The Lambda Calculus

- The Greatest Thing Since Sliced BreadTM, or maybe even before it
- The basis of functional languages (ML, Haskell, LISP, Algol 60...)
- Close connection with logic:
 - Developed by logicians Church, Rosser, Curry since 1930s
 - Intended as a formal proof notation allowing proof transformation
- Easier to reason about than procedural imperative languages:
 - has no assignment operation and needs no state in its semantics —
 - all computation is expressed as applications of abstractions

The Pure Untyped Lambda Calculus

Syntax:

```
exp ::= var variable
| \lambda var. \ exp  abstraction (lambda expression)
| \ exp \ exp  application
```

Conventions:

- the body e of the abstraction λv . e extends as far as the syntax allows
 - to a closing parenthesis or end of term
- application is left associative

$$\lambda x. (\lambda y. xyy) \lambda x. \lambda z. xz \equiv \lambda x. ((\lambda y. ((xy)y))(\lambda x. (\lambda z. (xz))))$$

Syntactic Properties

 $\lambda v. e$ binds v in e, so we define the free variables of a lambda term by

$$FV(v) = \{v\}$$

$$FV(ee') = FV(e) \cup FV(e')$$

$$FV(\lambda v. e) = FV(e) - \{v\}$$

and substitution as

$$v/\delta = \delta v$$
 $(e e')/\delta = (e/\delta) (e'/\delta)$
 $(\lambda v. e)/\delta = \lambda v_{\text{new}}. (e/[\delta | v : v_{\text{new}}])$
where $v_{\text{new}} \notin \bigcup_{w \in FV(e)-\{v\}} FV(\delta w)$

Renaming of bound variables

Renaming of bound variables:

Replacing $\lambda v. e$ with $\lambda v'. (e/v \rightarrow v')$ where $v' \notin FV(e) - \{v\}$.

e' is α -equivalent to e' ($e \equiv e'$)

if it is obtained from e by renaming of bound variables of subterms.

The semantics of lambda calculus identifies all α -equivalent terms.

Reduction

The first semantics of the lambda calculus was operational, based on a notion of reduction on terms.

Configurations are lambda terms: $\Gamma = exp$.

The single step relation \mapsto is not a function: reduction is nondeterministic but a terminal configuration, if it exists, is unique.

The central rule is for β -reduction (β -contraction):

$$(\lambda v. e) e' \mapsto e/v \to e'$$

 $(\lambda v. e) e'$ is the redex and $e/v \rightarrow e'$ is its contractum.

Contextual Rules for Reduction

$$\frac{e \mapsto e'}{\lambda v. e \mapsto \lambda v. e'} \qquad \frac{e \equiv e'}{e \mapsto^* e'}$$

$$\frac{e_0 \mapsto e'_0}{e_0 e_1 \mapsto e'_0 e_1} \qquad \frac{e \mapsto e'}{e \mapsto^* e'}$$

$$\frac{e_1 \mapsto e'_1}{e_0 e_1 \mapsto e_0 e'_1} \qquad \frac{e_0 \mapsto^* e_1 \qquad e_1 \mapsto^* e_2}{e_0 \mapsto^* e_2}$$

$$\frac{e_0 \mapsto e'_0 \qquad e'_0 \equiv e'_1}{e_0 \mapsto e'_1}$$

An expression containing no redexes is a (or in) normal form; normal forms correspond to terminal configurations.

An expression e has a normal form if $\exists e' \in exp.\ e \mapsto^* e'$ and e' is a normal form.

Confluence: The Church-Rosser Theorem

The single-step reduction is nondeterministic, but determinism is eventually recovered in the interesting cases:

Theorem [Church-Rosser]:

For all $e, e_0, e_1 \in exp$, if $e \mapsto^* e_0$ and $e \mapsto^* e_1$, then there exists $e' \in exp$ such that $e_0 \mapsto^* e'$ and $e_1 \mapsto^* e'$.

