
Domesticating Parallelism

Para-Funotional

gProgramming

Paul Hudak
Yale University

This methodology
treats a
multiprocessor as a

single autonomous
computer onto which
a program is

mapped, rather than
as a group of
independent
processors.

60

The importance of parallel computing
hardly needs emphasis. Many physi-
cal problems and abstract models

are seriously compute-bound, since se-
quential computer technology now faces
seemingly insurmountable physical limita-
tions. It is widely believed that the only
feasible path toward higher performance
is to consider radically different computer
organizations, in particular ones ex-
ploiting parallelism. This argument is
indeed rather old now, and considerable
progress has been made in the construc-
tion of highly parallel computers.
One of the simplest and most promising

types of parallel machines is the well-
known multiprocessor architecture, a col-
lection of autonomous processors with
either shared or distributed memory that
are interconnected by a homogeneous
communications network and usually
communicate by sending messages. The
interest in machines of this type is not sur-
prising, since not only do they avoid the
classic "von Neumann bottleneck" by
being effectively decentralized, but they
are also extensible and in general quite
easy to build. Indeed, more than a dozen
commercial multiprocessors either are
now or will soon be available.
Although designing and building multi-

processors has proceeded at a dramatic

pace, the development ofeffective ways to
program them has generally not. This is an
unfortunate state of affairs, since ex-
perience with sequential machines tells us
that software development, not hardware
development, is the most critical element
in a system's design. The immense com-
plexity of parallel computation can only
increase our dependence on software.
Clearly we need effective ways to program
the new generation of parallel machines.

In this article I introducepara-function-
al programming, a methodology for
programming multiprocessor computing
systems. It is based on a functional pro-
gramming model augmented with features
that allow programs to be mapped to
specific multiprocessor topologies. The
most significant aspect of the methodol-
ogy is that it treats the multiprocessor as a
single autonomous computer onto which a
program is mapped, rather than as agroup
of independent processors that carry out
complex communication and require com-
plex synchronization. In more conven-
tional approaches to parallel program-
ming, the latter method of treatment is
often manifested as processes that co-
operate by message-passing. However,
such notions are absent in para-functional
programming; indeed, a single language
and evaluation model can be used from

0018-9162/86/0800-0060$01.00 1986 IEEE COMPUTER

problem inception, to prototypes targeted
for uniprocessors, and ultimately to reali-
zations on a parallel machine.

Functional
programming and
parallel computing
The future of parallel computing de-

pends on the creation of simple but effec-
tive parallel-programming models (re-
flected in appropriate language designs)
that make the details of the underlying
architecture transparent to the user. Many
researchers feel that conventional im-
perative languages are inadequate for such
models, since these languages are intrin-
sically tied to the "word-at-a-time" von
Neumann machine model. 1 Extending
such a sequential model to the parallel
world is like putting on a shoe that doesn't
fit. It makes more sense to use a language
with a nonsequential semantic base.
One of the better candidates for parallel

computing is the class of functional lan-
guages (also known as applicative or
dataflow languages). In a functional lan-
guage, no side effects (such as those
caused by an assignment statement) are
permitted. The lack of side effects ac-
counts at least partially for the well-known
Church-Rosser Property, which essential-
ly states that no matter what order ofcom-
putation is chosen in executing a program,
the program is guaranteed to give the same
result (assuming termination). This mar-
velous determinacy property is invaluable
in parallel systems. It means that programs
can be written and debugged in a func-
tional language on a sequential machine,
and then the same programs can be exe-
cuted on a parallel machine for improved
performance. The key point is that in
functional languages the parallelism is im-
plicit and supported by their underlying
semantics. There is generally no need for
special message-passing constructs or
other communications primitives, no need
for synchronization primitives, and no
need for special "parallel" constructs such
as "parbegin...parend."
On the other hand, doing without as-

signment statements seems rather radical.
Yet clearly the assignment statement is an
artifact of the von Neumann computer
model and is not essential to the most
abstract form of computation. In fact, a

major goal of high-level language design
has been the introduction of expressions,
which transfer the burden of generating
sequential code involving assignments
from programmer to compiler. Functional
languages simply carry this goal to the ex-
treme: Everything is an expression. The
advantages of the resulting programming
style have been well-argued elsewhere, 1-2
and will not be repeated here. However, I
wish to emphasize the following point:
Although most experienced programmers
recognize the importance of minimizing
side effects, the importance of doing so in
a parallel system is intensified significant-
ly, due to the careful synchronization re-
quired to ensure correct behavior when
side effects are present. Without side
effects, there is no way for concurrent por-
tions of a program to affect one another
adversely-this is simply another way of
stating the Church-Rosser Property.

The use of functional languages for par-
allel programming is really nothing new.
Such use has its roots in early work on
dataflow and reduction machines, in the
course of which many functional lan-
guages were developed simultaneously
with the design of new parallel architec-
tures. Consider, for example, J. B. Den-
nis's dataflow machine and the language
VAL, Arvind's U-interpreter and the lan-
guage ID, A. L. Davis's dataflow machine
DDM1 and the language DDN, and R. M.
Keller's reduction machineAMPS and the
language FGL. Such work on automati-
cally decomposing a functional program
for parallel execution continues today, and
includes Rediflow3 and my own work on
serial combinators. 4

The aforementioned systems automati-
cally extract parallelism from a program
and dynamically allocate the resultant
tasks for parallel execution. But what
about a somewhat different scenario-
one in which the programmer knows the
optimal mapping of his or her program
onto a particular multiprocessor? One
cannot expect an automated system to
determine this optimal mapping for all
program-processor combinations, so it is
desirable to provide the user with the abili-
ty to express the mapping explicitly. (The
need for this ability often arises, for exam-
ple, in scientific computing, where many
classic algorithms have been redesigned
for optimal performance on particular

ParAlfl provides a
mechanism for
mapping a program

onto an arbitrary
multiprocessor.

machines.) As it stands, almost no lan-
guages provide this capability.

