
Approximation Algorithms for Combinatorial

Auctions with Complement-Free Bidders

Shahar Dobzinski∗ Noam Nisan† Michael Schapira‡

February 24, 2005

Abstract

We exhibit three approximation algorithms for the allocation problem
in combinatorial auctions with complement free bidders. The running
time of these algorithms is polynomial in the number of items m and in
the number of bidders n, even though the “input size” is exponential in
m. The first algorithm provides an O(log m) approximation. The sec-
ond algorithm provides an O(

√
m) approximation in the weaker model of

value oracles. This algorithm is also incentive compatible. The third algo-
rithm provides an improved 2-approximation for the more restricted case
of “XOS bidders”, a class which strictly contains submodular bidders.
We also prove lower bounds on the possible approximations achievable for
these classes of bidders. These bounds are not tight and we leave the gaps
as open problems.

1 Introduction

In a combinatorial auction, a set M of items, |M |=m, is sold to n bidders. The
combinatorial character of the auction comes from the fact that each bidder val-
ues bundles of items, rather than valuing items directly. I.e., the i’th bidder’s
value for each bundle is given by a valuation function vi, where for each subset
S ⊆ M , vi(S) denotes the value (maximum willingness to pay) of the bundle
S for bidder i. We assume that for each bidder i, vi is normalized (vi(∅) = 0),
and monotone (for each S ⊆ T ⊆ M, vi(S) ≤ vi(T)). The goal is to partition
the items between the bidders in a way that maximizes the “social welfare” –

∗The School of Computer Science and Engineering, The Hebrew University of Jerusalem,
shahard@cs.huji.ac.il. Supported by grants from the Israel Science Foundation and the
USA-Israel Bi-national Science Foundation.

†The School of Computer Science and Engineering The Hebrew University of Jerusalem,
noam@cs.huji.ac.il. Supported by grants from the Israel Science Foundation and the USA-
Israel Bi-national Science Foundation.

‡The School of Computer Science and Engineering The Hebrew University of Jerusalem
mikesch@cs.huji.ac.il. Supported by grants from the Israel Science Foundation and the
USA-Israel Bi-national Science Foundation.

Valuation General
Class Value Demand Comm.

General O(m
log m) [4] O(m

1
2) [4]

Ω(m√
log m

) [11] Ω(m
1
2−ε) [20]

CF O(m
1
2) (new) O(log m) ≥ 2 (new)

(new)

XOS ≤ 2 (new)

≥ 4
3 (new)

SM ≤ 2 [14]

≥ 1.02 ≥ 1 + 1
2m [20]

(P�=NP, new)

GS 1 [3]

Figure 1: For each class of valuations, we specify the best approximation factor that
is acheivable in polynomial time.

the sum of bidders’ values of the sets that they get. I.e. to find an allocation
S1...Sm, Si ∩ Sj = ∅ for i �= j, that maximizes

∑
i vi(Si). This problem is

the common abstraction of many complex resource allocation problems both in
computational settings and in economic settings and has received much atten-
tion from both from both computational and economic points of view – see the
recent book [5].

The computational hardness of this problem is double: first, the “input” here
is of exponential size – each vi is described by 2m real numbers, while we would
like our algorithms to run in time polynomial in both m and n – i.e. in time
that is poly-logarithmic in the input size. Second, even for valuations that are
succinctly described, the optimization problem is computationally hard. Much
work has thus been directed at identifying special cases that can be efficiently
solved or approximated, as well as understanding the underlying computational
limitations – see chapters 10 – 13 of [5].

Due to the exponential size of the input (that is, exponential in the parame-
ters we care about), there are two approaches to formalize the computational
model in which the allocation algorithms must work – specifically how the input
valuations are specified and accessed. The first approach calls for fixing some
“bidding language” in which the input valuations will be encoded, and requires
the algorithms to run in polynomial time in the input length, under this encod-
ing. This approach makes sense in cases for which a sufficiently natural bidding
language exists. The second approach is a “concrete complexity” approach: the
input valuations are given as “black boxes” and the type of queries that the
algorithm may make to these input valuations is fixed. There are three types of
query models that are commonly used:

1. Value queries: The query specifies a subset S ⊆M of items and receives
the value vi(S) as the reply. This query is very natural from a “computer
science” point of view, but in general is quite weak.

2

2. Demand queries: The query specifies a vector p = (p1...pm) of “item
prices”, and the reply is the set that would be “demanded” by the queried
bidder under these item prices. I.e., the subset S that maximizes vi(S)−∑

j∈S pj . This query is natural from an economic point of view as it
corresponds to “revealed preferences” of the bidders (i.e. what is directly
observable from their behavior). It is known that these queries are strictly
stronger than value queries (and in particular can simulate them in poly-
nomial time) [4, 6].

3. General queries: In this model we allow any kind of query to each
valuation function (but the query is always to a single valuation function).
This model captures the communication complexity (between the bidders)
of the problem, and due to its strength is mostly interesting for lower
bounds.

The computational complexity of the allocation problem with general valu-
ations is almost completely understood: in polynomial time, the optimal allo-
cation can be approximated to within a factor of O(

√
m) but not to a factor

of m1/2−ε for any ε > 0. This is true both in the bidding langauge model for
even single-minded bidders [15, 21]. The lower bound applies to general queries,
where the upper bound requires demand queries, but value queries do not suffice
[6, 4].

