
The Lambda Calculus

The Greatest Thing Since Sliced BreadTM, or maybe even before it

The basis of functional languages (ML, Haskell, LISP, Algol 60. . .)

Close connection with logic:

Developed by logicians Church, Rosser, Curry since 1930s

Intended as a formal proof notation

allowing proof transformation

Easier to reason about than procedural imperative languages:

has no assignment operation and needs no state in its semantics —

all computation is expressed as applications of abstractions

The Pure Untyped Lambda Calculus

Syntax:

exp ::= var variable

| λvar . exp abstraction (lambda expression)

| exp exp application
Conventions:

the body e of the abstraction λv. e extends as far as the syntax allows

— to a closing parenthesis or end of term

application is left associative

λx. (λy. x y y)λx. λz. x z ≡ λx. ((λy. ((x y) y))(λx. (λz. (x z))))

Syntactic Properties

λv. e binds v in e, so we define the free variables of a lambda term by

FV (v) = {v}
FV (e e′) = FV (e) ∪ FV (e′)

FV (λv. e) = FV (e)− {v}

and substitution as

v/δ = δ v

(e e′)/δ = (e/δ) (e′/δ)

(λv. e)/δ = λvnew. (e/[δ | v : vnew])

where vnew /∈
⋃

w∈FV (e)−{v}
FV (δ w)

Renaming of bound variables

Renaming of bound variables:

Replacing λv. e with λv′. (e/v → v′) where v′ /∈ FV (e)− {v}.

e′ is α-equivalent to e (e ≡ e′)

if it is obtained from e by renaming of bound variables of subterms.

The semantics of lambda calculus identifies all α-equivalent terms.

Reduction

The first semantics of the lambda calculus was operational,

based on a notion of reduction on terms.

Configurations are lambda terms: Γ = exp.

The single step relation 7→ is not a function:

reduction is nondeterministic

but a terminal configuration, if it exists, is unique.

The central rule is for β-reduction (β-contraction):

(λv. e) e′ 7→ e/v → e′

(λv. e) e′ is the redex and e/v → e′ is its contractum.

Contextual Rules for Reduction

e 7→ e′

λv. e 7→ λv. e′
e ≡ e′
e 7→∗ e′

e0 7→ e′0
e0 e1 7→ e′0 e1

e 7→ e′

e 7→∗ e′

e1 7→ e′1
e0 e1 7→ e0 e

′
1

e0 7→∗ e1 e1 7→∗ e2
e0 7→∗ e2

e0 7→ e′0 e′0 ≡ e′1
e0 7→ e′1

An expression containing no redexes is a (or in) normal form;

normal forms correspond to terminal configurations.

An expression e has a normal form

if ∃e′ ∈ exp. e 7→∗ e′ and e′ is a normal form.

Confluence: The Church-Rosser Theorem

The single-step reduction is nondeterministic,
but determinism is eventually recovered in the interesting cases:

Theorem [Church-Rosser]:
For all e, e0, e1 ∈ exp,
if e 7→∗ e0 and e 7→∗ e1, then there exists e′ ∈ exp such that e0 7→∗ e′ and e1 7→∗ e′.

Corollary:
Every expression has at most one normal from (up to α-equivalence).

Proof:
If e 7→∗ e0 and e 7→∗ e1 and both e0 and e1 are normal forms,

then by Church-Rosser there is some e′ such that e0 7→∗ e′ and e1 7→∗ e′.
But neither e0 nor e1 have redexes,

so the only rule that can be applied to them is that of α-equivalence.

Examples of Reduction

(λx. x) (λy. y y) 7→ λy. y y I
def
= λx. x is the identity combinator

(combinator = closed term)

(λx. λy. x) z (λx. x) 7→ (λy. z) (λx. x) 7→ z K
def
= λx. λy. x is the constant combinator

(λx. x x) (λy. y) 7→ (λy. y) (λy. y) 7→ λy. y ∆
def
= λx. x x is the self-application comb.

