The Lambda Calculus

The Greatest Thing Since Sliced Bread™, or maybe even before it
The basis of functional languages (ML, Haskell, L1sP, Algol 60...)

Close connection with logic:
» Developed by logicians Church, Rosser, Curry since 1930s
» Intended as a formal proof notation

allowing proof transformation

Easier to reason about than procedural imperative languages:
has no assignment operation and needs no state in its semantics —

all computation is expressed as applications of abstractions



The Pure Untyped Lambda Calculus

Syntax:
erp .= wvar variable
| Avar.exp abstraction (lambda expression)
| expexp application
Conventions:

1 the body e of the abstraction \v. e extends as far as the syntax allows

— to a closing parenthesis or end of term

1 application is left associative

AX. (Ay.xyy)Ax. Az.xz = Ix. ((Ay. ((xy) y))(Mx. (Az. (xz2))))



Syntactic Properties

Av. e binds v in e, so we define the free variables of a lambda term by
FV(v) = {v}
FV(ee) FV(e) UFV(e)
FV(Qv.e) = FV(e)—{v}

and substitution as

v/d = dv
(ee)/s = (e/d) (€'/5)
(Mv.e)/d = Avnew- (e/[d|v : vnew])
where vnew ¢ 9 FV(dw)

weFV (e)—{v}



Renaming of bound variables

Renaming of bound variables:

Replacing A\v. e with \v'. (e/v — v") where v’ ¢ FV (e) — {v}.

e’ is a-equivalent to e (e = ¢€)

if it is obtained from e by renaming of bound variables of subterms.

The semantics of lambda calculus identifies all a-equivalent terms.



Reduction

The first semantics of the lambda calculus was operational,

based on a notion of reduction on terms.
Configurations are lambda terms: ' = exp.

The single step relation — is not a function:
reduction is nondeterministic

but a terminal configuration, if it exists, is unique.

The central rule is for B-reduction (3-contraction):

(M.e)e — e/v—¢é

(Mv. e) € is the redex and e/v — €' is its contractum.



Contextual Rules for Reduction

/ — !

e e e=ce
Av.e — Av. e e —* ¢
eg — €g e r— e
epel — egel e —* ¢
e1 — €] eg —" eq e1 —" eo
eg el — eg ey eg —" eo
eg — €g eq = €]
eg — €7

An expression containing no redexes is a (or in) normal form;
normal forms correspond to terminal configurations.
An expression e has a normal form

if 3/ € exp. e —* €’ and €’ is a normal form.



Confluence: The Church-Rosser Theorem

The single-step reduction is nondeterministic,
but determinism is eventually recovered in the interesting cases:

Theorem [Church-Rosser]:
For all e, eg, €1 € exp,
if e —* eg and e —* eq, then there exists e’ € exp such that eg —* ¢’ and e1 —* €’

Corollary:
Every expression has at most one normal from (up to a-equivalence).

Proof:
If e —* eg and e —™ e1 and both eg and e are normal forms,
then by Church-Rosser there is some €’ such that eg —* €’ and e —* €.
But neither eg nor e; have redexes,
so the only rule that can be applied to them is that of a-equivalence.



Examples of Reduction

(Ax.x) (Ay.yy) — Ay.yy I d:ef Ax. x is the identity combinator

(combinator = closed term)

(A AY.x)z2(Ax.x) — (Ay.2) (M. x) —z K def AX. Ay. x is the constant combinator

(Ax.xx) (Ay.y) — (Ay.y) (Ay.y) — Ay.y A d:ef Ax.xx is the self-application comb.

(Ax. (Ay. x)= (xx) )= (Ay.y)

/ \

(Ax.x) (Ay.y) (Ay. Ay y)e ((Ay.y)= (Ay.y))

\

(Ay. Ay.y) (Ay.y)

_

Ay.y



Normal-Order Reduction

AN=(MXxX)A— AA— ... Q dlf A A is a diverging expression

KzQ— KzQ+— ..., (where K = Ax. A\y.x), but also
KzQ+— (A\y.2)Q—z

An outermost redex is one not contained in any other redex.

In the normal-order reduction sequence of a term
at each step the contracted redex is the leftmost outermost one.

Theorem [Standardization]:
If e has a normal form,
then the normal-order reduction sequence starting with e terminates.



Normal-Order Reduction

KzQ— (A\y.z2) Qi+ z KzQ+— KzQ+— ...
app
app/ \app
~ . N

AX. Ay. X z AX. X X AX. X X

An outermost redex is one not contained in any other redex.