Corollary:

Every expression has at most one normal from (up to α -equivalence).

Proof:

If $e\mapsto^* e_0$ and $e\mapsto^* e_1$ and both e_0 and e_1 are normal forms, then by Church-Rosser there is some e' such that $e_0\mapsto^* e'$ and $e_1\mapsto^* e'$. But neither e_0 nor e_1 have redexes, so the only rule that can be applied to them is that of α -equivalence.

Examples of Reduction

$$(\lambda x. x) (\lambda y. yy) \mapsto \lambda y. yy$$
 $I \stackrel{\text{def}}{=} \lambda x. x$ is the identity combinator (combinator = closed term)
$$(\lambda x. \lambda y. x) z (\lambda x. x) \mapsto (\lambda y. z) (\lambda x. x) \mapsto z \quad K \stackrel{\text{def}}{=} \lambda x. \lambda y. x$$
 is the constant combinator $(\lambda x. xx) (\lambda y. y) \mapsto (\lambda y. y) (\lambda y. y) \mapsto \lambda y. y \quad \Delta \stackrel{\text{def}}{=} \lambda x. xx$ is the self-application comb.

$$(\lambda x. (\lambda y. x) \bullet (xx)) \bullet (\lambda y. y) \bullet (\lambda y.$$

Normal-Order Reduction

$$\Delta \Delta \equiv (\lambda x. xx) \Delta \mapsto \Delta \Delta \mapsto \dots$$
 $\Omega \stackrel{\text{def}}{=} \Delta \Delta$ is a diverging expression $K z \Omega \mapsto K z \Omega \mapsto \dots$, (where $K = \lambda x. \lambda y. x$), but also $K z \Omega \mapsto (\lambda y. z) \Omega \mapsto z$

An outermost redex is one not contained in any other redex.

In the normal-order reduction sequence of a term at each step the contracted redex is the leftmost outermost one.

Theorem [Standardization]:

If e has a normal form, then the normal-order reduction sequence starting with e terminates.

Normal-Order Reduction

An outermost redex is one not contained in any other redex.

In the normal-order reduction sequence of a term at each step the contracted redex is the leftmost outermost one.

$$(\lambda y. yy((\lambda x. xx) \Delta)) K \mapsto KK$$

Theorem [Standardization]:

If e has a normal form, then the normal-order reduction sequence starting with e terminates.

η -Reduction

For every $e \in exp$,

the terms e and λv . e v (where $v \notin FV(e)$) are extensionally equivalent — they reduce to the same term when applied to any other term e':

$$(\lambda v. ev) e' \mapsto ee'$$

Hence the η -reduction rule:

$$\overline{\lambda v. e v \mapsto e}$$
 when $v \notin FV(e)$

The Church-Rosser and Standardization properties hold for the $\beta\eta$ -reduction (the union of β - and η -reduction).

Programming in the Lambda Calculus

Idea: Encode data as combinators in normal-form

— then uniqueness of normal form then guarantees we can decode a valid result.

Example: Church numerals (note that NUM_n is in normal form for every $n \in \mathbb{N}$)

$$NUM_{n} \stackrel{\text{def}}{=} \lambda f. \lambda x. P_{n}$$

$$\text{where } P_{0} = x$$

$$P_{n+1} = f P_{n}$$

$$\text{i.e. } P_{n} = \underbrace{f(\dots(f \times) \dots)}_{n \text{ times}}$$

$$SUCC \stackrel{\text{def}}{=} \lambda n. \lambda f. \lambda x. f(n f x)$$

$$SUCC NUM_{n} = (\lambda n. \lambda f. \lambda x. f(n f x)) (\lambda f. \lambda x. P_{n})$$

$$\mapsto \lambda f. \lambda x. f((\lambda f. \lambda x. P_{n}) f x)$$

$$\mapsto \lambda f. \lambda x. f((\lambda x. P_{n}) x)$$

$$\mapsto \lambda f. \lambda x. f(n f x)$$

Programming with Church Numerals

In Haskell one could implement addition and multiplication using recursion:

Recursion can also be encoded in lambda calculus, but one can avoid recursion and use Church numerals as iterators:

$$ADD \stackrel{\text{def}}{=} \lambda \text{m. } \lambda \text{n. } \lambda \text{f. } \lambda \text{x. mf (nf x)} \qquad ADD \ NUM_m \ NUM_n \ \mapsto^* \ NUM_{m+n}$$
 $MUL \stackrel{\text{def}}{=} \lambda \text{m. } \lambda \text{n. } \lambda \text{f. m (nf)} \qquad MUL \ NUM_m \ NUM_n \ \mapsto^* \ NUM_{mn}$
 $EXP \stackrel{\text{def}}{=} \lambda \text{m. } \lambda \text{n. nm} \qquad EXP \ NUM_m \ NUM_n \ \mapsto^* \ NUM_m^n$

Addition of Church Numerals

$$ADD \stackrel{\text{def}}{=} \lambda m. \lambda n. \lambda f. \lambda x. m f (n f x)$$

$$ADD NUM_m NUM_n \mapsto^2 \lambda f. \lambda x. NUM_m f (NUM_n f x)$$

$$\mapsto^2 \lambda f. \lambda x. NUM_m f P_n$$

$$\mapsto^2 \lambda f. \lambda x. (P_m/x \to P_n)$$

$$= \lambda f. \lambda x. \underbrace{f (... (f P_n)...)}_{m \text{ times}}$$

$$= \lambda f. \lambda x. \underbrace{f (... (f (f (... (f x)...))))...}_{m \text{ times}}$$

$$= \lambda f. \lambda x. P_m + n$$

$$= NUM_m + n$$

Normal-Order Evaluation

- Canonical form: a term with no "top-level" redexes; in the pure lambda calculus: an abstraction.
 - A typical functional programming language allows functions to only be applied but not inspected, so once a result is known to be a function, it is not reduced further.
- Evaluation: reduction of closed expressions.
 - A typical programming language defines programs as closed terms. If e is closed, $e \Rightarrow z$ (e evaluates to z) when z is the first canonical form in the normal-order reduction sequence of e.
- Even if the normal-order reduction sequence is infinite, it may contain a canonical form;
 - however other reduction sequences may contain other canonical forms.

Reduction of Closed Terms

A closed term *e* either diverges or reduces to a canonical form.

Proof:

Reduction does not introduce free variables, hence every term of the sequence is closed.

If the sequence is finite, it ends with a normal form which can only be an abstraction:

By induction, a closed normal form can only be an abstraction:

- \blacksquare A variable v is a normal form but not a closed term;
- An application e_1 e_2 can be a normal form only if e_1 is a normal form; but then by IH e_1 , being a closed normal form, may only be an abstraction; then e_1 e_2 is a redex,

hence is not a normal form, contradicting the assumption.

Big-Step (Natural) Semantics for Normal-Order Evaluation

Inference rules for evaluation:

(termination)
$$\frac{}{\vdash \lambda v. \, e \Rightarrow \lambda v. \, e}$$

$$(\beta\text{-evaluation}) \quad \frac{\vdash e \Rightarrow \lambda v. \, e_1 \qquad \vdash (e_1/v \to e') \Rightarrow z}{\vdash e \, e' \Rightarrow z}$$

Proposition:

If *e* is a closed term and *z* is a canonical form, $e \Rightarrow z$ if and only if $\vdash e \Rightarrow z$ is provable.

Hence the recursive algorithm for normal-order evaluation of a closed e is:

- if e is an abstraction, it evaluates to e;
- otherwise $e = e_1 e_2$; first evaluate e_1 to its canonical form, an abstraction $\lambda v. e'_1$, then the value of e is that of $e'_1/v \rightarrow e_2$.

