignored. The third smoothing method is the snare drum method. The first parameter is the ”rough-

ness” parameter, with 0 resulting in a sound identical to simple smooth, 0.5 being the perfect snare drum,

and 1.0 being the same as simple smooth again with reversed polarity (like a graph flipped around the x-

axis). The fourth smoothing method is the stretched drum method which combines the roughness and stretch

factors – the first parameter is the roughness, the second is the stretch. The fifth method is weighted average

– it combines the current sample (ie. the current pass through the buffer) with the previous one, with their

weights being determined by the parameters. This is a way to add slight reverb to the plucked sound. Finally,

the last method filters the sound so it doesn’t sound as bright. The parameters are ignored. You can modify

the instrument oe16 easily to listen to all these effects by simply replacing the variable simpleSmooth

by stretchSmooth, simpleDrum, stretchDrum, weightedSmooth or filterSmooth.

Here is another simple instrument example. This combines a snare drum sound with a stretched plucked

string sound. The snare drum as a constant amplitude, while we apply an amplitude envelope to the string

sound. The envelope is a spline curve with a hump in the middle, so both the attack and decay are gradual.

The drum roughness factor is 0.3, so a pitch is still discernible (with a factor of 0.5 we would get a snare

drum sound with no pitch, just a puff of white noise). The drum sound is shifted towards the left channel,

while the string sound is shifted towards the right.

midHumpTN :: Score.Table

midHumpTN = 8

midHump :: Score.Statement

midHump = Score.Table midHumpTN 0 8192 True

(cubicSpline 0.0 [(4096, 1.0), (4096, 0.0)])

142

score8 = pureTone : midHump : scoreFromMelody instr1 tune1

oe17 :: Stereo

oe17 = let string = pluck 0 (pchToHz notePit)

(PluckStretchSmooth 1.5)

(dbToAmp noteVel) (pchToHz notePit)

drum = pluck 0 (pchToHz notePit)

(PluckSimpleDrum 0.3)

6000 (pchToHz notePit)

ampEnv = osc CR (tableNumber midHumpTN) 1.0 (1 / noteDur)

left = (0.65 * drum) + (0.35 * ampEnv * string)

right = (0.35 * drum) + (0.65 * ampEnv * string)

in Stereo left right

tut16 = mkTut score8 [oe17]

Let us now turn our attention to the effects we can achieve using a delay line.

Let’s define a simple percussive instrument. It’s strong attack let us easily perceive the reverberation.

ping :: SigExp

ping =

let ampEnv = expon CR 1.0 1.0 (1/100)

in osc AR manySinesTable

(ampEnv * dbToAmp noteVel) (pchToHz notePit)

There is still the problem, that subsequent notes truncate preceding ones. This would suppress the reverb.

In order to avoid this we add a legato effect to the music. That is we prolong the notes such that they overlap.

score9 = manySines : scoreFromMelody instr1 (legato 1 tune1)

Here we take the ping sound and add a little echo to it using delay:

oe18 :: Stereo

oe18 = let dping1 = Orchestra.delay 0.05 ping

dping2 = Orchestra.delay 0.1 ping

left = (0.65 * ping) + (0.35 * dping2) + (0.5 * dping1)

right = (0.35 * ping) + (0.65 * dping2) + (0.5 * dping1)

in Stereo left right

tut17 = mkTut score9 [oe18]

The constructor delay establishes a delay line. A delay line is essentially a buffer that contains the sig-

nal to be delayed. The first argument to the delay constructor is the length of the delay (which determines

the size of the buffer), and the second argument is the signal to be delayed. So for example, if the delay

time is 1.0 seconds, and the sampling rate is 44,100 Hz (CD quality), then the delay line will be a buffer

containing 44,100 samples of the delayed signal. The buffer is rewritten at the audio rate. Once Delay t

143

sig writes t seconds of the signal sig into the buffer, the buffer can be tapped using the delTap or the

delTapI constructors. delTap t dline will extract the signal from dline at time t seconds. In the

exmaple above, we set up a delay line containing 0.1 seconds of the audio signal, then we tapped it twice

– once at 0.05 seconds and once at 0.1 seconds. The output signal is a combination of the original signal

(left channel), the signal delayed by 0.05 seconds (middle), and the signal delayed by 0.1 seconds (right

channel).