In this paper we study the complexity of the allocation problem in the im-
portant special case where the input valuations are known not to have any com-
plementarities. I.e., where all input valuations are sub-additive: v(S ∪ T) ≤
v(S) + v(T) for all S, T 1. In [14] a strict hierarchy of subclasses within
this class of valuations is exhibited: OXS ⊂ GS ⊂ SM ⊂ XOS ⊂ CF .
The classes CF and SM are easy to define: CF is the class of sub-additive
(complement-free) valuations; SM is the set of submodular valuations, i.e.,
v(S ∪ T) + v(S ∩ T) ≤ v(S) + v(T) for all S, T . We will not define the class
of GS, “(gross) substitute”, valuations here, but we will note that economists
often assume valuations to be in this class as in some sense this corresponds to
“convex economies”. The classes OXS and XOS are defined syntactically as
what can be defined by OR-of-XORs (resp. XOR-of-ORs) of singleton valua-
tions. See [18] for definitions of the OR and XOR operations. For our purposes,
we offer a natural semantic characterization of the syntactically defined XOS
language.

The allocation problem gets gradually harder within this hierarchy: a strongly
polynomial time algorithm exists if the input valuations are given in the OXS
language; a polynomial time algorithm based on linear programming exists
for the class GS [20]. For the class SM no polynomial time algorithm exists:
NP-hardness for some simple bidding language is shown in [14] and an expo-
nential communication lower bound is shown in [20]. However, [14] exhibit a

1It is also possible to consider the “dual” class of substitute-free valuations (v(S ∪ T) ≥
v(S) + v(T), for disjoint S, T ⊆ M). However, it turns out that the lower bound for general
valuations [20], also stands for this class.

3

polynomial-time 2-approximation algorithm that uses only value queries. No
approximation algorithms (better than the O(

√
m)-approximation for general

valuations) were previously known for the higher levels in this hierarchy2.
We provide new approximation algorithms for these two levels:

Theorem: There exists a polynomial time algorithm that finds a O(log m)
approximation for valuations in the class CF using demand queries.

This algorithm is based on a careful randomized rounding of the linear pro-
gramming formulation of the problem; a deterministic algorithm is obtained via
derandomization.

We also provide an algorithm that uses the weaker model of value queries,
and yields a worse approximation ratio. The main novelty in this algorithm is
the fact that it is incentive compatible. I.e. the dominant strategy of all bidders
is to always report their true valuations. Surprisingly, this is one of the only
two incentive compatible approximation algorithms known for combinatorial
auctions, that do not apply only to very restricted “single-parameter” domains.
The second algorithm is described in [2].

Theorem: There exists an incentive compatible polynomial time algorithm that
finds a O(

√
m)-approximation for valuations in the class CF using value queries.

For the more restricted class XOS we obtain an improved approximation
ratio.

Theorem: There exists a polynomial time algorithm that finds a 2-approximation
for valuations given in the XOS language.

The algorithm is greedy but very different from the algorithm of [14] designed
for the more restricted SM class. We also provide a semantic characterization
of the class XOS.

We prove lower bounds for approximation for CF and XOS. The class
CF does not have a natural bidding language and so the lower bound is in the
query model. The lower bound for the class XOS is actually two separate lower
bounds: an NP-hardness result for the bidding language model, and a commu-
nication lower bound for the query model. No hardness result for approximation
to within any constant factor for any of these classes was previously known.

Theorem: Exponential communication is required for approximating the opti-
mal allocation among CF valuations to within any factor less than 2

Theorem: (1) It is NP-hard to approximate the optimal allocation among
valuations given in the XOS language to within any constant factor less than
e/(e − 1). (2) Exponential communication is required for approximating the
optimal allocation among XOS valuations to within any factor less than 4/3.

2This situation is similar to several other cases where submodular functions can be handled
in sub-linear time, but nothing positive is known for more general functions. In particular
this includes the celebrated algorithms for minimization of submodular functions [8, 22].

4

Our results do not completely settle the complexity of approximate alloca-
tion among either submodular (SM) or sub-additive (CF) valuations (or XOS
valuations). We suggest here the following “natural” conjectures:

Conjecture 1: Finding a better than O(log m)-approximation of the optimal
allocation among CF valuations requires an exponential amount of communi-
cation.

This would match our upper bound.

Conjecture 2: Finding a better than O(
√

m)-approximation of the optimal al-
location among CF valuations requires an exponential number of value queries.

This would match our upper bound, and highlight the gap between CF and
SM (for which a 2-approximation using value queries exists), and also show that
demand oracles are indeed required to achieve the O(log m) approximation.

Conjecture 3: There is a constant c > 1 such that any approximation of
the optimal allocation for SM valuations to a factor better than c requires an
exponential amount of communication.

This would strengthen the known lower bound of 1 + 1/(2m) of [20]. In
appendix A.1 we prove a result in this direction that is weaker in two aspects:
the bound is only for value queries rather than general communication, and it
is conditional upon P �= NP . After the submission of this paper, Khot et. al.
[12] strengthen this lower bound. They show that if only value queries are used,
it is NP-hard to approximate the optimal allocation for submodular valuations
to within any constant factor better than e

e−1 .
Structure of the Paper

In section 2 we present the approximation algorithms for the class CF and
the associated lower bound. Section 3 presents the algorithm for the class XOS
and the associated lower bounds.