ParAlfi is a functional language that
provides a simple yet powerful mechanism
for mapping a program onto an arbitrary
multiprocessor. The mapping is ac-
complished by annotating subexpressions
so as to show the processor on which they
will be executed. With annotations, the
mapping can be done in such a way that
the program's functional behavior is not
altered; that is, the program itself re-
mains unchanged. The resulting method-
ology is referred to as para-functional
programming, since it provides not only a
much-needed tool for expressing parallel
computation, but also an operational se-
mantics that is truly "extra," or "beyond"
the functional semantics of the program.
It is quite powerful, for several reasons:

* It is very flexible. Not only is para-
functional programming easily adapted to
any functional language, but also any net-
work topology can be captured by the
notation, since no a priori assumptions are
made about the structure of the physical
system. All the benefits of conventional
scoping disciplines are available to create
modular programs that conform to the
topology of a given machine.

* The annotations are natural and con-
cise. There are no special control con-
structs, no message-passing constructs,
and in general no forms of "excess bag-
gage" to express the rather simple notion
of where and when to compute things.

* With some minor constraints, if a
para-functional program is stripped of its
annotations, it is still a perfectly valid
functional program. This means that it
can be written and debugged on a unipro-
cessor that ignores the annotations, and

August 1986 61

An important
semantic feature of

ParAlfl is lazy
evaluation.

then executed on a parallel processor for
increased performance. Portability is
enhanced, since only the annotations need
to change when one moves from one par-
allel topology to another (unless the algo-
rithm itself changes). The ability to debug
a program independently of the parallel
machinery is invaluable.

ParAlfI: a simple
para-functional
programming language

ParAlfl forms the testbed of Yale's
para-functional programming research. It
was derived from a functional language
called ALFL,5 which is similar in style to
several modern functional languages, in-
cluding SASL (and its successors KRC and
Miranda), 6 FEL,7 and Lazy ML. 8

The base language. To make ParAlfl ac-
cessible to a broader audience, the base
language, as shown here, was changed
somewhat; for example, the arguments in
function calls are "tupled" rather than
"curried." The interested reader is re-
ferred to Henderson2 and to Darlington,
Henderson, and Turner9 for a more
thorough treatment of the functional pro-
gramming paradigm. The salient features
of the base language are

* Block-structuring is used, and takes
the form of an equation group with the
following configuration:

[fI(x1 ,...,xkl) = = expl;

f2(Xl,---,xk2) = = eXP2;

result exp;

fn(xl,...,xkn) = = expn I

An equation group is simply a collection
of mutually recursive equations (each
defining a local identifier) together with a
single result clause that expresses the value
to which the equation group will evaluate
(result is a reserved word). Equation
groups are just expressions, and can thus
be nested to an arbitrary depth.

* A double equal-sign (" = = ") is used
to distinguish equations from Boolean ex-
pressions of the form expl = exp2. The
argument list is optional, allowing defini-
tions of simple values, such as x = = exp.
Since the equations are mutually recur-
sive, and since ParAlfl is a lazy functional
language, the order of the equations is
irrelevant. All values are essentially eval-
uated "on demand."

* As in Lisp, the list is a fundamental
data structure in ParAlfl. The operators

, ^ ^ , hd, and tl are like cons, append,
car, and cdr, respectively, in Lisp. ^ and
^ build lists: a' I is the list whose first
element is aand the rest is just the list 1, and
11 -12 is the list resulting from appending
the lists ll and 12 together. Hd and tl
decompose lists: hd(a-1) returns a, and
tl(a ') returns 1. Aproper list (one ending
in "nil") can be constructed with square
brackets, as in [a,b,c], which is equivalent
to a^b^c^[] (^ is right associative). Lists
are constructed lazily.

* ParAlfl has functional arrays. The
equation v = = mka(d,f) (mka is short
for "make array") defines a vector v of d
values, indexed from I to d, such that the
ith element v[il is the same asf(i). Gen-
erally, the equation a = = mka(d1,d2,
...,dn,) defines an n-dimensional array a
such that a[iJ,...,in] = f(il,...,in). Ar-
rays are constructed lazily, although the
elements are computed in parallel. (See the
section entitled "Eager Expressions,"
below.) In an earlier article on para-
functional programming10 arrays were
defined as being non-lazy, or strict. In
reality, both kinds of array construction
are provided in ParAlfl.
An important semantic feature of

ParAlfl is lazy evaluation. * That is, ex-
pressions are evaluated on demand instead
of according to some syntactic rule, such

*Lazy evaluation is closely related to the call-by-name
semantics of Algol, but is different in that once an ex-
pression is computed, its value is retained. In function
calls, lazy evaluation is sometimes referred to as call-
by-need evaluation.

as the order of identifier bindings. For ex-
ample, one can write

[a == b*b;
b == 2;
result f(a,b);
f(x,y) = = if p then y else x + y

Note that a depends on b, yet is defined
before b. Indeed, the order of these equa-
tions and the result clause is totally irrele-
vant. Note further that the functionfdoes
not use its first argument ifp is true. Thus,
in the callf(a,b), the argument a is never
evaluated (that is, the multiplication b * b
never happens) ifp is true.
An often highlighted feature of lazy

evaluation is its ability to express un-
bounded data structures, or infinite lists.
For example, an infinite list of the squares
of the natural numbers can be defined by

[result squares(O);
squares(n) = = n * n ^ squares(n + 1)

However, an important but often over-
looked advantage of lazy evaluation is
simply that it frees the programmer from
extraneous concerns about the order of
evaluation of expressions. Being freed
from such concerns is very liberating for
programming in general, but is especially
important in parallel programming
because over-specifying the order of eval-
uation can limit the potential parallelism.

