Notes on Using Reynolds' Notation in Haskell

Paul Hudak

October 8, 2003

Reynold's	Haskell
$P_0 \times P_1 \times \cdots \times P_n$	(PO, P1,, Pn)
$\langle x_0, x_1, \ldots, x_n \rangle$	(x0, x1,, xn)
π_i^n	Use fst and snd for pairs (i.e. when n=2). Otherwise, define use pattern-matching; for example π_2^4 is: pi42 (x0,x1,x2,x3) = x2
$f_0\otimes\cdots\otimes f_n$	<pre>papn (f0,, fn) where papn is a family of functions indexed by n and defined by: papn (f0,, fn) x = (f0 x,, fn x)</pre>
$f_0 imes \cdots imes f_n$	paptn (f0,, fn) where paptn is a family of functions indexed by n and defined by: paptn (f0,, fn) (x0,, xn) = (f0 x0,, fn xn)
$(P_0+P_1+\cdots+P_n)_{\perp}$	Qn PO P1 ··· Pn where Qn is a family of polymorphic types indexed by n and defined by: data Qn a0 an = InO aO In1 a1 Inn an
ι_i^n	Ini
$f_0 \oplus \cdots \oplus f_n$	<pre>sapn (f0,, fn) where sapn is a family of functions indexed by n and defined by: sapn (f0,, fn) x = case x of In0 y -> f0 y Inn y -> fn y</pre>
$f_0 + \dots + f_n$	<pre>sapin (f0,, fn) where sapin is a family of functions indexed by n and defined by: sapin (f0,, fn) x = case x of In0 y -> In0 (f0 y)</pre>