In the normal-order reduction sequence of a term
at each step the contracted redex is the leftmost outermost one.

Ay.yy((Mx.xx) A) K — KK

Theorem [Standardization]:
If e has a normal form,
then the normal-order reduction sequence starting with e terminates.



n-Reduction

For every e € exp,
the terms e and Av. e v (Where v ¢ F'V (e)) are extensionally equivalent
— they reduce to the same term when applied to any other term e:

(Mv.ev)e — eé

Hence the n-reduction rule:

when v ¢ F'V (e)

A.ev — e

The Church-Rosser and Standardization properties hold for the 3n-reduction
(the union of 3- and n-reduction).



Programming in the Lambda Calculus

Idea: Encode data as combinators in normal-form
— then uniqueness of normal form then guarantees we can decode a valid result.

Example: Church numerals (note that NUM, is in normal form for every n € N)

where Pp = x
ie. P, = f(...(fx)...)
n times
SUCC def An A Ax. f (nfx)
SUCC NUMy, (An. A x f (nfx)) (M. Ax. Pp)

A (X Pp) fx)
A ((Ax. Pp) x)

M. x. f Py,

M. Ax. Pn_|_1

NUM 41

| I A A |



Programming with Church Numerals

In Haskell one could implement addition and multiplication using recursion:

data Num = Zero | Succ Num

add Zero n =n

add (Succ m) n = Succ (add m n)
mul Zero n = Zero

mul (Succ m) n = add n (mul m n)

Recursion can also be encoded in lambda calculus,
but one can avoid recursion and use Church numerals as iterators:

ADD def Am. An. Af. Ax. mf (nf x) ADD NUMpy NUMyn +—* NUM 4,
def

EXP = MAm.An.nm EXP NUMy, NUM,, —* NUM,n



Addition of Church Numerals

ADD

ADD NUMpm NUMp,

&
L

I IMI

Am.An. Af. Ax. mf (nfx)

M. NUM o f (NUM 5, T x)

M. Ax. NUM iy, f Py,

M., (P /x — Pp)

M (.. (fPy)...)
—

m times

MG EECED..)).

m times n times
)\f )\X. Pm—l—n
NUM m—4n

)



Normal-Order Evaluation

8 Canonical form: a term with no “top-level” redexes;
in the pure lambda calculus: an abstraction.

A typical functional programming language allows functions
to only be applied but not inspected,
so once a result is known to be a function, it is not reduced further.

1 EBvaluation: reduction of closed expressions.

A typical programming language defines programs as closed terms.
If e is closed, e = z (e evaluates to z) when z is the first canonical form
in the normal-order reduction sequence of e.

1 Even if the normal-order reduction sequence is infinite,
it may contain a canonical form;

however other reduction sequences may contain other canonical forms.



Reduction of Closed Terms

A closed term e either diverges or reduces to a canonical form.

Proof:
Reduction does not introduce free variables, hence every term of the sequence is closed.

If the sequence is finite, it ends with a normal form which can only be an abstraction:

By induction, a closed normal form can only be an abstraction:

m A variable v is a normal form but not a closed term;

1 An application e e5 can be a normal form only if e; is a normal form;
but then by IH e, being a closed normal form, may only be an abstraction;
then eq e5 is a redex,

hence is not a normal form, contradicting the assumption.



Big-Step (Natural) Semantics for Normal-Order Evaluation

Inference rules for evaluation:

(termination)
F A v.e = \v.e
e = \v. - N =
(B-evaluation) —— o (e1/v —e€') =z
Fee = 2

Proposition:
If e is a closed term and z is a canonical form, e = z if and only if - e = z is provable.

Hence the recursive algorithm for normal-order evaluation of a closed e is:

m if e is an abstraction, it evaluates to ¢;

1 otherwise e = e ey; first evaluate ej to its canonical form, an abstraction Av. €7,
then the value of e is that of €/} /v — e5.



Examples of Normal-Order Evaluation

Expression diverging under gn-reduction may have canonical forms:

KQ = (A Ay.x) Q2 +— Ay. Q
hence K Q2 = My. €2, although (K €2) diverges under 8n-reduction.