Mapped expressions. A program can be
mapped onto a particular multiprocessor
architecture through the use of mapped
expressions. These form one of the two
classes of extensions (annotations) to the
base language. (The other class is made up
of eager expressions, which are described
below.) Mapped expressions have the sim-
ple form

exp $on proc
which declares that exp is to be computed
on the processor identified by proc (on
proc is prefixed with $ to emphasize that
$onproc is an annotation). The expression
exp is the body of the mapped expression,
which is to say, it represents the value to
which the overall expression will evaluate
(and thus can be any valid ParAlfl expres-
sion, including another mapped expres-
sion). The expression proc must evaluate
to a processor ID. Without loss ofgeneral-
ity, we will assume in all examples below
that processor IDs, or pids, are integers
and that there is some predefined mapping
from those integers to the physical pro-
cessors they denote. For example, a tree of

COMPUTER62

Figure 1. Two possible
network topologies:
infinite binary tree (a),
and finite mesh of size
m x n (b). Listed with
each topology are
functions that map pids
to neighboring pids.

processors might be numbered as shown in
Figure 1(a) and a mesh as shown in Figure
1(b). The advantage of using integers is
that the user can manipulate them with
conventional arithmetic primitives; for ex-
ample, Figure 1 also defines functions that
map pids to neighboring pids. However, a
safer discipline might be to define a pid as
a unique data-type, and to provide primi-
tives that enable the user to manipulate
values having that type.

Simple examples of mapped expres-
sions. Consider the program fragment

f(x) + g(y)
The strict semantics of the + operator
allows the two subexpressions to be
evaluated in parallel. If we wish to express
precisely where the subexpressions are to
be evaluated, we can do so by annotating
them, as in

(f(x) $on 0) + (g(y) $on 1)
where 0 and I are processor IDs.
Of course, this static mapping is not

very interesting. It would be nice, for ex-
ample, if we were able to refer to a pro-
cessor with respect to the currently exe-
cuting one. ParAlfl provides this ability
through the reserved identifier $self,
which when evaluated returns the pid of
the currently executing processor. Using

$self we can be more creative. For exam-
ple, suppose we have a mesh or tree of pro-
cessors as shown in Figure 1; we can then
write

(f(x) $on left($self)) +
(g(y) $on right($self))

to denote the computation of the two
subexpressions in parallel on neighboring
processors, with the sum being computed
on $self.
We can describe the behavior of $self

more precisely as follows: self is bound
implicitly by mapped expressions; thus, in

exp Son pid
$self has the value pid in exp, unless it is
further modified by a nested mapped ex-
pression. Although $self is a reserved
word that cannot be redefined, this im-
plicit binding can be best explained with
the following analogy:

exp $on pid
is like

[$self = = pid; result exp I
However, the most important aspect of

$self is that it is dynamically bound in
function calls. Thus, in

[result (f(a) $on pid I) + (f(b) son pid 2);
f(x) = = x x] $on pid3

a * a is computed on processor pid I, b * b
on processor pid2, and the sum on pro-

cessor pid3. As before, an analogy is
useful in describing this behavior:

f(x,y,z,) = exp;
... f(a,b,c) ...

is like
f(x,y,z,$self) == exp;
... f(a,b,c,$self) ...

In other words, all functions implicitly
take an extraformalparameter, $self, and
all function calls use the current value of
$self as the value for the new actual pa-
rameter.
Although very powerful, $self is not

always needed. Particular cases illustrat-
ing this are those in which mappings can be
made from composite objects, such as vec-
tors and arrays, to specific multiprocessor
configurations. For example, if f is de-
fined byf(i) = = i* *2 $on i, then the
call mka (nJ) will produce a vector of
squares, one on each of n processors, such
that the ith processor contains the ith ele-
ment (namely i2). Further, suppose we
have two vectors v and w and we wish to
create a third that is the sum of the other
two, but distributed over the n processors.
This can be done very simply by

mka(n,g);
g(i) = = (v[i] + w[i]) son i

If v and w were already distributed in the
same way, this would express the pointwise

August 1986 63.

The value of an
"eager expression" is
that of the expression

without the
annotation.

parallel summation of two vectors on n
processors.

A note on lexical scoping and data
movement. Consider the following typical
situation: A shared value v is to be com-
puted for use in two independent subex-
pressions, el and e2; the values of these
subexpressions are then to be combined
into a single result. In a conventional lan-
guage one might express this as something
like

begin v := code-for-v;
el := code-for-el;

(Comment: uses v)
e2 := code-for-e2;

(Comment: uses v)
result : combine(el,e2);

end;
and in ParAlfl one might write

v = = code-for-v;
el = = code-for-el; (Comment: uses v)
e2 - = code-for-e2; (Comment: uses v)
result combine(el ,e2) I

Both of these programs are very clear and
concise.

