
Hardness Results for Multicast Cost Sharing∗

Joan Feigenbaum† Arvind Krishnamurthy‡ Rahul Sami§ Scott Shenker¶

March 9, 2003

Abstract

We continue the study of multicast cost sharing from the viewpoints of both computational
complexity and economic mechanism design. We provide fundamental lower bounds on the
network complexity of group-strategyproof, budget-balanced mechanisms. We also extend a
classical impossibility result in game theory to show that no strategyproof mechanism can be
both approximately efficient and approximately budget-balanced. Our results show that one
important and natural case of multicast cost sharing is an example of a canonical hard problem
in distributed, algorithmic mechanism design; in this sense, they represent progress toward the
development of a complexity theory of Internet computation.

Keywords: Algorithmic mechanism design, communication complexity, multicast.

1 Introduction

In the standard unicast model of Internet transmission, each packet is sent to a single destination.

Although unicast service has great utility and widespread applicability, it cannot efficiently transmit

popular content, such as movies or concerts, to a large number of receivers; the source would have

to transmit a separate copy of the content to each receiver independently. The multicast model of

Internet transmission relieves this problem by setting up a shared delivery tree spanning all the

receivers; packets sent down this tree are replicated at branch points so that no more than one copy

of each packet traverses each link. Multicast thus greatly reduces the transmission costs involved

in reaching large user populations.
∗This work was supported by the DoD University Research Initiative (URI) program administered by the Office

of Naval Research under Grant N00014-01-1-0795. It was presented in preliminary form at the 2002 Conference on

Foundations of Software Technology and Theoretical Computer Science [FKS+02].
†Yale University, Computer Science, New Haven, CT 06520-8285 USA, feigenbaum@cs.yale.edu. Supported in

part by ONR grants N00014-01-1-0447 and N00014-01-1-0795 and NSF grants CCR-0105337 and ANI-0207399.
‡Yale University, Computer Science, New Haven, CT 06520-8285 USA, arvind@cs.yale.edu. Supported in part by

NSF grants CCR-9985304 and ANI-0207399.
§Yale University, Computer Science, New Haven, CT 06520-8285 USA, sami@cs.yale.edu. Supported by ONR

grant N00014-01-1-0795.
¶ICSI, 1947 Center Street, Berkeley, CA 94704-1198 USA, shenker@icsi.berkeley.edu. Supported in part by NSF

grants ANI-9730162, ITR-0081698, ITR-0121555, and ANI-0207399.

1

The large-scale, high-bandwidth multicast transmissions required for movies and other potential

sources of revenue are likely to incur substantial transmission costs. The costs when using the uni-

cast transmission model are separable in that the total cost of the transmission is merely the sum

of the costs of transmission to each receiver. Multicast’s use of a shared delivery tree greatly re-

duces the overall transmission costs, but, because the total cost is now a submodular and nonlinear

function of the set of receivers, it is not clear how to share the costs among the receivers. A recent

series of papers has addressed the problem of cost sharing for Internet multicast transmissions. In

the first paper on the topic, Herzog et al considered axiomatic and implementation aspects of the

problem. Subsequently, Moulin and Shenker [MS01] studied the problem from a purely economic

point of view. Several more recent papers [FPS01, AFK+02, AR02, FGH+02] adopt the distributed

algorithmic mechanism design approach, which augments a game-theoretic perspective with dis-

tributed computational concerns. In this paper, we extend the results of [FPS01] by considering a

more general computational model and approximate solutions. We also extend a classic impossibil-

ity [GL79] result by showing that no strategyproof mechanism can be both approximately efficient

and approximately budget-balanced.

Before providing a detailed technical statement of our results, we introduce distributed algo-

rithmic mechanism design and our model of multicast cost sharing.

1.1 Distributed Algorithmic Mechanism Design

We consider both complexity and incentive issues inherent in multicast cost sharing. This approach

is fairly new, as incentives have rarely been an important consideration in traditional theoretical

computer science (TCS). Instead, users (or the computers acting on their behalf) are assumed either

to be obedient (i.e., to follow the prescribed algorithm) or to be adversaries who “play against”

each other. The traditional TCS focus is on the design of computationally efficient algorithms and

protocols that accomplish the desired aim in the presence of these obedient or adversarial users.

In contrast, the selfish users in game theory are neither cooperative nor adversarial. Although

one cannot assume that selfish users will obediently follow the prescribed algorithm, one can assume

that they will respond to incentives. Thus, one need not design algorithms that achieve correct

results in the face of adversarial behavior on the part of some users, but one does need algorithms

that work correctly in the presence of predictably selfish behavior by all users. Achieving system-

wide goals like Pareto efficiency or fairness in the presence of selfish agents is the primary aim of

economic mechanism design (see [J01] for a review). However, this mechanism-design literature has

not typically considered the algorithmic efficiency of mechanisms.