2 Approximating Auctions with CF Valuations

In sections 2.1 and 2.2 we present a top-level description of the O(log m) ap-
proximation algorithm and then fill in the details of the steps. The proof of
correctness appears in subsection 2.3.

In section 2.4 we describe an incentive compatible O(
√

m)-approximation
algorithm). In section 2.5 we present a lower bound – the lower bound is for a
general communication model and thus applies to any algorithm that has any
type of oracle access to the valuations.

2.1 Using Demand Queries for Approximation

Let us start with an imprecise description of the main idea of the algorithm.
Randomized rounding of the LP-relaxation is a standard technique, and our
algorithm uses it. However, when one attempts randomized rounding on packing

5

problems such as combinatorial auctions, the results are not good: a randomized
choice will very likely yield non-feasible solutions, unless the probabilities taken
reduce the expected quality of solution by a large O(

√
m) factor. However, these

non-feasible solutions are only a logarithmic factor away from feasibility. For
general valuations this does not help, but this is the reason that the k-duplicate
version of combinatorial auctions can be well approximated [6, 2, 1].

The main observation at the heart of our algorithm is that one may parti-
tion this logarithmically-non-feasible solution into a logarithmic size family of
feasible solutions. For the case of complement-free valuations, the quality of one
of these solutions may be bounded from below.

Let us now get more precise. We present here an algorithm for the allocation
problem with n complement-free valuations. We assume that we have a demand
oracle for each of the input valuations.

2.2 The Algorithm

Input: The input is given as a set of n demand oracles for the n valuations vi.

Output: An allocation T1,...,Tn which is an O(log m) approximation to the
optimal allocation.

The Algorithm: We first describe the basic steps of the algorithm and then
provide the details regarding the implementation of each step.

1. Solve the linear relaxation of the problem:

Maximize: Σi,Sxi,Svi(S)

Subject to:

• For each item j: Σi,S|j∈Sxi,S ≤ 1

• for each bidder i: ΣSxi,S ≤ 1

• for each i, S: xi,S ≥ 0

2. Use randomized rounding to find a “pre-allocation” S1, ..., Sn of pairs <
i, Si > with the following properties, where k = c · log(m), and c > 0 is a
constant to be chosen later:

• Each item j appears at most k times in {Si}i, with j ∈ Si.

• ∑
i vi(Si) ≥ 1

3 · (Σi,Sxi,Svi(S)).

3. For each bidder i, partition Si into a disjoint union Si = S1
i ∪ ...∪Sk

i such
that for each 1 ≤ i1 < i2 ≤ n and 1 ≤ r ≤ k, it holds that Sr

i1
∩ Sr

i2
= ∅.

4. Find the r that maximizes
∑

i vi(Sr
i), and for each i allocate Ti = Sr

i to
bidder i.

We now mention the details of each step:

6

1. Solving the Linear Program: Even though the linear program has
exponentially many variables, it may still be solved in polynomial time.
This is done by solving the dual linear program using the ellipsoid method.
Using the ellipsoid method requires a “separation” oracle, and this may
be directly implemented using the demand oracles of the bidders. This
was first proved in [20], and in more details in [4].

2. Randomized Rounding: For each bidder i we independently choose
a set Si by performing the following random experiment: each set S is
chosen with probability xi,S , and the empty set is chosen with probability
1 − ΣSxi,S . If any of the required constraints is violated, then this stage
is repeated from scratch. This randomized step may be converted to be
deterministic by derandomizing using the generator of [17] as explained in
[23].

3. Partitioning each Si: This is done as follows: for each i = 1...n and each
r = 1..k, we let Sr

i = {j ∈ Si|j appears in exactly r − 1 of the sets S1...Si−1}.
4. Choosing the best partition: This step is straightforward.

Theorem 2.1 If all input valuations are complement-free then the algorithm
produces an allocation that is a 2k = O(log m)-approximation to the optimal
one.

2.3 Analysis

Let us keep track of the “quality” of solution implied by the intermediate steps.

1. The first step returns the optimal fractional solution OPT ∗ = Σi,Sxi,Svi(S),
which is an upper bound to the value of the integral optimal allocation,
OPT .

2. The detailed calculations needed to prove that this step indeed ends with
a solution that satisfies all the required conditions are given later. At this
point we will indicate the types of calculations used and what they yield.
From the first inequality of the LP and using Chernoff bounds one can
show that for every item j, the probability that it appears in more than k
chosen sets is exponentially small in k. The expected value of

∑
i vi(Si) at

this stage is only slightly less than Σi,Sxi,Svi(S) = OPT ∗. It follows that
with very high probability none of the required constraints are violated,
and thus we have

∑
i vi(S) ≥ 1

3 ·OPT ∗

3. The main point here is that indeed for every fixed r, the sets {Sr
i }i are

pairwise disjoint and are thus a valid allocation. This follows directly from
the construction, as every duplicate instances of every item j are allocated
to sets Sr

i with sequentially increasing r. Note that we always keep r ≤ k
since each item appears in at most k sets in {Si}.

7

4. The crucial use of complement-freeness comes here: since for each fixed i,
Si =

⋃
r Sr

i , the fact that vi is complement free implies that
∑

r vi(Sr
i) ≥

vi(Si). By summing over all i we get that
∑

r

∑
i vi(Sr

i) =
∑

i

∑
r vi(Sr

i) ≥∑
i vi(Si) ≥ 1

3 · OPT ∗. It is now clear that by choosing the r that max-
imizes

∑
i vi(Sr

i) we get that
∑

i vi(Sr
i) ≥ OPT∗

3k . Thus the allocation
T1 = Sr

1 , ..., Tn = Sr
n is an O(log(m)) approximation to the optimal allo-

cation (and even to the optimal fractional allocation).