But now suppose that this same com-
putation is to begin and end on processor
p, and the subexpressions el and e2 are to
be executed in parallel on processors q and
r, respectively. In a conventional language
augmented with explicit process-creation
and message-passing constrUcts, one
might write the following program:

process PO;
v : = code-for-v;
send(v,PI);
send(v,P2);
el : = receive(PI);
e2 : = receive(P2);
result : = combine(el,e2)

end-process;

process PI;
v : receive(PO);
el = code-for-el; (Comment: uses v)
send(el,PO);

end-process;

process P2;
v : = receive(PO);
e2 : = code-for-e2; (Comment: uses v)
send(e2,PO);

end-process;
which is then actually run by executing
something like

invoke PO on processor p;
invoke P1 on processor q;
invoke P2 on processor r;

Note that the structure of the original pro-
gram has been completely destroyed. Ex-
plicit processes and communications
between them have been introduced to
coordinate the parallel computation. The
semantics ofboth the process-creation and
communications constructs need to be
carefully defined before the run-time
behavior can be understood. This pro-
gram is no longer as clear nor as concise as
the original one.
On the other hand, a ParAlfl program

for this same task is simply
v = = code-for-v;
el = = code-for-el $on q;

(Comment: uses v)
e2 = = code-for-e2 $on r;

(Comment: uses v)
result combine(el ,e2) 3 $on p

Note that if the three annotations are
removed, the program is identical to the
ParAlfl program given earlier! No com-
munications primitives or special syn-
chronization constructs are needed to send
the value of v to processors q and r; stan-
dard lexical scoping mechanisms ac-
complish the data movement naturally
and concisely. The values of el and e2 are
sent back to processor p in the same way.

Eager expressions. The second form of
annotation, the eager expression, arises
out of the occasional need for the pro-
grammer to override the lazy-evaluation
strategy of ParAlfl, since normally
ParAlfl does not evaluate an expression
until absolutely necessary. (This second
type of annotation is not needed in a func-
tional language with non-lazy semantics,
such as pure Lisp, but as mentioned
earlier, we prefer the expressiveness af-
forded by lazy semantics.) An eager ex-
pression has the simple form

#exp

which forces the evaluation of exp in par-
allel with its immediately surrounding syn-
tactic form, as defined below:

If #exp appears as

* an argument to a function (for exam-
ple, f(x,#y,z)), then it executes in
parallel with the function call.

* an arm of a conditional (for example,
ifp then #x elsey), then it executes in
parallel with the conditional.

* an operand of an infix operator (for
example, x^#y; another example is
x and #y), then it executes in parallel
with the whole operation.

* an element of a list (for example,
[x,#y,zJ), then it executes in parallel
with the constructiorn of the list.

Thus, for example, in the expression ifp
then f(#x,y) else z, the evaluation of x
begins as soon asp has been determined to
be true, and simultaneously the functionf
is invoked on its two arguments. Note that
the evaluation of some subexpression
begins when any expression is evaluated,
and thus to evaluate that subexpression
"eagerly" accomplishes nothing. For ex-
ample, note the following equivalences:

if #p then x else y - if p then x else y
#x and y - x and y
#x + #y = x + y
A special case of eager computation oc-

curs in the construction of arrays, which
are almost always used in a context where
the elements are computed in parallel.
Because of this, the evaluations of the
elements of an array are defined to occur
eagerly (and in parallel, of course, if ap-
propriately mapped).

Eager expressions are commonly used
within lists. Consider, for example, the ex-
pression [x,#y]; normally lists are con-
structed lazily in ParAlfl, so the values ofx
and y are not evaluated until selected. But
with the annotation shown, y would be
evaluated as soon as the list was de-
manded. As with arrays, however, the ex-
pression does not wait for the value ofy to
return a fully computed value. Instead, it
returns a partially constructed list just as it
would with lazy evaluation.
The above discussion leads us to an im-

portant point about eager expressions:
The value of an eager expression is that of
the expression without the annotation. As
with mapped expressions, the annotation
only adds an operational semantics, and
thus the user can invoke a nonterminating
subcomputation, yet have the overall pro-

64 COMPUTER

gram terminate. Indeed, in the above ex-
ample, even shouldynot terminate, ifonly
the first element of the list is selected for
later use, the overall program may still ter-
minate properly. The "runaway process"
that computes y is often called an irrele-
vant task, and there exist strategies for
finding and deleting such tasks at run
time. Such considerations are beyond the
scope of this article, although it should be
pointed out that given an automatic task-
collection mechanism there are real situa-
tions in which one may wish to invoke a
nonterminating computation (an example
of this is given in Hudak and Smith 10).

A note on determinacy. All ParAlfl pro-
grams possess the following determinacy
property:
A ParAlfl program in which (1) the
identifier $self appears only in pid ex-
pressions, and (2) all pid expressions
terminate without error, is functionally
equivalent to the same program with all
of the annotations removed. That is,
both programs return the same value.

(A formal statement and proof of this
property depends on a formal denota-
tional semantics for ParAlfl, which is
beyond the scope of this article, but such
semantics can be found in Hudak and
Smith. 10)
The reason for the first constraint is that

if the mapping annotations are removed,
all remaining occurrences of $selfhave the
same value, namely the pid ofthe root pro-
cessor. Thus, removing the annotations
may change the value of the program. The
purpose of the second constraint should
be obvious: If the system diverges or errs
when determining the processor on which
to execute the body of a mapped expres-
sion, then it will never get around to com-
puting the value of that expression.
Although neither determinacy con-

straint is severe, there are practical reasons
for wanting to violate the first one (that is,
for wanting to use the value of $self in
other than a pid expression). The most
typical situation where this arises is in a
nonisotropic topology where certain pro-
cessors form a boundary for the network
(for example, the leaf processors in a tree,
or the edge processors in a mesh). There
are many distributed algorithms whose
behavior at such boundaries is different
from their behavior at internal nodes. To
express this, one needs to know when exe-

cution is occurring at the boundary of the
network, which can be conveniently deter-
mined by analyzing the value of $self.