(λx. (λy. x) (x x)) (λy. y)+

uukkkkkkkkkkkkkkkk �

++WWWWWWWWWWWWWWWWWWWWWWW

(λx. x) (λy. y)
�

##GGGGGGGGGGGGGGGGGGGGGGGGGGGG
(λy. λy. y) ((λy. y) (λy. y))0

wwpppppppppppppppppppppppppppppppppppp �

**UUUUUUUUUUUUUUUUUUU

(λy. λy. y) (λy. y)$

qqddd

λy. y

Normal-Order Reduction

∆ ∆ ≡ (λx. x x) ∆ 7→∆ ∆ 7→ . . . Ω
def
= ∆ ∆ is a diverging expression

K z Ω 7→ K z Ω 7→ . . . , (where K = λx. λy. x), but also

K z Ω 7→ (λy. z) Ω 7→ z

An outermost redex is one not contained in any other redex.

In the normal-order reduction sequence of a term
at each step the contracted redex is the leftmost outermost one.

Theorem [Standardization]:
If e has a normal form,

then the normal-order reduction sequence starting with e terminates.

Normal-Order Reduction

K z Ω 7→ (λy. z) Ω 7→ z K z Ω 7→ K z Ω 7→ . . .

app

mmmmmmmmmmmmmm

mmmmmmmmmmmmmm

VVVVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVVVV

app

qqqqqqqqqq

qqqqqqqqqq

BBBBBBBBB

BBBBBBBBB
app

ssssssssss

ssssssssss

KKKKKKKKKK

KKKKKKKKKK

λx. λy. x z λx. x x λx. x x

An outermost redex is one not contained in any other redex.

In the normal-order reduction sequence of a term
at each step the contracted redex is the leftmost outermost one.

(λy. y y ((λx. x x) ∆))K 7→ KK

Theorem [Standardization]:
If e has a normal form,

then the normal-order reduction sequence starting with e terminates.

η-Reduction

For every e ∈ exp,
the terms e and λv. e v (where v /∈ FV (e)) are extensionally equivalent
— they reduce to the same term when applied to any other term e′:

(λv. e v) e′ 7→ e e′

Hence the η-reduction rule:

λv. e v 7→ e when v /∈ FV (e)

The Church-Rosser and Standardization properties hold for the βη-reduction
(the union of β- and η-reduction).

Programming in the Lambda Calculus

Idea: Encode data as combinators in normal-form
— then uniqueness of normal form then guarantees we can decode a valid result.

Example: Church numerals (note that NUM n is in normal form for every n ∈ N)

NUM n
def
= λf. λx. Pn

where P0 = x
Pn+1 = f Pn

i.e. Pn = f (. . . (f︸ ︷︷ ︸ x) . . .)

n times

SUCC
def
= λn. λf. λx. f (n f x)

SUCC NUM n = (λn. λf. λx. f (n f x)) (λf. λx. Pn)
7→ λf. λx. f ((λf. λx. Pn) f x)
7→ λf. λx. f ((λx. Pn) x)
7→ λf. λx. f Pn
7→ λf. λx. Pn+1
= NUM n+1

Programming with Church Numerals

In Haskell one could implement addition and multiplication using recursion:

data Num = Zero | Succ Num

add Zero n = n

add (Succ m) n = Succ (add m n)

mul Zero n = Zero

mul (Succ m) n = add n (mul m n)

Recursion can also be encoded in lambda calculus,
but one can avoid recursion and use Church numerals as iterators:

ADD
def
= λm. λn. λf. λx.m f (n f x) ADD NUMmNUM n 7→∗ NUMm+n

MUL
def
= λm. λn. λf.m (n f) MUL NUMmNUM n 7→∗ NUMmn

EXP
def
= λm. λn. n m EXP NUMmNUM n 7→∗ NUMmn

Addition of Church Numerals

ADD
def
= λm. λn. λf. λx.m f (n f x)

ADD NUMmNUM n 7→2 λf. λx.NUMm f (NUM n f x)
7→2 λf. λx.NUMm f Pn
7→2 λf. λx. (Pm/x→ Pn)
= λf. λx. f (. . . (f︸ ︷︷ ︸ Pn) . . .)

m times
= λf. λx. f (. . . (f︸ ︷︷ ︸ (f (. . . (f︸ ︷︷ ︸ x) . . .))) . . .)

m times n times
= λf. λx. Pm+n
= NUMm+n

Normal-Order Evaluation

Canonical form: a term with no “top-level” redexes;
in the pure lambda calculus: an abstraction.

A typical functional programming language allows functions
to only be applied but not inspected,
so once a result is known to be a function, it is not reduced further.