Thus, while the economics literature traditionally stressed incentives and downplayed compu-

tational complexity, the computer-science literature traditionally did the opposite. The emergence

of the Internet as a standard platform for distributed computation has changed this state of affairs.

Incentives have become an increasingly important consideration in network-protocol design (see,

2

for example, [FNY89, FS97, HA88, KLO95, KS89, S88, S90, S95]). More recently, the work of

Nisan and Ronen [NR01] has inspired the design of algorithmic mechanisms for, e.g., scheduling,

load balancing, lowest-cost paths, and combinatorial auctions that satisfy both the traditional eco-

nomic definitions of incentive compatibility and the traditional TCS definitions of efficiency. The

examples of algorithmic mechanism design in [NR01] use centralized computations and therefore

invoke notions of centralized complexity. More recent papers have introduced distributed algorith-

mic mechanism design (DAMD), in which the computations are distributed and therefore require

distributed measures of complexity. Feigenbaum, Papadimitriou, and Shenker [FPS01] propose a

general concept of “network complexity” that requires a distributed algorithm executed over an

interconnection network T to be modest in four respects: the total number of messages that agents

send over T , the maximum number of messages sent over any one link in T , the maximum size of

a message, and the local computational burden on agents. If a distributed algorithm requires an

excessive expenditure of any one of these four resources, then its “network complexity” is unaccept-

able. This notion of network complexity allows the mechanism designer to evaluate the feasibility

of executing the algorithmic mechanism in a decentralized setting. Network complexity is not (yet)

a precisely defined notion, and further study of distributed algorithmic mechanisms is required to

formalize its definition. Each of these four resources has been used as a measure of complexity

in the distributed computation literature; however, it is not standard to consider all four resource

constraints simultaneously.

A central challenge in the study of algorithmic mechanism design is the search for hard prob-

lems and, more generally, the development of a full-fledged “complexity theory” of mechanisms.

Superficially, a problem is hard if it cannot be solved in a manner that satisfies both the incentive-

compatibility and the computational-tractability requirements. There will be many problems for

which this cannot be done; NP-hard problems, for example, cannot be solved in a computationally

tractable manner (unless P=NP), and there are no efficient, strategyproof, and budget-balanced

solutions to general cost-sharing problems. However, we are not interested in hardness per se but

rather in hardness that results from the interplay of incentive compatibility and computational

complexity. Thus, a more useful distinction is made by defining a DAMD problem to be a canoni-

cal hard problem1 if each of these two requirements can be satisfied individually, but they cannot be

satisfied simultaneously. Canonical hard problems will help us understand the fundamental nature

of hardness in DAMD, as opposed to hardness that results solely from computational issues or solely

from incentive issues. When combined with earlier work in, e.g., [MS01, FPS01], the results that

we present here show that one important and natural case of multicast cost sharing is a canonical

hard problem; to the best of our knowledge, it is the first such example in the literature. Like

“network complexity,” “canonical hardness” is not (yet) a precisely defined notion; ultimately, one

would like to have well defined network complexity classes, one or more natural notions of reduc-
1In the extended abstract of this paper[FKS+02], these were called “representative hard problems.” Here, we use

the term “canonical hard problem” in order to be consistent with the DAMD survey paper [FS02].

3

tion, and canonical hard problems that are complete for some class, but more natural examples

of good (and bad) distributed algorithmic mechanisms are needed in order to get to that point.

Further discussion of easiness and hardness in DAMD can be found in [FS02].

1.2 Multicast Cost Sharing Model

We use the multicast-transmission model of [FPS01]: There is a user population P residing at a

set of network nodes N , which are connected by bidirectional network links L. The multicast flow

emanates from a source node αs ∈ N ; given any set of receivers R ⊆ P , the transmission flows

through a multicast tree T (R) ⊆ L rooted at αs and spans the nodes at which users in R reside. It

is assumed that there is a universal tree T (P) and that, for each subset R ⊆ P , the multicast tree

T (R) is merely the minimal subtree of T (P) required to reach the elements in R. This approach is

consistent with the design philosophy embedded in essentially all multicast-routing proposals (see,

e.g., [BFC93, DEF+96, HC99, PLB+99]).

Each link l ∈ L has an associated cost c(l) ≥ 0 that is known by the nodes on each end, and

each user i assigns a utility value ui to receiving the transmission. Note that ui is known only to

user i a priori, and hence user i can strategize by reporting any value vi ≥ 0 in place of ui. A

cost-sharing mechanism determines which users receive the multicast transmission and how much

each receiver is charged. We let xi ≥ 0 denote how much user i is charged and σi denote whether

user i receives the transmission; σi = 1 if the user receives the multicast transmission, and σi = 0

otherwise. We use u to denote the input vector (u1, u2, . . . , u|P |). The mechanism M is then a

pair of functions M(u) = (x(u), σ(u)). The practical feasibility of deploying the mechanism on

the Internet depends on the network complexity of computing the functions x(u) and σ(u). It is

important to note that both the inputs and outputs of these functions are distributed throughout

the network; that is, each user inputs his ui from his network location, and the outputs xi(u) and

σi(u) must be delivered to him at that location.

