
Overview

A normal-order language

Strictness

Recursion

Infinite data structures

Direct denotational semantics

Transition semantics

Lazy (call-by-need) evaluation and its semantics

A Normal-Order Language

Recall that normal-order evaluation guarantees finding a canonical form if one exists;
under eager evaluation more terms diverge.

So it is useful to consider a language based on normal-order evaluation.

Syntactically the language is similar to the eager functional language, but semantically

all tuples and alternatives are canonical forms:

cfm ::= intcfm | boolcfm | funcfm | tupcfm | altcfm

tupcfm ::= 〈exp, . . . exp〉 eager: 〈cfm, . . . cfm〉
altcfm ::= @ tag exp eager: @ tag cfm

tuple and alternative constructors are lazy, evaluation is forced by deconstruction:

e⇒ 〈e0, . . . en−1〉 ek ⇒ z

e.k ⇒ z

e⇒ @ k e′ ek e
′ ⇒ z

sumcase e of (e0, . . . en−1)⇒ z
(k < n)

application is reduced in normal order:
e⇒ λv. ê (ê/v → e′ ⇒ z)

e e′ ⇒ z

Strictness of Constructs

A construct is strict in one of its subterm

if its evaluation always requires the evaluation of that subterm

since the meaning of a term created by this construct can be expressed

as a strict function applied to the meaning of the subterm

(recall a strict function between domains maps ⊥ to ⊥).

E.g. application is strict in the subterm in function position:

e⇒ λv. ê (ê/v → e′⇒ z)

e e′⇒ z

Semantics of Arithmetic and Boolean Operations

Transition semantics and strictness of arithmetic/Boolean constructs:

e⇒ bnc
-e⇒ b−nc

e⇒ bnc e′⇒ bn′c
e+e′⇒ bn+ n′c

e⇒ true e′⇒ z

if e then e′ else e′′⇒ z

e⇒ false e′′⇒ z

if e then e′ else e′′⇒ z

Recursion in the Normal-Order Language

Additional syntax:

exp ::= . . . | rec exp

with evaluation rule
e (rec e)⇒ z

rec e⇒ z

Thus rec e is syntactic sugar for Y e in untyped languages or
those with recursive types, but must be primitive in a simply typed language.

More syntactic sugar:

letrec p1 ≡ e1, . . . pn ≡ en in e

def
= let 〈p1, . . . pn〉 ≡ rec (λ〈p1, . . . pn〉. 〈e1, . . . en〉) in e

Note: fixed-points are not necessarily functions
since all tuples and alternatives are canonical forms,
so e.g. the following does not diverge:

letrec ones ≡ 1::ones in ones

Using Normal-Order Evaluation

One can define short-circuit Boolean operators as syntactic sugar:

¬ e def
= if e then false else true

e ∧ e′ def
= if e then e′ else false

Since only the subterms whose value is necessary are evaluated,
we can use the standard foldl (reduce) to define short-circuit operations on lists:

let foldl ≡ λf. λz. rec (λg. λl. listcase l of (z, λx. λxs. f x (g z xs))),

prod ≡ foldl (λx. λy. if x = 0 then 0 else x*y) 1

in . . .

Programming with Infinite Data Structures

Since fixed points can be of any type, one can define

letrec
nats ≡ 0 ::map (λx. x+1) nats,

sumlists ≡ λxs. λys. listcase xs of
(ys,
λx. λxs′. listcase ys of (nil, λy. λys′. (x+y):: sumlist xs ys′)),

fib ≡ 0 :: fib1,
fib1 ≡ 1 :: sumlists fib fib1

in . . .

Any finite part of these data structures will be computed in finite time
as the canonical forms of its subterms become necessary.

Direct Denotational Semantics

The major change from the semantics of an eager language is that
the environments bind variables to computations in V∗, not values in V :

E
def
= var → V∗

Similarly the (pre)domains of functions, tuples, and alternatives are

Vfun = [V∗ → V∗] since variables are bound to computations

Vtup = (V∗)∗ since tuples. . .

Valt = N× V∗ . . . since tuples and alternatives are non-strict

Semantic equations for abstraction and application:

[[λv. e]]η = ιnorm (ιfun (λa ∈ V∗. [[e]][η | v : a]))

[[e e′]]η = (λf ∈ Vfun . f ([[e′]]η))fun∗ ([[e]]η)

Semantics of Tuples and Alternatives

Unlike the eager language, tuples and alternatives are non-strict,
hence divergence in subterms of tuples and alternatives
is not propagated to the meaning of the entire term:

[[〈e0, . . . en−1〉]]η = ιnorm (ιtup 〈[[e0]]η, . . . [[en−1]]η〉)

[[@ k e]]η = ιnorm (ιalt 〈k, [[e]]η〉)
The meaning of selecting a component of a tuple is simply the meaning

of the component, so no extra care is needed to propagate its divergence:

[[e.k]]η = (λt ∈ Vtup. if k ∈ dom t then t k else tyerr)tuple∗ ([[e]]η)

The sumcase construct is strict in the discriminant, hence the use of lifting:

[[sumcase e of (e0, . . . en−1)]]η

= (λ〈k, a〉 ∈ Valt . if k < n then (λf ∈ Vfun . f a)fun∗ ([[ek]]η) else tyerr)alt∗ ([[e]]η)

Transition Semantics

The normal-order evaluation of a term can be described by a transition relation 7→:

(λv. e) e′ 7→ (e/v → e′)

if true then e else e′ 7→ e

if false then e else e′ 7→ e′

〈e0, . . . en−1〉.k 7→ ek, if k < n

sumcase @ k e of (e0, . . . en−1) 7→ ek e, if k < n

rec e 7→ e (rec e)

plus contextual closure according to the strictness of constructs, e.g.

e 7→ e1

e e′ 7→ e1 e′
e⇒ e1

if e then e′ else e′′ ⇒ if e1 then e′ else e′′

Lazy (Call-By-Need) Evaluation

A naı̈ve substitution-based implementation of normal-order evaluation
would be very inefficient because it would duplicate much of the work:

e⇒ bnc
(λx. x+x) e⇒ bn+ nc

will evaluate e to bnc twice;
in general the extra amount of work is not bounded by any elementary function.

Call-by-need evaluation uses sharing to reduce each term at most once:

�� �� �� ��

��

〈app〉

{{xxxxxxxxx

""DDDDDDDDDD
+GF

@A
��

ED

BC
��

+GF

@A
��

ED

BC
��

+GF

@A
��

ED

BC
��

λx

��

e 7→ 7→∗ 7→ 7→ bn+ nc

+GF
@A

��

ED
BC
��

x

��

x

��

bnc

x e bnc
Hence we need to extend the language so it can express sharing.

The Call-By-Need Calculus

For simplicity the syntax of application and alternatives is restricted to

exp ::= . . . | exp var | @ tag var

but letrec is promoted to a basic construct,
so we can define the general forms of application and alternatives as sugar:

e e′
def
= letrec v ≡ e′ in e v

@ k e
def
= letrec v ≡ e in @ k v

rec e
def
= letrec v ≡ e v in v

where v /∈ FV (e).

We also rename as necessary so that no bindings in a term bind the same variables.

Semantics of the Call-By-Need Calculus

Sharing is expressed by referring to variables, which are mapped to terms by heaps:

σ ∈ var → (exp ∪ {busy})
A heap σ is closed if FV (σ v) ⊆ dom σ for each v ∈ dom σ.
A term e and a heap σ are compatible if σ is closed and FV (e) ⊆ dom σ.

Evaluation of a variable v re-maps it to the value of the term that v is bound to:

〈[σ | v : busy], e〉 ⇒ 〈z, σ′〉
〈[σ | v : e], v〉 ⇒ 〈z, [σ′ | v : zrenamed]〉

Implementations usually avoid reevaluating values by marking them as such.
The token busy is used to prevent attempts to compute the value of a variable

whose value is currently being computed
(busy is not really necessary since we don’t allow infinite derivations anyway).

Evaluation of letrec moves the bindings to the heap:

〈[σ|v0 : e0| . . .], e〉 ⇒ 〈z, σ′〉
〈σ, letrec v0 ≡ e0, . . . in e〉 ⇒ 〈z, σ′〉

A Call-By-Need Example

(λf. f 4+f 2) ((λx. λy. (x+2)*y) 5)
expands as letrec g ≡ (letrec z ≡ 5 in (λx. λy. (x+2)*y) z) in (λf. f 4+f 2) g

〈[], letrec g ≡ (letrec z ≡ 5 in (λx. λy. (x+2)*y) z) in (λf. f 4+f 2) g〉
〈[g : letrec z ≡ 5 in (λx. λy. (x+2)*y) z], (λf. f 4+f 2) g〉
〈[g : letrec z ≡ 5 in (λx. λy. (x+2)*y) z], λf. f 4+f 2〉
⇒ 〈λf. f 4+f 2, [g : letrec z ≡ 5 in (λx. λy. (x+2)*y) z]〉
〈[g : letrec z ≡ 5 in (λx. λy. (x+2)*y) z], g 4+g 2〉
〈[g : letrec z ≡ 5 in (λx. λy. (x+2)*y) z], g 4〉
〈[g : letrec z ≡ 5 in (λx. λy. (x+2)*y) z], g〉 — evaluation of g begins
〈[g : busy], letrec z ≡ 5 in (λx. λy. (x+2)*y) z〉
〈[g : busy | z : 5], (λx. λy. (x+2)*y) z〉
〈[g : busy | z : 5], λy. (z+2)*y〉

⇒ 〈λy. (z+2)*y, [g : λy. (z+2)*y | z : 5]〉 — evaluation of g ends
〈[g : λy. (z+2)*y | z : 5], (λy. (z+2)*y) 4〉
〈[g : λy. (z+2)*y | z : 5], (z+2)*4〉
. . .

⇒ 〈28, [g : λy. (z+2)*y | z : 5]〉
〈[g : λy. (z+2)*y | z : 5], g 2〉
〈[g : λy. (z+2)*y | z : 5], g〉 — g is already evaluated
⇒ 〈λy. (z+2)*y, [g : λy. (z+2)*y | z : 5]〉
. . .
⇒ 〈14, [g : λy. (z+2)*y | z : 5]〉

⇒ 〈42, [g : λy. (z+2)*y | z : 5]〉

A Remark on Lazy Evaluation

Note that in the example the term (z+2) is evaluated twice,
although the heap binding of z to 5 is unchanged,
so the work for evaluating (z+2) is duplicated.

Call-by-need cannot completely eliminate this kind of duplication of work.

This can be achieved using optimal evaluation
[Lévy 78, Lamping 90, Gonthier/Abadi/Lévy 92].

