The Haskell School of Music

— From Signals to Symphonies —

Paul Hudak

Yale University
Department of Computer Science

Version 2.4 (February 22, 2012)

The Haskell School of Music
— From Signals to Symphonies —

Paul Hudak

Yale University
Department of Computer Science
New Haven, CT, USA
Version 2.4 (February 22, 2012)

Copyright (© Paul Hudak
January 2011
All rights reserved. No part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or
retrieval system, without the prior written permission of the author.

Cover image: FEuterpe, the Greek Muse of Music
(attribution unknown)

Contents

Preface xiv
1 Overview of Computer Music, Euterpea, and Haskell 1
1.1 The Note vs. Signal Dichotomy 2
1.2 Basic Principles of Programming 3
1.3 Computation by Calculation 4
1.4 Expressions and Values 8
1.5 Types . . oo e 10
1.6 Function Types and Type Signatures 11
1.7 Abstraction, Abstraction, Abstraction 13
171 Naming oo 13

1.7.2 Functional Abstraction. 16

1.7.3 Data Abstraction 19

1.8 Haskell Equality vs. Euterpean Equality 22
1.9 Code Reuse and Modularity 23
1.10 [Advanced] Programming with Numbers 24

2 Simple Music 28
2.1 Preliminaries o o 28

2.2 Notes, Music, and Polymorphism 30
2.3 Convenient Auxiliary Functions 33
2.3.1 A Simple Example 35

2.4 Absolute Pitches L 39

ii

CONTENTS

3 Polymorphic & Higher-Order Functions

3.1
3.2

3.3

3.4

3.5
3.6

3.7

Polymorphic Types L.
Abstraction Over Recursive Definitions
3.2.1 Map is Polymorphic
3.22 Usingmap v v vt vt e
Append
3.3.1 [Advanced] The Efficiency and Fixity of Append

Fold
341 Haskell'sFolds
3.4.2 [Advanced] Why Two Folds?
3.4.3 Fold for Non-empty Lists
[Advanced] A Final Example: Reverse
Currying o o
3.6.1 Currying Simplification
3.6.2 [Advanced] Simplification of reverse

Errors e

4 A Musical Interlude

4.1
4.2

4.3

Modules e
Transcribing an Existing Score
4.2.1 Auxiliary Functions
422 BassLine
4.2.3 Main Voiceo o
4.2.4 Putting It All Together

Simple Algorithmic Composition

5 Syntactic Magic

5.1
5.2
5.3

5.4

Sections
Anonymous Functions
List Comprehensions
5.3.1 Arithmetic Sequences

Function Composition00,

iii

43
44
45
47
48
49

51
53
54
55
56
57
59
60
61

64
64
65
67
68
69
69
71

CONTENTS

5.5 Higher-Order Thinking
5.6 Infix Function Application

6 More Music

6.1 Delay and Repeat oo
6.2 Inversion and Retrograde
6.3 Polyrhythms oo
6.4 Symbolic Meter Changes
6.5 Computing Duration
6.6 Super-retrograde Lo
6.7 Truncating Parallel Composition
6.8 Trills
6.9 Grace Notes
6.10 Percussion oo
6.11 A Map for Music o
6.12 A Fold for Music
6.13 Crazy Recursion

7 Qualified Types and Type Classes

7.1 Motivation Lo
7.2 Equality
7.3 Defining Your Own Type Classes
7.4 Inheritance
7.5 Haskell’s Standard Type Classes

751 The Num Class,

7.5.2 The Show Class
7.6 Derived Instances oo
7.7 Reasoning With Type Classes

8 Interpretation and Performance
8.1 Abstract Performance
8.2 Players.

iv

79
80

82
82
83
84
86
86
87
88
89
90
91
93
94
95

98

98
100
102
106
107
108
111
112
115

CONTENTS

8.2.1 Example of Player Construction
8.2.2 Deriving New Players From Old Ones
823 AFancy Player
8.3 Putting it all Together L.

9 Self-Similar Music
9.1 Self-Similar Melody Lo
9.1.1 Sample Compositions
9.2 Self-Similar Harmony
9.3 Other Self-Similar Structures

10 Proof by Induction
10.1 Induction and Recursion
10.2 Examples of List Induction
10.3 Proving Function Equivalences
10.3.1 [Advanced] Reverse.
10.4 Useful Properties on Lists
10.4.1 [Advanced] Function Strictness
10.5 Induction on the Music Data Type
10.5.1 The Need for Musical Equivalence
10.6 [Advanced] Induction on Other Data Types
10.6.1 A More Efficient Exponentiation Function

11 An Algebra of Music
11.1 Musical Equivalance
11.2 Some Simple Axioms
11.3 The Axiom Set

11.4 Soundness and Completeness

12 Musical L-Systems
12.1 Generative Grammars
12.2 A Simple Implementation

12.3 Grammars in Haskell

126
128
129
129

133
133
136
137
138

141
141
142
144
145
147
150
151
156
156
158

163
163
165
168
169

CONTENTS

12.4 An L-System Grammar for Music

12,5 Exampleso

13 Random Numbers ... and Markov Chains
13.1 Random Numbers
13.2 Probability Distributions

13.2.1

Random Melodies and Random Walks

13.3 Markov Chains

13.3.1

Training Data o0

14 From Performance to Midi
14.1 An Introduction to Midi

14.1.1
14.1.2
14.1.3

General Midi
Channels and Patch Maps
Standard Midi Files

14.2 Converting a Performance into Midi
14.3 Putting It All Together

15 Basic Input/Output
15.1 IO in Haskell,
15.2 do Syntax
15.3 Actions are Just Values
15.4 Reading and Writing Midi Files

16 Musical User Interface

16.1 Signals
16.1.1
16.1.2
16.1.3
16.1.4
16.1.5

16.2 Events
16.2.1

Musical Signalso
Useful Signal Operators
Stateful Signals oL
and Reactivity oo

Manipulating Event Streams

vi

175
176

179
179
182
186
188
189

192
192
193
194
196
198
201

202
202
204
205
207

CONTENTS vii

16.2.2 Turning Signals into Events 215
16.2.3 Signal Samplers oL 216
16.2.4 Switches and Reactivity 216

16.3 The Ul Level, 217
16.3.1 Input Widgets 217
16.3.2 UI Transformers 220
16.3.3 MIDI Input and Output 221
16.3.4 Midi Device IDs 222
16.3.5 Timer Widgets 224

16.4 Putting It All Together 225
16.5 Musical Examples L 0oL 225
16.5.1 Chord Builder 225
16.5.2 Bifurcate Me, Baby! o000 227
16.5.3 MIDI Echo Effect 229

17 Sound and Signals 231
17.1 The Nature of Sound 231
17.1.1 Frequency and Period 234
17.1.2 Amplitude and Loudness 235
17.1.3 Frequency Spectrum 239

17.2 Digital Audio 241
17.2.1 From Continuous to Discrete 243
17.2.2 Fixed-Waveform Table-Lookup Synthesis 245
17.2.3 Aliasingo 246
17.2.4 Quantization Error 249
17.2.5 Dynamic Range. 251

18 Euterpea’s Signal Functions 253
18.1 Signals and Signal Functions 254
18.1.1 The Type of a Signal Function 256
18.1.2 Four Useful Functions 258

18.1.3 Some Simple Examples 259

CONTENTS

18.2 Generating Soundo oo
18.3 Instruments
18.3.1 Turning a Signal Function into an Instruement
18.3.2 Envelopes o o

19 Spectrum Analysis
19.1 Fourier’s Theorem,
19.1.1 The Fourier Transform
19.1.2 Examples oo o
19.2 The Discrete Fourier Transform
19.2.1 Interpreting the Frequency Spectrum.
19.2.2 Amplitude and Power of Spectrum
19.2.3 A Haskell Implementation of the DFT
19.3 The Fast Fourier Transform
19.4 Further Pragmatics L.
19.5 References L

20 Additive Synthesis and Amplitude Modulation
20.1 Preliminaries
20.2 ABell Sound
20.3 Amplitude Modulation
20.3.1 AM Sound Synthesis Lo
20.4 What do Tremolo and AM Radio Have in Common?

A The PreludeList Module
A.1 The PreludeList Module
A.2 Simple List Selector Functions
A.3 Index-Based Selector Functions
A.4 Predicate-Based Selector Functions
A.5 Fold-like Functions
A.6 List Generators e
A.7 String-Based Functions

viii

264
266
266
269

273
273
275
276
277
280
282
284
290
291
292

294
294
295
298
299
300

CONTENTS

A.8 Boolean List Functions
A.9 List Membership Functions
A.10 Arithmeticon Lists
A.11 List Combining Functions

B Haskell’s Standard Type Classes
B.1 The Ordered Class
B.2 The Enumeration Class
B.3 The Bounded Class
B4 TheShow Class
B.5 TheRead Class
B.6 Thelndex Class
B.7 The Numeric Classes

C Built-in Types Are Not Special

D Pattern-Matching Details

ix

309
310
310
311

313
313
314
315
316
319
322
323

325

328

List of Figures

1.1

2.1
2.2
2.3
2.4

4.1
4.2

5.1

6.1
6.2
6.3

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4

Polyphonic vs. Contrapuntal Interpretation 23
General MIDI Instrument Names 34
Convenient Note Names 36
Convenient Duration and Rest Names 37
Converting Pitch Classes to Integers 41
Excerpt from Chick Corea’s Child Song No. 6 66
Bars 7-28 70
Gluing Two Functions Together 78
Nested Polyrhythms (top: pr;; bottom: pry) 85
Trills in Stars and Stripes Forever 90
General MIDI Percussion Names 92
Common Type Classes and Their Instances 108
Numeric Class Hierarchy 110
Standard Numeric Types 111
Euterpea’s Data Types with Deriving Clauses 114
An abstract perform function 121
A more efficient perform function 123
Phrase Attributes 125
Definition of default player defPlayer. 127

LIST OF FIGURES xi

8.5 Definition of Player fancyPlayer. 132
9.1 An Example of Self-Similar Music 134
10.1 Proof that fznxfan=f(zxx)n. 161
13.1 Various Probability Density Functions 183
14.1 Partial Definition of the Midi Data Type 197
16.1 Several Simple MUIs 219
16.2 A Chord Builder MUI 226
171 ASine Wave e 232
17.2 RMS Amplitude for Different Signals 236
17.3 Fletcher-Munson Equal Loudness Contour 238
17.4 Spectral Plots of Different Signals. 240
17.5 Time-Varying Spectral Plots 242
17.6 Choice of Sampling Rate 244
177 Aliasing 1 L 247
17.8 Aliasing 2 248
17.9 A Properly Sampled Signal, 250
17.10Block Diagram of Typical Digital Audio System 250
18.1 Eutperea’s Oscillators 260
18.2 Table Generating Functions 262
18.3 A Simple Melody Lo 269
18.4 A Complete Example of a Signal-Function Based Instrument 270
18.5 Envelopes 271
19.1 Examples of Fourier Transforms. 278
19.2 Generating a Square Wave from Odd Harmonics 279
19.3 Complex and Polar Coordinates 283
19.4 Helper Code for Pretty-Printing DFT Results 286
19.5 A Real-Time Display of FFT Results 292

LIST OF FIGURES xii

20.1 Working With Lists of Signal Sources 295
20.2 A Bell Instrument L. 296
20.3 A More Sophisticated Bell Instrument 297

B.1 Standard Numeric Classes 324

List of Tables

10.1
10.2

13.1

14.1

16.1
16.2
16.3

Some Useful Properties of map and fold. 148
Useful Properties of Other Functions Over Lists 149
Second-Order Markov Chain 189
General Midi Instrument Families. 194
Signal Samplers L Lo 216
MUI Input Widgets 217
MUI Layout Widget Transformers 220

xiii

Preface

In the year 2000 I wrote a book called The Haskell School of Expression
— Learning Functional Programming through Multimedia [Hud00]. In that
book I used graphics, animation, music, and robotics as a way to motivate
learning how to program, and specifically how to learn functional program-
ming using Haskell, a purely functional programming language. Haskell
[PT03] is quite a bit different from conventional imperative or object-oriented
languages such as C, C++, Java, C#, and so on. It takes a different mind-set
to program in such a language, and appeals to the mathematically inclined
and to those who seek purity and elegance in their programs. Although
Haskell was designed over twenty years ago, it has only recently begun to
catch on in a significant way, not just because of its purity and elegance,
but because with it you can solve real-world problems quickly and efficiently,
and with great economy of code.

I have also had a long, informal, yet passionate interest in music, being
an amateur jazz pianist and having played in several bands over the years.
About fifteen years ago, in an effort to combine work with play, I and my
students wrote a Haskell library called Haskore for expressing high-level
computer music concepts in a purely functional way [HMGW96, Hud96,
Hud03]. Indeed, three of the chapters in The Haskell School of Expression
summarize the basic ideas of this work. Soon after that, with the help of
another student, Matt Zamec, I designed a Haskell library called HasSound
that was, essentially, a Haskell interface to csound [Ver86] for doing sound
synthesis and instrument design.

Thus, when I recently became responsible for the Music Track in the
new Computing and the Arts major at Yale, and became responsible for
teaching not one, but two computer music courses in the new curriculum, it
was natural to base the course material on Haskell. This current book is a
rewrite of The Haskell School of Expression with a focus on computer music,
based on, and greatly improving upon, the ideas in Haskore and HasSound.

xiv

PREFACE XV

The new Haskell library that incorporates all of this is called Euterpea.

Haskell was named after the logician Haskell B. Curry who, along with
Alonzo Church, helped establish the theoretical foundations of functional
programming in the 1940’s, when digital computers were mostly just a gleam
in researchers’ eyes. A curious historical fact is that Haskell Curry’s father,
Samuel Silas Curry, helped found and direct a school in Boston called the
School of Expression. (This school eventually evolved into what is now Curry
College.) Since pure functional programming is centered around the notion
of an expression, I thought that The Haskell School of Expression would be
a good title for my first book. And it was thus quite natural to choose The
Haskell School of Music for my second!

How To Read This Book

As mentioned earlier, there is a certain mind-set, a certain viewpoint of the
world, and a certain approach to problem solving that collectively work best
when programming in Haskell (this is true for any programming paradigm).
If you teach only Haskell language details to a C programmer, he or she is
likely to write ugly, incomprehensible functional programs. But if you teach
how to think differently, how to see problems in a different light, functional
solutions will come easily, and elegant Haskell programs will result. As
Samuel Silas Curry once said:

All expression comes from within outward, from the center to
the surface, from a hidden source to outward manifestation. The
study of expression as a natural process brings you into contact
with cause and makes you feel the source of reality.

What is especially beautiful about this quote is that music is also a form
of expression, although Curry was more likely talking about writing and
speech. In addition, as has been noted by many, music has many ties to
mathematics. So for me, combining the elegant mathematical nature of
Haskell with that of music is as natural as singing a nursery tune.

Using a high-level language to express musical ideas is, of course, not
new. But Haskell is unique in its insistence on purity (no side effects), and
this alone makes it particularly suitable for expressing musical ideas. By
focusing on what a musical entity is rather than on how to create it, we allow
musical ideas to take their natural form as Haskell expressions. Haskell’s
many abstraction mechanisms allow us to write computer music programs

PREFACE xvi

that are elegant, concise, yet powerful. We will consistently attempt to let
the music express itself as naturally as possible, without encoding it in terms
of irrelevant language details.