2.3.1 Details of Stage 2

We will require the following version of the Chernoff bounds:

Theorem: (Chernoff Bound) Let X1,...Xn be independent Bernoulli trials
such that for 1 ≤ i ≤ n, Pr[Xi = 1] = pi. Then for X = X1 + ... + Xn,
μ ≥ p1 + ...pn, and any δ ≥ 2e− 1 we have:

Pr[X > (1 + δ)μ] < 2−μδ

For each j ∈M , let Ej denote the random variable that indicates whether j
was allocated more than k times. Let B be the random variable that indicates
whether vi(Si) < 1

3OPT ∗. We will prove that Pr[∨jEj ∨B] < 1.
We will first prove that Pr[∨jEj] < 1

20 . Fix an item j. Let Zi,j be the
random variable that determines whether j ∈ Si. Obviously, Zi,j receives values
in {0, 1}. Because of the randomized rounding method we used, we have that
the variables {Zi,j}i are independent. We define Zj = ΣiZi,j (i.e. Zj is the
number of times item j appears in {Si}). By the linearity of expectation and
the first condition of the LP formulation we have that E[Zj] ≤ 1. We can now
use the Chernoff bound, and choose a c such that:

Pr[item j appears in more than k bundles in {Si}] =

Pr[Zj > c · log(m)] < 2−(c−1)·log(m) <
1

20m

By applying the union bound we get that the probability that any one of the
items appears in more than k bundles in {Si} is smaller than m · 1

20m = 1
20 .

We will now prove that Pr[B] < 3
4 . We assume that maxi vi(M) = 1 (oth-

erwise, we can divide all valuations by maxi vi(M)). If OPT ∗ ≤ 3, then giving
M to the bidder that maximizes vi(M), is a feasible allocation which provides a
good approximation. Therefore, we will assume that OPT ∗ > 3. Let A be the
random variable that gets the value of Σivi(Si) after step 2. We will see that
that A ≥ Σivi(S)

3 with high probability.
We make use of the following corollary from Chebyshev’s inequality:

Claim: Let X be the sum of independent random variables, each of which
lies in [0, 1], and let μ = E[X]. Then, for any α > 0, Pr[|X − μ| ≥ α] ≤ μ

α2 .

We can now upper bound the the probability that event B occurs.

8

Pr[B] = Pr[A <
OPT ∗

3
] ≤

Pr[|A−OPT ∗| ≥ 2OPT ∗

3
] ≤ 9

4OPT ∗ ≤
3
4

the last inequality is because OPT ∗ > 3. Therefore, using the union bound:

Pr[∨m
t=1Et ∨B] ≤ Σj∈M Pr[Ej] + Pr[B] ≤ 1

20
+

3
4

= 0.8

We have shown that with good probability it is possible to create a solution
for which all the necessary conditions hold.

2.4 An Incentive-Compatible CF Auction with Value Queries

The only general technique known for making combinatorial auctions incentive
compatible is the VCG mechanism (see [9]). Unfortunately, using VCG requires
solving the auction optimally - approximations of the optimal social welfare
do not suffice [19, 15]. However, the amount of communication required for
optimally solving combinatorial auctions is exponential.

In this section we present a way of overcoming this obstacle: limiting the set
of possible allocations to a much simpler set. Optimal allocations within this set
can be found in polynomial time. Thus, VCG prices can be efficiently calculated,
and incentive compatibility follows. Therefore, we are left with showing that
the optimal solution within the restricted set of solutions always provides an
approximation to the original problem.

In addition, the algorithm answers another question: how well can the op-
timal social welfare be approximated using only value queries, given that all
bidders’ valuations are CF. The approximation ratio achieved in this section is
O(
√

m). In contrast, for general valuations a lower bound of O(m
log m) is known

[6, 4].
Let us now describe the algorithm:

Input: The input is given as a set of n value oracles for the n valuations vi.

Output: An allocation T1,...,Tn which is an O(
√

m) approximation to the
optimal allocation.

The Algorithm:

1. Query each bidder i for vi(M), and for vi({j}), for each item j.

2. Construct a bipartite graph by defining a vertex aj for each item j, and a
vertex bi for each bidder i. Let the set of edges be E = ∪i∈N,j∈M (aj , bi).
Define the cost of each edge (aj , bi) to be vi({j}). Compute the maximum
weighted matching |P | in the graph.

9

3. If the valuation of the bidder i that maximizes vi(M) is higher than the
value of |P |, allocate all items to i. Otherwise, for each edge (aj , bi) ∈ P
allocate the j’th item to the i’th bidder.

4. Let each bidder pay his VCG price.

Theorem 2.2 If all the valuations are CF, the algorithm runs in time polyno-
mial in n and m, provides an O(

√
m)-approximation to the optimal allocation,

and is incentive compatible.

Proof: Observe that the algorithm indeed runs in polynomial time in n
and m: first, the maximal weighted match in bipartite graphs can be solved
in polynomial time in m and n [24]. Second, calculation of the VCG prices
requires solving only an additional auction for each of the bidders. Note that
these additional auctions are smaller in size (one bidder less), and thus can also
be done in polynomial time.