CSound provides other ways to reverberate a signal besides the delay line just demonstrated. One such

way is achieved via the Reverb constructor introduced in the module CSound.Orchestra module. This

constructor tries to emulate natural room reverb, and takes as arguments the signal to be reverberated, and

the reverb time in seconds. This is the time it takes the signal to decay to 1/1000 its original amplitude. In

this example we output both the original and the reverberated sound.

oe19 :: Stereo

oe19 = let rev = reverb 0.3 ping

left = (0.65 * ping) + (0.35 * rev)

right = (0.35 * ping) + (0.65 * rev)

in Stereo left right

tut18 = mkTut score9 [oe19]

The other two reverb functions are comb and alpass. Each of these requires as arguments the signal

to be reverberated, the reverb time as above, and echo loop density in seconds. Here is an example of an

instrument using comb.

oe20 :: Mono

oe20 = Mono (comb 0.22 4.0 ping)

tut19 = mkTut score9 [oe20]

Delay lines can be used for effects other than simple echo and reverberation. Once the delay line has

been established, it can be tapped at times that vary at control or audio rates. This can be taken advantage of

to produce effects like chorus, flanger, or the Doppler effect. Here is an example of the flanger effect. This

instrument adds a slight flange to oe11.

oe21 :: SigExp -> SigExp -> SigExp -> SigExp -> Stereo

oe21 modFreqRatio modIndEnd panStart panEnd =

let carFreq = pchToHz notePit

ampEnv = oscCoolEnv 1.0 (1/noteDur)

carAmp = dbToAmp noteVel * ampEnv

modFreq = carFreq * modFreqRatio

modInd = Orchestra.line CR 0 noteDur modIndEnd

modAmp = modFreq * modInd

modSig = oscPure modAmp modFreq

carrier = oscPure carAmp (carFreq + modSig)

ftime = oscPure (1/10) 2

flanger = ampEnv * vdelay 1 (0.5 + ftime) carrier

signal = carrier + flanger

144

pan = Orchestra.line CR panStart noteDur panEnd

left = pan * signal

right = (1 - pan) * signal

in Stereo left right

tut20 = mkTut score7 [oe21 p6 p7 p8 p9]

The last two examples use generic delay lines. That is we do not rely on special echo effects but build

our own ones by delaying a signal, filtering it by low pass or high pass filters and feeding the result back to

the delay function.

lowPass, highPass :: EvalRate -> SigExp -> SigExp -> SigExp

lowPass rate cutOff sig = sigGen "tone" rate 1 [sig, cutOff]

highPass rate cutOff sig = sigGen "atone" rate 1 [sig, cutOff]

oe22 :: Stereo

oe22 = let left = rec (\x -> ping + lowPass AR

500 (Orchestra.delay 0.311 x))

right = rec (\x -> ping + highPass AR 1000 (Orchestra.delay 0.271 x))

in Stereo left right

tut21 = mkTut score9 [oe22]

oe23 :: Mono

oe23 = let rev = rec (\x -> ping +

0.7 * (lowPass AR 500 (Orchestra.delay 0.311 x)

+ highPass AR 1000 (Orchestra.delay 0.271 x)))

in Mono rev

o22 = Cons hdr [InstrBlock instr1 0 oe23 []]

tut22 = mkTut score9 [oe23]

This completes our discussion of sound synthesis and Csound. For more information, please consult the

CSound manual or check out

http://mitpress.mit.edu/e-books/csound/frontpage.html

Here are some bonus instruments for your pleasure and enjoyment. The first ten instruments are lifted

from

http://wings.buffalo.edu/academic/department/AandL/music/pub/accci/

01/01 01 1b.txt.html

The tutorial explains how to add echo/reverb and other effects to the instruments if you need to. This

instrument sounds like an electric piano and is really simple – pianoEnv sets the amplitude envelope, and

the sound waveform is just a series of 10 harmonics. To make the sound brighter, increase the weight of the

upper harmonics.