Sample application
programs

In this section two simple examples are

presented that highlight the key aspects of
para-functional programming. Space
limitations preclude the inclusion of ex-

amples that are more complex, but some

can be found in Hudak and Smith '0 and
Hudak. I I

Parallel factorial. Figure 2 shows a sim-
ple parallel factorial program annotated

Figure 2. Divide-and-
conquer factorial on
finite tree.

mcsso

Figure 3. Dataflow for

parallel factorial.

for execution on a finite binary tree of n

2d I processors. Although computing

factorial, even in parallel, is a rather simn-
ple task the example demonstrates several

imnportant ideas, and most other divide-

and-conquer algorithms could easily fit

into the same framework.

The algorithm is based on splitting the

computation into two parts at each itera-

tion and mapping the two subtasks onto

the "children" of the current processor.

Note that through the normal lexical scop-

ing rules, mid will be computed on the cur-

rent processor and passed to the child pro-
cessors as needed (recal the discussion in

the section on "Mapped expressions,t
above). The functions left and right

describe the network mapping necessary

65August 1986

I result pfac(l,k) $on root;

pfac(lo,hi)= =if lo=hi then lo
else if lo=(hi-1) then lo-hi

else l result (pfac(lo,mid) $on left($self)) *
(pfac(mid+1,hi) $on right($self));

mid==(lo+hi)/2 l;

left(pe)= =if 2'pe>n then pe else 2*pe;
right(pe)= =if 2 -pe>n then pe else 2-pe+1;
root = = 1;

I

Figure 4.
Parallel

factorial, with
unique

behavior at
leaves.

Figure 5.
ParAlf program
to solve Ux= b.

result xvect;
xvect = =mka(n,x);
x(i) = = I result (b[i] -sum(n,0)) / U[i,i];

sum(j,acc)= =ifj<i+1 then acc
else sum(j-1,acc+xvect[j]-U[i,j) I

I

Figure 6. Dataflow for matrix problem. ("BS" stands for backsubstitution.)

for this topology, and Figure 3 shows the
process-mapping and flow of data be-
tween processes when k=5.

Note that the program in Figure 2 obeys
the constraints required for determinacy,
and thus the program returns the same
value regardless of the annotations. Note
further that with the mapping used, when
processing reaches a leaf node all further
calls to pfac are executed on the leaf pro-
cessor. Routing functions of greater com-
plexity could be devised that, for example,
would reflect the computation upward
once a leaf processor is reached. Alter-
natively, it might be desirable to use amore
efficient factorial algorithm at the leaf
nodes. An example of this is given in
Figure 4, where the tail-recursive function
sfac is invoked at the leaves. Determining
that execution has reached a leaf processor
requires inspection of $self, and thus the
determinacy constraints are violated, yet
the program still returns the same value
regardless of the annotations. This con-

stancy of values is, of course, often the
case, but it cannot be guaranteed in
general without the previously discussed
constraints.

Solution to upper triangular block
matrix. The next example is typical of
problems encountered in scientific com-

puting: The problem is to solve for the
vector x in the matrix equation Ux=b,
where U is an upper triangular block
matrix (that is, a matrix whose elements
are themselves matrices, and whose ele-
ments below the main diagonal contain all
zeros). Algorithms using block matrices
are especially suited to multiprocessors
with nontrivial communications costs,
since typically the subcomputations in-
volving the submatrices can be done in
parallel with little communication be-
tween the processors.

Processor 5 Compute x5 i

- = Data (and temporal) dependency
Processor 4 Back-substitute x5 > Compute X4 -X Temporal dependency imposed by pipelining

Processor 3 Back-substitute x5 Back-substitute x4 > Compute x3
I I X

Processor 2 Back-substitute x5 Back-substitute x4 Back-substitute x3 - Compute x2

I I I
Processor 1 Back-substitute x5 - Back-substitute x4 Back-substitute x3 > Back-substitute x2 > Compute x,

Figure 7. Pipelining data for matrix problem.

result pfac(1,k) $on root;

pfac(lo,hi)= =if lo=hi then lo
else if lo=(hi-1) then lo-hi

else I result if leaf?($self) then sfac(lo,hi,l)
else (pfac(lo,mid) $on left($self)) *

(pfac(mid+1,hi) $on right($self));
mid==(lo+hi)/2 I;

sfac(lo,hi,acc) = =if lo=hi then lo-acc
else sfac(lo +1l,hi,loacc);

leaf?(pe)==pe >= 2**(d-1);
left(pe) = =2*pe;
right(pe)= =2.pe+1;
root = = 1;

66 COMPUTER

If we ignore parallelism at the moment
and concentrate instead on a functional
specification of this problem, it is easy to
see from basic linear algebra that each ele-
ment xi in the solution vector x (of length
n) can be given by the following equation:

i+1
xi = (bi - E xjUij) / Ui,

j=n

where we assume for convenience that the
submatrices are of unit size (and are thus
represented simply as scalar quantities).
Given this equation for each element, it is
easy to construct the solution vector in
ParAlfl, as shown in Figure 5.
This problem, as it is, has plenty of par-

allelism. To see this, look at Figure 6, a
dataflow graph showing the data depen-
dencies when n = 5. Clearly, once an ele-
ment ofthe solution is computed, all ofthe
backsubstitutions of it can be done in par-
allel; that is, each of the horizontal
"steps" in Figure 6 can be executed. This
parallelism derives solely from the data
dependencies inherent in the problem, and
is mirrored faithfully in the ParAlfl code.
Indeed, if we have n processors sharing a
common memory, we can annotate the
program in Figure 5 very simply:

[result xvect;
xvect == mka(n,x);
x(i) == ...$on i

where "..." denotes the same expression
used in Figure 5 for x(i). (Recall that the
elements of an array are computed in par-
allel, and thus do not require eager an-
notations.)