The receiver set for a given input vector is R(u) = {i | σi = 1}. A user’s individual welfare

is given by wi = σiui − xi. The cost of the tree T (R) reaching a set of receivers R is c(T (R)),

and the overall welfare, or net worth, is NW (R) = uR − c(T (R)), where uR =
∑

i∈R ui and

c(T (R)) =
∑

l∈T (R) c(l). The overall welfare measures the total benefit of providing the multicast

transmission (the sum of the utilities minus the total cost).

Our goal is to explore the relationship between incentives and computational complexity, but,

before we do so, we first comment on several aspects of the model. The cost model we employ is a

poor reflection of reality, in that transmission costs are not per-link; current network-pricing schemes

typically only involve usage-based or flat-rate access fees, and the true underlying costs of network

usage, though hard to determine, involve small incremental costs (i.e., sending additional packets is

essentially free) and large fixed costs (i.e., installing a link is expensive). However, we are not aware

of a well-validated alternative cost model, and the per-link cost structure is intuitively appealing,

4

relatively tractable, and widely used (e.g., in [AFK+02, AR02, FGH+02, FPS01, JV01, MT02]).

We assume that the total transmission costs are shared among the receivers. There are cer-

tainly cases in which the costs would more naturally be borne by the source (e.g., broadcasting an

infomercial) or the sharing of costs is not relevant (e.g., a teleconference among participants from

the same organization); in such cases, our model would not apply. However, we think that there

will be many cases, particularly those involving the widespread dissemination of popular content,

in which the costs would be borne by the receivers.

There are certainly cases, such as the high-bandwidth broadcast of a long-lived event such as a

concert or movie, in which the bandwidth required by the transmission is much greater than that

required by a centralized cost-sharing mechanism (i.e., sending all the link costs and utility values

to a central site at which the receiver set and cost shares could be computed). For these cases, our

feasibility concerns would be moot. However, Internet protocols are designed to be general-purpose;

what we address here is the design of a protocol that would share multicast costs for a wide variety

of uses, not just long-lived and high-bandwidth events. Thus, the fact that there are scenarios

(e.g., the transmission of a shuttle mission, as explained below) in which our feasibility concerns

are relevant is sufficient motivation; they need not be relevant in all scenarios.

In comparing the bandwidth required for transmission to the bandwidth required for the cost-

sharing mechanism, one must consider several factors. First, and most obvious, is the transmission

rate b of the application. For large multicast groups, it will be quite likely that there will be at least

one user connected to the Internet by a slow modem. Because the multicast rate must be chosen

to accommodate the slowest user, one can’t assume that b will be large. Second, the bandwidth

consumed on any particular link by centralized cost sharing mechanisms scales linearly with the

number of users p = |P |, but the multicast’s usage of the link is independent of the number of

users. Third, one must consider the time increment ∆ over which the cost accounting is done. For

some events, such as a movie, it would be appropriate to calculate the cost shares once (at the

beginning of the transmission) and not allow users to join after the transmission has started. For

other events, such as the transmission of a shuttle mission, users would come and go during the

course of the transmission. To share costs accurately in such cases, the time increment ∆ must

be fairly short. The accounting bandwidth on a single link scales roughly as p, which must be

compared to the bandwidth ∆b used over a single accounting interval. Although small multicast

groups with large ∆ and b could easily use a centralized mechanism, large multicast groups with

small ∆ and b could not.

We have assumed that budget-balanced cost sharing, where the sum of the charges exactly covers

the total incurred cost, is the goal of the charging mechanism. If the charging mechanism were

being designed by a monopoly network operator, then one might expect the goal to be maximizing

revenue. There have been some recent investigations of revenue-maximizing charging schemes for

multicast (see, e.g., [FGH+02]), but here we assume, as in [HSE97, MS01, FPS01, AFK+02, AR02],

that the charging mechanism is decided by society at large (e.g., through standards bodies) or

5

through competition. Competing network providers could not charge more than their real costs

(or otherwise their prices would be undercut) nor less than their real costs (or else they would

lose money), and so budget balance is a reasonable goal in such a case. For some applications,

such as big-budget movies, the bandwidth costs will be insignificant compared to the cost of the

content, and then different charging schemes will be needed, but for low-budget or free content

(e.g., teleconferences) budget-balanced cost-sharing is appropriate.