Let us now prove that the algorithm provides the desired approximation
ratio. Let OPT = {T1, ..., Tk, Q1, ..., Ql} be the optimal allocation in the original
auction, where for each 1 ≤ i ≤ k, |Ti| <

√
m, and for each 1 ≤ i ≤ l, |Qi| ≥

√
m.

Let |OPT | = Σl
i=1vi(Qi) + Σk

i=1vi(Ti).
The first case we consider is when Σl

i=1vi(Qi) ≥ Σk
i=1vi(Ti). Clearly, Σl

i=1vi(Qi) ≥
|OPT |

2 . Since l ≤ √m (otherwise, more than m items were allocated), for the
bidder i that maximizes vi(Oi) it holds that vi(M) ≥ vi(Qi) ≥ |OPT |

2
√

m
. Thus, by

assigning all items to bidder i we get the desired approximation ratio.
Consider the case where Σk

i=1vi(Ti) > Σl
i=1vi(Qi). Clearly, Σk

i=1vi(Ti) >
|OPT |

2 . For each i, 1 ≤ i ≤ k, let ci = arg maxj∈Ti
vi({j}). Notice, that

vi({ci}) ≥ vi(Ti)
|Ti| (this is due to the CF property: |Ti| ·vi({ci}) ≥ Σj∈Ti

vi({j}) ≥
vi(Ti)). Since for all i’s |Ti| <

√
m, we have that: Σk

i=1vi(ci) > Σivi(Ti)√
m
≥ |OPT |

2
√

m
.

By assigning ci to bidder i we get an allocation in which every bidder gets at most
one item with a social welfare of Σk

i=1vi({ci}) ≥ |OPT |
2
√

m
. The second allocation,

therefore, guarantees at least that social welfare.
We conclude that the approximation the algorithm produces is at least

O(
√

m).
Incentive compatibility is guaranteed by the use of the VCG prices.

2.5 A Lower Bound

Theorem 2.3 For every ε > 0, any (2−ε)-approximation algorithm for a com-
binatorial auction with bidders that have CF valuations, requires an exponential
amount of communication.

Proof: Nisan and Segal [16] present an auction in which each bidder’s val-
uation is restricted to values in {0, 1}. They show that distinguishing between
the case that the optimal social welfare is 1, and the case that it is n, requires
exponential communication.

10

Denote by vi the valuation of the i’th bidder in the Nisan-Segal auction.
Define new CF valuations in the following manner: v′

i(S) = vi(S) + 1. One can
easily verify that these new valuations are indeed CF.

Let us now consider a combinatorial auction with these valuations. We
can see that distinguishing between the following cases requires exponential
communication: the optimal social welfare is n + 1, and the optimal social
welfare is 2n. Hence, we have proved that for every n ≥ 2 achieving 2n

n+1 -
approximation requires exponential communication, and the theorem follows.

3 A 2-Approximation Algorithm for XOS Valu-
ations

The class XOS of valuations was defined in [14] as those valuations that can
be syntactically described in the “XOR-of-ORs of singletons” bidding language.
This is natural from the point of view of bidding languages (see [18]), and is the
strongest known language that is syntactically restricted to representing only
complement-free valuations. It is general enough as to represent all submodular
valuations as well as some non-submodular valuations (and, as we will show,
some interesting computational instances).

For our purposes, we offer a natural semantic characterization of the syn-
tactically defined XOS language. First, we define a query type that we call
a “supporting prices” query. We then present our approximation algorithm in
a general setting where a “supporting prices” oracle is available (as well as a
demand oracle).

In section 3.4, we prove that both ”supporting prices” and demand queries
can be efficiently answered when the input is given in the XOS bidding language.

The notation of [14] for representing XOS valuations will be used in some
of the proofs.

3.1 Supporting Prices

Definition 3.1 We say that a vector of non-negative prices p1, ..., pm supports
the bundle S in valuation v if:

• ∀j /∈ S pj = 0

• ∑
j∈S pj = v(S).

• For every bundle T ,
∑

j∈T pj ≤ v(T).

The next proposition shows that existence of supporting prices for every
bundle is a semantic characterization of the syntactic XOS class.

Proposition 3.2 A valuation v is in the class XOS if and only if every bundle
S has supporting prices.

11

Proof: First, we show that XOS valuation indeed has supporting prices.
Given an XOS valuation and a set S we choose the clause that maximizes the
value of S, and assign the values of the items in the clause to be the prices of
the items in S (items which do not appear in the clause get the value of 0).
Obviously the sum of prices is indeed v(S). The value of each T ⊆ S is at least
the sum of prices, since the clause sets a lower bound to the possible value of
v(T). In the other direction, given a valuation which has supporting prices, we
will build an XOS valuation as follows: For each S ⊆M create a clause which
consists of the supporting prices of S. Observe that the valuations are indeed
equal.

Our algorithm uses oracles for “supporting prices” queries as well as demand
queries.

Definition 3.3 In a supporting prices query the question is a bundle S and the
answer is a vector of supporting prices for it.

3.2 The Algorithm

This greedy algorithm chooses an arbitrary order of bidders and goes over them,
one by one. Each bidder is asked for his demand bundle at given prices. The
prices are updated after each step according to the supporting prices.

Input: n valuations vi, for each of them we are given a demand oracle and a
supporting prices oracle.