Of course, my ultimate goal is not just to teach computer music concepts.
Along the way you will also learn Haskell. There is no limit to what one
might wish to do with computer music, and therefore the better you are
at programming, the more success you will have. This is why I think that
many languages designed specifically for computer music—although fun to
work with, easy to use, and cute in concept—face the danger of being too
limited in expressiveness.

You do not need to know much, if any, music theory to read this book,
and you do not need to play an instrument. Of course, the more you know
about music, the more you will be able to apply the concepts learned in this
text in musically creative ways.

My general approach to introducing computer music concepts is to first
provide an intuitive explanation, then a mathematically rigorous definition,
and finally fully executable Haskell code. In the process I introduce Haskell
features as they are needed, rather than all at once. I believe that this
interleaving of concepts and applications makes the material easier to digest.

Another characteristic of my approach is that I do not hide any details—I
want Euterpea to be as transparent as possible! There are no magical built-
in operations, no special computer music commands or values. This works
out well for several reasons. First, there is in fact nothing ugly or difficult
to hide—so why hide anything at all? Second, by reading the code, you will
better and more quickly understand Haskell. Finally, by stepping through
the design process with me, you may decide that you prefer a different
approach—there is, after all, no One True Way to express computer music
ideas. I expect that this process will position you well to write rich, creative
musical applications on your own.

I encourage the seasoned programmer having experience only with con-
ventional imperative and/or object-oriented languages to read this text with
an open mind. Many things will be different, and will likely feel awkward.
There will be a tendency to rely on old habits when writing new programs,
and to ignore suggestions about how to approach things differently. If you
can manage to resist those tendencies I am confident that you will have an
enjoyable learning experience. Those who succeed in this process often find
that many ideas about functional programming can be applied to impera-
tive and object-oriented languages as well, and that their imperative coding

PREFACE xvii

style changes for the better.

I also ask the experienced programmer to be patient while in the earlier
chapters I explain things like “syntax,” “operator precedence,” etc., since it
is my goal that this text should be readable by someone having only modest
prior programming experience. With patience the more advanced ideas will
appear soon enough.

If you are a novice programmer, I suggest taking your time with the
book; work through the exercises, and don’t rush things. If, however, you
don’t fully grasp an idea, feel free to move on, but try to re-read difficult
material at a later time when you have seen more examples of the concepts
in action. For the most part this is a “show by example” textbook, and
you should try to execute as many of the programs in this text as you can,
as well as every program that you write. Learn-by-doing is the corollary to
show-by-example.

Finally, I note that some section titles are prefaced with the parenthetical
phrase, “[Advanced]”. These sections may be skipped upon first reading,
especially if the focus is on learning computer music concepts, as opposed
to programming concepts.

Haskell Implementations

There are several good implementations of Haskell, all available free on
the Internet through the Haskell users’ website at http://haskell.org.
One that I especially recommend is GHC, an easy-to-use and easy-to-install
Haskell compiler and interpreter (see http://haskell.org/ghc). GHC
runs on a variety of platforms, including PC’s (Windows 7, XP, and Vista),
various flavors of Unix (Linux, FreeBSD, etc.), and Mac OS X. The preferred
way to install GHC is through the Haskell Platform
(http://hackage.haskell.org/platform/). Any text editor can be used
to create source files, but I prefer to use emacs (see
http://www.gnu.org/software/emacs), along with its Haskell mode (see
http://projects.haskell.org/haskellmode-emacs/). The entire Euterpea
library is available on the community Haskell server, including all of the
source code from this textbook. Instructions on how to install Euterpea
can be found at http://haskell.cs.yale.edu. Feel free to email me at
mailto:paul.hudak@yale.edu with any comments, suggestions, or ques-
tions.

PREFACE xviil

Acknowledgements

I wish to thank my funding agencies—the National Science Foundation, the
Defense Advanced Research Projects Agency, and Microsoft Research—for
their generous support of research that contributed to the foundations of
Futerpea. Yale University has provided me a stimulating and flexible envi-
ronment to pursue my dreams for almost thirty years, and I am especially
thankful for its recent support of the Computing and the Arts initiative.

Tom Makucevich, a talented computer music practitioner and composer
in New Haven, was the original motivator, and first user, of Haskore, which
preceded Euterpea. Watching him toil endlessly with low-level csound pro-
grams was simply too much for me to bear! Several undergraduate students
at Yale contributed to the original design and implementation of Haskore. I
would like to thank in particular the contributions of Syam Gadde and Bo
Whong, who co-authored the original paper on Haskore. Additionally, Matt
Zamec helped me greatly in the creation of HasSound.

I wish to thank my more recent graduate students, in particular Hai
(Paul) Liu, Eric Cheng, Donya Quick, and Daniel Winograd-Cort for their
help in writing much of the code that constitutes the current Euterpea li-
brary. In addition, many students in my computer music classes at Yale
provided valuable feedback through earlier drafts of the manuscript.

Finally, I wish to thank my wife, Cathy Van Dyke, my best friend and
ardent supporter, whose love, patience, and understanding have helped me
get through some bad times, and enjoy the good.

Happy Haskell Music Making!

Paul Hudak
New Haven
January 2012

Chapter 1

Overview of Computer
Music, Euterpea, and Haskell

Computers are everywhere. And so is music! Although some might think
of the two as being at best distant relatives, in fact they share many deep
properties. Music comes from the soul, and is inspired by the heart, yet it
has the mathematical rigor of computers. Computers have mathematical
rigor of course, yet the most creative ideas in mathematics and computer
science come from the soul, just like music. Both disciplines demand both
left-brain and right-brain skills. It always surprises me how many computer
scientists and mathematicians have a serious interest in music. It seems
that those with a strong affinity or acuity in one of these disciplines is often
strong in the other as well.

It is quite natural then to consider how the two might interact. In
fact there is a long history of interactions between music and mathematics,
dating back to the Greeks’ construction of musical scales based on arithmetic
relationships, and including many classical composers use of mathematical
structures, the formal harmonic analysis of music, and many modern music
composition techniques. Advanced music theory uses ideas from diverse
branches of mathematics such as number theory, abstract algebra, topology,
category theory, calculus, and so on.

There is also a long history of efforts to combine computers and music.
Most consumer electronics today are digital, as are most forms of audio pro-
cessing and recording. But in addition, digital musical instruments provide
new modes of expression, notation software and sequencers have become
standard tools for the working musician, and those with the most computer

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL?2

science savvy use computers to explore new modes of composition, transfor-
mation, performance, and analysis.

This textbook explores the fundamentals of computer music using a
language-centric approach. In particular, the functional programming lan-
guage Haskell is used to express all of the computer music concepts. Thus
a by-product of learning computer music concepts will be learning how to
program in Haskell. The core musical ideas are collected into a Haskell li-
brary called Euterpea. The name “Euterpea” is derived from “Futerpe,”
who was one of the nine Greek muses, or goddesses of the arts, specifically
the muse of music. A hypothetical picture of Euterpe graces the cover of
this textbook.

1.1 The Note vs. Signal Dichotomy

The field of computer music has grown astronomically over the past several
decades, and the material can be structured and organized along several
dimensions. A dimension that proves particulary useful with respect to a
programming language is one that separates high-level musical concerns from
low-level musical concerns. Since a “high-level” programming language—
namely Haskell—is used to program at both of these musical levels, to avoid
confusion the terms note level and signal level will be used in the musical
dimension.

At the note level, a note (i.e. pitch and duration) is the lowest musical
entity that is considered, and everything else is built up from there. At this
level, in addition to conventional representations of music, one can study
interesting aspects of so-called algorithmic composition, including the use
of fractals, grammar-based systems, stochastic processes, and so on. From
this basis one can also study the harmonic and rhythmic analysis of mu-
sic, although that is not currently an emphasis in this textbook. Haskell
facilitates programming at this level through its powerful data abstraction
facilities, higher-order functions, and declarative semantics.

In contrast, at the signal level the focus is on the actual sound generated
in a computer music application, and thus a signal is the lowest entity that
is considered. Sound is concretely represented in a digital computer by a
discrete sampling of the continuous audio signal, at a high enough rate that
human ears cannot distinguish the discrete from the continuous, usually
44,100 samples per second (the standard sampling rate used for CDs, mp3
files, and so on). But in Euterpea, these details are hidden: signals are

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL3

treated abstractly as continuous quantities. This greatly eases the burden of
programming with sequences of discrete values. At the signal level, one can
study sound synthesis techniques (to simulate the sound of a conventional
instrument, say, or something completely artificial), audio processing (e.g.
determining the frequency spectrum of a signal), and special effects (reverb,
panning, distortion, and so on).

Suppose for a moment that one is playing music using a metronome set
at 96, which corresponds to 96 beats per minute. That means that one beat
takes 60/96 = 0.625 seconds. At a stereo sampling rate of 44,100 samples per
second, that in turn translates into 2 x 0.625 x 44, 100 = 55,125 samples, and
each sample typically occupies several bytes of computer memory. This is
typical of the minimum memory requirements of a computation at the signal
level. In contrast, at the note level, one only needs some kind of operator
or data structure that says “play this note,” which requires a total of only
a small handful of bytes. This dramatic difference highlights one of the key
computational differences between programming at the note level versus the
signal level.

Of course, many computer music applications involve both the note level
and the signal level, and indeed there needs to be a mechanism to mediate
between the two. Although such mediation can take many forms, it is for
the most part straightforward. Which is another reason why the distinction
between the note level and the signal level is so natural.

This textbook begins with a treatment of the note level (Chapters 1-16)
and follows with a treatment of the signal level (Chapters 17-20). If the
reader is interested only in the signal level, one could skip Chapters 8-16.

1.2 Basic Principles of Programming

Programming, in its broadest sense, is problem solving. It begins by rec-
ognizing problems that can and should be solved using a digital computer.
Thus the first step in programming is answering the question, “What prob-
lem am I trying to solve?”

Once the problem is understood, a solution must be found. This may
not be easy, of course, and in fact one may discover several solutions, so a
way to measure success is needed. There are various dimensions in which to
do this, including correctness (“Will I get the right answer?”) and efficiency
(“Will it run fast enough, or use too much memory?”). But the distinction of
which solution is better is not always clear, since the number of dimensions

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELILA

can be large, and programs will often excel in one dimension and do poorly
in others. For example, there may be one solution that is fastest, one that
uses the least amount of memory, and one that is easiest to understand.
Deciding which to choose can be difficult, and is one of the more interesting
challenges in programming.

The last measure of success mentioned above—clarity of a program—
is somewhat elusive: difficult to quantify and measure. Nevertheless, in
large software systems clarity is an especially important goal, since such
systems are worked on by many people over long periods of time, and evolve
considerably as they mature. Having easy-to-understand code makes it much
easier to modify.

In the area of computer music, there is another reason why clarity is
important: namely, that the code often represents the author’s thought
process, musical intent, and artistic choices. A conventional musical score
does not say much about what the composer thought as she wrote the music,
but a program often does. So when you write your programs, write them for
others to see, and aim for elegance and beauty, just like the musical result
that you desire.

Programming is itself a creative process. Sometimes programming so-
lutions (or artistic creations) come to mind all at once, with little effort.
More often, however, they are discovered only after lots of hard work! One
may write a program, modify it, throw it away and start over, give up, start
again, and so on. It’s important to realize that such hard work and rework-
ing of programs is the norm, and in fact you are encouraged to get into the
habit of doing so. Don’t always be satisfied with your first solution, and
always be prepared to go back and change or even throw away those parts
of your program that you're not happy with.

1.3 Computation by Calculation

It’s helpful when learning a new programming language to have a good
grasp of how programs in that language are executed—in other words, an
understanding of what a program means. The execution of Haskell programs
is perhaps best understood as computation by calculation. Programs in
Haskell can be viewed as functions whose input is that of the problem being
solved, and whose output is the desired result—and the behavior of functions
can be effectively understood as computation by calculation.

An example involving numbers might help to demonstrate these ideas.

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL5

Numbers are used in many applications, and computer music is no exception.
For example, integers might be used to represent pitch, and floating-point
numbers might be used to perform calculations involving frequency or am-
plitude.

Suppose onne wishes to perform an arithmetic calculation such as 3 x
(9+5). In Haskell this would be written as 3 * (9 + 5), since most standard
computer keyboards and text editors do not recognize the special symbol x.
The result can be calculated as follows:

3% (9+5)
= 3x14
= 42

It turns out that this is not the only way to compute the result, as evidenced
by this alternative calculation:

3x(9+5)
=3*%x94+3%5
=27+3%5
= 27+ 15

= 42

Even though this calculation takes two extra steps, it at least gives the
same, correct answer. Indeed, an important property of each and every
program written in Haskell is that it will always yield the same answer
when given the same inputs, regardless of the order chosen to perform the
2 This is precisely the mathematical definition of a function:
for the same inputs, it always yields the same output.

calculations.

On the other hand, the first calculation above required fewer steps than
the second, and thus it is said to be more efficient. Efficiency in both space
(amount of memory used) and time (number of steps executed) is important
when searching for solutions to problems. Of course, if the computation
returns the wrong answer, efficiency is a moot point. In general it is best
to search first for an elegant (and correct!) solution to a problem, and later
refine it for better performance. This strategy is sometimes summarized as,
“Get it right first!”

The above calculations are fairly trivial, but much more sophisticated
computations will be introduced soon enough. For starters—and to intro-

!This assumes that multiplication distributes over addition in the number system being
used, a point that will be returned to later in the text.

2This is true as long as a non-terminating sequence of calculations is not chosen, another
issue that will be addressed later.

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL6

duce the idea of a Haskell function—the arithmetic operations performed in
the previous example can be generalized by defining a function to perform
them for any numbers z, y, and z:

simple x y z =z % (y + 2)
This equation defines simple as a function of three arguments, z, y, and z.

In mathematical notation this definition might be written differently, such
as one of the following:

simple(x,y,z) =z X (y + z)
simple(:c,y, Z) = (y + Z)
simple(z,y,z) = z(y + 2)

In any case, it should be clear that “simple 3 9 5” is the same as “3%(9+5).”
In fact the proper way to calculate the result is:

simple 39 5
=3%(9+5)
=314

= 42

The first step in this calculation is an example of unfolding a function
definition: 3 is substituted for z, 9 for y, and 5 for z on the right-hand side
of the definition of simple. This is an entirely mechanical process, not unlike
what the computer actually does to execute the program.

simple 3 9 5 is said to evaluate to 42. To express the fact that an
expression e evaluates (via zero, one, or possibly many more steps) to the
value v, one writes e = v (this arrow is longer than that used earlier). So
one can say directly, for example, that simple 3 9 5 = 42, which should be
read “simple 3 9 5 evaluates to 42.”

With simple now suitably defined, one can repeat the sequence of arith-
metic calculations as often as one likes, using different values for the argu-
ments to simple. For example, simple 4 3 2 = 20.

One can also use calculation to prove properties about programs. For
example, it should be clear that for any a, b, and ¢, simple a b ¢ should
yield the same result as simple a ¢ b. For a proof of this, one calculates
symbolically; that is, using the symbols a, b, and ¢ rather than concrete
numbers such as 3, 5, and 9:

sitmple a b c
=ax(b+c)
= ax*(c+0b)
= simple a ¢ b

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL7

Note that the same notation is used for these symbolic steps as for concrete
ones. In particular, the arrow in the notation reflects the direction of formal
reasoning, and nothing more. In general, if e; = e, then it’s also true that
€y = €1.