Evaluation: reduction of closed expressions.

A typical programming language defines programs as closed terms.
If e is closed, e⇒ z (e evaluates to z) when z is the first canonical form

in the normal-order reduction sequence of e.

Even if the normal-order reduction sequence is infinite,
it may contain a canonical form;

however other reduction sequences may contain other canonical forms.

Reduction of Closed Terms

A closed term e either diverges or reduces to a canonical form.

Proof:
Reduction does not introduce free variables, hence every term of the sequence is closed.

If the sequence is finite, it ends with a normal form which can only be an abstraction:

By induction, a closed normal form can only be an abstraction:

A variable v is a normal form but not a closed term;

An application e1 e2 can be a normal form only if e1 is a normal form;

but then by IH e1, being a closed normal form, may only be an abstraction;

then e1 e2 is a redex,

hence is not a normal form, contradicting the assumption.

Big-Step (Natural) Semantics for Normal-Order Evaluation

Inference rules for evaluation:

(termination)
` λv. e⇒ λv. e

(β-evaluation)
` e⇒ λv. e1 ` (e1/v → e′)⇒ z

` e e′ ⇒ z

Proposition:
If e is a closed term and z is a canonical form, e⇒ z if and only if ` e⇒ z is provable.

Hence the recursive algorithm for normal-order evaluation of a closed e is:

if e is an abstraction, it evaluates to e;

otherwise e = e1 e2; first evaluate e1 to its canonical form, an abstraction λv. e′1,
then the value of e is that of e′1/v → e2.

Examples of Normal-Order Evaluation

Expression diverging under βη-reduction may have canonical forms:

K Ω = (λx. λy. x) Ω 7→ λy.Ω

hence K Ω⇒ λy.Ω, although (K Ω) diverges under βη-reduction.

Expressions with the same βη-normal form may have different canonical forms
under normal order evaluation:

(λx. λy. x) ∆ 7→∗ λy.∆ (λx. λy. x) ∆⇒ λy.∆

λx. (λy. y) ∆ 7→∗ λx.∆ but λx. (λy. y) ∆⇒ λx. (λy. y) ∆

Sometimes normal order evaluation performs more work
(i.e. needs more steps to get to the same term)
than other reduction orders:

normal order: ∆ (I I) 7→ (I I) (I I) 7→ I (I I) 7→ I I 7→ I
another (eager) strategy: ∆ (I I) 7→∆ I 7→ I I 7→ I

Eager Evaluation

Sometimes normal order evaluation performs more work than other reduction orders:

normal order: ∆ (I I) 7→ (I I) (I I) 7→ I (I I) 7→ I I 7→ I
another strategy: ∆ (I I) 7→∆ I 7→ I I 7→ I

Reason: When reducing (λv. e) e′ 7→ e/v → e′,
redexes in e′ are replicated in e/v → e′ if v occurs more than once in e.

Solution: Use eager evaluation order:
First evaluate the argument e′ to canonical form.

βE-reduction rule:

(λv. e) z 7→ (e/v → z) if z is a canonical form or a variable

e⇒E z (e evaluates eagerly to z)
if there is a reduction sequence from e to z
of contractions of the leftmost βE-redexes not inside a canonical form.

Inference Rules for Eager Evaluation

(termination)
` λv. e⇒E λv. e

(βE-evaluation)
` e1 ⇒E λv. e′1 ` e2 ⇒E z2 ` (e′1/v → z2)⇒E z

` e1 e2 ⇒E z

This is the strategy used by most implementations of “strict” languages.

Recursive algorithm for eager evaluation of a closed e:

if e is an abstraction, it evaluates to e;

otherwise e = e1 e2:
first evaluate e1 to its canonical form, an abstraction λv. e′1,
then evaluate e2 to a canonical form z2,
then the value of e is that of e′1/v → z2.

Eager evaluation performs more work than normal-order evaluation
when the parameter does not occur in the abstraction body:

(λx. I) Ω 6⇒E but (λx. I) Ω⇒ I

Denotational Semantics of the Lambda Calculus

We need a set S of denotations and a meaning function [[−]] such that [[−]] ∈ exp → S,
and a lambda calculus application is interpreted as a function application:

[[e e′]] = [[e]] [[e′]]

So the set S must contain functions from S to S.