145

piano, reedy, flute

:: Example Mono

pianoScore, reedyScore, fluteScore :: Score.T

pianoEnv, reedyEnv, fluteEnv,

pianoWave, reedyWave, fluteWave :: Score.Statement

pianoEnvTN, reedyEnvTN, fluteEnvTN,

pianoWaveTN, reedyWaveTN, fluteWaveTN :: Score.Table

pianoEnvTable, reedyEnvTable, fluteEnvTable,

pianoWaveTable, reedyWaveTable, fluteWaveTable :: SigExp

pianoEnvTN = 10; pianoEnvTable = tableNumber pianoEnvTN

pianoWaveTN = 11; pianoWaveTable = tableNumber pianoWaveTN

pianoEnv = Score.Table pianoEnvTN 0 1024 True (lineSeg1 0 [(20, 0.99),

(380, 0.4), (400, 0.2), (224, 0)])

pianoWave = Score.Table pianoWaveTN 0 1024 True (compSine1 [0.158, 0.316,

1.0, 1.0, 0.282, 0.112, 0.063, 0.079, 0.126, 0.071])

pianoScore = pianoEnv : pianoWave : scoreFromMelody instr1 tune1

pianoOE :: Mono

pianoOE = let ampEnv = osc CR pianoEnvTable (dbToAmp noteVel) (1/noteDur)

signal = osc AR pianoWaveTable ampEnv (pchToHz notePit)

in Mono signal

piano = mkTut pianoScore [pianoOE]

Here is another instrument with a reedy sound to it

reedyEnvTN = 12; reedyEnvTable = tableNumber reedyEnvTN

reedyWaveTN = 13; reedyWaveTable = tableNumber reedyWaveTN

reedyEnv = Score.Table reedyEnvTN 0 1024 True (lineSeg1 0 [(172, 1.0),

(170, 0.8), (170, 0.6), (170, 0.7), (170, 0.6), (172,0)])

reedyWave = Score.Table reedyWaveTN 0 1024 True (compSine1 [0.4, 0.3,

0.35, 0.5, 0.1, 0.2, 0.15, 0.0, 0.02, 0.05, 0.03])

reedyScore = reedyEnv : reedyWave : scoreFromMelody instr1 tune1

reedyOE :: Mono

reedyOE = let ampEnv = osc CR reedyEnvTable (dbToAmp noteVel) (1/noteDur)

signal = osc AR reedyWaveTable ampEnv (pchToHz notePit)

in Mono signal

reedy = mkTut reedyScore [reedyOE]

146

We can use a little trick to make it sound like several reeds playing by adding three signals that are

slightly out of tune:

reedy2OE :: Stereo

reedy2OE = let ampEnv = osc CR reedyEnvTable (dbToAmp noteVel) (1/noteDur)

freq = pchToHz notePit

reedyOsc = osc AR reedyWaveTable

a1 = reedyOsc ampEnv freq

a2 = reedyOsc (ampEnv * 0.44) (freq + (0.023 * freq))

a3 = reedyOsc (ampEnv * 0.26) (freq + (0.019 * freq))

left = (a1 * 0.5) + (a2 * 0.35) + (a3 * 0.65)

right = (a1 * 0.5) + (a2 * 0.65) + (a3 * 0.35)

in Stereo left right

reedy2 = mkTut reedyScore [reedy2OE]

This instrument tries to emulate a flute sound by introducing random variations to the amplitude enve-

lope. The score file passes in two parameters – the first one is the depth of the random tremolo in percent

of total amplitude. The tremolo is implemented using the randomI function, which generates a signal that

interpolates between 2 random numbers over a certain number of samples that is specified by the second

parameter.

fluteTune :: TutMelody

fluteTune = Music.line

(map ($ TutAttr 1.6 [30, 40])

[c 1 hn, e 1 hn, g 1 hn, c 2 hn,

a 1 hn, c 2 qn, a 1 qn, g 1 dhn]

++ [qnr])

fluteEnvTN = 14; fluteEnvTable = tableNumber fluteEnvTN

fluteWaveTN = 15; fluteWaveTable = tableNumber fluteWaveTN

fluteEnv = Score.Table fluteEnvTN 0 1024 True (lineSeg1 0 [(100, 0.8),

(200, 0.9), (100, 0.7), (300, 0.2), (324, 0.0)])

fluteWave = Score.Table fluteWaveTN 0 1024 True (compSine1 [1.0, 0.4,

0.2, 0.1, 0.1, 0.05])

fluteScore = fluteEnv : fluteWave : scoreFromMelody instr1 fluteTune

fluteOE :: SigExp -> SigExp -> Mono

fluteOE depth numSam =

let vol = dbToAmp noteVel

rand = randomI AR numSam (vol/100 * depth)

ampEnv = oscI AR fluteEnvTable

(rand + vol) (1 / noteDur)

signal = oscI AR fluteWaveTable

147

ampEnv (pchToHz notePit)

in Mono signal

flute = mkTut fluteScore [fluteOE p6 p7]

148