These symbolic steps are also referred to as as “calculations,” even
though the computer will not typically perform them when executing a pro-
gram (although it might perform them before a program is run if it thinks
that it might make the program run faster). The second step in the calcu-
lation above relies on the commutativity of addition (namely that, for any
numbers z and y, x + y = y + x). The third step is the reverse of an unfold
step, and is appropriately called a fold calculation. It would be particu-
larly strange if a computer performed this step while executing a program,
since it does not seem to be headed toward a final answer. But for proving
properties about programs, such “backward reasoning” is quite important.

When one wishes to make the justification for each step clearer, whether
symbolic or concrete, a calculation can be annotated with more detail, as
in:

simple a b c

= {unfold }
ax(b+c)

= { commutativity }
ax(c+b)

= {fold}

stmple a ¢ b

In most cases, however, this will not be necessary.

Proving properties of programs is another theme that will be repeated
often in this text. Computer music applications often have some kind of
a mathematical basis, and that mathematics must be reflected somewhere
in your program. But how do you know that you got it right? Proof by
calculation is one way to connect the problem specification with the program
solution.

More broadly speaking, as the world begins to rely more and more on
computers to accomplish not just ordinary tasks such as writing term pa-
pers, sending email, and social networking, but also life-critical tasks such
as controlling medical procedures and guiding spacecraft, then the correct-
ness of programs gains in importance. Proving complex properties of large,
complex programs is not easy—and rarely if ever done in practice—but that
should not deter you from proving simpler properties of the whole system,

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELLS

or complex properties of parts of the system, since such proofs may uncover
errors, and if not, at least give you confidence in your effort.

If you are someone who is already an experienced programmer, the idea
of computing everything by calculation may seem odd at best, and naive at
worst. How does one write to a file, play a sound, draw a picture, or respond
to mouse-clicks? If you are wondering about these things, it is hoped that
you have patience reading the early chapters, and that you find delight in
reading the later chapters where the full power of this approach begins to
shine.

In many ways this first chapter is the most difficult, since it contains the
highest density of new concepts. If the reader has trouble with some of the
concepts in this overview chapter, keep in mind that most of them will be
revisited in later chapters. And don’t hesitate to return to this chapter later
to re-read difficult sections; they will likely be much easier to grasp at that
time.

Details: In the remainder of this textbook the need will often arise to explain
some aspect of Haskell in more detail, without distracting too much from the
primary line of discourse. In those circumstances the explanations will be offset in
a box such as this one, proceeded with the word “Details.”

Exercise 1.1 Write out all of the steps in the calculation of the value of
simple (simple 23 4) 56

Exercise 1.2 Prove by calculation that simple (a — b) a b = a® — b?.

1.4 Expressions and Values

In Haskell, the entities on which calculations are performed are called expres-
stons, and the entities that result from a calculation—i.e. “the answers”—
are called values. It is helpful to think of a value just as an expression on
which no more calculation can be carried out—every value is an expression,
but not the other way around.

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL9

Examples of expressions include atomic (meaning, indivisible) values
such as the integer 42 and the character ’a’, which are examples of two
primitive atomic values. The next chapter introduces examples of user-
defined atomic values, such as the musical note names C, Cs, Df, etc.,
which in music notation are written C, Cf, Db, etc. (In music theory, note
names are called pitch classes.)

In addition, there are structured expressions (i.e., made from smaller
pieces) such as the list of pitches [C, Cs, Df], the character/number pair
(’b?,4) (lists and pairs are different in a subtle way, to be described later),
and the string "Euterpea". Each of these structured expressions is also a
value, since by themselves there is no further calculation that can be carried
out. As another example, 14 2 is an expression, and one step of calculation
yields the expression 3, which is a value, since no more calculations can
be performed. As a final example, as was expained earlier, the expression
stmple 3 9 5 evaluates to the value 42.

Sometimes, however, an expression has only a never-ending sequence of
calculations. For example, if z is defined as:

r=x+1
then here is what happens when trying to calculate the value of x:

=x+1

= (z+1)+1

= ((z4+1)+1)+1

= (((z+1)+1)+1)+1

Similarly, if a function f is defined as:
fa=f(z-1)
then an expression such as f 42 runs into a similar problem:

142

= f 41
= f40
= f 39

Both of these clearly result in a never-ending sequence of calculations. Such
expressions are said to not terminate, or diverge. In such cases the symbol
1, pronounced “bottom,” is used to denote the value of the expression.
This means that every diverging computation in Haskell denotes the same

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL10

1 value,? reflecting the fact that, from an observer’s point of view, there is
nothing to distinguish one diverging computation from another.

1.5 Types

Every expression (and therefore every value) also has an associated type. One
can think of types as sets of expressions (or values), in which members of
the same set have much in common. Examples include the primitive atomic
types Integer (the set of all integers) and Char (the set of all characters),
the user-defined atomic type PitchClass (the set of all pitch classes, i.e. note
names), as well as the structured types [Integer]| and [PitchClass] (the sets
of all lists of integers and lists of pitch classes, respectively), and String (the
set of all Haskell strings).

The association of an expression or value with its type is very important,
and there is a special way of expressing it in Haskell. Using the examples of
values and types above:

Cs :: PitchClass
42 . Integer
‘a’ :: Char

"Euterpea" :: String
[C, Cs, Df] ::[PitchClass]
(’b’,4) :: (Char, Integer)

Each association of an expression with its type is called a type signature.

Details: Note that the names of specific types are capitalized, such as Integer
and Char, but the names of values are not, such as simple and z. This is not just
a convention: it is required when programming in Haskell. In addition, the case
of the other characters matters, too. For example, test, teSt, and tEST are all
distinct names for values, as are Test, TeST, and TEST for types.

3Technically, each type has its own version of L.

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL11

4 N

Details: Literal characters are written enclosed in single forward quotes (apos-
trophes), as in ’a’, ’A’, ’b’, ?,’, 1’ > (a space), and so on. (There are
some exceptions, however; see the Haskell Report for details.) Strings are written
enclosed in double quote characters, as in "Euterpea" above. The connection
between characters and strings will be explained in a later chapter.

The “::" should be read “has type,” as in “42 has type Integer." Note that square
braces are used both to construct a list value (the left-hand side of (::) above), and
to describe its type (the right-hand side above). Analogously, the round braces
used for pairs are used in the same way. But also note that all of the elements in
a list, however long, must have the same type, whereas the elements of a pair can

have different types.
o J

Haskell’s type system ensures that Haskell programs are well-typed; that
is, that the programmer has not mismatched types in some way. For ex-
ample, it does not make much sense to add together two characters, so the
expression ’a’ + b’ is ill-typed. The best news is that Haskell’s type system
will tell you if your program is well-typed before you run it. This is a big
advantage, since most programming errors are manifested as type errors.

1.6 Function Types and Type Signatures

What should the type of a function be? It seems that it should at least
convey the fact that a function takes values of one type—1, say—as input,
and returns values of (possibly) some other type—T5, say—as output. In
Haskell this is written 77 — T», and such a function is said to “map values
of type Tp to values of type T5.” If there is more than one argument,
the notation is extended with more arrows. For example, if the intent is
that the function simple defined in the previous section has type Integer —
Integer — Integer — Integer, one can include a type signature with the
definition of simple:

simple :: Integer — Integer — Integer — Integer
simple x y z =z % (y + 2)

Details: When writing Haskell programs using a typical text editor, there typically
will not be nice fonts and arrows as in Integer — Integer. Rather, you will have
to type Integer -> Integer.

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL12

Haskell’s type system also ensures that user-supplied type signatures
such as this one are correct. Actually, Haskell’s type system is powerful
enough to allow one to avoid writing any type signatures at all, in which
case the type system is said to infer the correct types.* Nevertheless, judi-
cious placement of type signatures, as was done for simple, is a good habit,
since type signatures are an effective form of documentation and help bring
programming errors to light. In fact, it is a good habit to first write down
the type of each function you are planning to define, as a first approxima-
tion to its full specification—a way to grasp its overall functionality before
delving into its details.

The normal use of a function is referred to as function application. For
example, simple 3 9 5 is the application of the function simple to the ar-
guments 3, 9, and 5. Some functions, such as (+), are applied using what
is known as infir syntax; that is, the function is written between the two
arguments rather than in front of them (compare z + y to f x y).

4 N

Details: Infix functions are often called operators, and are distinguished by the
fact that they do not contain any numbers or letters of the alphabet. Thus ! and
*# : are infix operators, whereas thisIsA Function and f9g are not (but are still
valid names for functions or other values). The only exception to this is that the
symbol " is considered to be alphanumeric; thus f/ and one’s are valid names, but
not operators.

In Haskell, when referring to an infix operator as a value, it is enclosed in paren-
theses, such as when declaring its type, as in:

(+) :: Integer — Integer — Integer

Also, when trying to understand an expression such as f = + g y, there is a
simple rule to remember: function application always has “higher precedence”
than operator application, so that f « + g y is the same as (f z) + (g y).

Despite all of these syntactic differences, however, operators are still just functions.

Exercise 1.3 Identify the well-typed expressions in the following, and, for
each, give its proper type:

4There are a few exceptions to this rule, and in the case of simple the inferred type is
actually a bit more general than that written above. Both of these points will be returned
to later.

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL13

[(2,3),(4,5)]

[Cs,42]

(Df7 _42)

stmple >a’ *b’ ’¢’
(simple 1 2 3, simple)
["hello", "world"]

1.7 Abstraction, Abstraction, Abstraction

The title of this section is the answer to the question: “What are the three
most important ideas in programming?” Webster defines the verb “abstract”
as follows:

abstract, vt (1) remove, separate (2) to consider apart from
application to a particular instance.

In programming this is done when a repeating pattern of some sort occurs,
and one wishes to “separate” that pattern from the “particular instances”
in which it appears. In this textbook this process is called the abstrac-
tion principle. The following sections introduce several different kinds of
abstraction, using examples involving both simple numbers and arithmetic
(things everyone should be familiar with) as well as musical examples (that
are specific to Euterpea).

1.7.1 Naming

One of the most basic ideas in programming—for that matter, in every day
life—is to name things. For example, one may wish to give a name to the
value of 7, since it is inconvenient to retype (or remember) the value of 7
beyond a small number of digits. In mathematics the greek letter m in fact
is the name for this value, but unfortunately one doesn’t have the luxury of
using greek letters on standard computer keyboards and text editors. So in
Haskell one writes:

pi 2 Double

pi = 3.141592653589793
to associate the name pi with the number 3.141592653589793. The type
signature in the first line declares pi to be a double-precision floating-point

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL14

number, which mathematically and in Haskell is distinct from an integer.®
Now the name pi can be used in expressions whenever it is in scope; it is
an abstract representation, if you will, of the number 3.141592653589793.
Furthermore, if there is ever a need to change a named value (which hopefully
won’t ever happen for pi, but could certainly happen for other values), one
would only have to change it in one place, instead of in the possibly large
number of places where it is used.

For a simple musical example, note first that in music theory, a pitch
consists of a pitch class and an octave. For example, in Euterpea one sim-
ply writes (A,4) to represent the pitch class A in the fourth octave. This
particular note is called “concert A” (because it is often used as the note to
which an orchestra tunes its instruments) or “A440” (because its frequency
is 440 cycles per second). Because this particular pitch is so common, it
may be desirable to give it a name, which is easily done in Haskell, as was
done above for m:

concertA, a440 :: (PitchClass, Octave)
concertA = (A,4) -- concert A
a0 = (A, 4) - Ad40

Details: This example demonstrates the use of program comments. Any text
to the right of "--" till the end of the line is considered to be a programmer
comment, and is effectively ignored. Haskell also permits nested comments that
have the form {-this is a comment -} and can appear anywhere in a program,
including across multiple lines.

This example demonstrates the (perhaps obvious) fact that several dif-
ferent names can be given to the same value—just as your brother John
might have the nickname “Moose.” Also note that the name concertA re-
quires more typing than (A4,4); nevertheless, it has more mnemonic value,
and, if mistyped, will more likely result in a syntax error. For example, if you
type “concrtA” by mistake, you will likely get an error saying, “Undefined
variable,” whereas if you type “(A4,5)” you will not.

®We will have more to say about floating-point numbers later.

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL15

Details: This example also demonstrates that two names having the same type
can be combined into the same type signature, separated by a comma. Note finally,
as a reminder, that these are names of values, and thus they both begin with a
lowercase letter.

Consider now a problem whose solution requires writing some larger
expression more than once. For example:
x :: Float
z=1f (pixr*x2)+ g (pixrs*2)

Details: (xx) is Haskell's floating-point exponentiation operator. Thus pi 1 % 2
is analogous to 72 in mathematics. (**) has higher precedence than (x) and the
other binary arithmetic operators in Haskell.

Note in the definition of z that the expression pi % r ** 2 (presum-
ably representing the area of a circle whose radius is r) is repeated—it
has two instances—and thus, applying the abstraction principle, it can be
separated from these instances. From the previous examples, doing this
is straightforward—it’s called naming—so one might choose to rewrite the
single equation above as two:

areq = pi x 1 *xx 2
xr = f area + g area

If, however, the definition of area is not intended for use elsewhere in the
program, then it is advantageous to “hide” it within the definition of . This
will avoid cluttering up the namespace, and prevents area from clashing with
some other value named area. To achieve this, one could simply use a let
expression:

x = let area = pi * 1 *xx 2
in f area + g area
A let expression restricts the wvisibility of the names that it creates to the
internal workings of the let expression itself. For example, if one writes:
areq = 42
r =let area = pi x r*x2
in f area 4 g area

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL16

then there is no conflict of names—the “outer” area is completely different
from the “inner” one enclosed in the let expression. Think of the inner
area as analogous to the first name of someone in your household. If your
brother’s name is “John” he will not be confused with John Thompson who
lives down the street when you say, “John spilled the milk.”

So you can see that naming—using either top-level equations or equa-
tions within a let expression—is an example of the abstraction principle in
action.

/ N

Details: An equation such as ¢ = 42 is called a binding. A simple rule to
remember when programming in Haskell is never to give more than one binding
for the same name in a context where the names can be confused, whether at the
top level of your program or nestled within a let expression. For example, this is
not allowed:

a =42
a =43
nor is this:
a =42
b =43
a =44
- %

1.7.2 Functional Abstraction

The design of functions such as simple can be viewed as the abstraction
principle in action. To see this using the example above involving the area
of a circle, suppose the original program looked like this:

x :: Float

x=f (pi*xr %x2) 4+ g (pi* o **2)
Note that there are now two areas involved—one of a circle whose radius is
r1, the other 5. Now the expressions in parentheses have a repeating pattern
of operations. In discerning the nature of a repeating pattern it’s sometimes
helpful to first identify those things that are not repeating, i.e. those things
that are changing. In the case above, it is the radius that is changing. A
repeating pattern of operations can be abstracted as a function that takes
the changing values as arguments. Using the function name areaF' (for “area
function”) one can write:

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL17

z = let areal’ r = pi * 1 *%x 2
in f (areaF 1)+ g (areaF 13)

This is a simple generalization of the previous example, where the function
now takes the “variable quantity”—in this case the radius—as an argument.
A very simple proof by calculation, in which areaF' is unfolded where it is
used, can be given to demonstrate that this program is equivalent to the
old.