Lastly, in our model it is the users who are selfish. The routers (represented by tree nodes),

links, and other network-infrastructure components are obedient. Thus, the cost-sharing algorithm

does not know the individual utilities ui, and so users could lie about them, but once they report

them to the network infrastructure (e.g., by sending them to the nearest router or accounting

node), the algorithms for computing x(u) and σ(u) can be reliably executed by the network. Ours

is the simplest possible strategic model for the distributed algorithmic mechanism-design problem of

multicast cost sharing, but, even in this simplest case, determining the inherent network complexity

of the problem is non-trivial. Alternative strategic models (e.g., ones in which the routers are

selfish, and their strategic goals may be aligned or at odds with those of their resident users)

may also present interesting distributed algorithmic mechanism-design challenges. Preliminary

work along these lines is reported in [MT02]. Finally, we note that our framework of distributed

algorithmic mechanism design includes both distributed information (inputs and outputs) and

distributed computation; there has also been work on studying the impact of distributed information

alone on algorithmic mechanism design [MT99, NS02].

1.3 Statement of Results

In order to state our results more precisely, we need additional notation and terminology.

A strategyproof cost-sharing mechanism is one that satisfies the property that wi(u) ≥ wi(u|iµi),

for all u, i, and µi. (Here, (u|iµi)j = uj , for j �= i, and (u|iµi)i = µi. In other words, u|iµi is

the utility profile obtained by replacing ui by µi in u.) Strategyproofness does not preclude the

possibility of a group of users colluding to improve their individual welfares. Any reported utility

profile v can be considered a group strategy for any group S ⊇ {i | vi �= ui}. A mechanism M

is group-strategyproof (GSP) if there is no group strategy such that at least one member of the

strategizing group improves his welfare while the rest of the members do not reduce their welfare.

In other words, if M is GSP, the following property holds for all u, v, and S ⊇ {i|ui �= vi}:

either wi(v) = wi(u), ∀i ∈ S,

or ∃i ∈ S such that wi(v) < wi(u).

In general, we only consider mechanisms that satisfy four natural requirements2:
2The one exception is Section 4, in which we do not assume SYM; that section contains an impossibility result,

and so not making this assumption only makes the section stronger.

6

No Positive Transfers (NPT): xi(u) ≥ 0; in other words, the mechanism cannot pay receivers

to receive the transmission.

Voluntary Participation (VP): wi(u) ≥ 0; this implies that users are not charged if they do not

receive the transmission and that users who do receive the transmission are not charged more than

their reported utilities.

Consumer Sovereignty (CS): For given T (P)3 and link costs c(·), there exists some µcs such

that σi(u) = 1 if ui ≥ µcs; this condition ensures that the network cannot exclude any agent who

is willing to pay a sufficiently large amount, regardless of other agents’ utilities.

Symmetry4 (SYM): If i and j are at the same node or are at different nodes separated by a

zero-cost path, and ui = uj , then σi = σj and xi = xj.

In addition to these basic requirements, there are certain other desirable properties that one

could expect a cost-sharing mechanism to possess. A cost-sharing mechanism is said to be efficient

if it maximizes the overall welfare, and it is said to be budget-balanced if the revenue raised from the

receivers covers the cost of the transmission exactly. It is a classical result in game theory [GL79]

that a strategyproof cost-sharing mechanism that satisfies NPT, VP, and CS cannot be both budget-

balanced and efficient. Moulin and Shenker [MS01] have shown that there is only one strategyproof,

efficient mechanism, called marginal cost (MC), defined in Section 4 below, that satisfies NPT, VP,

and CS. They have also shown that, while there are many GSP, budget-balanced mechanisms that

satisfy NPT, VP, and CS, the most natural one to consider is the Shapley value (SH), defined in

Section 2 below, because it minimizes the worst-case efficiency loss.

Both MC and SH also satisfy the SYM property. The egalitarian (EG) mechanism of Dutta and

Ray [DR89] is another well studied GSP, budget-balanced mechanism that satisfies the four basic

requirements. Jain and Vazirani [JV01] present a novel family of GSP, approximately budget-

balanced mechanisms5 that satisfy NPT, VP, and CS. Each mechanism in the family is defined

by its underlying cost-sharing function, and the resulting mechanism satisfies the SYM property

whenever the underlying function satisfies it. We use the notation JV to refer to the members of

the Jain-Vazirani family that satisfy SYM.

It is noted in [FPS01] that, for multicast cost sharing, both MC and SH are polynomial-time

computable by centralized algorithms. Furthermore, there is a distributed algorithm given in

[FPS01] that computes MC using only two short messages per link and two simple calculations per

node. By contrast, [FPS01] notes that the obvious algorithm that computes SH requires Ω(|P | · |N |)
messages in the worst case and shows that, for a restricted class of algorithms (called “linear

distributed algorithms”), there is an infinite set of instances with |P | = O(|N |) that require Ω(|N |2)
3For brevity, we often use T (P) to denote four components of a multicast cost-sharing problem instance: the

node-set N , the link-set L, the locations of the agents, and the multicast-source location αs.
4This straightforward definition is less restrictive than the one given by Moulin and Shenker [MS01]. The SH, JV,

and EG mechanisms that we use as examples satisfy the more stringent definition of symmetry in [MS01] as well.
5The mechanisms in [JV01] actually satisfy a more stringent definition of approximate budget balance than we

use; thus, our network-complexity lower bounds apply to them a fortiori.