If S contains all functions from S to S, the problem has no non-trivial solutions due to
Russell’s paradox:

If S → S ⊆ S, we can construct a fixed point of every function f ∈ S → S:

Let p = λx ∈ S.
{
f (xx), if x ∈ S → S
x (or anything else in S), otherwise.

Then p p = f(p p) is a fixed point of f .
The lambda term that manifests this construction is a fixed-point combinator Y :

Y
def
= λf. (λx. f (x x))λx. f (x x)

Y e 7→ (λx. e (x x))λx. e (x x) 7→ e ((λx. e (x x))λx. e (x x))

But if S has more than one element, not all functions in S → S have fixed points,
e.g. not ∈ B→ B: no element b ∈ B satisfies b = not b.

Scott’s Recursive Domain Isomorphism for the Lambda
Calculus

Dana Scott solved the problem by considering a domain of values
and requiring the functions in it to be continuous.

Scott’s Domain D∞ satisfies the isomorphism

D∞
φ
−→←−
ψ

[D∞ → D∞]

Then the meaning of a lambda calculus term can be given by a function

[[−]] ∈ exp → [Env → D∞]

where Env
def
= var→D∞ is the set of environments assigning values to free variables.

Semantic Equations

D∞
φ
−→←−
ψ

[D∞ → D∞]

[[−]] ∈ exp → [(var → D∞)→ D∞]

[[v]] η = η v

[[λv. e]] η = ψ (λx ∈ D∞. [[e]][η | v : x])

[[e e′]] η = φ ([[e]] η) ([[e′]] η)

We have to prove that all terms in this definition are in the required domains:

λx ∈ D∞. [[e]][η | v : x] is a continuous function from D∞ to D∞

the so-defined [[−]] is a continuous function from Env to D∞.

Correctness of the Semantic Equations

Using the continuous (for any predomains P, P ′, P ′′) functions

getP,v η = η v getP,v ∈ [(var → P)→ P]

extP,v 〈η, x〉 = [η | v : x] extP,v ∈ [(var → P)× P → var → P]

apP,P ′ 〈f, x〉 = f x apP,P ′ ∈ [(P → P ′)× P → P ′]

((abP,P ′,P ′′ f)x) y = f 〈x, y〉 abP,P ′,P ′′ ∈ [P × P ′ → P ′′]→ [P → [P ′ → P ′′]]

rewrite the semantic equations:

[[v]] =λη ∈ Env . η v = getD∞,v

[[λv. e]] =λη ∈ Env . ψ (λx ∈ D∞. [[e]][η | v : x]) =ψ · abEnv ,D∞,D∞ ([[e]] · extD∞,v)

[[e e′]] =λη ∈ Env . φ ([[e]] η) ([[e′]] η) = apD∞,D∞ · ((φ · [[e]])⊗ [[e′]])

Well-formedness and continuity of [[−]] follows from continuity of · and ⊗.

Properties of the Denotational Semantics

Coincidence: If ∀v ∈ FV (e). η v = η′ v, then [[e]] η = [[e]] η′.

Substitution: If ∀v ∈ FV (e). [[δv]] η′ = η v, then [[e/δ]] η′ = [[e]] η.

Finite Substitution:
[[e/v1 → e1, . . . vn → en]] η = [[e]] [η | v1 : [[e1]] η | . . . | vn : [[en]] η].

Renaming Preserves Meaning: (i.e. α-equivalence is sound w.r.t. the semantics)
If w /∈ FV (e)− {v}, then [[λw. (e/v → w)]] = [[λv. e]].

Soundness of β-contraction: [[(λv. e) e′]] = [[e/v → e′]]
(from φ · ψ = I[D∞→D∞])

Soundness of η-contraction: If v /∈ FV (e), then [[λv. e v]] = [[e]]

(from ψ · φ = ID∞)

Soundness of β-Contraction

For any η ∈ Env ,

[[(λv. e) e′]] η=φ ([[λv. e]] η) ([[e′]] η) semantics of application

=φ (ψ (λx ∈ D∞. [[e]] [η | v : x])) ([[e′]] η) semantics of abstraction

= (λx ∈ D∞. [[e]] [η | v : x]) ([[e′]] η) half of the isomorphism

= [[e]] [η | v : [[e′]] η]