This application of the abstraction principle is called functional abstrac-
tion, since a sequence of operations is abstracted as a function such as areaF .

For a musical example, a few more concepts from Euterpea are first
introduced, concepts that are addressed more formally in the next chapter:

1. Recall that in music theory a note is a pitch combined with a duration.
Duration is measured in beats, and in Euterpea has type Dur. A note
whose duration is one beat is called a whole note; one with duration
1/2 is called a half note; and so on. A note in Euterpea is the smallest
entity, besides a rest, that is actually a performable piece of music, and
its type is Music Pitch (other variations of this type will be introduced
in later chapters).

2. In Euterpea there are functions:

note :: Dur — Pitch — Music Pitch
rest :: Dur — Music Pitch

such that note d p is a note whose duration is d and pitch is p, and
rest d is a rest with duration d. For example, note (1/4) (A,4) is a
quarter note concert A.

3. In Euterpea the following infix operators combine smaller Music values
into larger ones:

(:+:) :: Music Pitch — Music Pitch — Music Pitch
(:=:) it Music Pitch — Music Pitch — Music Pitch

Intuitively:
e my +: mg is the music value that represents the playing of my
followed by meo.

e my :=: my is the music value that represents the playing of m;
and my simultaneously.

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL18

4. Finally, Eutperepa has a function trans :: Int — Pitch — Pitch such
that trans i p is a pitch that is i semitones (half steps, or steps on a
piano) higher than p.

Now for the example. Consider the simple melody:
note qn py :+: note gn py H: note qn ps
where ¢n is a quarter note:
gn =1/4
Suppose one wishes to harmonize each note with a note played a minor third
lower. In music theory, a minor third corresponds to three semitones, and
thus the harmonized melody can be written as:
mel = (note qn py :=: note gn (trans (—3) p1)) =+
(note gn po :=: note qn (trans (—3) p2)) :+:
(note gqn p3 :=: note qn (trans (—3) p3))

Note as in the previous example a repeating pattern of operations—
namely, the operations that harmonize a single note with a note three semi-
tones below it. As before, to abstract a sequence of operations such as this,
a function can be defined that takes the “variable quantities”—in this case
the pitch—as arguments. One could take this one step further, however, by
noting that in some other context one might wish to vary the duration. Rec-
ognizing this is to anticipate the need for abstraction. Calling this function
hNote (for “harmonize note”) one can then write:

hNote :: Dur — Pitch — Music Pitch
hNote d p = note d p :=: note d (trans (—3) p)

There are three instances of the pattern in mel, each of which can be replaced
with an application of hNote. This leads to:

mel :: Music Pitch

mel = hNote gn p; :+: hiNote qn po :+: hNote gn ps
Again using the idea of unfolding described earlier in this chapter, it is easy
to prove that this definition is equivalent to the previous one.

As with areaF', this use of hiNote is an example of functional abstraction.
In a sense, functional abstraction can be seen as a generalization of naming.
That is, area 1 is just a name for pi * ry xx 2, hNote d p; is just a name
for note d p :=: note d (trans (—3) p1), and so on. Stated another way,
named quantities such as area, pi, concertA, and a440 defined earlier can
be thought of as functions with no arguments.

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL19

Of course, the definition of h«Note could also be hidden within mel using
a let expression as was done in the previous example:

mel :: Music Pitch
mel = let hNote d p = note d p :=: note d (trans (—3) p)
in hNote gn p1 +: hNote qn py :+: hNote qn ps

1.7.3 Data Abstraction

The value of mel is the sequential composition of three harmonized notes.
But what if in another situation one must compose together five harmonized
notes, or in other situations even more? In situations where the number of
values is uncertain, it is useful to represent them in a data structure. For the
example at hand, a good choice of data structure is a list, briefly introduced
earlier, that can have any length. The use of a data structure motivated by
the abstraction principle is one form of data abstraction.

Imagine now an entire list of pitches, whose length isn’t known at the
time the program is written. What now? It seems that a function is needed
to convert a list of pitches into a sequential composition of harmonized notes.
Before defining such a function, however, there is a bit more to say about
lists.

Earlier the example [C, Cs, Df | was given, a list of pitch classes whose
type is thus [PitchClass]. A list with no elements is—not surprisingly—
written [], and is called the empty list.

To add a single element z to the front of a list xs, one writes z : xs
in Haskell. (Note the naming convention used here; zs is the plural of z,
and should be read that way.) For example, C :[Cs, Df] is the same as
[C, Cs,Df]. In fact, this list is equivalent to C': (Cs: (Df :[])), which can
also be written C': Cs: Df :[] since the infix operator (:) is right associative.

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL?20

4 N

Details: In mathematics one rarely worries about whether the notation a +b+ ¢
stands for (a+b)+c (in which case + would be “left associative™) or a+ (b+c¢) (in
which case + would “right associative™). This is because in situations where the
parentheses are left out it's usually the case that the operator is mathematically
associative, meaning that it doesn't matter which interpretation is chosen. If the
interpretation does matter, mathematicians will include parentheses to make it
clear. Furthermore, in mathematics there is an implicit assumption that some
operators have higher precedence than others; for example, 2 X a+ b is interpreted
as (2 x a)+b, not 2 x (a+b).

In many programming languages, including Haskell, each operator is defined to
have a particular precedence level and to be left associative, right associative, or
to have no associativity at all. For arithmetic operators, mathematical convention
is usually followed; for example, 2 % a + b is interpreted as (2 x a) + b in Haskell.
The predefined list-forming operator (:) is defined to be right associative. Just as
in mathematics, this associativity can be overridden by using parentheses: thus
(a:b): cis a valid Haskell expression (assuming that it is well-typed; it must be
a list of lists), and is very different from a: b: c. A way to specify the precedence
and associativity of user-defined operators will be discussed in a later chapter.

- J

Returning now to the problem of defining a function (call it hList) to
turn a list of pitches into a sequential composition of harmonized notes, one
should first express what its type should be:

hList :: Dur — [Pitch] — Music Pitch

To define its proper behavior, it is helpful to consider, one by one, all possible
cases that could arise on the input. First off, the list could be empty, in which
case the sequential composition should be a Music Pitch value that has zero
duration. So:

hList d [] = rest 0

The other possibility is that the list isn’t empty—i.e. it contains at least
one element, say p, followed by the rest of the elements, say ps. In this
case the result should be the harmonization of p followed by the sequential
composition of the harmonization of ps. Thus:

hList d (p: ps) = hNote d p :+: hList d ps
Note that this part of the definition of hList is recursive—it refers to itself!
But the original problem—the harmonization of p: ps—has been reduced to

the harmonization of p (previously captured in the function hNote) and the
harmonization of ps (a slightly smaller problem than the original one).

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL21

Combining these two equations with the type signature yields the com-
plete definition of the function hList:

hList :: Dur — [Pitch] — Music Pitch
hList d [] = rest 0
hList d (p: ps) = hNote d p :+: hList d ps

Recursion is a powerful technique that will be used many times in this
textbook. It is also an example of a general problem-solving technique where
a large problem is broken down into several smaller but similar problems;
solving these smaller problems one-by-one leads to a solution to the larger
problem.

4 N\
Details: Although intuitive, this example highlights an important aspect of
Haskell: pattern matching. The left-hand sides of the equations contain pat-
terns such as [] and z:xzs. When a function is applied, these patterns are matched
against the argument values in a fairly intuitive way ([] only matches the empty
list, and p : ps will successfully match any list with at least one element, while
naming the first element p and the rest of the list ps). If the match succeeds,
the right-hand side is evaluated and returned as the result of the application. If
it fails, the next equation is tried, and if all equations fail, an error results. All of
the equations that define a particular function must appear together, one after the
other.

Defining functions by pattern matching is quite common in Haskell, and you should
eventually become familiar with the various kinds of patterns that are allowed; see

Appendix D for a concise summary.

- J

Given this definition of hList the definition of mel can be rewritten as:

mel = hList qn [p1, p2, p3]

One can prove that this definition is equivalent to the old via calculation:

mel = hlist qn [p1, p2, p3]

= hList qn (pr:p2:p3:[])

= hNote qn py :+: hList qn (p2: ps:[])

= hNote qn py :+: hNote qn pe :+: hList qn (ps:[])

= hNote qn p; +: hNote qn py +: hNote qn ps +: hList qn |[]
= hNote qn py :+: hNote qn po +: hNote qn ps :+: rest 0

The first step above is not really a calculation, but rather a rewriting of the

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL22

list syntax. The remaining calculations each represent an unfolding of hList.

Lists are perhaps the most commonly used data structure in Haskell,
and there is a rich library of functions that operate on them. In subse-
quent chapters lists will be used in a variety of interesting computer music
applications.

Exercise 1.4 Modify the definitions of hNote and hList so that they each
take an extra argument that specifies the interval of harmonization (rather
than being fixed at -3). Rewrite the definition of mel to take these changes
into account.

1.8 Haskell Equality vs. Euterpean Equality

The astute reader will have objected to the proof just completed, arguing
that the original version of mel:

hNote qn p1 - +: hNote gn ps :4: hiNote qn ps
is not the same as the terminus of the above proof:
hNote gn p1 :+: hlNote qn ps :+: hNote qn ps +: rest
Indeed, that reader would be right! As Haskell values, these expressions are

not equal, and if you printed each of them you would get different results.
So what happened? Did proof by calculation fail?

No, proof by calcultation did not fail, since, as just pointed out, as
Haskell values these two expressions are not the same, and proof by cal-
culation is based on the equality of Haskell values. The problem is that a
“deeper” notion of equivalence is needed, one based on the notion of musical
equality. Adding a rest of zero duration to the beginning or end of any piece
of music should not change what one hears, and therefore it seems that the
above two expressions are musically equivalent. But it is unreasonable to
expect Haskell to figure this out for the programmer!

As an analogy, consider the use of an ordered list to represent a set
(which is unordered). The Haskell values [z, 23] and |22, 21] are not equal,
yet in a program that “interprets” them as sets, they are equal.

The way this problem is approached in Euterpea is to formally define a
notion of musical interpretation, from which the notion musical equivalence
is defined. This leads to a kind of “algebra of music” that includes, among
others, the following axiom:

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL?23

Figure 1.1: Polyphonic vs. Contrapuntal Interpretation

m +:rest 0 = m
The operator (=) should be read, “is musically equivalent to.” With this

axiom it is easy to see that the original two expressions above are in fact
musically equivalent.

For a more extreme example of this idea, and to entice the reader to
learn more about musical equivalence in later chapters, note that mel, given
pitches p1 = Ef, po = F, p3 = G, and duration d = 1/4, generates the
harmonized melody shown in Figure 1.1. One can write this concretely in
Euterpea as:

mel; = (note (1/4) (Ef,4) :=: note (1/4) (C,4)) +:

(note (1/4) (F, 4):=:note (1/4) (D,4)) +:

(note (1/4) (G, 4) :=:note (1/4) (E,4))
The definition of mel; can then be seen as a polyphonic interpretation of the
musical phrase in Figure 1.1, where each pair of notes is seen as a harmonic
unit. In contrast, a contrapuntal interpretation sees two independent lines
of notes, in this case the line (Eb,F,G) and the line (C,D,E). In Euterpea
one can write this as:

mely = (note (1/4) (Ef,4) +: note (1/4) (F,4) +: note (1/4) (G,4))

(note (1/4) (C, 4) :+: note (1/4) (D,4) :+: note (1/4) (E,4))
mely and mely are clearly not equal as Haskell values. Yet if they are played,
they will sound the same—they are, in the sense described earlier, musically
equivalent. But proving these two phrases musically equivalent will require
far more than a simple axiom involving rest 0. In fact this can be done in
an elegant way, using the algebra of music developed in Chapter 11.

1.9 Code Reuse and Modularity

There doesn’t seem to be much repetition in the last definition of hList,
so perhaps the end of the abstraction process has been reached. In fact,
it’s worth considering how much progress has been made. The original

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL?24

definition:
mel = (note gqn py :=: note qn (trans (—3) p1)) :
(note gn po :=: note gn (trans (—3) p2)) :
(note gqn ps :=: note gn (trans (—3) p3))

+:
+:

was replaced with:
mel = hList qn [p1, p2, p3]

But additionally, definitions for the auxiliary functions hNote and hList were
introduced:

hNote :: Dur — Pitch — Music Pitch
hNote d p = note d p :=: note d (trans (—3) p)
hList it Dur — [Pitch] — Music Pitch
hList d [] = rest 0

hList d (p: ps) = hNote d p :+: hList d ps

In terms of code size, the final program is actually larger than the original!
So has the program improved in any way?

Things have certainly gotten better from the standpoint of “removing re-
peating patterns,” and one could argue that the resulting program therefore
is easier to understand. But there is more. Now that auxiliary functions
such as hNote and hList have been defined, one can reuse them in other
contexts. Being able to reuse code is also called modularity, since the reused
components are like little modules, or bricks, that can form the foundation of
many applications.® In a later chapter, techniques will be introduced—most
notably, higher-order functions and polymorphism—for improving the mod-
ularity of this example even more, and substantially increasing the ability
to reuse code.

1.10 [Advanced]| Programming with Numbers

In computer music programming, it is often necessary to program with num-
bers. For example, it is often convenient to represent pitch on a simple ab-
solute scale using integer values. And when computing with analog signals
that represent a particular sound wave, it is necessary to use floating point
numbers as an approximation to the reals. So it is a good idea to under-
stand precisely how numbers are represented inside a computer, and within
a particular language such as Haskell.

6“Code reuse” and “modularity” are important software engineering principles.

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL?25

In mathematics there are many different kinds of number systems. For
example, there are integers, natural numbers (i.e. non-negative integers),
real numbers, rational numbers, and complex numbers. These number sys-
tems possess many useful properties, such as the fact that multiplication and
addition are commutative, and that multiplication distributes over addition.
You have undoubtedly learned many of these properties in your studies, and
have used them often in algebra, geometry, trigonometry, physics, and so
on.

Unfortunately, each of these number systems places great demands on
computer systems. In particular, a number can in general require an arbi-
trary amount of memory to represent it. Clearly, for example, an irrational
number such as 7 cannot be represented exactly; the best one can do is
approximate it, or possibly write a program that computes it to whatever
(finite) precision is needed in a given application. But even integers (and
therefore rational numbers) present problems, since any given integer can
be arbitrarily large.

Most programming languages do not deal with these problems very well.
In fact, most programming languages do not have exact forms of many of
these number systems. Haskell does slightly better than most, in that it has
exact forms of integers (the type Integer) as well as rational numbers (the
type Rational, defined in the Ratio Library). But in Haskell and most other
languages there is no exact form of real numbers, for example, which are in-
stead approximated by floating-point numbers with either single-word preci-
sion (Float in Haskell) or double-word precision (Double). What’s worse, the
behavior of arithmetic operations on floating-point numbers can vary some-
what depending on what kind of computer is being used, although hardware
standardization in recent years has reduced the degree of this problem.

The bottom line is that, as simple as they may seem, great care must be
taken when programming with numbers. Many computer errors, some quite
serious and renowned, were rooted in numerical incongruities. The field of
mathematics known as numerical analysis is concerned precisely with these
problems, and programming with floating-point numbers in sophisticated
applications often requires a good understanding of numerical analysis to
devise proper algorithms and write correct programs.