But let us consider topologies that are
more interesting. Consider, for example, a
ring of n processors. Although the
topology of a ring is simple, its limited
capacity for interprocessor communica-
tion makes it difficult to use effectively,
and it is thus a challenge for algorithm
designers. We will assume that the pro-
cessors are labeled consecutively around
the ring from "l" to "n," and that the ith
row of U and ith element of b are on pro-
cessor i. We wish the solution vectorxto be
distributed in the same way.
We should first note that the annotated

program two paragraphs above would run
perfectly well on such a topology, especial-
ly with the given distribution of data. The
only data movement, in fact, would be
that of each submatrix xi for use on each
processor j, j> i. This data movement

I result xvect;
xvect = =mka(n,x);
x(i) = =I result (b[i]-sum(n,O)) / U[ii];

sum(j,acc) = =if j < i +1 then acc
else sum(j-1,acc+xpipe[i][n-j+1].U[i,j])

l $on i;
xpipe = =mka(n,xfn);
xfn(i) = = I result mka(n -i + 1 ,xlocal);

xlocal(j) = =if j =n -i + 1 then xvect[i]
else xpipe[i + 1][j] I $on

Figure 8. A program for pipelining xi around a ring of processors.

Figure 9. A vector pipeline for x.

would be done transparently by the
underlying operating system, and in this
case the program would probably perform
adequately.

Yet in our dual role of programmer and
algorithm designer we may have a par-
ticular routing strategy that is provably
good and that we wish to express explicitly
in the program. For example, one efficient
strategy is to "pipeline" the xi around the
ring as they are generated. That is, the ele-
ment xi is passed to processor i-l, used
there, passed to processor i-2, used there,
and so on, as shown graphically in Figure
7. There are several ways to accomplish
this effect in the program, and we shall ex-
plore two of them.
The first requires the least change to the

existing program, and is based on shifting
the data by creating a partial copy of the
solution vector on each processor, as
shown in Figure 8. Note that the first four
lines of this program are essentially the
same as those given earlier. Figure 9 shows
the construction of xpipe-note the cor-

respondence between this diagram and the
one in Figure 7.
The second way to express the pipelin-

ing of data is to interpret the algorithm
from the outset as a network of dynamic
processes rather than as a static set of vec-
tors and arrays. In particular, we can con-
jure up the following description of a pro-
cess running on processor i:

"Process i takes as input a stream of
values x,,xn,, ..., xi+,. It passes
this stream of values to process i-l
while back-substituting each value into
bi. When the end of the stream is
reached, it computes xi and adds this
to the end of the stream being passed to
process i-l."

Assuming the same distribution of Uand b
used earlier, we can represent this process
description in ParAlfl as shown in Figure
10. Note that xi is annotated for eager
evaluation, to override the lazy evaluation
of lists. Also note the correspondence be-
tween this program and the last. The main

August 1986 67

I result process(n,[]); (Comment: begin on processor n with empty stream)
process(i ,xstr) = =

I xi= -(b[i]-sum(xstrn,O))/U[i,i];
result if =1 then addtostr(xstr,#xi)

else process(i -1 ,addtostr(xstr,#xi));
addtostr(old,x) = =old ^ [xl;
sum(str,j,acc)= =if str=[] then acc

else sum(tl(str) ,j-1,acc+hd(str)-U[i,j])
$oni

Figure 10. Program for Ux =b simulating network of processes.

Figure 11. Program to
embed ring in

hypercube.

Figure 12. Embedding
of ring of size 8 into

3-cube.

difference is in the choice ofdata structure
for x-a list is used here, resulting in a

recursive structuring of the program,
whereas a vector was used previously,
resulting in a "flat" program structure.
Choices of this kind are in fact typical of
any suitably rich programming language,
and are equally important in paralel and
sequential programming. Different data
structures can, of course, be mapped in
different ways to machines, but in this ex-

ample the annotations are essentially the
same in both programs.
To carry this example one step further,

let us now consider running any of the
above ParAlfl programs on a multiproces-
sor with a hypercube interconnection
topology rather than a ring. One way to
accomplish this is to simulate a ring in a
hypercube by some suitable embedding.
Probably the simplest such embedding is
the reflected gray-code, captured by the
ParAlfl functions shown in Figure I1. In

I

that figure, log2(i) returns the base-2 log-
arithm of i, rounded down to the nearest
integer (the vector v is used to "cache"
values of graycode(i)). For example,
Figure 12 shows the embedding ofa ring of
size 8 into a 3-cube.

If we then replace the previous anno-

tations "... $on i" with "... $on
ringtocube(i)," we arrive at the desired
embedding. Note that the code for the al-
gorithm itselfdid not change at all, just the
annotations. Of course, a more efficient
algorithm for the hypercube might exist or
the initial data distribution might be dif-
ferent, and both cases would naturaly re-

quire recoding of the main functions.

A Z hen viewed in the broad scope
of software development meth-
odologies, the use ofpara-func-

tional programming suggests the folow-
ing scenario:

1. One first conceives of an algorithm
and expresses it cleanly in a func-
tional programming language. This
high-level program is likely to be
much closer to the problem specifica-
tions than conventional language
realizations, thus aiding reasoning
about the program and facilitating
the debugging process.

2. Once the program has been written, it
is debugged and tested on either a se-
quential or paralel computer system.
In the latter case, the compiler ex-
tracts as much paralelism as it can
from the program, but with no in-
tervention or awareness on the part of
the user.