7

messages. Jain and Vazirani [JV01] give centralized, polynomial-time algorithms to compute the

approximately budget-balanced mechanisms in the class JV.

In this paper, we show that:

• Any distributed algorithm, deterministic or randomized, that computes a budget-balanced,

GSP multicast cost-sharing mechanism must send Ω(|P |) bits over linearly many links in the

worst case. This lower bound applies, in particular, to the SH and EG mechanisms.

• Any distributed algorithm, deterministic or randomized, that computes an approximately

budget-balanced, GSP multicast cost-sharing mechanism must send Ω(log(|P |)) bits over

linearly many links in the worst case. This lower bound applies, in particular, to the SH, EG,

and JV mechanisms.

(In both these results, the “worst case” is worst with respect to all possible network topologies,

link costs, and user utilities.)

In order to prove the first of these lower bounds (i.e., the one for exact budget balance), we

first prove a lower bound that holds for all mechanisms that correspond to strictly cross-monotonic

cost-sharing functions. Cross-monotonicity, a technical property defined precisely in Section 2,

means roughly that the cost share attributed to any particular receiver cannot increase as the

receiver set grows; the SH and EG cost-sharing functions for a broad class of multicast trees are

examples of strictly cross-monotonic functions but not the only examples. Our lower bound on the

network complexity of strictly cross-monotonic mechanisms may be applicable to problems other

than multicast.

It is well known that there is no strategyproof mechanism that is both (exactly) efficient and

budget-balanced on all problem instances [GL79]. This in itself does not rule out the existence

of a strategyproof mechanism that is approximately efficient and approximately budget-balanced.

However, we prove that this is also impossible:

• There is no strategyproof multicast cost-sharing mechanism satisfying NPT, VP, and CS that

is both approximately efficient and approximately budget-balanced.

2 Exact submodular cost sharing

In this section, we prove a basic communication-complexity lower bound that applies to the dis-

tributed computation of many submodular cost-sharing mechanisms. We first prove this lower

bound for all mechanisms that satisfy “strict cross-monotonicity” as well as the four basic proper-

ties discussed in Section 1. We then show that, whenever the underlying cost function is strictly

subadditive, the resulting Shapley-value mechanism is strictly cross-monotonic and hence has poor

network complexity. Finally, we discuss the special case of multicast cost sharing and describe very

general conditions under which the multicast cost will be strictly subadditive. In particular, we

8

present an infinite family of instances that have strictly subadditive costs and show that, on these

instances, any cost-sharing mechanism that satisfies the four basic requirements is equivalent to SH

and must have poor network complexity.

Consider the general situation in which we want a mechanism to allow the users to share the

cost of a common service. We restrict our attention to the case of binary preferences: User i is

either “included,” by which he attains utility ui, or he is “excluded” from the service, giving him

0 utility. A mechanism can use the utility vector u as input to compute a set R(u) of users who

receive the service and a payment vector x(u). Further, suppose that the cost of serving a set

S ⊆ P of the users is given by C(S). This cost function is called submodular if, for all S, T ⊆ P , it

satisfies:

C(S ∪ T) + C(S ∩ T) ≤ C(S) + C(T).

Submodularity is often used to model economies of scale, in which the marginal costs decrease as

the serviced set grows. One example of a submodular cost function is the one presented in Section 1,

where the cost of delivering a multicast to a set R of receivers is the sum of the link costs in the

smallest subtree of the universal tree that includes all locations of users in R.

Moulin and Shenker [M99, MS01] have shown that any mechanism for submodular cost sharing

that satisfies budget-balance, GSP, VP, and NPT must belong to the class of cross-monotonic cost-

sharing mechanisms. A mechanism in this class is completely characterized by its set of cost-sharing

functions g = {gi : 2P → ≥0}. Here gi(S) is the cost that g attributes to user i if the receiver

set is S. For brevity, we will refer to g = {gi} as a “cost-sharing function,” rather than a set of

cost-sharing functions. We say that g is cross-monotonic if, ∀i ∈ S,∀T ⊆ P, gi(S ∪ T) ≤ gi(S).

In addition, we require that gi(S) ≥ 0 and, ∀j /∈ S, gj(S) = 0. Then, the corresponding cross-

monotonic mechanism Mg = (σ(u), x(u)) is defined as follows: The receiver set R(u) is the unique

largest set S for which gi(S) ≤ ui, for all i. This is well defined, because, if sets S and T each

satisfy this property, then cross-monotonicity implies that S ∪ T satisfies it. The cost shares are

then set at xi(u) = gi(R(u)).