Examples of Normal-Order Evaluation

Expression diverging under $\beta\eta$ -reduction may have canonical forms:

$$K\Omega = (\lambda x. \lambda y. x) \Omega \mapsto \lambda y. \Omega$$

hence $K \Omega \Rightarrow \lambda y$. Ω , although $(K \Omega)$ diverges under $\beta \eta$ -reduction.

Expressions with the same $\beta\eta$ -normal form may have different canonical forms under normal order evaluation:

$$(\lambda x. \lambda y. x) \Delta \mapsto^* \lambda y. \Delta \qquad (\lambda x. \lambda y. x) \Delta \Rightarrow \lambda y. \Delta$$
$$\lambda x. (\lambda y. y) \Delta \mapsto^* \lambda x. \Delta \qquad \text{but} \qquad \lambda x. (\lambda y. y) \Delta \Rightarrow \lambda x. (\lambda y. y) \Delta$$

Sometimes normal order evaluation performs more work
 (i.e. needs more steps to get to the same term)
 than other reduction orders:

normal order:
$$\Delta(II) \mapsto (II)(II) \mapsto I(II) \mapsto II \mapsto I$$
 another (eager) strategy: $\Delta(II) \mapsto \Delta I \mapsto II \mapsto I$

Eager Evaluation

Sometimes normal order evaluation performs more work than other reduction orders:

normal order:
$$\Delta(II) \mapsto (II)(II) \mapsto I(II) \mapsto II \mapsto I$$
 another strategy: $\Delta(II) \mapsto \Delta I \mapsto II \mapsto I$

Reason: When reducing $(\lambda v. e) e' \mapsto e/v \to e'$, redexes in e' are replicated in $e/v \to e'$ if v occurs more than once in e.

Solution: Use eager evaluation order: First evaluate the argument e' to canonical form.

 β_E -reduction rule:

$$\overline{(\lambda v. e) z \mapsto (e/v \rightarrow z)}$$
 if z is a canonical form or a variable

 $e \Rightarrow_E z$ (e evaluates eagerly to z)
if there is a reduction sequence from e to z

of contractions of the leftmost β_E -redexes not inside a canonical form.

Inference Rules for Eager Evaluation

(termination)
$$\frac{}{\vdash \lambda v. \, e \Rightarrow_E \lambda v. \, e}$$

$$(\beta_E\text{-evaluation}) \quad \frac{\vdash e_1 \Rightarrow_E \lambda v. \, e'_1}{\vdash e_1 \, e_2 \Rightarrow_E z_2} \quad \vdash (e'_1/v \to z_2) \Rightarrow_E z$$

$$\vdash e_1 \, e_2 \Rightarrow_E z$$

This is the strategy used by most implementations of "strict" languages.

Recursive algorithm for eager evaluation of a closed e:

- if e is an abstraction, it evaluates to e;
- otherwise $e = e_1 e_2$:
 - first evaluate e_1 to its canonical form, an abstraction $\lambda v. e'_1$,
 - then evaluate e_2 to a canonical form z_2 ,
 - then the value of e is that of $e'_1/v \rightarrow z_2$.

Eager evaluation performs more work than normal-order evaluation when the parameter does not occur in the abstraction body:

$$(\lambda x. I) \Omega \not\Rightarrow_E$$
 but $(\lambda x. I) \Omega \Rightarrow I$

Denotational Semantics of the Lambda Calculus

We need a set S of denotations and a meaning function [-] such that $[-] \in exp \to S$, and a lambda calculus application is interpreted as a function application:

$$\llbracket e e' \rrbracket = \llbracket e \rrbracket \llbracket e' \rrbracket$$

So the set S must contain functions from S to S.