As a simple example of this problem, consider the distributive law, ex-
pressed here as a calculation in Haskell, and used earlier in this chapter in
calculations involving the function simple:

ax(b+c)=axb+axc

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL?26

For most floating-point numbers, this law is perfectly valid. For example,
in the GHC implementation of Haskell, the expressions pi * (3 + 4) :: Float
and pi x 3+ pi x4 :: Float both yield the same result: 21.99115. But funny
things can happen when the magnitude of b+ ¢ differs significantly from the
magnitude of either b or c. For example, the following two calculations are
from GHC:

5% (—0.123456 + 0.123457) 2 Float = 4.991889% — 6
5% (—0.123456) + 5 (0.123457) :: Float = 5.0067% — 6

Although the error here is small, its very existence is worrisome, and in
certain situations it could be disastrous. The precise behavior of floating-
point numbers will not be discussed further in this textbook. Just remember
that they are approximations to the real numbers. If real-number accuracy
is important to your application, further study of the nature of floating-point
numbers is probably warranted.

On the other hand, the distributive law (and many others) is valid in
Haskell for the exact data types Integer and Ratio Integer (i.e. rationals).
However, another problem arises: although the representation of an Integer
in Haskell is not normally something to be concerned about, it should be
clear that the representation must be allowed to grow to an arbitrary size.
For example, Haskell has no problem with the following number:

veryBigNumber :: Integer
veryBigNumber = 43208345720348593219876512372134059

and such numbers can be added, multiplied, etc. without any loss of ac-
curacy. However, such numbers cannot fit into a single word of computer
memory, most of which are limited to 32 bits. Worse, since the computer
system does not know ahead of time exactly how many words will be re-
quired, it must devise a dynamic scheme to allow just the right number
of words to be used in each case. The overhead of implementing this idea
unfortunately causes programs to run slower.

For this reason, Haskell (and most other languages) provides another
integer data type called Int that has maximum and minimum values that
depend on the word-size of the particular computer being used. In other
words, every value of type Int fits into one word of memory, and the primitive
machine instructions for binary numbers can be used to manipulate them
efficiently.” Unfortunately, this means that overflow or underflow errors

"The Haskell Report requires that every implementation support Ints at least in the
range —229 to 229 — 1, inclusive. The GHC implementation running on a Pentium proces-
sor, for example, supports the range —23! to 23! — 1.

CHAPTER 1. OVERVIEW OF COMPUTER MUSIC, EUTERPEA, AND HASKELL27

could occur when an Int value exceeds either the maximum or minimum
values. However, most implementations of Haskell (as well as most other
languages) do not tell you when this happens. For example, in GHC, the
following Int value:

1 Int

i = 1234567890
works just fine, but if you multiply it by two, GHC returns the value
—1825831516! This is because twice ¢ exceeds the maximum allowed value,
so the resulting bits become nonsensical,® and are interpreted in this case
as a negative number of the given magnitude.

This is alarming! Indeed, why should anyone ever use Int when Integer is
available? The answer, as implied earlier, is efficiency, but clearly care should
be taken when making this choice. If you are indexing into a list, for example,
and you are confident that you are not performing index calculations that
might result in the above kind of error, then Int should work just fine,
since a list longer than 23!
are calculating the number of microseconds in some large time interval, or
counting the number of people living on earth, then Integer would most
likely be a better choice. Choose your number data types wisely!

will not fit into memory anyway! But if you

In this textbook the numeric data types Integer, Int, Float, Double,
Rational, and Complex will be used for a variety of different applications; for
a discussion of the other number types, consult the Haskell Report. As these
data types are used, there will be little discussion about their properties—
this is not, after all, a book on numerical analysis—but a warning will be
cast whenever reasoning about, for example, floating-point numbers, in a
way that might not be technically sound.

8 Actually, these bits are perfectly sensible in the following way: the 32-bit bi-
nary representation of ¢ is 01001001100101100000001011010010, and twice that is
10010011001011000000010110100100. But the latter number is seen as negative be-
cause the 32nd bit (the highest-order bit on the CPU on which this was run) is a one,
which means it is a negative number in “twos-complement” representation. The twos-
complement of this number is in turn 01101100110100111111101001011100, whose decimal
representation is 1825831516.

Chapter 2

Simple Music

module Futerpea. Music. Note. Music where
infixr 5:4:, :=:

The previous chapters introduced some of the fundamental ideas of func-
tional programming in Haskell. Also introduced were several of Euterpea’s
functions and operators, such as note, rest, (:+:), (:=:), and trans. This
chapter will reveal the actual definitions of these functions and operators,
thus exposing Euterpea’s underlying structure and overall design at the note
level. In addition, a number of other musical ideas will be developed, and
in the process more Haskell features will be introduced as well.

2.1 Preliminaries

Sometimes it is useful to use a built-in Haskell data type to directly represent
some concept of interest. For example, one may wish to use Int to represent
octaves, where by convention octave 4 corresponds to the octave containing
middle C on the piano. One can express this in Haskell using a type synonym:

type Octave = Int

A type synonym does not create a new data type—it just gives a new name
to an existing type. Type synonyms can be defined not just for atomic
types such as Int, but also for structured types such as pairs. For example,
as discussed in the last chapter, in music theory a pitch is defined as a pair,
consisting of a pitch class and an octave. Assuming the existence of a data
type called PitchClass (which will be returned to shortly), one can write the
following type synonym:

28

CHAPTER 2. SIMPLE MUSIC 29

type Pitch = (PitchClass, Octave)

For example, concert A (i.e. A440) corresponds to the pitch (A,4), and
the lowest and highest notes on a piano correspond to (A,0) and (C,8),
respectively.

Another important musical concept is duration. Rather than use either
integers or floating-point numbers, Euterpea uses rational numbers to denote
duration:

type Dur = Rational

Rational is the data type of rational numbers expressed as ratios of Integers
in Haskell. The choice of Rational is somewhat subjective, but is justified
by three observations: (1) many durations are expressed as ratios in music
theory (5:4 rhythm, quarter notes, dotted notes, and so on), (2) Rational
numbers are exact (unlike floating point numbers), which is important in
many computer music applications, and (3) irrational durations are rarely
needed.

Rational numbers in Haskell are printed by GHC in the form n % d,
where n is the numerator, and d is the denominator. Even a whole number,
say the number 42, will print as 42 % 1 if it is a Rational number. To create
a Rational number in a program, however, once it is given the proper type,
one can use the normal division operator, as in the following definition of a
quarter note:

qn :: Dur
gn =1/4 - quarter note

So far so good. But what about PitchClass? One might try to use inte-
gers to represent pitch classes as well, but this is not very elegant—ideally
one would like to write something that looks more like the conventional pitch
class names C, Cf, Db, D, etc. The solution is to use an algebraic data type
in Haskell:

data PitchClass = Cff | Cf | C' | Dff | Cs | Df | Css | D | Eff | Ds
| Ef | Fff | Dss | E | Es | Ff | F | Gff | Ess | Fs
| Gf | Fss| G| Aff | Gs| Af | Gss | A | Bff | As
| Bf| Ass| B | Bs | Bss

CHAPTER 2. SIMPLE MUSIC 30

Details: All of the names to the right of the equal sign in a data declaration
are called constructors, and must be capitalized. In this way they are syntactically
distinguished from ordinary values. This distinction is useful since only constructors
can be used in the pattern matching that is part of a function definition, as will
be described shortly.

The PitchClass data type declaration essentially enumerates 35 pitch
class names (five for each of the note names A through G). Note that both
double-sharps and double-flats are included, resulting in many enharmonics
(i.e., two notes that “sound the same,” such as Gf and Ab).

Keep in mind that PitchClass is a completely new, user-defined data
type that is not equal to any other. This is what distinguishes a data
declaration from a type declaration. As another example of the use of a
data declaration to define a simple enumerated type, Haskell’s Boolean data
type, called Bool, is predefined in Haskell simply as:

data Bool = False | True

2.2 Notes, Music, and Polymorphism

One can of course define other data types for other purposes. For example,
one will want to define the notion of a note and a rest. Both of these can
be thought of as “primitive” musical values, and thus as a first attempt one
might write:

data Primitive = Note Dur Pitch
| Rest Dur

For example, Note gn a440 would be concert A played as a quarter note,
and Rest 1 is a whole-note rest.

This definition is not completely satisfactory, however, because one may
wish to attach other information to a note, such as its loudness, or some
other annotation or articulation. Furthermore, the pitch itself may actually
be a percussive sound, having no true pitch at all. To resolve this, Euterpea
uses an important concept in Haskell, namely polymorphism—the ability
to parameterize, or abstract, over types (poly means many and morphism
refers to the structure, or form, of objects). Primitive can be redefined as a
polymorphic data type as follows.

Instead of fixing the type of the pitch of a note, it is left unspecified

CHAPTER 2. SIMPLE MUSIC 31

through the use of a type variable:

data Primitive a = Note Dur a
| Rest Dur

Note that the type variable a is used as an argument to Primitive, and
then used in the body of the declaration—just like a variable in a function.
This version of Primitive is more general than the previous version—indeed,
note that Primitive Pitch is the same as (or, technically, is isomorphic to)
the previous version of Primitive. But additionally, Primitive is now more
flexible than the previous version, since, for example, one can add loudness
by pairing loudness with pitch, as in Primitive (Pitch, Loudness). Other
concrete instances of this idea will be introduced later.

Another way to interpret this data declaration is to say that for any type
a, this declaration declares the types of its constructors to be:

Note :: Dur — a — Primitive a
Rest :: Dur — Primitive a

Even though Note and Rest are called data constructors, they are still func-
tions, and they have a type. Since they both have type variables in their
type signatures, they are examples of polymorphic functions.

Note that one can think of polymorphism as applying the abstraction
principle at the type level—indeed it is often called type abstraction. Many
more examples of both polymorphic functions and polymorphic data types
will be explored in detail in Chapter 3.

So far Euterpea’s primitive notes and rests have been introuced—but
how does one combine many notes and rests into a larger composition? To
achieve this, Euterpea defines another polymorphic data type, perhaps the
most important data type used in this textbook, which defines the funda-
mental structure of a note-level musical entity:

data Music a =

Prim (Primitive a) -- primitive value
| Music a :+: Music a -- sequential composition
| Music a:=: Music a -- parallel composition

| Modify Control (Music a) -- modifier
Following the reasoning above, the types of these constructors are:
Prim :: Primitive a — Music a
(+:) = Music a — Music a — Music a
(:=:) : Music a — Music a — Music a
Modify :: Control — Music a — Music a

CHAPTER 2. SIMPLE MUSIC 32

These four constructors then are also polymorphic functions.

4 N

Details: Note the use of the infix constructors (:+:) and (:=:). Infix construc-
tors are just like infix operators in Haskell, but they must begin with a colon. This
syntactic distinction makes it clear when one is pattern matching, and is analogous
to the distinction between ordinary names (which must begin with a lower-case
character) and constructor names (which must begin with an upper-case charac-
ter).

The observant reader will also recall that at the very beginning of this chapter—
corresponding to the module containing all the code in this chapter—the following
line appeared:

infixr 5:4:, :=:

won

This is called a fixity declaration. The “r" after the word “infix" means that the
specified operators—in this case (:+:) and (:=:)—are to have right associativity,
and the “5" specifies their precedence level (these operators will bind more tightly

than an operator with a lower precedence).

- J

The Music data type declaration essentially says that a value of type
Music a has one of four possible forms:

e Prim p, where p is a primitive value of type Primitive a, for some
type a. For example:

a440m :: Music Pitch

a440m = Prim (Note qn a440)
is the musical value corresponding to a quarter-note rendition of con-
cert A.

e my :+: my is the sequential composition of m; and msg; i.e. m; and mo
are played in sequence.

e my :=:my is the parallel composition of my and my; i.e. m; and moy are
played simultaneously. The duration of the result is the duration of
the longer of m; and ms.

(Recall that these last two operators were introduced in the last chap-
ter. You can see now that they are actually constructors of an algebraic
data type.)

o Modify cntrl m is an “annotated” version of m in which the control
parameter cntrl specifies some way in which m is to be modified.

CHAPTER 2. SIMPLE MUSIC 33

Details: Note that Music a is defined in terms of Music a, and thus the data
type is said to be recursive (analogous to a recursive function). It is also often
called an inductive data type, since it is, in essence, an inductive definition of an
infinite number of values, each of which can be arbitrarily complex.

It is convenient to represent these musical ideas as a recursive datatype
because it allows one to not only construct musical values, but also take
them apart, analyze their structure, print them in a structure-preserving
way, transform them, interpret them for performance purposes, and so on.
Many examples of these kinds of processes will be seen in this textbook.

The Control data type is used by the Modify consructor to allow one
to annotate a Music value with a tempo change, a transposition, a phrase

attribute, a player name, or an instrument. This data type is unimportant
at the moment, but for completeness here is its full definition:

data Control =

Tempo Rational -- scale the tempo
| Transpose AbsPitch -- transposition
| Instrument InstrumentName -- instrument label
| Phrase [PhraseAttribute] -- phrase attributes
| Player PlayerName -- player label

type PlayerName = String

AbsPitch (“absolute pitch,” defined in Section 2.4) is just a type synonym
for Int. Instrument names are borrowed from the General MIDI standard,
and are captured as an algebraic data type in Figure 2.1. Phrase attributes
and the concept of a “player” are closely related, but a full explanation is
deferred until Chapter 8.