There is a natural iterative algorithm to compute a cross-monotonic cost-sharing mechanism [MS01,

FPS01]: Start by assuming the receiver set R0 = P , and compute the resulting cost shares

x0
i = gi(R0). Then drop out any user j such that uj < x0

j ; call the set of remaining users R1.

The cost shares of other users may have increased, and so we need to compute the new cost shares

x1
i = gi(R1) and iterate. This process ultimately converges, terminating with the receiver set R(u)

and the final cost shares xi(u).

Now, we consider a subclass of the cross-monotonic mechanisms:

Definition 1 A cross-monotonic cost-sharing function g = {gi : 2P → ≥0} is called strictly

cross-monotonic if, for all S ⊂ P, i ∈ S, and j /∈ S, gi(S ∪ {j}) < gi(S). The corresponding

mechanism Mg is called a strictly cross-monotonic mechanism.

We now prove a lower bound on the communication complexity of strictly cross-monotonic

9

BA

S1 ⊆ S S2 ⊆ S

S = {1, 2, · · · r}

l

S1 ∩ S2 = ∅?

Figure 1: The set disjointness problem

cost-sharing mechanisms. Our proof is a reduction from the set disjointness problem: Consider a

network consisting of two nodes A and B, separated by a link l (see Figure 1). Node A has a set

S1 ⊆ {1, 2, . . . , r}, node B has another set S2 ⊆ {1, 2, . . . , r}, and one must determine whether the

sets S1 and S2 are disjoint. It is known that any deterministic or randomized algorithm to solve

this problem must send Ω(r) bits between A and B. (Proofs of this and other basic results in

communication complexity can be found in [KN97].)

Theorem 1 Suppose Mg is a strictly cross-monotonic mechanism corresponding to a cost-sharing

function g and satisfying VP, CS, and NPT. Further, suppose that the mechanism must be computed

in a network in which a link (or set of links) l is a cut and there are Ω(|P |) users on each side of

l. Then, any deterministic or randomized algorithm to compute Mg must send Ω(|P |) bits across l

in the worst case.

Proof: For simplicity, assume that the network consists of two nodes A and B connected by one

link l and that there are r = |P |/2 users at each of the two nodes. (The proof of the more general

case is identical.) Arbitrarily order the users at each node. We can now call the users a1, a2, . . . , ar

and b1, b2, . . . , br. Because the mechanism Mg is strictly cross-monotonic, we can find a real value

d > 0 such that, for all S ⊂ P, i ∈ S, j /∈ S,

gi(S ∪ {j}) < gi(S) − d.

For each user i ∈ P , we will define two possible utility values tLi and tHi as follows:

• First, the values for a1 and b1 are

tHa1
= ga1({a1, b1}), tLa1

= tHa1
− d

tHb1 = gb1({a1, b1}), tLb1 = tHb1 − d

• Similarly, the values for ak and bk are

tHak
= gak

({a1, a2, . . . , ak, b1, b2, . . . , bk}), tLak
= tHak

− d

tHbk
= gbk

({a1, a2, . . . , ak, b1, b2, . . . , bk}), tLbk
= tHbk

− d

10

Now, we show how to reduce from the set disjointness problem to the mechanism Mg. Node A

gets a subset S1 ⊆ {1, . . . , r} and constructs a utility vector u for the users at A, defined by

∀i ∈ S1 uai = tHai

∀i /∈ S1 uai = tLai

Similarly, node B is given set S2 and constructs a utility vector v for the users at B, defined by

∀i ∈ S2 vbi
= tHbi

∀i /∈ S2 vbi
= tLbi

They now run mechanism Mg on input (u, v) and check whether the receiver set Rg(u, v) is

empty.

Claim: Rg(u, v) is empty iff S1 and S2 are disjoint.

Proof of claim: To show the “if” direction, we can simulate the iterative algorithm to compute

the receiver set. We start with R = P . Then, because S1 and S2 are disjoint, either r /∈ S1 or

r /∈ S2. Assume, without loss of generality, that r /∈ S1. Now, uar = tLar
< gar(R), and hence ar

must drop out of the receiver set R. But now, because of strict cross-monotonicity, it follows that

gbr(P − {ar}) > gbr(P) = tHbr
, and so br must also drop out of the receiver set. Repeating this

argument for r − 1, r − 2, . . . , 1, we can show that the receiver set must be empty.

To show the “only if” direction, assume that i ∈ S1 ∩ S2. Then, let T = {a1, . . . , ai, b1, . . . , bi}.
uai = tHai

= gai(T), and vai = tHbi
= gbi

(T). Further, for all j < i, it follows from strict cross-

monotonicity that gaj (T) < tLaj
≤ uaj , and gbj

(T) < tLbj
≤ vbj

. Thus, the receiver set Rg(u, v) ⊇ T ,

and hence it is nonempty. �

Theorem 1 follows from this claim and the communication complexity of set disjointness. �

2.1 Strictly Subadditive Cost Functions

In this section, we show that, for a class of submodular cost functions, the Shapley-value mechanism

(which is perhaps the most compelling mechanism from an economic point of view) is strictly cross-

monotonic and hence has poor network complexity.