Expressions with the same #n-normal form may have different canonical forms
under normal order evaluation:

(Ax. Ay. x) A —* Ay. A (Ax.Ay.x) A = Ay. A
M. (Ay.y) A —* Ax. A but M. (Ay.y) A = Ax. (Ay.y) A
Sometimes normal order evaluation performs more work

(i.e. needs more steps to get to the same term)
than other reduction orders:

normal order: AT —{TDUI) —I{UI) —1I1 —1
another (eager) strategy: A (1) — Al — 11 — I



Eager Evaluation

Sometimes normal order evaluation performs more work than other reduction orders:

normal order: AT —UDUI) —I{UI) —I1II —1
another strategy: A (1) — Al — I 1 — I

Reason: When reducing (A\v.e) e’ — e/v — €/,
redexes in €’ are replicated in e/v — €’ if v occurs more than once in e.

Solution: Use eager evaluation order:
First evaluate the argument €’ to canonical form.

B g-reduction rule:

(wv.e) z — (e/v — z) if z is a canonical form or a variable

e = % (e evaluates eagerly to z)
if there is a reduction sequence from e to z
of contractions of the leftmost 5g-redexes not inside a canonical form.



Inference Rules for Eager Evaluation

(termination)
- Av.e =g \v.e

Fe1 =g )\U.e/l —e>x =g 2o l—(e/l/’v—>22) =F 2

-evaluation
(BE ) Fejer =g 2

This is the strategy used by most implementations of “strict” languages.

Recursive algorithm for eager evaluation of a closed e:

m if e is an abstraction, it evaluates to ¢;

B otherwise e = eq ex:
» first evaluate eq to its canonical form, an abstraction Av. e’l,
» then evaluate e5 to a canonical form z»,
» then the value of e is that of €/} /v — 25.

Eager evaluation performs more work than normal-order evaluation
when the parameter does not occur in the abstraction body:

Ox.1)Q A5 but O DQ =T



Denotational Semantics of the Lambda Calculus

We need a set .S of denotations and a meaning function [—] such that [—] € exp — S,
and a lambda calculus application is interpreted as a function application:

[ee'T = [ell [€T

So the set S must contain functions from S to S.

If S contains all functions from S to S, the problem has no non-trivial solutions due to
Russell’s paradox:

B If S — S C S, we can construct a fixed point of every function f € S — S:

f(xx), ifreS—S
z (or anything else in S), otherwise.

Then pp = f(pp) is a fixed point of f.
The lambda term that manifests this construction is a fixed-point combinator Y:

Letp = Az € S.

Y def A (A f(xx)) Ax. f (xx)

Yer (Ax.e(xx)) Ax. e (xx) — e ((Ax.e (xx)) Ax. e (xx))

1 Butif S has more than one element, not all functions in S — S have fixed points,
e.g. not € B — B: no element b € B satisfies b = not b.



Scott’s Recursive Domain Isomorphism for the Lambda
Calculus

Dana Scott solved the problem by considering a domain of values
and requiring the functions in it to be continuous.

Scott’s Domain D« satisfies the isomorphism

Then the meaning of a lambda calculus term can be given by a function

[—1 € exp — [Env — Doo]
def

where Env = wvar— D« is the set of environments assigning values to free variables.



Semantic Equations

-1 € exp — [(var — Doo) — Doo]

[vln = no
M.eln = Y (Ax € D.[lellln|v: x])
[ee'ln = ¢ (Leln) ([e'Tn)

We have to prove that all terms in this definition are in the required domains:

8 Az € Doo. [e]l[n]| v : x] is a continuous function from Deo to Do

m the so-defined [—] is a continuous function from Env to Dc.



Correctness of the Semantic Equations

Using the continuous (for any predomains P, P/, P") functions

getp,m = nv getp,, € [(var — P) — P]
extp, (0, v) = [n|v: 7] ertp, € [(var — P) x P — var — P]
app pr {f, ) = fx app pr € [(P — P') x P — P']
((abpprpr )y = f 2, y)  abpppr € [Px P/ — P"] = [P — [P — P]

rewrite the semantic equations:

[v] = An € Env.nwv =gelp.. v
Av.el =An € Env. ¢ (Ax € Doo. [le]l[n|v: x]) =1 - @b Eny Do, Doo ([el - extp »)
[ee'T=Xn € Env. ¢ ([el n) ([e']n) = app,..Dy, - (¢ [e]) ® [€'])

Well-formedness and continuity of [—]| follows from continuity of - and ®.



Properties of the Denotational Semantics

Coincidence: If Vv € F'V (e). nv = n’ v, then [e]l n = [[e] 7.
Substitution: If Vv € F'V (e). [6v] 7' = nwv, then [e/d] ' = [[e] n.

Finite Substitution:
le/vi —e1,... vn = enln=1[el [n|vy: [eiln]| ... [vn: [enll n].