2.3 Convenient Auxiliary Functions

For convenience, and in anticipation of their frequent use, a number of func-
tions are defined in Euterpea to make it easier to write certain kinds of
musical values. For starters:

note :: Dur — a — Music a
note d p = Prim (Note d p)

rest ;2 Dur — Music a

data InstrumentName =

CHAPTER 2. SIMPLE MUSIC

34

AcousticGrandPiano | BrightAcousticPiano | ElectricGrandPiano

| HonkyTonkPiano
| Harpsichord

| Glockenspiel

| Marimba

| Dulcimer

| RockOrgan

| Accordion

| RhodesPiano

| Clavinet

| MusicBox

| Xylophone

| HammondOrgan
| ChurchOrgan

| Harmonica

| ChorusedPiano

| Celesta

| Vibraphone

| TubularBells

| PercussiveOrgan
| ReedOrgan

| TangoAccordion

| AcousticGuitarNylon | AcousticGuitarSteel | ElectricGuitarJazz
| ElectricGuitarClean | ElectricGuitarMuted | OverdrivenGuitar

| DistortionGuitar | GuitarHarmonics
| ElectricBassFingered | ElectricBassPicked
| SlapBass1 | SlapBass?2

| SynthBass2 | Violin

| Cello | Contrabass

| PizzicatoStrings | OrchestralHarp
| StringEnsemblel | StringEnsemble?
| SynthStrings2 | ChoirAahs

| SynthVoice | OrchestraHit

| Trombone | Tuba

| FrenchHorn | BrassSection

| SynthBrass2 | SopranoSaz

| TenorSax | BaritoneSax

| Bassoon | EnglishHorn

| Piccolo | Flute

| PanFlute | BlownBottle

| Whistle | Ocarina

| Lead2Sawtooth | Lead3Calliope

| Lead5Charang | Lead6Voice

| Lead8BassLead | Pad1NewAge

| Pad3Polysynth | PadjChoir

| Pad6Metallic | Pad7Halo

| FX1Train | FX2Soundtrack
| FX/Atmosphere | FX5Brightness
| FX7Echoes | FX8SciFi

| Banjo | Shamisen

| Kalimba | Bagpipe

| Shanai | TinkleBell

| SteelDrums | Woodblock

| MelodicDrum | SynthDrum

| GuitarFretNoise | BreathNoise

| Bird Tweet | TelephoneRing
| Applause | Gunshot

| Custom String

| AcousticBass
| FretlessBass

| SynthBass1

| Viola

| TremoloStrings
| Timpani

| SynthStrings1
| VoiceOohs

| Trumpet

| Muted Trumpet
| SynthBrass1

| AltoSaz

| Oboe

| Clarinet

| Recorder

| Shakuhachi

| Lead1Square

| Lead/ Chiff

| Lead7Fifths

| Pad2Warm

| Pad5Bowed

| Pad8Sweep

| FX3Crystal

| FX6Goblins

| Sitar

| Koto

| Fiddle

| Agogo

| TaikoDrum

| ReverseCymbal
| Seashore

| Helicopter

| Percussion

Figure 2.1: General MIDI Instrument Names

CHAPTER 2. SIMPLE MUSIC 35

rest d = Prim (Rest d)

tempo 22 Dur — Music a — Music a

tempo 1 m = Modify (Tempo 1) m

transpose :: AbsPitch — Music a — Music a
transpose i m = Modify (Transpose i) m

mstrument :» InstrumentName — Music a — Music a

instrument i m = Modify (Instrument i) m

phrase it [PhraseAttribute| — Music a — Music a
phrase pa m = Modify (Phrase pa) m

player . PlayerName — Music a — Music a
player pn m = Modify (Player pn) m

Note that each of these functions is poymorphic, a trait inherited from the
data types that it uses. Also recall that the first two of these functions were
used in an example in the last chapter.

One can also create simple names for familiar notes, durations, and rests,
as shown in Figures 2.2 and 2.3. Despite the large number of them, these
names are sufficiently “unusual” that name clashes are unlikely.

4 N\
Details: Figures 2.2 and 2.3 demonstrate that at the top level of a program,

more than one equation can be placed on one line, as long as they are separated
by a semicolon. This allows one to save vertical space on the page, and is useful
whenever each line is relatively short. The semicolon is not needed at the end of
a single equation, or at the end of the last equation on a line. This convenient
feature is part of Haskell's /ayout rule, and will be explained in more detail later.

More than one equation can also be placed on one line in a let expression, as
demonstrated below:

letz =1,y =2

inx+y

2.3.1 A Simple Example

As a simple example, suppose one wishes to generate a ii-V-I chord progres-
sion in a particular key. In music theory, such a chord progression begins
with a minor chord on the second degree of a major scale, followed by a
major chord on the fifth degree, and ending in a major chord on the first

Cﬁ) Cf’ C) CS) CSS) dﬁ) df’ d) ds) dss) eﬁ) ef’ 67 es? ess?ﬁf?ﬁ?f?
fs7fss7gﬁ.7gf7g7 gs7gss7 aﬁ? af? a7 as? ass? bﬁ? bf? b? bs? bss o

CHAPTER 2. SIMPLE MUSIC

Octave — Dur — Music Pitch

cff o d=note d (Cff,

¢ od=noted (C,
cssodznoted(Css
df o d = note d (Df,
ds o d = note d (Ds
eff od = note d (Ejj”,
e od=noted (E,
essodznoted(Ess
If od=noted (Ff
fs od=noted (Fs
alf od:noted(Gﬁ,
g od=noted (G,
gssodznoted(G’&‘s7
af od=note d (A
as o d = note d (As
bff od:noted(Bjj”,
b o d=noted (B,
bssodznoted(Bss

Figure 2.2: Convenient Note Names

0);cf od=mnoted (Cf, o)
0);es o d=mnoted (Cs, o)
)dﬁod—noted(Dﬁ, 0)
0);d od=mnoted (D, o)
0); dss o d = note d (Dss, 0)
o);ef od=noted (Ef, o)
0);es o d=noted (Es, o)
0); fff Od—noted(Fﬁ7 0)

, 0);f od=mnoted (F, o)
0);fss o d = note d (Fss 0)
0);9f od=mnoted (Gf, o)
0);9s o d=note d (Gs, o)
0); aﬁodznoted(Aﬁ, 0)
0);a od=mnoted (A, o)
, 0);ass o d = note d (Ass, 0)
0); bf o d = note d (Bf, o)
0);bs o d = note d (Bs, o)
0)

36

CHAPTER 2. SIMPLE MUSIC

bn, wn, hn, gn, en, sn, tn, sfn, dwn, dhn,
dqn, den, dsn, dtn, ddhn, ddgn, dden :: Dur
bnr, wnr, hnr, gnr, enr, snr, tnr, dwnr, dhnr,
dgnr, denr, dsnr, dtnr, ddhnr, ddgnr, ddenr :: Music Pitch

bn =2 bnr
wn = 1; wnr
hn =1/2; hnr
gn =1/4; qnr
en =1/8; enr
sn =1/16; snr
tn =1/32;tnr
sfn = 1/64; sfnr
dwn =3/2; dwnr
dhn = 3/4; dhnr
dgn =3/8; dqnr
den = 3/16; denr
dsn = 3/32;dsnr
dtn = 3/64; dtnr
ddhn =7/8; ddhnr
ddgn = 7/16; ddgnr
dden = 7/32; ddenr

= rest bn
= rest wn
= rest hn
= rest qn
= rest en
= rest sn
= rest tn
= rest sfn

= rest dwn
= rest dhn
= rest dqn
= rest den
= rest dsn
= rest ditn

= rest ddhn
= rest ddqn
= rest dden

-- brevis rest

-- whole note rest

-- half note rest

-- quarter note rest

-- eighth note rest

-- sixteenth note rest

-- thirty-second note rest
-- sixty-fourth note rest

-- dotted whole note rest

-- dotted half note rest

-- dotted quarter note rest

-- dotted eighth note rest

-- dotted sixteenth note rest

-- dotted thirty-second note rest

-- double-dotted half note rest
-- double-dotted quarter note rest
-- double-dotted eighth note rest

Figure 2.3: Convenient Duration and Rest Names

37

CHAPTER 2. SIMPLE MUSIC 38

degree. One can write this in Euterpea, using triads in the key of C major,
as follows:

t251 :: Music Pitch
t251 = let dMinor = d 4 wn :=: f 4 wn :=: a 4 wn
gMajor = g4 wn:=:b4 wn:=:d5 wn
cMajor = c4bn :=:edbn :=:g4bn
in dMinor +: gMajor +: cMajor

4 N

Details: Note that more than one equation is allowed in a let expression, just like
at the top level of a program. The first characters of each equation, however, must
line up vertically, and if an equation takes more than one line then the subsequent
lines must be to the right of the first characters. For example, this is legal:

let a = aLongName
+ anEvenLongerName
b =56
in ...

but neither of these are:

let a = aLongName
+ anFEvenLongerName
b =56
in ...
let a = aLongName
+ anFEvenLongerName
b =56

in ...

(The second line in the first example is too far to the left, as is the third line in
the second example.)

- /

CHAPTER 2. SIMPLE MUSIC 39

4 N

Details: Although this rule, called the /layout rule, may seem a bit ad hoc, it avoids
having to use special syntax to denote the end of one equation and the beginning
of the next (such as a semicolon), thus enhancing readability. In practice, use of
layout is rather intuitive. Just remember two things:

First, the first character following let (and a few other keywords that will be
introduced later) is what determines the starting column for the set of equations
being written. Thus one can begin the equations on the same line as the keyword,
the next line, or whatever.

Second, be sure that the starting column is further to the right than the start-
ing column associated with any immediately surrounding let clause (otherwise it
would be ambiguous). The “termination” of an equation happens when something
appears at or to the left of the starting column associated with that equation.

- J

In order to play this simple example, one can use Euterpea’s play func-
tion and simply type:
play t251
at the GHCi command line. Default instruments and tempos are used to

convert t251 into MIDI and then play the result through your computer’s
standard sound card.

Exercise 2.1 The above example is fairly concrete, in that, for one, it is
rooted in C major, and furthermore it has a fixed tempo. Define a function
twoFiveOne :: Pitch — Dur — Music Pitch such that twoFiveOne p d con-
structs a 1i-V-I chord progression starting on the pitch p (which is assumed
to be the second degree of the major scale on which the progression is being
constructed), where the duration of the first two chords is each d, and the
duration of the last chord is 2 * d.

To verify your code, prove by calculation that twoFiveOne (D,4) wn =
t251.

2.4 Absolute Pitches

Treating pitches simply as integers is useful in many settings, so Euterpea
uses a type synonym to define the concept of an “absolute pitch:”

type AbsPitch = Int

CHAPTER 2. SIMPLE MUSIC 40

The absolute pitch of a (relative) pitch can be defined mathematically as 12
times the octave, plus the index of the pitch class. One can express this in
Haskell as follows:

absPitch it Pitch — AbsPitch
absPitch (pc, oct) = 12 * oct + pcTolnt pc

Details: Note the use of pattern matching to match the argument of absPitch
to a pair.

pcTolnt is a function that converts a particular pitch class to an index,
easily but tediously expressed as shown in Figure 2.4. But there is a subtlety:
according to music theory convention, pitches are assigned integers in the
range 0 to 11, i.e. modulo 12, starting on pitch class C. In other words, the
index of Cis 0, Cb is 11, and Bf is 0. However, that would mean the absolute
pitch of (C,4), say, would be 48, whereas (Cf,4) would be 59. Somehow the
latter does not seem right—47 would be a more logical choice. Therefore
the definition in Figure 2.4 is written in such a way that the wrap-round
does not happen, i.e. numbers outside the range 0 to 11 are used. With this
definition, absPitch (Cf,4) yields 47, as desired.

CHAPTER 2. SIMPLE MUSIC 41

pcTolnt :: PitchClass — Int

pcTolnt Cff = —2;pcTolnt Dff = 0;pcTolnt Eff =2
pcTolnt Cf = —1;pcTolnt Df = 1;pcTolnt Ef =3
pcTolnt C =0; pcTolnt D =2;pcTolnt E =4
pcTolnt Cs =1; pcTolnt Ds = 3;pcTolnt Es =5
pcTolnt Css = 2; pcTolnt Dss = 4; pcTolnt Ess = 6

pcTolnt Fff =3; pcTolnt Gff = 5;pcTolnt Aff =7
pcTolnt Ff =4; pcTolnt Gf = 6;pcTolnt Af =8
pcTolnt F =5; pcTolnt G = T;pcTolnt A =9
pcTolnt Fs =6; pcTolnt Gs = 8;pcTolnt As = 10
pcTolnt Fss =7; pcTolnt Gss = 9; pcTolnt Ass = 11

pcTolnt Bff =9

pcTolnt Bf =10
pcTolnt B =11
pcTolnt Bs =12
pcTolnt Bss = 13

Figure 2.4: Converting Pitch Classes to Integers

4 N\
Details: The repetition of “pcTolnt” above can be avoided by using a Haskell

case expression, resulting in a more compact definition:

pcTolnt :: PitchClass — Int
pcTolnt pc = case pc of
Cff - -2,Cf - -1;C - 0; Cs —1; Css — 2;
Dff - 0; Df —1;, D —2; Ds—3; Dss— 4;
Eff - 2; Ef -3, E —4; Es —5; FEss — 6;
Fff —-3; Ff -4, F —5; Fs —6; Fss — T,
Gff =5 Gf—=6; G—=T7, Gs—8;, Gss—09;
Aff =7, Af -8 A —9; As — 10; Ass — 11;
Bff - 9; Bf —10; B — 11; Bs — 12; Bss — 13
As you can see, a case expression allows multiple pattern-matches on an expression
without using equations. Note that layout applies to the body of a case expression,
and can be overriden as before using a semicolon. (As in a function type signature,
the right-pointing arrow in a case expression must be typed as “->" on your
computer keyboard.)

The body of a case expression observes layout just as a let expression, including
the fact that semicolons can be used, as above, to place more than one pattern

match on the same line.

CHAPTER 2. SIMPLE MUSIC 42

Converting an absolute pitch to a pitch is a bit more tricky, because of
enharmonic equivalences. For example, the absolute pitch 15 might corre-
spond to either (Ds,1) or (Ef,1). Euterpea takes the approach of always
returning a sharp in such ambiguous cases:

pitch :: AbsPitch — Pitch
pitch ap =
let (oct,n) = divMod ap 12
in ((C,Cs,D,Ds,E,F,Fs,G,Gs, A, As, B! n, oct)

Details: (!!) is Haskell's zero-based list-indexing function; list !! n returns the
(n+ 1)th element in list. divMod z n returns a pair (g,), where ¢ is the integer
quotient of z divided by n, and 7 is the value of z modulo n.

Given pitch and absPitch, it is now easy to define a function trans that
transposes pitches:

trans :: Int — Pitch — Pitch
trans i p = pitch (absPitch p + 1)

With this definition, all of the operators and functions introduced in the
previous chapter have been covered.

Exercise 2.2 Show that abspitch (pitch ap) = ap, and, up to enharmonic
equivalences, pitch (abspitch p) = p.

Exercise 2.3 Show that trans i (trans j p) = trans (i +j) p.

Chapter 3

Polymorphic and
Higher-Order Functions

Several examples of polymorphic data types were introduced in the last
couple of chapters. In this chapter the focus is on polymorphic functions,
which are most commonly functions defined over polymorphic data types.

The already familiar list is the most common example of a polymorphic
data type, and it will be studied in depth in this chapter. Although lists
have no direct musical connection, they are perhaps the most commonly
used data type in Haskell, and have many applications in computer music
programming. But in addition the Music data type is polymorphic, and sev-
eral new functions that operate on it polymorphiccally will also be defined,

(A more detailed discussion of predefined polymorphic functions that
operate on lists can be found in Appendix A.)

This chapter also introduces higher-order functions, which are functions
that take one or more functions as arguments or return a function as a
result (functions can also be placed in data structures). Higher-order func-
tions permit the elegant and concise expression of many musical concepts.
Together with polymorphism, higher-order functions substantially increase
the programmer’s expressive power and ability to reuse code.

Both of these new ideas naturally follow the foundations that have al-
ready been established.

43

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 44

3.1 Polymorphic Types

In previous chapters, examples of lists containing several different kinds of
elements—integers, characters, pitch classes, and so on—were introduced,
and one can well imagine situations requiring lists of other element types.
Sometimes, however, it isn’t necessary to be so particular about the type of
the elements. For example, suppose one wishes to define a function length
that determines the number of elements in a list. It doesn’t really matter
whether the list contains integers, pitch classes, or even other lists—one can
imagine computing the length in exactly the same way in each case. The
obvious definition is:

length [] =0

length (x : xs) = 1 + length xs
This recursive definition is self-explanatory. One can read the equations as
saying: “The length of the empty list is 0, and the length of a list whose
first element is z and remainder is s is 1 plus the length of xs.”

But what should the type of length be? Intuitively, one would like to say
that, for any type a, the type of length is [a] — Integer. In mathematics
one might write:

length :: (V a) [a] — Integer
But in Haskell this is written simply as:
length :: [a] — Integer

In other words, the universal quantification of the type variable a is implicit.