Theorem 1 provides a sufficient condition, strict cross-monotonicity, for a mechanism to have

poor network complexity. However, for some submodular cost functions, it is possible that no

mechanism satisfies this condition: If the costs are additive, i.e., if the cost of serving a set S is

exactly the sum of the costs of serving each of its members individually, then there is a unique

mechanism satisfying the basic properties. This mechanism is defined by:

R(u) = {i|ui ≥ C({i})}

xi(u) = C({i}) if i ∈ R(u), and xi(u) = 0 otherwise.

11

This mechanism is very easy to compute, either centrally or in a distributed manner, because there

is no interaction among the users’ utilities; in essence, we have |P | independent local computations

to perform.

We need to exclude these trivial cost functions in order to prove general lower bounds for a

class of submodular functions. This leads us to consider submodular cost functions that are strictly

subadditive:

∀S ⊆ P, S �= ∅, ∀i ∈ P, C(S ∪ {i}) < C(S) + C({i})
For a given cost function C, there may be many g = {gi} for which the corresponding mechanism

Mg satisfies the basic properties NPT, VP, CS, and SYM. However, Moulin and Shenker [M99,

MS01] have shown that, for any given submodular cost function, the cross-monotonic mechanism

that minimizes the worst-case efficiency loss is the Shapley-value mechanism (SH). This is a cross-

monotonic cost-sharing mechanism corresponding to a function gSH , defined by:

∀S ⊆ P ∀i ∈ S, gSH
i (S) =

∑
R⊆S−{i}

|R|!(|S| − |R| − 1)!
|S|! [C(R ∪ {i}) − C(R)] (1)

The SH mechanism is therefore a natural mechanism to choose for submodular cost sharing. The

following lemma shows that this mechanism has poor network complexity.

Lemma 1 The SH mechanism for a strictly subadditive cost function is strictly cross-monotonic.

Proof: We need to show that, for all sets S, for all i ∈ S, j /∈ S, gSH
i (S ∪ {j}) < gSH

i (S). The

proof follows directly from the definition of gSH
i (S) in Equation 1. We use MCi(R) to denote

[C(R∪{i})−C(R)], the marginal cost of serving i in set R. Consider a set S ⊆ P −{j} and a user

i ∈ S. Let r = |R|, s = |S|.

gSH
i (S ∪ {j}) =

∑
R⊆S∪{j}−{i}

r!(s − r)!
(s + 1)!

MCi(R)

=
∑

R⊆S−{i}

[
r!(s − r)!
(s + 1)!

MCi(R) +
(r + 1)!(s − r − 1)!

(s + 1)!
MCi(R ∪ {j})

]

=
∑

R⊆S−{i}

r!(s − r − 1)!
s!

[
s − r

s + 1
MCi(R) +

r + 1
s + 1

MCi(R ∪ {j})
]

(2)

It follows from submodularity of costs that, for all R, MCi(R ∪ {j}) ≤ MCi(R). Further, strict

subadditivity implies that, for R = ∅, MCi(R ∪ {j}) < MCi(R). Thus, Equation 2 yields

gSH
i (S ∪ {j}) <

∑
R⊆S−{i}

r!(s − r − 1)!
s!

MCi(R)

gSH
i (S ∪ {j}) < gSH

i (S)

�

12

Corollary 1 For a strictly subadditive cost function, any algorithm (deterministic or randomized)

that computes the SH mechanism in a network must communicate Ω(|P |) bits across any cut that

has Θ(|P |) users on each side of the cut. �

Note that the network may consist of a root node αs with no resident users, a node A with |P |
2

resident users, another node B with |P |
2 resident users, a link from αs to A, and a path from A to

B consisting of |N | − 3 nodes, each with no resident users. Each link in the path from A to B is a

cut with Θ(|P |) users on each side, and thus Ω(|P |) bits must be sent across linearly many links.

In what follows, we call these the path instances.

2.2 Multicast cost sharing

We now return to the special case of multicast cost sharing. Recall that the cost function associ-

ated with an instance of the multicast cost-sharing problem is determined by the structure of the

universal multicast tree T , the link costs, and the locations of the users in the tree; so the cost C(S)

of serving user set S ⊆ P is
∑

l∈T (S) c(l), where T (S) is the smallest subtree of T that includes all

nodes at which users in S reside. It is not hard to show that there are many instances that give

rise to strictly subadditive functions C. In fact, we have the following lemma:

Lemma 2 Consider any instance of multicast cost sharing in which, for every two potential re-

ceivers i and j, there exists a link l ∈ T ({i}) ∩ T ({j}) such that c(l) > 0. The cost function

associated with this instance is strictly subadditive.