3. If the performance achieved in step
two does not meet one's needs, the
program is refined by affixing an-
notations that provide more subtle
control over the evaluation process.
These annotations can be added
without affecting the program's
functional behavior.

There are two aspects of this methodology
that I think significantly facilitate program
development: First, the functional aspects
of a program are effectively separated
from most of the operational aspects. Sec-
ond, the multiprocessor is viewed as a
single autonomous computer onto which a
program is mapped, rather than as a group
of independent processors that carry out
complex communication and require com-
plex synchronization. Together with the
clean, high-level programming style af-
forded by functional languages, these two
aspects promise to yield a simple and
effective programming methodology for
multiprocessor computing systems.

Extensions and implementation issues.
In this article I have presented only the
fundamental ideas behind para-functional
programming. Work continues on several
advanced features and alternative annota-
tions that provide even more expressive
power. These include: (I) annotations that
reference other operational aspects of a
processor, such as processing load; (2)
mappings to operating system resources,
such as disks and I/O devices; (3) in-
troduction of nondeterministic primitives
where needed; and (4) annotations to con-
trol memory usage. The latter two features
are especialy important, since they allow
one to overcome two traditional objec-

68

ingtocube(i) = =v[il;
v= =mka(n,graycode);
graycode(i) = =if < 2 then i

else I result v[2*mid -i-1]+mid;
mid= =2**log2(i) I

r

COMPUTER

tions to programming in the functional
style: the inability to deal with the
nondeterminism that is prevalent, for ex-
ample, in an operating system, and ineffi-
ciency in handling large data structures.
Space limitations preclude me from delv-
ing into such issues, but the reader can find
additional details in Hudak and Smith 10
and Hudak. 1I

In addition, by concentrating in this ar-
ticle on how to express parallel computa-
tion, I have left unanswered many ques-
tions about how one can implement a
para-functional programming language.
In recent years great advances have been
made in implementing functional lan-
guages for both sequential and parallel
machines, and much of that work is appli-
cable here. In particular, graph reduction
provides a very natural way to coordinate
the parallel evaluation of subexpressions,
and solves problems such as how to
migrate the values of lexically bound
variables from one processor to another.
At Yale a virtual parallel graph reducer
called Alfalfa is currently being im-
plemented on two commercial hypercube
architectures: an Intel iPSC and anNCube
hypercube. This graph-reduction engine
will be able to support both implicit
(dynamic) and explicit (annotated) task
allocation. The only difficult language
feature to support efficiently in para-
functional programming is a mechanism
for referencing elements in a distributed
array; in most cases this is quite easy, but in
certain cases it can be difficult. Although
good progress has been made in this area,
the work is too premature to report here.

Related work. The work that is most
similar in spirit to that presented in this
article is E. Shapiro's systolic program-
ming in Concurrent Prolog 12; the map-
ping semantics of systolic programming
was derived from earlier work on "turtle
programs" in Logo. Other related efforts
include those of R. M. Keller and G. Lind-
strom,13 who, independent of our re-
search at Yale and in the context of func-
tional databases, suggest the use of an-
notations similar to mapped expressions;
and F. W. Burton's 14 annotations to the
lambda calculus to provide control over
lazy, eager, and parallel execution. A more
recent effort is that of N. S. Sridharan, 15
who suggests a "semi-applicative" pro-
gramming style to control evaluation
order. All in all, these efforts contribute to

what I think is a powerful programming
paradigm in which operational and func-
tional behavior can coexist with little
adverse interaction. El

Acknowledgments

I am especially indebted to Lauren
Smith (now at Los Alamos National
Laboratory), to whom most of these ideas
were first presented for critical review. Her
efforts at applying the ideas to real prob-
lems were especially useful. A special
thanks is extended to Yale's Research
Center for Scientific Computation (under

References
1. J. Backus, "Can Programming Be Liber-

ated from the von Neumann Style? A
Functional Style and Its Algebra of Pro-
grams," CACM, Vol. 21, No. 8, Aug.
1978, pp. 613-641.

2. P. Henderson, Functional Programming:
Application and Implementation, Pren-
tice-Hall, Englewood Cliffs, N. J., 1980.

3. R. M. Keller and F C. H. Lin, "Simulated
Performance of a Reduction-based Multi-
processor," Computer, Vol. 17, No. 7,
July 1984, pp. 70-82.

4. P. Hudak and B. Goldberg, "Distributed
Execution of Functional Programs Using
Serial Combinators," Proc. 1985 Int'l
Conf. on Parallel Processing, Aug. 1985,
pp. 831-839; also appeared in IEEE
Trans. Computers, Vol. C-34, No. 10,
Oct. 1985, pp. 881-891.

5. P. Hudak, "ALFL Reference Manual and
Programmer's Guide," research report
YALEU/DCS/RR-322, 2nd ed., Oct.
1984, Yale University, Dept. of Computer
Science, Box 2158 Yale Station, New
Haven, CT 06520.

6. D. A. Turner, "Miranda: A Non-strict
Functional Language with Polymorphic
Types," Functional Programming Lan-
guages and ComputerArchitecture, Sept.
1985, Springer-Verlag, New York, pp.
1-16.

the direction of Martin Schultz), which
provided the motivation for much of this
work. The research also benefited from
useful discussions with Jonathan Young
and Adrienne Bloss at Yale, Bob Keller at
the University of Utah, and Joe Fasel and
Elizabeth Williams at Los Alamos Na-
tional Laboratory. Finally, I wish to thank
the three anonymous reviewers for Com-
puter magazine who worked with my arti-
cle, as well as Assistant Editor Louise
Anderson; their comments helped im-
prove the presentation.