Renaming Preserves Meaning: (i.e. a-equivalence is sound w.r.t. the semantics)
Ifwé& FV(e) — {v}, then [Aw. (e/v — w)] = [Av.€].

Soundness of 3-contraction: [(\v.e) €] = [[e/v — €]
(from ¢ -y = Iip__.p..])

Soundness of 7-contraction: If v ¢ F'V (e), then [Av. ev] = [e]]
(from ¢ - ¢ = Ip_ )



Soundness of 5-Contraction

For any n € Env,

[(Av.e)e'Tn=a¢ ([Mv.e]n) ([e']n) semantics of application
=¢ (¢ (A € Do. [e]l [n]v : z])) ([e'lm) semantics of abstraction
= (M € Do. [e] [n] v : z]) (€' 1) half of the isomorphism

=[el [n|v: [eln]

=e/v — eI n finite substitution



Soundness of n-Contraction

For any n € Env,

[Av.evlln=1v (Ax € Doo. [ev] [n]|v : x]) semantics of abstraction
=Y (Ax € Do.d (el [n|v:x]) ([v] [n|v:x])) semantics of application
=Y (Ax € Doo. ¢ ([ell n) (Mol [n|v : x])) coincidence
=Y (Ax € Do. ¢ ([[e]l n) x) semantics of a variable
=9 (¢ (el n))

= [e]l n half of the isomorphism



The Least Fixed-Point Combinator

The fixed-point combinator
Y = M. (Ax. f (xx)) Ax. f (xx)

denotes (up to isomorphism)

the least fixed-point operator on the Scott’s Domain D:

[YIn=+(Yp, o)



Semantics of Normal-Order Evaluation

In the given semantics [Ax. 2] = L (the term diverges under Gn-reduction).

But Ax. €2 is a canonical form under normal-order evaluation (NOE),
so its denotation must be different from L = [[2].

= the semantic domain D for NOE must include a least element
in addition to a set of values of canonical forms V' isomorphic to [D — D]:

D =YV, where V= [D — D]

Al
If V—[D — D], then D = [D — D], but the latter is not an isomorphism.
LT :
The semantic equations then are similar but using the new pair ¢ | and ¢q - ¢

[vln = nov
[Mv.elln = (¢1-%) Az € Doo. [le]l[n]v : z])
[ecln = ¢y ([el n) ([T n)



Normal-Order Evaluation and n-Contraction

In this semantics ¢ ;) and ¢4 - ¥ do not define an isomorphism

between D and [D — D]:

¢ - (p-¥) =Ip_p;, but (1-¢) ¢4 #Ip

Hence (-reduction is sound, while n-reduction is not.

Just what we expected:
AX. €2 x = Ax. £2x1s a canonical form, but Ax. €2 x Q) 2,
so [Ax. 2x]] = 2 under NOE.

Y again corresponds to the least fixed fixed-point operator on D.



Semantics of Eager Evaluation

Under eager evaluation arguments are reduced to canonical forms first,
so denotations of functions only operate on values in V'

= the environments are in [var — V'], and the domain equation is

D =YV, where V = [V — D]

If V == [V — D], the semantic equations are

VY
[v]n = 1 (nv)

[Av.elln (11 - 9) (Az € Deo. [le]lln| v : z])
[eeTn = (¢u (Teln)) o (TeTn)

Note: ¢4 is used to inject into D values from V/

(denotations of canonical forms).



The Fixed-Point Combinator Y and Eager Evaluation

The fixed-point combinator Y = Af. (Ax. f (xx)) Ax. f (xx)

is not suitable for eager evaluation because Y e diverges for any e:

Ye

Y z ife=p 2
(M. z(vv)) Av.z(vv) wherev ¢ F'V (z)
2 (M. z(vv)) d.z(vv))

z(z((A.z(vv)) . z(vv)))



The Fixed-Point Combinator Y,

Instead, use the call-by-value fixed-point combinator

Yy def At (Ax. f (Ay.xxy)) Ax. T (Ay.xxy)

For any term e, if e = 2, then

*
Yye £>E e &t (M. z(Ay.vvy)) Av.z(Ay.vvy) wherev & FV (z)

such that A\v. e’ v is extensionally a fixed-point of e: for any term eq,

(M. e'v)eq £>E e eq

£>E z(M. (M. z(A\y.vvy)) (M. z(Ay.vvy))v) eqg

= z(\v.ev)ey
*

(e (\v.e'v)) ey £>E z(Av.e'v) ey