Details: Generic names for types, such as a above, are called type variables, and
are uncapitalized to distinguish them from concrete types such as Integer.

So length can be applied to a list containing elements of any type. For
example:
length 1,2, 3] — 3
length [C, Cs, Df | =3
length [[1],1],]2,3,4]] = 3

Note that the type of the argument to length in the last example is
[[Integer]]; that is, a list of lists of integers.

Here are two other examples of polymorphic list functions, which happen

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 45

to be predefined in Haskell:

head ila]l = a
head (z:) = x
tail i a] = [a]

tail (—:xs) = zs

Details: The _ on the left-hand side of these equations is called a wildcard
pattern. It matches any value, and binds no variables. It is useful as a way of
documenting the fact that one does not care about the value in that part of the
pattern. Note that one could (perhaps should) have used a wildcard in place of
the variable z in the definition of length.

These two functions take the “head” and “tail,” respectively, of any
non-empty list. For example:

head [1,2, 3] =1
head [C, Cs,Df] = C
tail [1,2, 3] = [2,3]
tail [C, Cs, Df] = [Cs, Df]
Note that, for any non-empty list xs, head and tail obey the following law:

head s : tail s = xs

Functions such as length, head, and tail are said to be polymorphic.
Polymorphic functions arise naturally when defining functions on lists and
other polymorphic data types, including the Music data type defined in the
last chapter.

3.2 Abstraction Over Recursive Definitions

Given a list of pitches, suppose one wishes to convert each pitch into an
absolute pitch. One might write a function:

toAbsPitches it [Pitch] — [AbsPitch]
toAbsPitches [] =]
toAbsPitches (p : ps) = absPitch p : toAbsPitches ps

One might also want to convert a list of absolute pitches to a list of
pitches:

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 46

toPitches :: [AbsPitch] — [Pitch]
toPitches [] =]
toPitches (a: as) = pitch a: toPitches as

These two functions are different, but share something in common: there
is a repeating pattern of operations. But the pattern is not quite like any
of the examples studied earlier, and therefore it is unclear how to apply the
abstraction principle. What distinguishes this situation is that there is a
repeating pattern of recursion.

In discerning the nature of a repeating pattern, recall that it’s sometimes
helpful to first identify those things that are not repeating—i.e. those things
that are changing—since these will be the sources of parameterization: those
values that must be passed as arguments to the abstracted function. In
the case above, these changing values are the functions absPitch and pitch;
consider them instances of a new name, f. Rewriting either of the above
functions as a new function—call it map—that takes an extra argument f,
yields:

map f [] =]

map f (x:xzs) =f x:map [xs
This recursive pattern of operations is so common that map is predefined in
Haskell (and is why the name map was chosen in the first place).

With map, one can now redefine toAbsPitches and toPitches as:

toAbsPitches ::[Pitch| — [AbsPitch]
toAbsPitches ps = map absPitch ps

toPitches :: [AbsPitch| — [Pitch]
toPitches as = map pitch as

Note that these definitions are non-recursive; the common pattern of recur-
sion has been abstracted away and isolated in the definition of map. They
are also very succinct; so much so, that it seems unnecessary to create new
names for these functions at alll One of the powers of higher-order functions
is that they permit concise yet easy-to-understand definitions such as this,
and you will see many similar examples throughout the remainder of the
text.

A proof that the new versions of these two functions are equivalent to
the old ones can be done via calculation, but requires a proof technique
called induction, because of the recursive nature of the original function
definitions. Inductive proofs are discussed in detail, including for these two
examples, in Chapter 10.

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 47

3.2.1 Map is Polymorphic

What should the type of map be? Looking first at its use in toAbsPitches,
note that it takes the function absPitch :: Pitch — AbsPitch as its first
argument and a list of Pitchs as its second argument, returning a list of
AbsPitchs as its result. So its type must be:

map :: (Pitch — AbsPitch) — [Pitch] — [AbsPitch)

Yet a similar analysis of its use in toPitches reveals that map’s type should
be:

map :: (AbsPitch — Pitch) — [AbsPitch| — | Pitch)|
This apparent anomaly can be resolved by noting that map, like length, head,
and tail, does not really care what its list element types are, as long as its

functional argument can be applied to them. Indeed, map is polymorphic,
and its most general type is:
map :: (a — b) — [a] — [b]

This can be read: “map is a function that takes a function from any type a
to any type b, and a list of a’s, and returns a list of b’s.” The correspon-
dence between the two a’s and between the two b’s is important: a function
that converts Int’s to Char’s, for example, cannot be mapped over a list of
Char’s. It is easy to see that in the case of toAbsPitches, a is instantiated
as Pitch and b as AbsPitch, whereas in toPitches, a and b are instantiated
as AbsPitch and Pitch, respectively.

Note, by the way, that the above reasoning can be viewed as the abstrac-
tion principle at work at the type level.

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 48

/Details: In Chapter 1 it was mentioned that every expression in Haskell has an b
associated type. But with polymorphism, one might wonder if there is just one
type for every expression. For example, map could have any of these types:

(a —b) — [a] — [b]

(Integer — b) — [Integer] — [b]

(a — Float) — [a] — [Float]

(Char — Char) — [Char] — [Char]
and so on, depending on how it will be used. However, notice that the first of
these types is in some fundamental sense more general than the other three. In
fact, every expression in Haskell has a unique type known as its principal type:
the least general type that captures all valid uses of the expression. The first type
above is the principal type of map, since it captures all valid uses of map, yet is
less general than, for example, the type a — b — c¢. As another example, the
principal type of head is [a] — a; the types [b] — a, b — a, or even a are
too general, whereas something like [Integer] — Integer is too specific. (The
existence of unique principal types is the hallmark feature of the Hindley-Milner
type system [Hin69, Mil78] that forms the basis of the type systems of Haskell,

ML [MTH90] and several other functional languages [Hud89].)
- /

3.2.2 Using map

For a musical example involving the use of map, consider the task of gener-
ating a six-note whole-tone scale starting at a given pitch:!

wts i Pitch — [Music Pitch]

wts p = let f ap = note gn (pitch (absPitch p + ap))

in map f [0,2,4,6,8]

For example:

wts a440

= [note qn (A,4), note qn (B,4), note gn (C#,4),

note qn (D#,4), note qn (F',4), note gn (G,4)]

[To do: Add exercises involving map. |

LA whole-tone scale is a sequence of six ascending notes, with each adjacent pair of
notes separated by two semitones, i.e. a whole note.

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 49

3.3 Append

Consider now the problem of concatenating or appending two lists together;
that is, creating a third list that consists of all of the elements from the first
list followed by all of the elements of the second. Once again the type of
list elements does not matter, so one can define this as a polymorphic infix
operator (+):
(+) = [a] = [a] = [a]
For example, here are two uses of (+) on different types:
[1,2,3] + [4,5,6] = [1,2,3,4,5,6]
[C,E, G|+ [D,F, Al = [C,E,G,D,F,A]
As usual, one can approach this problem by considering the various
possibilities that could arise as input. But in the case of (+-) there are two
inputs—so which should be considered first? In general this is not an easy
question to answer, so one could just try the first list first: it could be empty,
or non-empty. If it is empty the answer is easy:
[J 4 ys =ys

and if it is not empty the answer is also straightforward:
(z:xs) H ys =z : (zs H ys)

Note the recursive use of (+). The full definition is thus:
(+) i [a] = [a] = [a]
[] Hys =ys
(z:28) H ys =z : (zs H ys)

/ N

Details: Note that an infix operator can be defined just as any other function,
including pattern-matching, except that on the left-hand-side it is written using
its infix syntax.

Also be aware that this textbook takes liberty in typesetting by displaying the
append operator as . When you type your code, however, you will need to write
++. Recall that infix operators in Haskell must not contain any numbers or letters
of the alphabet, and also must not begin with a colon (because those are reserved

to be infix constructors).

- /

If one were to have considered instead the second list first, then the first
equation would still be easy:

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 50

zs 4[] = ws
but the second is not so obvious:
zs H (y:ys) =77
So it seems that the right choice was made to begin with.

Like map, the concatenation operator (H+-) is used so often that it is
predefined in Haskell.

3.3.1 [Advanced]| The Efficiency and Fixity of Append

In Chapter 10 the following simple property about (+) will be proved:
(zs H ys) H zs = zs + (ys H 29)
That is, (4) is associative.

But what about the efficiency of the left-hand and right-hand sides of
this equation? It is easy to see via calculation that appending two lists
together takes a number of steps proportional to the length of the first list
(indeed the second list is not evaluated at all). For example:

[1,2,3] H s

= 1:([2,3] +# as)

=1:2:([3] # xs)

=1:2:3:([] H zs)

=1:2:3:zs
Therefore the evaluation of zs H (ys H zs) takes a number of steps propor-
tional to the length of zs plus the length of ys. But what about (zs + ys) H
287 The leftmost append will take a number of steps proportional to the
length of zs, but then the rightmost append will require a number of steps
proportional to the length of zs plus the length of ys, for a total cost of:

2 x length xs + length ys

Thus zs + (ys H zs) is more efficient than (zs + ys) H zs. This is why the
Standard Prelude defines the fixity of (4) as:

infixr 5 -+

In other words, if you just write xs H+ ys -+ zs, you will get the most efficient
association, namely the right association zs H (ys H- zs). In the next section
a more dramatic example of this property will be introduced.

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 51

3.4 Fold

Suppose one wishes to take a list of notes (each of type Music a) and convert
them into a line, or melody. One can define a recursive function to do this:

line i [Music a] — Music a

line [] = rest 0

line (m : ms) = m +: line ms
Note that this function is polymorphic—the first example so far, in fact, of
a polymorphic function involving the Music data type.

One might also wish to have a function chord that operates in an anal-

ogous way, but using (:=:) instead of (:+:):

chord it [Music a] — Music a

chord [] = rest 0

chord (m : ms) = m :=: chord ms
This function is also polymorphic.

[To do: Consider alternative to maxzPitch, since it is more properly
defined with fold1.]

In a completely different context one might wish to compute the highest
pitch in a list of pitches, which one might capture in the following way:

mazxPitch :: [Pitch] — Pitch
maxPitch [] = pitch O
maxPitch (p: ps) = p !l maxPitch ps

where (1!!) is defined as:

p1 M po = if absPitch p1 > absPitch py then p; else py

Details: An expression if pred then cons else alt is called a conditional expres-
sion. If pred (called the predicate) is true, then cons (called the consequence) is
the result; if pred is false, then alt (called the alternative) is the result.

Once again this is a situation where several definitions share something
in common: a repeating recursive pattern. Using the process used earlier to
discover map, one first identifies those things that are changing. There are
two situations: the rest 0 and pitch 0 values (for which the generic name
init, for “initial value,” will be used), and the (:+:), (:=:), and (!!!) operators
(for which the generic name op, for “operator,” will be used). Now rewriting

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 52

any of the above three functions as a new function—call it fold—that takes
extra arguments op and init, one arrives at:>

fold op init [] = init

fold op init (x :xs) = x ‘op* fold op init s

Details: Any normal binary function name can be used as an infix operator by
enclosing it in backquotes; = ‘f y is equivalent to f = y. Using infix application
here for op better reflects the structure of the repeating pattern that is being
abstracted, but could also have been written op z (fold op init zs).

With this definition of fold one can now rewrite the definitions of line,
chord, and maxPitch as:

line, chord :: [Music a] — Music a
line ms = fold (:+:) (rest 0) ms
chord ms = fold (:=:) (rest 0) ms

maxPitch ::[Pitch] — Pitch
mazxPitch ps = fold (') (pitch 0) ps

Details: Just as one can turn a function into an operator by enclosing it in
backquotes, one can turn an operator into a function by enclosing it in parentheses.
This is required in order to pass an operator as a value to another function, as
in the examples above. (If one wrote fold ! 0 ps instead of fold (I!) 0 ps it
would look like one were trying to compare fold to 0 ps, which is nonsensical and
ill-typed.)

o J

In Chapter 10, induction is used to prove that these new definitions are
equivalent to the old ones.

fold, like map, is a highly useful—reusable—function, as will be seen
through several other examples later in the text. Indeed, it too is polymor-
phic, for note that it does not depend on the type of the list elements. Its
most general type—somewhat trickier than that for map—is:

2The use of the name “fold” for this function is historical, and has nothing to do with
the use of “fold” and “unfold” in Chapter 1 to describe steps in a calculation.

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 53

fold::(a —b—0)—b—[a] = b
This allows one to use fold whenever one needs to “collapse” a list of elements
using a binary (i.e. two-argument) operator.
As a final example, recall the definition of hList from Chapter 1:

hList :: Dur — [Pitch] — Music Pitch
hList d [] = rest 0
hList d (p: ps) = hNote d p :+: hList d ps
A little thought should convince the reader that this can be rewritten as:
hList d ps =let f p = hNote d p
in line (map f ps)
One could argue that this is more modular, since it avoids explicit recursion,

and is instead built up from smaller building blocks, namely line (which uses
fold) and map.

3.4.1 Haskell’s Folds

Haskell actually defines two versions of fold in the Standard Prelude. The
first is called foldr (“fold-from-the-right”) whose definition is the same as
that of fold given earlier:

foldr t(a—=b—=>b)—=b—[a] =D

foldr op init [] = init

foldr op init (z : zs) = z ‘op* foldr op init xs
A good way to think about foldr is that it replaces all occurrences of the
list operator (:) with its first argument (a function), and replaces [] with its
second argument. In other words:

foldr op init (x1:29:...:2n:[])

= 1 ‘op* (w2 ‘op* (...(zn ‘op* init)...))
This might help in better understanding the type of foldr, and also explains
its name: the list is “folded from the right.” Stated another way, for any
list zs, the following always holds:*

foldr (:) [] zs = ws
Haskell’s second version of fold is called foldl:
foldl 2(b—=a—b)—b—[a] =D
foldl op init [] = init
foldl op init (x : xs) = foldl op (init ‘op‘ x) xs

3This will be formally proved in Chapter 10.

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 54

A good way to think about foldl is to imagine “folding the list from the
left:”

foldl op init (z; : a9 :...:2n:[])
= (...((init ‘op‘ 1) ‘op‘ 12)...) ‘op‘ N

3.4.2 [Advanced] Why Two Folds?

Note that if one had used foldl instead of foldr in the definitions given earlier
then not much would change; foldr and foldl would give the same result.
Indeed, judging from their types, it looks like the only difference between
foldr and foldl is that the operator takes its arguments in a different order.

So why does Haskell define two versions of fold? It turns out that there
are situations where using one is more efficient, and possibly “more defined,”
than the other (that is, the function terminates on more values of its input
domain) .

Probably the simplest example of this is a generalization of the asso-
ciativity of (+-) discussed in the last section. Suppose that one wishes to
collapse a list of lists into one list. The Standard Prelude defines the poly-
morphic function concat for this purpose:

concat ::[[a]] — [a]
concat xss = foldr (+) [] wss

For example:

concat [[1],[3,4],1],[5,6]]

= [1,3,4,5,6]
More importantly, from the earlier discussion it should be clear that this
property holds:

concat [xs1, 182, ..., TSN
= foldr () [] [zs1, 282, ..., zsN]
= 151 H (252 H (...(zn H[]))...)