If S contains all functions from S to S, the problem has no non-trivial solutions due to Russell's paradox:

■ If $S \to S \subseteq S$, we can construct a fixed point of every function $f \in S \to S$:

Let
$$p = \lambda x \in S$$
. $\begin{cases} f(xx), & \text{if } x \in S \to S \\ x \text{ (or anything else in } S), & \text{otherwise.} \end{cases}$

Then p p = f(p p) is a fixed point of f.

The lambda term that manifests this construction is a fixed-point combinator Y:

$$Y \stackrel{\text{def}}{=} \lambda f. (\lambda x. f(xx)) \lambda x. f(xx)$$

$$Y e \mapsto (\lambda x. e(xx)) \lambda x. e(xx) \mapsto e((\lambda x. e(xx)) \lambda x. e(xx))$$

But if S has more than one element, not all functions in $S \to S$ have fixed points, e.g. $not \in \mathbf{B} \to \mathbf{B}$: no element $b \in \mathbf{B}$ satisfies b = not b.

Scott's Recursive Domain Isomorphism for the Lambda Calculus

Dana Scott solved the problem by considering a domain of values and requiring the functions in it to be continuous.

Scott's Domain D_{∞} satisfies the isomorphism

$$D_{\infty} \stackrel{\phi}{\rightleftharpoons} [D_{\infty} \to D_{\infty}]$$

Then the meaning of a lambda calculus term can be given by a function

$$\llbracket - \rrbracket \in exp \to [Env \to D_{\infty}]$$

where $Env \stackrel{\text{def}}{=} var \rightarrow D_{\infty}$ is the set of environments assigning values to free variables.

Semantic Equations

$$D_{\infty} \quad \stackrel{\phi}{\longleftrightarrow} \quad [D_{\infty} \to D_{\infty}]$$

$$\llbracket - \rrbracket \quad \in \quad exp \to [(var \to D_{\infty}) \to D_{\infty}]$$

$$\llbracket v \rrbracket \eta \quad = \quad \eta \quad v$$

$$\llbracket \lambda v. e \rrbracket \eta \quad = \quad \psi \left(\lambda x \in D_{\infty}. \llbracket e \rrbracket [\eta \mid v : x] \right)$$

$$\llbracket e e' \rrbracket \eta \quad = \quad \phi \left(\llbracket e \rrbracket \eta \right) \left(\llbracket e' \rrbracket \eta \right)$$

We have to prove that all terms in this definition are in the required domains:

- $\lambda x \in D_{\infty}$. $[e][\eta \mid v : x]$ is a continuous function from D_{∞} to D_{∞}
- the so-defined $[\![-]\!]$ is a continuous function from Env to D_{∞} .

Correctness of the Semantic Equations

Using the continuous (for any predomains P, P', P'') functions

$$get_{P,v} \eta = \eta v \qquad get_{P,v} \in [(var \to P) \to P]$$

$$ext_{P,v} \langle \eta, x \rangle = [\eta \mid v : x] \qquad ext_{P,v} \in [(var \to P) \times P \to var \to P]$$

$$ap_{P,P'} \langle f, x \rangle = f x \qquad ap_{P,P'} \in [(P \to P') \times P \to P']$$

$$((ab_{P,P',P''} f) x) y = f \langle x, y \rangle \qquad ab_{P,P',P''} \in [P \times P' \to P''] \to [P \to [P' \to P'']]$$

rewrite the semantic equations:

$$[\![v]\!] = \lambda \eta \in \operatorname{Env}. \eta \, v \qquad \qquad = \operatorname{get}_{D_{\infty}, v}$$

$$[\![\lambda v. \, e]\!] = \lambda \eta \in \operatorname{Env}. \psi \, (\lambda x \in D_{\infty}. [\![e]\!] [\![\eta \, | \, v \, : \, x]\!]) = \psi \cdot \operatorname{ab}_{\operatorname{Env}, D_{\infty}, D_{\infty}} ([\![e]\!] \cdot \operatorname{ext}_{D_{\infty}, v})$$

$$[\![e \, e']\!] = \lambda \eta \in \operatorname{Env}. \phi \, ([\![e]\!] \, \eta) \, ([\![e']\!] \, \eta) \qquad \qquad = \operatorname{ap}_{D_{\infty}, D_{\infty}} \cdot ((\phi \cdot [\![e]\!]) \otimes [\![e']\!])$$

Well-formedness and continuity of $\llbracket - \rrbracket$ follows from continuity of \cdot and \otimes .