= [[e/v → e′]] η finite substitution

Soundness of η-Contraction

For any η ∈ Env ,

[[λv. e v]] η=ψ (λx ∈ D∞. [[e v]] [η | v : x]) semantics of abstraction

=ψ (λx ∈ D∞. φ ([[e]] [η | v : x]) ([[v]] [η | v : x])) semantics of application

=ψ (λx ∈ D∞. φ ([[e]] η) ([[v]] [η | v : x])) coincidence

=ψ (λx ∈ D∞. φ ([[e]] η)x) semantics of a variable

=ψ (φ ([[e]] η))

= [[e]] η half of the isomorphism

The Least Fixed-Point Combinator

The fixed-point combinator

Y = λf. (λx. f (x x))λx. f (x x)

denotes (up to isomorphism)

the least fixed-point operator on the Scott’s Domain D∞:

[[Y]]η = ψ (YD∞ · φ)

Semantics of Normal-Order Evaluation

In the given semantics [[λx.Ω]] = ⊥ (the term diverges under βη-reduction).

But λx.Ω is a canonical form under normal-order evaluation (NOE),
so its denotation must be different from ⊥ = [[Ω]].

⇒ the semantic domain D for NOE must include a least element ⊥
in addition to a set of values of canonical forms V isomorphic to [D → D]:

D = V⊥ where V ∼= [D → D]

If V
φ
−→←−
ψ

[D → D], then D
φ⊥⊥−→←−
ι↑ · ψ

[D → D], but the latter is not an isomorphism.

The semantic equations then are similar but using the new pair φ⊥⊥ and ι↑ · ψ:

[[v]] η = η v

[[λv. e]] η = (ι↑ · ψ) (λx ∈ D∞. [[e]][η | v : x])

[[e e′]] η = φ⊥⊥ ([[e]] η) ([[e′]] η)

Normal-Order Evaluation and η-Contraction

In this semantics φ⊥⊥ and ι↑ · ψ do not define an isomorphism

between D and [D → D]:

φ⊥⊥ · (ι↑ · ψ) = I[D→D], but (ι↑ · ψ) · φ⊥⊥ 6= ID

Hence β-reduction is sound, while η-reduction is not.

Just what we expected:

λx.Ω x⇒ λx.Ω x is a canonical form, but λx.Ω x
η7→ Ω 6⇒,

so [[λx.Ω x]] 6= Ω under NOE.

Y again corresponds to the least fixed fixed-point operator on D.

Semantics of Eager Evaluation

Under eager evaluation arguments are reduced to canonical forms first,

so denotations of functions only operate on values in V

⇒ the environments are in [var → V], and the domain equation is

D = V⊥ where V ∼= [V → D]

If V
φ
−→←−
ψ

[V → D], the semantic equations are

[[v]] η = ι↑ (η v)

[[λv. e]] η = (ι↑ · ψ) (λx ∈ D∞. [[e]][η | v : x])

[[e e′]] η = (φ⊥⊥ ([[e]] η))⊥⊥ ([[e′]] η)

Note: ι↑ is used to inject into D values from V

(denotations of canonical forms).

The Fixed-Point Combinator Y and Eager Evaluation

The fixed-point combinator Y = λf. (λx. f (x x))λx. f (x x)

is not suitable for eager evaluation because Y e diverges for any e:

Y e
β7→
∗
E Y z if e⇒E z

β7→E (λv. z (v v))λv. z (v v) where v /∈ FV (z)
β7→E z ((λv. z (v v))λv. z (v v))
β7→E z (z ((λv. z (v v))λv. z (v v)))
β7→E . . .

The Fixed-Point Combinator Yv

Instead, use the call-by-value fixed-point combinator

Yv
def
= λf. (λx. f (λy. x x y))λx. f (λy. x x y)

For any term e, if e⇒E z, then

Yv e
β7→
∗
E e′

def
= (λv. z (λy. v v y))λv. z (λy. v v y) where v /∈ FV (z)

such that λv. e′ v is extensionally a fixed-point of e: for any term e1,

(λv. e′ v) e1
β7→E e′ e1

β7→E z (λv. (λv. z (λy. v v y)) (λv. z (λy. v v y)) v) e1

= z (λv. e′ v) e1

(e (λv. e′ v)) e1
β7→
∗
E z (λv. e′ v) e1