The total cost of this computation is proportional to the sum of the lengths
of all of the lists. If each list has the same length len, and there are n lists,
then this cost is (n — 1) * len.

On the other hand, if one had defined concat this way:
slowConcat xss = foldl (+) [] wss
then:

slowConcat [xs1, 152, ..., xsn]

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 55

= foldl () [] [zs1, zs2, ..., z5N]

If each list has the same length len, then the cost of this computation will
be:

len 4 (len 4 len) + (len + len + len) + ... + (n — 1) x len
=nx(n—1)x*len/2
which is considerably worse than (n — 1) % len. Thus the choice of foldr in
the definition of concat is quite important.

Similar examples can be given to demonstrate that foldl is sometimes
more efficient than foldr. On the other hand, in many cases the choice does
not matter at all (consider, for example, (+)). The moral of all this is that
care must be taken in the choice between foldr and foldl if efficiency is a
concern.

3.4.3 Fold for Non-empty Lists

In certain contexts it may be understood that the functions line and chord
should not be applied to an empty list. For such situations the Standard
Prelude provides functions foldri and foldl!, which return an error if applied
to an empty list. And thus one may desire to define versions of line and
chord that adopt this behavior:

linel, chordl :: [Music a] — Music a
linel ms = foldrl (:+:) ms
chordl ms = foldrl (:=:) ms

Note that foldr! and foldll do not take an init argument.

In the case of mazPitch one could go a step further and say that the
previous definition is in fact flawed, for who is to say what the maximum
pitch of an empty list is? The choice of 0 was indeed arbitrary, and in a
way it is nonsensical—how can 0 be the maximum if it is not even in the
list? In such situations one might wish to define only one function, and to
have that function return an error when presented with an empty list. For
consistency with line and chord, however, that function is defined here with
a new name:

maxPitchl ::[Pitch] — Pitch
maxPitchl ps = foldr1 () ps

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 56

3.5 [Advanced] A Final Example: Reverse

As a final example of a useful list function, consider the problem of reversing
a list, which will be captured in a function called reverse. This could be use-
ful, for example, when constructing the retrograde of a musical passage, i.e.
the music as if it were played backwards. For example, reverse [C, Cs, Df |
is [Df, Cs, C].
Thus reverse takes a single list argument, whose possibilities are the

normal ones for a list: it is either empty, or it is not. And thus:

reverse wla] = [al

reverse |] =]

reverse (z : xs) = reverse xs + [z]

This, in fact, is a perfectly good definition for reverse—it is certainly clear—
except for one small problem: it is terribly inefficient! To see why, first recall
that the number of steps needed to compute zs + ys is proportional to the
length of xs. Now suppose that the list argument to reverse has length n.
The recursive call to reverse will return a list of length n — 1, which is the
first argument to (). Thus the cost to reverse a list of length of n will be
proportional to n — 1 plus the cost to reverse a list of length n — 1. So the
total cost is proportional to (n —1) 4+ (n—2) 4+ -+ 1 =n(n — 1)/2, which
in turn is proportional to the square of n.

Can one do better than this? In fact, yes.

There is another algorithm for reversing a list, which can be described
intuitively as follows: take the first element, and put it at the front of an
empty auxiliary list; then take the next element and add it to the front of the
auxiliary list (thus the auxiliary list now consists of the first two elements
in the original list, but in reverse order); then do this again and again until
the end of the original list is reached. At that point the auxiliary list will
be the reverse of the original one.

This algorithm can be expressed recursively, but the auxiliary list implies
that one needs a function that takes two arguments—the original list and the
auxiliary one—yet reverse only takes one. This can be solved by creating
an auxiliary function rew:

reverse xs = let rev acc [] = acc
rev acc (z:xs) = rev (x : acc) xs
in rev [] zs

The auxiliary list is the first argument to rev, and is called acc since it

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 57

behaves as an “accumulator” of the intermediate results. Note how it is
returned as the final result once the end of the original list is reached.

A little thought should convince the reader that this function does not
have the quadratic (n?) behavior of the first algorithm, and indeed can be
shown to execute a number of steps that is directly proportional to the
length of the list, which one can hardly expect to improve upon.

But now, compare the definition of rev with the definition of foldl:

foldl op init [] = init

foldl op init (x : zs) = foldl op (init ‘op‘ x) xs
They are somewhat similar. In fact, suppose one were to slightly rewrite
rev, yielding:

rev op acc] = acc

rev op acc (z: xs) = rev op (acc ‘op* x) s
Now rev looks strongly like foldl, and the question becomes whether or not

there is a function that can be substituted for op that would make the latter
definition of rev equivalent to the former one. Indeed there is:

revOpab=">0:a
For note that:

acc ‘revOp‘
= revOp acc ¢
= 1 :acc

So reverse can be rewritten as:

reverse zs = let rev op acc [] = acc
rev op acc (z :xs) = rev op (acc ‘op‘ x) s
in rev revOp [] s

which is the same as:
reverse xs = foldl revOp [] zs

If all of this seems like magic, well, you are starting to see the beauty of
functional programming!

3.6 Currying

One can improve further upon some of the definitions given in this chapter
using a technique called currying simplification. To understand this idea,
first look closer at the notation used to write function applications, such as

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 58

simple x y z. Although, as noted earlier, this is similar to the mathematical
notation simple(x,y, z), in fact there is an important difference, namely that
simple x y z is actually shorthand for (((simple z) y) z). In other words,
function application is left associative, taking one argument at a time.

Now look at the expression (((simple z) y) z) a bit closer: there is an
application of simple to z, the result of which is applied to y; so (simple x)
must be a function! The result of this application, ((simple x) y), is then
applied to z, so ((simple x) y) must also be a function!

Since each of these intermediate applications yields a function, it seems
perfectly reasonable to define a function such as:

multSumByFive = simple 5

What is simple 57 From the above argument it is clear that it must be a
function. And from the definition of simple in Section 1 one might guess that
this function takes two arguments, and returns 5 times their sum. Indeed,
one can calculate this result as follows:

multSumByFive a b
= (simple 5) a b
= simple 5 a b
=5x%(a+b)

The intermediate step with parentheses is included just for clarity. This
method of applying functions to one argument at a time, yielding interme-
diate functions along the way, is called currying, after the logician Haskell
B. Curry who popularized the idea.* It is helpful to look at the types of the
intermediate functions as arguments are applied:

simple :: Float — Float — Float — Float
stmple 5 :: Float — Float — Float

simple 5 a :: Float — Float

stmple 5 a b :: Float

For a musical example of this idea, recall the function note :: Dur —
Pitch — Music Pitch. So note gn is a function that, given a pitch, yields a
quarter note rendition of that pitch. A common use of this idea is simplifying
something like:

note qn py : note qn ps H: ... 4 note qn pn

to:

“It was actually Schonfinkel who first called attention to this idea [Sch24], but the word
“schonfinkelling” is rather a mouthful!

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 59

line (map (note qn) [p1, p2, ..., pn))
Indeed, this idea is used extentively in the larger example in the next chapter.

3.6.1 Currying Simplification

One can also use currying to improve some of the previous function defini-
tions as follows. Suppose that the expressions f = and g x are the same,
for all values of z. Then it seems clear that the functions f and ¢ are
equivalent.” So, if one wishes to define f in terms of g, instead of writing:

fe=ygzx
one could instead simply write:

f=y

One can Apply this reasoning to the definitions of line and chord from

Section 3.4:

line ms = fold (:+:) (rest 0) ms

chord ms = fold (:=:) (rest 0) ms
Since function application is left associative, one can rewrite these as:

line ms = (fold (:+:) (rest 0)) ms
chord ms = (fold (:=:) (rest 0)) ms

But now applying the same reasoning here as was used for f and g above
means that one can write these simply as:

line = fold (:+:) (rest 0)
chord = fold (:=:) (rest 0)
Similarly, the definitions of toAbsPitches and toPitches from Section 3.2:

toAbsPitches ps = map absPitch ps
toPitches as = map pitch as

can be rewritten as:
toAbsPitches = map absPitch
toPitches = map pitch
Furthermore, the definition hList, most recently defined as:

hList d ps =let f p = hNote d p
in line (map f ps)

can be rewritten as:

®In mathematics, one would say that the two functions are extensionally equivalent.

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 60

hList d ps = let f = hNote d
in line (map f ps)
and since the definition of f is now so simple, one might as well in-line it:
hList d ps = line (map (hNote d) ps)

This kind of simplification will be referred to as “currying simplification”

or just “currying.”®

Details: Some care should be taken when using this simplification idea. In
particular, note that an equation such as f z = g = y x cannot be simplified
to f = g z y, since then the remaining z on the right-hand side would become
undefined!

3.6.2 [Advanced] Simplification of reverse

Here is a more interesting example, in which currying simplification is used
three times. Recall from Section 3.5 the definition of reverse using foldl:

reverse xs = let revOp acc x = x : acc
in foldl revOp [] s

Using the polymorphic function flip which is defined in the Standard Prelude
as:

flip 2(a—b—c¢)—=(b—a—c)
fipfry=fyz
it should be clear that revOp can be rewritten as:
revOp acc x = flip (:) acc x
But now currying simplification can be used twice to reveal that:
revOp = flip (3)
This, along with a third use of currying, allows one to rewrite the definition
of reverse simply as:

reverse = foldl (flip (:)) []
This is in fact the way reverse is defined in the Standard Prelude.

Exercise 3.1 Show that flip (flip f) is the same as f.

5In the Lambda Calculus this is called “eta contraction.”

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 61

Exercise 3.2 What is the type of ys in:
zs = [1,2,3] :: [Integer]
ys = map (+) zs

Exercise 3.3 Define a function applyFach that, given a list of functions,
applies each to some given value. For example:
applyEach [simple 2 2, (+3)] 5 = [14, 8]

where simple is as defined in Chapter 1.

Exercise 3.4 Define a function applyAll that, given a list of functions
[fi, f2y ..., fn] and a value v, returns the result fi (f2 (...(fn v)...)). For exam-
ple:

applyAll [simple 2 2, (4+3)] 5 = 20

Exercise 3.5 Recall the discussion about the efficiency of (+) and concat
in Chapter 3. Which of the following functions is more efficient, and why?

appendr, appendl :: [[a]] — [a]
appendr = foldr (flip (+)) []
appendl = foldl (flip (+)) []

3.7 Errors

The last section suggested the idea of “returning an error” when the argu-
ment to foldrl is the empty list. As you might imagine, there are other
situations where an error result is also warranted.

There are many ways to deal with such situations, depending on the ap-
plication, but sometimes one wishes to literally stop the program, signalling
to the user that some kind of an error has occurred. In Haskell this is done
with the Standard Prelude function error :: String — a. Note that error is
polymorphic, meaning that it can be used with any data type. The value of
the expression error s is 1, the completely undefined, or “bottom” value.
As an example of its use, here is the definition of foldri from the Standard
Prelude:

foldri 2(a—a—a)—[a]l —>a
foldrl f [z] =z

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 62

foldrl f (xz:zs) = f x (foldrl f zs)
foldr1 f[] = error "Prelude.foldrl: empty list"

Thus if the anomalous situation arises, the program will terminate immedi-
ately, and the string "Prelude.foldrl: empty list" will be printed.

Exercise 3.6 Rewrite the definition of length non-recursively.

Exercise 3.7 Define a function that behaves as each of the following:

a) Doubles each number in a list. For example:

doubleEach [1,2,3] = [2,4, 6]

b) Pairs each element in a list with that number and one plus that number.
For example:

pairAndOne [1,2,3] = [(1,2),(2,3), (3,4)]

¢) Adds together each pair of numbers in a list. For example:
addEachPair [(1,2),(3,4),(5,6)] = [3,7,11]

d) Adds “pointwise” the elements of a list of pairs. For example:

addPairsPointwise [(1,2),(3,4),(5,6)] = (9,12)

In the next two exercises, give both recursive and (if possible) non-
recursive definitions, and be sure to include type signatures.

Exercise 3.8 Define a function mazAbsPitch that determines the maxi-
mum absolute pitch of a list of absolute pitches. Define minAbsPitch anal-
ogously. Both functions should return an error if applied to the empty list.

Exercise 3.9 Define a function chrom:: Pitch — Pitch — Music Pitch such
that chrom p; po is a chromatic scale of quarter-notes whose first pitch is
p1 and last pitch is po. If p; > po, the scale should be descending, otherwise
it should be ascending. If p; == po, then the scale should contain just one
note. (A chromatic scale is one whose successive pitches are separated by
one absolute pitch (i.e. one semitone)).

Exercise 3.10 Abstractly, a scale can be described by the intervals between
successive notes. For example, the 7-note major scale can be defined as the

CHAPTER 3. POLYMORPHIC & HIGHER-ORDER FUNCTIONS 63

sequence of 6 intervals [2,2,1,2,2, 2], and the 12-note chromatic scale by the
11 intervals [1,1,1,1,1,1,1,1,1,1,1]. Define a function mkScale :: Pitch —
[Int] — Music Pitch such that mkScale p ints is the scale beginning at pitch
p and having the intervallic structure ints.

Exercise 3.11 Define an enumerated data type that captures each of the
standard major scale modes: Ionian, Dorian, Phrygian, Lydian, Mixolydian,
Aeolian, and Locrian. Then define a function genScale that, given one
of these contructors, generates a scale in the intervalic form described in
Exercise 3.10.

Exercise 3.12 Write the melody of “Frere Jacques” (or, “Are You Sleep-
ing”) in Euterpea. Try to make it as succinct as possible. Then, using
functions already defined, generate a traditional four-part round, i.e. four
identical voices, each delayed successively by two measures. Use a different
instrument to realize each voice.

Exercise 3.13 Freddie the Frog wants to communicate privately with his
girlfriend Francine by encrypting messages sent to her. Frog brains are
not that large, so they agree on this simple strategy: each character in
the text shall be converted to the character “one greater” than it, based
on the representation described below (with wrap-around from 255 to 0).
Define functions encrypt and decrypt that will allow Freddie and Francine
to communicate using this strategy.

Characters are often represented inside a computer as some kind of an
integer; in the case of Haskell, a 16-bit unicode representation is used. How-
ever, the standard keyboard is adequately represented by a standard byte
(eight bits), and thus one only needs to consider the first 256 codes in the
unicode representation. For this exercise, you will want to use two Haskell
functions, toEnum and fromEnum. The first will convert an integer into a
character, the second will convert a character into an integer.

Chapter 4

A Musical Interlude

At this point enough detail about Haskell and Euterpea has been covered
that it is worth developing a small but full application or two. In this chapter
an existing composition will be transcribed into Euterpea, thus exemplifying
how to express conventional musical ideas in Euterpea. Then a simple form
of algorithmic composition will be presented, where it will become apparent
that more exotic things can easily be expressed as well.

But before tackling either of these, Haskell’s modules will be described
in more detail.

4.1 Modules

Haskell programs are partitioned into modules that capture common types,
functions, etc. that naturally comprise an application. The first part of a
module is called the module header, and in it one declares what the name of
the module is, and what other modules it might import. For this chapter the
module’s name is Interlude, into which the module Futerpea is imported:

module Futerpea. Examples.Interlude where
import Futerpea

[Details: Module names must always be capitalized (just like type names).]

64

CHAPTER 4. A MUSICAL INTERLUDE 65

If one wishes to use this module in another