Properties of the Denotational Semantics

Coincidence: If $\forall v \in FV(e)$. $\eta v = \eta' v$, then $\llbracket e \rrbracket \eta = \llbracket e \rrbracket \eta'$.

Substitution: If $\forall v \in FV(e)$. $\llbracket \delta v \rrbracket \eta' = \eta v$, then $\llbracket e/\delta \rrbracket \eta' = \llbracket e \rrbracket \eta$.

Finite Substitution:

$$\llbracket e/v_1 \to e_1, \dots v_n \to e_n \rrbracket \eta = \llbracket e \rrbracket \llbracket \eta \mid v_1 : \llbracket e_1 \rrbracket \eta \mid \dots \mid v_n : \llbracket e_n \rrbracket \eta \rrbracket.$$

Renaming Preserves Meaning: (i.e. α -equivalence is sound w.r.t. the semantics) If $w \notin FV(e) - \{v\}$, then $[\![\lambda w. (e/v \to w)]\!] = [\![\lambda v. e]\!]$.

Soundness of β -contraction: $[(\lambda v. e) e'] = [e/v \rightarrow e']$

$$(\text{from } \phi \cdot \psi = I_{[D_{\infty} \to D_{\infty}]})$$

Soundness of η -contraction: If $v \notin FV(e)$, then $[\![\lambda v. e \, v]\!] = [\![e]\!]$ (from $\psi \cdot \phi = I_{D_{\infty}}$)

Soundness of β -Contraction

For any $\eta \in Env$,

Soundness of η -Contraction

For any $\eta \in Env$,

The Least Fixed-Point Combinator

The fixed-point combinator

$$Y = \lambda f. (\lambda x. f(xx)) \lambda x. f(xx)$$

denotes (up to isomorphism)

the least fixed-point operator on the Scott's Domain D_{∞} :

$$\llbracket Y \rrbracket \eta = \psi \left(\mathbf{Y}_{D_{\infty}} \cdot \phi \right)$$

Semantics of Normal-Order Evaluation

In the given semantics $[\![\lambda x. \Omega]\!] = \bot$ (the term diverges under $\beta \eta$ -reduction).

- But λx . Ω is a canonical form under normal-order evaluation (NOE), so its denotation must be different from $\bot = \llbracket \Omega \rrbracket$.
- \Rightarrow the semantic domain D for NOE must include a least element \bot in addition to a set of values of canonical forms V isomorphic to $[D \to D]$:

$$D = V_{\perp}$$
 where $V \cong [D \to D]$

If $V \stackrel{\phi}{\rightleftharpoons} [D \to D]$, then $D \stackrel{\phi_{\perp \perp}}{\rightleftharpoons} [D \to D]$, but the latter is not an isomorphism.

The semantic equations then are similar but using the new pair $\phi_{\perp\!\!\perp}$ and $\iota_{\uparrow}\cdot\psi$:

$$[\![v]\!] \eta = \eta v$$

$$[\![\lambda v. e]\!] \eta = (\iota_{\uparrow} \cdot \psi) (\lambda x \in D_{\infty}. [\![e]\!] [\![\eta \mid v : x]\!])$$

$$[\![e e']\!] \eta = \phi_{\perp \perp} ([\![e]\!] \eta) ([\![e']\!] \eta)$$

Normal-Order Evaluation and η -Contraction

In this semantics $\phi_{\perp \! \! \perp}$ and $\iota_{\uparrow} \cdot \psi$ do not define an isomorphism between D and $[D \to D]$:

$$\phi_{\perp \perp} \cdot (\iota_{\uparrow} \cdot \psi) = I_{[D \to D]}, \quad \text{but} \quad (\iota_{\uparrow} \cdot \psi) \cdot \phi_{\perp \perp} \neq I_D$$

Hence β -reduction is sound, while η -reduction is not.