This research was supported in part by
NSF Grants DCR-8403304 and DCR-
8451415, and a Faculty Development
Award from IBM.

7. R. M. Keller, tech. report, "FEL Pro-
grammer's Guide," No. 7, Mar. 1982,
University of Utah, Dept. of Computer
Science, Merrill Engineering Bldg., Salt
Lake City, UT 84112.

8. L. Augustsonn, "A Compiler for Lazy
ML," ACM Symp. on LISP and Func-
tional Programming, Aug. 1984, pp.
218-227.

9. J. Darlington, P. Henderson, and D. A.
Turner, Functional Programming and Its
Applications, Cambridge University
Press, Cambridge, UK, 1982.

10. P. Hudak and L. Smith, "Para-Function-
al Programming: A Paradigm for Pro-
gramming Multiprocessor Systems," 12th
ACM Symp. on Principles of Program-
ming Languages, Jan. 1986, pp. 243-254.

11. P. Hudak, "Exploring Para-Functional
Programming," research report YALEU/
DCS/RR-467, Apr. 1986, Yale University,
Dept. of Computer Science, Box 2158
Yale Station, New Haven, CT 06520.

12. E. Shapiro, "Systolic Programming: A
Paradigm of Parallel Processing," tech.
report CS84-21, Aug. 1984, The Weiz-
mann Institute of Science, Dept. of Ap-
plied Mathematics; appeared in Proc.
Int'l Conf. on Fifth-Generation Com-
puter Systems, Nov. 6-9, 1984, pp.
458-470.

August 1986 69

SOFTWARE ENGINEERS
Rooketdyne Division

in Southern California

join the Software Engineering Team at Rocketdyne, a division of Rockwell International,
where you will contribute to America's future through projects such as the Space Shuttle
Main Engine, the Space Station Electrical Power System, and the Strategic Defense
Initiative. Rocketdyne is building a Software Engineering Team for the future and now
is the right time to sign up. Be prepared to work in a quiet. convenient, modern software
development support environment.

SOFTWARE SYSTEMS ENGINEER
-Space Shuttle Main Engine

Wil generate/maintain software requirement specifications for the next generation Shuttle
Main Engine avionics (based on M68000). Five years software systems experience with
working knowledge of real-time control electronics and a BS/MS in EE, Physics, Math
or CS is required. Excellent written/oral communication skills also required.

SOFTWARE DESIGN ENGINEERS
-Space Shuttle Main Engine

Will code/integrate software for M68000-based engine controller in VAX hosted devel-
opment/test facility. One year experience with C and microprocessors and a BS in Engi-
neering. Math or Physics required.

Software Support Tools
Will develop/test software development and management tools. Familiarity with VAX,
microprocessor development systems, man-machine interface development, or C a plus.
Five years experience with a BS in EE, CS, Math, or Physics required.

SOFTWARE TESTENGINEERS
-Space Shuttle Main Engine

Will develop/execute software validation test procedures utilizing VAX I 1/780 and AD 10
based software development and test laboratory. Familiarity with VAX VMS. M68000,
C. or real-time control a plus. Two years experience with formal software testing and
a BS in CS, EE, Physics or Math required.

VAXSYSTEM SOFTWARESUPPORT
-Software Development Lab

Will support users/operations in an integrated software development/test lab which in-
cludes of VMS. MASS-I I, ALL IN I, CMS, Rdb, DTM, DATATRIEVE. C, and Ada. Two
years experience in VAX operations/systems programming required.

Rockwell International offersan outstandingcompensation and benefits package which
includes company-paid medical, dental and life insurance: vision care coverage and
company-contributing savings plan, to name just a few. Please send resume in confidence
to: Loretta Young, (IEEEC886), Employment Office #1, Rocketdyne Division, Rockwell
International, 6633 Canoga Avenue, Canoga Park, CA 91303. Equal Opportunity
Employer M/F. U.S. Citizenship Required.

'm Rockwell International
... where science gets down to business

13. R. M. Keller and G. Lindstrom, "Ap-
proaching Distributed Database Imple-
mentations Through Functional Pro-
gramming Concepts," Int'l Conf. on
Distributed Systems, May 1985.

14. E W. Burton, "Annotations to Control
Parallelism and Reduction Order in the
Distributed Evaluation of Functional
Programs," ACM Trans. on Program-
ming Languages and Systems, Vol. 6,
No. 2, Apr. 1984.

15. N. S. Sridharan, tech. report, "Semi-
applicative Programming: An Example,"
Nov. 1985, BBN Laboratories, Cam-
bridge, Mass.

Paul Hudak received his BS degree in electrical
engineering from Vanderbilt University,
Nashville, Tenn., in 1973; his MS degree in
computer science from the Massachusetts In-
stitute of Technology, Cambridge, Mass., in
1974; and his PhD degree in computer science
from the University of Utah, Salt Lake City,
Utah, in 1982. From 1974 to 1979 he was a
member of the technical staff at Watkins-
Johnson Co., Gaithersburg, Md.
Hudak is currently an associate professor in

the Programming Languages and Systems
Group in the Dept. of Computer Science at
Yale University, New Haven, Conn., a position
he has held since 1982. His primary research in-
terests are functional and logic programming,
parallel computing, and semantic program
analysis.
He is a recipient of an IBM Faculty Develop-

ment Award (1984-85), and an NSF Presiden-
tial Young Investigator Award (1985).

Readers may write to Paul Hudak at Yale
University, Dept. of Computer Science, Box
2158 Yale Station, New Haven, CT 06520.

COMPUTER

000005..

