
CPSC 201

A Brief and Informal Introduction to the Lambda Calculus

Paul Hudak
Spring 2008

There are three kinds of expressions (also called terms) in the pure lambda calculus:

x (variables)
λx. e (abstractions)
e1 e2 (applications)

where x, y, etc. are variables and e, e1, etc. are (nested) expressions.

Intuitively, abstractions represent functions, and applications represent the application of a
function to its argument. In this sense variable names are arbitrary, so that, for example, λx. x
represents the “same” function as λy. y.

Syntactic conventions: (1) e1 e2 e3 is short-hand for (e1 e2) e3. (2) The binding of “λ” extends
as far to the right as possible (overidden in the usual way by parentheses). So λx. x x is the same
as λx. (x x), but is different from (λx. x) x.

A particular instance of a variable is “free” in a lambda expression if it is not “bound” by a
lambda. For example, x is free in the expressions x and λy. x, but not in λx. x. Because variables
can be repeated, care must be taken to know which variable one is referring to. For example, in
this expression, the underlined occurrences of x are free, the others are not:

λy. x (λx. x x) x

A term is closed if it has no free variables; otherwise it is open.

The only reduction rule of interest in this course is called beta-reduction, and is defined by:

(λx. e1) e2 ⇒ e1[e2/x]

where the notation e1[e2/x] denotes the result of substituting e2 for all free occurrences of x in e1.
For example: (λx. x) (λy. y) ⇒ (λy. y)

(λx. x x) (λy. y) ⇒ (λy. y) (λy. y)
(λx. x (λx. x)) y ⇒ y (λx. x)

However, care must be taken to avoid “name capture” of bound variables. For example, this
reduction would be “wrong”:

(λx. (λy. x)) y ⇒ λy. y

because the outer y is presumably different from the inner y bound by the lambda. In cases like
these, the bound variable is renamed to obtain the “correct” behavior:

(λx. (λy. x)) y ⇒ λz. y

1



A reducible expression, or redex, is any expression to which the above (beta-reduction) rule can
be immediately applied. For example, λx. (λy. y) z is not a redex, but its nested expression (λy. y) z
is. The location of a redex relative to another is the point at which it begins in a left-to-right scan
of the text.

Some expressions have more than one redex, and it turns out to be important to decide which
redex to reduce first. There are many different reduction strategies, but the three of most interest
in this course are:

1. Normal-order reduction: Choose the left-most redex first.

2. Applicative-order reduction: Choose the right-most redex first.

3. Haskell evaluation (more or less): Choose the left-most redex first (as in normal-order reduc-
tion), but only if it is not contained within the body of a lambda abstraction.

An expression with no redex is said to be in normal form.

Some expressions do not terminate using any of the above reduction strategies. For example:

(λx. x x) (λx. x x) ⇒ (λx. x x) (λx. x x) ⇒ (λx. x x) (λx. x x) ⇒ ...

Some terminate under normal-order reduction, but not under applicative-order. For example,
this expression:

(λx. y) ((λx. x x) (λx. x x))

has two redexes. If we choose the right-most one (applicative-order), it will not terminate. But if
we choose the left-most one, it will reduce in one step to the expression y.

It turns out that if an expression has a normal form, then normal-order reduction will find it.
In other words, normal-order reduction terminates most often.

When constants or primitive values and functions are desired, special reduction rules can be
added which create opportunities for other redexes. Examples include:

(+ 1 1) ⇒ 2 (addition)
(+ 1 2) ⇒ 3
· · ·
(∗ 1 1) ⇒ 1 (multiplication)
(∗ 1 2) ⇒ 2
· · ·
(head (cons x xs)) ⇒ x (lists)
(tail (cons x xs)) ⇒ xs
· · ·
(cond true e1 e2) ⇒ e1 (conditional)
(cond false e1 e2) ⇒ e2

· · ·
etc.

2



Alternatively, we can simulate these primitives using just the pure lambda calculus:

0 ≡ λf.λx. x
1 ≡ λf.λx. f x
· · ·
n ≡ λf.λx. f (· · · (f x) · · ·)

succ ≡ λn.λf.λx. f (n f x)
add ≡ λm.λn.λf.λx. m f (n f x)

cons ≡ λx.λy.λs. s x y
head ≡ λl. l (λx.λy. x)
tail ≡ λl. l (λx.λy. y)

cond ≡ λp.λc.λa. p c a
true ≡ λc.λa. c
false ≡ λc.λa. a

In order to get the effect of recursion, one can define what is called the Y combinator, or fixed
point operator, as:

Y ≡ λf. (λx. f (x x)) (λx. f (x x))

Recursion is not something that is directly supported by the lambda calculus. But any recursive
definition such as:

g ≡ · · · g · · ·

can be rewritten as:
g ≡ Y (λg. · · · g · · ·)

which is non-recursive, and is thus a valid lambda expression. For example, here is a recursive and
then a non-recursive definition of the factorial function:

fact ≡ λn. cond (= n 0) 1 (∗ n (fact (− n 1))))

fact ≡ Y (λf. λn. cond (= n 0) 1 (∗ n (f (− n 1))))

3