Output: An allocation S1,...,Sn which is a 2 approximation to the optimal
allocation.

The Algorithm:

1. Initialize S1 = ... = Sn = ∅, and p1, ..., pm = 0

2. For each bidder i = 1...n :

(a) Let Si be the demand of bidder i at prices p1...pm.

(b) For all i′ < i take away from S′
i any items from Si: Si′ ← Si′ − Si.

(c) Let q1...qm be supporting prices for Si in vi.

(d) For all j ∈ Si, update pj = qj .

3.3 Analysis

Theorem 3.4 The algorithm provides a 2 approximation to the optimal allo-
cation.

12

Proof: For each T ⊆ M , we denote by pi(T) the total price of the items in
subset T at the i’th stage of the algorithm. Let Δi = pi(M)− pi−1(M), i.e. the
total difference in prices between stages (i − 1) and i (with p0(M) = 0). Let
A1, ..., An be the allocation generated by the algorithm. Let O1, ..., On be the
optimal allocation. We will prove the Σivi(Oi) ≤ 2Σivi(Ai). To do so, we prove
three simple lemmas:

Lemma 3.5 The social welfare of the allocation generated by the algorithm is at
least the sum of items’ prices at the end of the algorithm (after the n’th stage).
I.e. pn(M) ≤ Σivi(Ai).

Proof: Consider a specific bidder i. Let T be the bundle assigned to that
bidder by the algorithm in stage i. Obviously Ai ⊆ T . Due to the supporting
prices property, we have that pi(Ai) ≤ vi(Ai). However, since the items in Ai

were not reassigned after the i’th stage, and so their prices were not altered,
pi(Ai) = pn(Ai). We have that pn(Ai) ≤ vi(Ai), and so pn(M) = Σn

i=1p
n(Ai) ≤

Σn
i=1vi(Ai).

Lemma 3.6 The prices assigned to the items throughout the algorithm are non-
decreasing.

Proof: By contradiction. Let S be the set that maximizes the demand of the
i’th bidder at the i’th stage of the algorithm. Let q be a supporting prices vector
for S. Now, assume there is an item j ∈ S for which qj < pi

j . The supporting
prices property ensures that Σt∈(S−{j})qt ≤ vi(S − {j}) and Σr∈Sqr = vi(S).
Hence:

vi(S)− Σr∈Spi
r = Σr∈Sqr − Σr∈Spi

r =

(qj − pi
j) + (Σt∈(S−{j})qt − Σt∈(S−{j})pi

t) <

(Σt∈(S−{j})qt − Σt∈(S−{j})pi
t) < vi(S − {j})− Σt∈(S−{j})pi

t

and this is a contradiction to the definition of S.

Lemma 3.7 The social welfare of the optimal allocation is at most twice the
sum of items’ prices at the end of the algorithm. I.e. Σivi(Oi) ≤ 2pn(M).

Proof: Since for each i, 1 ≤ i ≤ n, Δi = maxT⊆M (vi(T)− pi−1(T)), we have:

vi(Oi)− pi−1(Oi) ≤ Δi.

since the prices do not decrease throughout the algorithm, the following inequal-
ity holds:

vi(Oi)− pn(Oi) ≤ Δi.

by summing up on both sides of the equation we get:

Σn
i=1vi(Oi)− Σip

n(Oi) ≤ ΣiΔi

Σivi(Oi)− pn(M) ≤ pn(M)

13

Σivi(Oi) ≤ 2pn(M)

Putting the lemmas together we have that

Σivi(Oi) ≤ 2pn(M) ≤ 2Σivi(Ai)

The following example shows that the algorithm does not achieve an ap-
proximation ratio better than 2: consider a combinatorial auction with two
goods, x1 and x2, and two bidders. The first bidder’s valuation is v1({x1}) =
v1({x2}) = v1({x1 ∪x2}) = 1. The valuation of the second bidder is v2({x1}) =
0, v2({x2}) = v2({x1 ∪ x2}) = 1. Clearly, a social welfare of 2 can be achieved
by allocating x1 to the first bidder, and x2 to the second bidder. However, the
first bidder might wish to get x2 at the first stage, and the optimal social welfare
achieved is only 1. Hence, the approximation ratio achieved by the algorithm is
only 2.

However, if all bidders have the same valuation the approximation guaran-
teed by the algorithm can be improved:

Theorem 3.8 If all bidders have the same XOS valuation, the algorithm pro-
vides an e

e−1 -approximation ratio.

Proof: The proof of the theorem is similar to the proof of [13] which studies
the Budgeted Maximum Coverage Problem. We will use the same notation as
in the proof of theorem 3.4. We will first prove two lemmas:

Lemma 3.9 After iteration i of the algorithm we have that

1
n

(Σrvr(Or)− pi−1(M)) ≤ pi(M)− pi−1(M) (= Δi).

Proof: By definition Δi = maxT⊆M (vi(T) − pi−1(T)). Hence, for each j,
1 ≤ j ≤ n

vi(Oj)− pi−1(Oj) ≤ Δi.

Since all bidders have the same valuation the following inequality holds:

vj(Oj)− pi−1(Oj) ≤ Δi.

By summing up on j (on both sides of the equation) we get:

Σrvr(Or)− pi−1(M) ≤ nΔi.

and the lemma follows.