Just what we expected:

 $\lambda x. \Omega x \Rightarrow \lambda x. \Omega x$ is a canonical form, but $\lambda x. \Omega x \stackrel{\eta}{\mapsto} \Omega \not\Rightarrow$, so $[\![\lambda x. \Omega x]\!] \neq \Omega$ under NOE.

Y again corresponds to the least fixed fixed-point operator on D.

Semantics of Eager Evaluation

Under eager evaluation arguments are reduced to canonical forms first, so denotations of functions only operate on values in V

 \Rightarrow the environments are in $[var \rightarrow V]$, and the domain equation is

$$D = V_{\perp}$$
 where $V \cong [V \to D]$

 $D=V_{\perp} \ \ \text{where} \ \ V\cong [V\to D]$ If $V\stackrel{\phi}{\Longrightarrow} [V\to D]$, the semantic equations are

$$[\![v]\!] \eta = \iota_{\uparrow}(\eta v)$$

$$[\![\lambda v. e]\!] \eta = (\iota_{\uparrow} \cdot \psi) (\lambda x \in D_{\infty}. [\![e]\!] [\![\eta \mid v : x]\!])$$

$$[\![e e']\!] \eta = (\phi_{\perp \perp} ([\![e]\!] \eta))_{\perp \perp} ([\![e']\!] \eta)$$

Note: ι_{\uparrow} is used to inject into D values from V(denotations of canonical forms).

The Fixed-Point Combinator *Y* and Eager Evaluation

The fixed-point combinator $Y = \lambda f. (\lambda x. f(xx)) \lambda x. f(xx)$

is not suitable for eager evaluation because Y e diverges for any e:

$$Y e \xrightarrow{\beta}_{E}^{*} Y z \qquad \text{if } e \Rightarrow_{E} z$$

$$\xrightarrow{\beta}_{E} (\lambda v. z (v v)) \lambda v. z (v v) \qquad \text{where } v \notin FV(z)$$

$$\xrightarrow{\beta}_{E} z ((\lambda v. z (v v)) \lambda v. z (v v))$$

$$\xrightarrow{\beta}_{E} z (z ((\lambda v. z (v v)) \lambda v. z (v v)))$$

$$\xrightarrow{\beta}_{E} ...$$

The Fixed-Point Combinator Y_v

Instead, use the call-by-value fixed-point combinator

$$Y_v \stackrel{\text{def}}{=} \lambda f. (\lambda x. f (\lambda y. x x y)) \lambda x. f (\lambda y. x x y)$$

For any term e, if $e \Rightarrow_E z$, then

$$Y_v e \stackrel{\beta}{\mapsto}_E^* e' \stackrel{\text{def}}{=} (\lambda v. z (\lambda y. v v y)) \lambda v. z (\lambda y. v v y)$$
 where $v \notin FV(z)$ such that $\lambda v. e' v$ is extensionally a fixed-point of e : for any term e_1 , $(\lambda v. e' v) e_1 \stackrel{\beta}{\mapsto}_E e' e_1$

$$\stackrel{\beta}{\mapsto}_{E} z(\lambda v. (\lambda v. z(\lambda y. v v)) (\lambda v. z(\lambda y. v v)) v) e_{1}$$

$$= z(\lambda v. e'v) e_{1}$$

$$(e(\lambda v. e'v)) e_1 \stackrel{\beta}{\mapsto}_E^* z(\lambda v. e'v) e_1$$