Lemma 3.10 After the i’th iteration of the algorithm the following holds:

(1− (1− 1
n

)i)(Σrvr(Or)) ≤ pi(M)

14

Proof: We prove this lemma by induction on i. For i=1, p1(M) = v1(M) ≥
1
nΣrvr(Or). If we assume correctness for (i− 1) then:

pi(M) = pi−1(M) + Δi

by the previous lemma and the induction step,

pi(M) ≥ pi−1(M) +
1
n

(Σrvr(Or)− pi−1(M))

=
1
n

Σrvr(Or) + (1− 1
n

)pi−1(M) ≥
1
n

Σrvr(Or) + (1− 1
n

)(1− (1− 1
n

)i−1)(Σrvr(Or))

= (1− (1− 1
n

)i)(Σrvr(Or))

Using the previous lemma we get:

e− 1
e

Σivi(Oi) ≤ (1− (1− 1
n

)n)(Σivi(Oi)) ≤ pn(M) ≤ Σivi(Ai)

the right inequality was proved in theorem 3.4.
Theorem 3.13 shows that this ratio is essentially the best possible, as no

polynomial-time algorithm achieves a better ratio, unless P = NP .

3.4 Efficiently Simulating “Supporting Prices” and De-
mand Queries

We will now show that if the input is given in the form of an XOS expression,
these two oracles can be simulated in time polynomial in the input size.

Lemma 3.11 The following two queries can be answered for an XOS valuation
given as an XOS expression in time polynomial in the input size:

• A demand query.

• A supporting prices query.

Proof: Given an XOS valuation and a vector of prices we wish to simulate a
demand oracle. First, let us note that it is easy to simulate a demand oracle for
an additive valuation in polynomial time, by simply choosing all the profitable
items. Since the input is given as an XOS formula (in the form of a matrix)
and each clause is an additive valuation, it is enough to simulate a demand
oracle for each clause and choose the most profitable option. As there is only a
polynomial number of such clauses the entire process requires polynomial time.

The proof of proposition 3.2 contains a method of finding supporting prices
to a given bundle of items.

15

We do not know whether a supporting prices query can be simulated using
only demand oracle queries if the input is not given in the XOS language.
However, for the more restricted class of submodular valuations the following
holds:

Proposition 3.12 The supporting prices of submodular valuations can be cal-
culated in polynomial time using only a value oracle.

Proof: To calculate the supporting prices for some group of S ⊆ M items,
first choose an arbitrary order of these items. Set the price pj of the j’th item
to be its marginal utility given the previous j − 1 items (i.e. v(1 ∪ 2 ∪ ... ∪ j)−
v(1 ∪ 2 ∪ ... ∪ (j − 1))). Observe that v(S) = Σi∈Spi. It’s easy to see that for
every T ⊆ S v(T) ≥ Σi∈T pi, since by definition of submodular valuation, the
marginal utility does not increase when items are added.

3.5 Lower Bounds

We prove two lower bounds: The first is a lower bound in the NP-hardness model
that applies when the input is in XOS encoding. The second lower bound is in
communication and applies when the input is accessed via oracles.

Theorem 3.13 It is NP-hard to approximate the optimal allocation among val-
uations given in the XOS language to within any constant factor less than
e/(e− 1).

Proof: We will show a polynomial-time reduction from MAX-k-COVER.
MAX-k-Cover is defined as follows: Given m items, and a collection of subsets
of these items, the objective is to maximize the number of items which can
be covered by k subsets. It is known that it is NP-hard to approximate this
problem within a better factor than e

e−1 [7]. This problem can be converted
into a combinatorial auction with XOS valuations: given an instance of MAX-
k-COVER, we create an auction with k bidders and m goods. Each bidder
has the same XOS valuation in which there is a clause for each subset in the
original problem, and the value of every item in the clause is 1. Clearly, every
choice of k subsets in the original problem corresponds to an allocation in the
combinatorial auction with the same value. All we need to do is to assign all
items in set i to bidder i (and avoid assigning one item to more then one bidder).
In the other direction, every allocation corresponds to a choice of k sets in the
original problem with at least the social welfare value: We choose k subsets, so
that subset i contains the items in the clause maximizing bidder i’s gain. This
way we are guaranteed that the number of items covered is no less than the
social welfare. The theorem follows.

Theorem 3.14 Exponential communication is required for approximating the
optimal allocation among XOS valuations to within any factor less than 4/3

16

Proof: In [16] it is shown that any algorithm achieving a (1
2 log m−ε) approx-

imation for the SET-COVER problem (as defined there) requires exponential
communication. In [7] (proposition 12), it is shown how to deduce a lower bound
for MAX-k-COVER by a reduction from SET-COVER. An analogous method
produces a communication lower bound of 4

3 to the communication version of
MAX-k-COVER. In this version of the problem we have k players, each holding
a collection of subsets of M . We are interested in maximizing the number of
items covered by k subsets when subset i can only be chosen from player i’s
subsets. An argument similar to the one in theorem 3.13 shows that there is an
approximation preserving reduction from this version of MAX-k-COVER to an
auction where the bidders have different XOS valuations. Hence, any algorithm
with approximation ratio better than 4

3 requires exponential communication.
Acknowledgments

We would like to thank Daniel Lehmann for comments on an earlier draft of
this paper.

References

[1] A. Archer, C. Papadimitriou, K. Talwar, and E. Tardos. An approximate
truthful mechanism for combinatorial auctions with single parameter agent.
In Proceedings of the 14th Annual ACM Symposium on Discrete Algorithms
(SODA), 2003.

[2] Yair Bartal, Rica Gonen, and Noam Nisan. Incentive compatible multi unit
combinatorial auctions. In TARK 03, 2003.

[3] Alejandro Bertelsen and Daniel Lehmann. Substitutes valuations: M#-
concavity. Working Paper.

[4] Liad Blumrosen and Noam Nisan. On the computational power of iterative
auctions I: Demand queries, 2005. Working paper.

[5] P. Cramton, Y. Shoham, and R. Steinberg (Editors). Com-
binatorial Auctions. MIT Press. Forthcoming., 2005.
http://www.cramton.umd.edu/papers2000-2004/cramton-shoham-
steinberg-combinatorial-auctions.pdf.

[6] Shahar Dobzinski and Michael Schapira. Optimal upper and lower approx-
imation bounds for k-duplicates combinatorial auctions, 2005. Working
paper.

[7] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the
ACM, 45(4):634–652, 1998.

[8] Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. The ellipsoid
method and its consequences in combinatorial optimization. IIASA Collab.
Proceedings Ser. CP-81-S1, pages 511–546, 1981.

17

[9] T. Groves. Incentives in teams. Econometrica, pages 617–631, 1973.

[10] J. H̊astad. Some optimal inapproximability results. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages
1–10, 1997.

[11] Ron Holzman, Noa Kfir-Dahav, Dov Monderer, and Moshe Tennenholtz.
Bundling equilibrium in combinatrial auctions. Games and Economic Be-
havior, 47:104–123, 2004.

[12] Subhash Khot, Richard Lipton, Evangelos Markakis, and Aranyak Mehta.
Inapproximability results for combinatorial auctions with submodular util-
ity functions, 2005. Working paper.

[13] Samir Khuller, Anna Moss, and Joseph (Seffi) Naor. The budgeted maxi-
mum coverage problem. Inf. Process. Lett., 70(1):39–45, 1999.

[14] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auc-
tions with decreasing marginal utilities. In ACM conference on electronic
commerce, 2001.

[15] Daniel Lehmann, Liadan Ita O’Callaghan, and Yoav Shoham. Truth rev-
elation in approximately efficient combinatorial auctions. In JACM 49(5),
pages 577–602, Sept. 2002.

[16] Noam Nisan. The communication complexity of approximate set packing
and covering. In ICALP 2002.

[17] Noam Nisan. RL ⊆ SC. In Proceedings of the twenty-fourth annual ACM
symposium on Theory of computing, pages 619–623. ACM Press, 1992.

[18] Noam Nisan. Chapter 9: Bidding Languages. In P. Cram-
ton and Y. Shoham and R. Steinberg (Editors), Combinatorial
Auctions. MIT Press. Forthcoming, 2005. Available from
http://www.cs.huji.ac.il/˜noam/mkts.html.

[19] Noam Nisan and Amir Ronen. Computationally feasible vcg-based mecha-
nisms. In ACM Conference on Electronic Commerce, 2000.

[20] Noam Nisan and Ilya Segal. The communication requirements of efficient
allocations and supporting prices, 2003. Working paper. Available from
http://www.cs.huji.ac.il/˜noam/mkts.html.

[21] Tuomas Sandholm. Algorithm for optimal winner determination in combi-
natorial auctions. Artificial Intelligence, 135(1-2):1–54, 2002.

[22] Alexander Schrijver. A combinatorial algorithm minimizing submodular
functions in strongly polynomial time. J. Comb. Theory Ser. B, 80(2):346–
355, 2000.

18

[23] D. Sivakumar. Algorithmic derandomization via complexity theory. In
Proceedings of the 34th annual ACM Symposium on Theory of Computing
(STOC), 2002.

[24] Robert Endre Tarjan. Data structures and network algorithms. Society for
Industrial and Applied Mathematics, 1983.

A A Constant Lower Bound for Approximating
Submodular Auctions

Theorem A.1 Using value queries only, it is NP-hard to approximate the op-
timal allocation among submodular to within any constant factor less than 1.02.

Proof: We will prove the lower bound by reducing from MAX-CUT. MAX-
CUT is the problem of finding a partition of vertices in a graph G, such that
the cut (the number of edges with one vertex in either side of the partition) is
maximized. Given a graph G = (V,E), define a two bidder auction as follows:
the goods will be the vertices, and the two bidders will have an identical valu-
ation functions: v(S) = | ∪(i,j)∈E|i∈S (i, j)|. Observe that these valuations are
indeed submodular, and that for every S, v(S) can be calculated in polynomial
time. Each allocation defines a cut, and each cut defines an allocation. The
total social welfare of an allocation is |E|, plus the number of edges which have
been counted twice (once for each bidder). The edges which have been counted
twice, are the cut defined by the allocation. Denote by ALG the number of
edges that have been counted twice in the combinatorial auction, and by OPT
the number of edges in the maximum cut. Recalling that the maximum cut
consists of at least half of the edges, we have that

|E|+ ALG

|E|+ OPT
≤ 2OPT + ALG

3OPT
=

2
3

+
ALG

3OPT

[10] sets a lower bound of 17
16 − ε for approximating MAX-CUT. We can now

conclude that it is NP-hard to approximate combinatorial auctions with sub-
modular valuations within a factor of 51

50 − ε.

19