Proof: Given S ⊆ P − i, pick any j ∈ S. Let l be any link in T ({j})∩T ({i}) with c(l) > 0. Then,

C(S ∪ {i}) ≤ C(S) + C({i}) − c(l) < C(S) + C({i}). �

For example, whenever the source of the multicast has only one link from it, and this link has

non-zero cost, the associated cost function is strictly subadditive. One such family of instances

(parametrized by p = |P |) is shown in Figure 2. There are three nodes, αs, A, and B, and p

users. There are (p/2) users at each of B and A, with utilities u1, u2, . . . , u p
2

and v1, v2, . . . , v p
2
,

respectively. The link l1 between αs and A costs C, while the link l2 between A and B is free (has

0 cost).

It follows immediately from Corollary 1 that the Shapley-value mechanism for this family of

trees requires Ω(|P |) bits of communication across linearly many links. In addition, we now show

that any mechanism that satisfies the basic properties, such as EG, must be identical to the SH

mechanism on instances of the type shown in Figure 2; thus, the lower bound extends to all such

mechanisms.

Lemma 3 Consider multicast cost-sharing instances of the type shown in Figure 2. Let Mg be a

cross-monotonic cost-sharing mechanism that satisfies SYM, corresponding to a cost-sharing func-

tion g = {gi}. Then, g (and Mg) are completely determined on these instances by

∀S ⊆ P,∀i ∈ S gi(S) =
C

|S| .

13

ROOT

A

B

Cost = C

Cost = 0

u1 u2

v1 v2

αs

l1

l2
v p

2

u p
2

Figure 2: Multicast tree with strictly subadditive costs

Proof: For any receiver set S, if the utility values of all users in S are increased to some sufficiently

large value, the receiver set will still be S. Because the mechanism satisfies SYM, this implies that

gi(S) = gj(S) for any pair i, j in this set. The budget-balance requirement then forces gi(S) = C
|S|

for all i in set S. �

It follows from Lemma 3 that any such mechanism must be strictly cross-monotonic on this

family of instances. Thus, Theorem 1 and Lemma 3 imply the following lower bound for multicast

cost sharing. The worst-case instances include the path instances defined in Section 2.1, with cost

C on the link from αs to A and cost 0 on all the other links; these instances are identical to the

ones in Figure 2, except that they contain a zero-cost path of length |N | − 2 from A to B instead

of a single zero-cost link.

Theorem 2 Any distributed algorithm, deterministic or randomized, that exactly computes a budget-

balanced, GSP multicast cost-sharing mechanism that satisfies the four basic properties must send

Ω(|P |) bits over linearly many links in the worst case. �

Note that this lower bound applies to the EG mechanism for multicast cost-sharing referred in

Section 1.

3 Network complexity of approximately budget-balanced mecha-

nisms

In view of the lower bounds presented in Section 2, it is natural to ask whether one can approximate

a budget-balanced, GSP mechanism in a communication-efficient manner. In this case, we do not

have a clean analogue of Corollary 1, because cross-monotonic cost functions no longer characterize

the class of feasible mechanisms. However, for the special case of multicast cost sharing, we can

still prove a result similar to Theorem 2 that provides a lower bound on the network complexity of

approximately budget-balanced, GSP mechanisms.

14

First, we recall the definition of an “approximately budget-balanced” mechanism. As explained

at length in, e.g., [NR00, AFK+02], one cannot define an approximation of a cost-sharing mech-

anism (σ, x) simply as a pair (σ′, x′) such that σ′ and x′ approximate σ and x, respectively, as

functions. Such an approach may destroy the game-theoretic properties of (σ, x), e.g., the resulting

“mechanism” (σ′, x′) may not be strategyproof! For our purposes in this section, a κ-approximately

budget-balanced mechanism, where κ > 1 is a constant, is a mechanism (σ, x) with the following

properties: VP, NPT, CS, SYM, and

∀c(·), T (P), and u : (1/κ) · c(T (R(u))) ≤
∑

i∈R(u)

xi(u) ≤ κ · c(T (R(u))).

An approximation to a specific budget-balanced mechanism such as SH or EG would have to

satisfy at least one additional (non-strategic) condition. For example, because SH is the GSP,

budget-balanced mechanism that minimizes worst-case efficiency loss, an approximation to SH

would have to come within a constant factor of SH’s efficiency loss in the worst case.

We extend the lower-bound technique of the previous section so that it applies to κ-approximately

budget-balanced mechanisms, when κ is upper-bounded away from
√

2, i.e., when κ ≤ √
2 − ε, for

some fixed ε > 0. As before, we want to reduce from the set-disjointness problem where node A

has a set S1 ⊆ {1, 2, . . . , r}, node B has another set S2 ⊆ {1, 2, . . . , r}, and one must determine

whether the sets S1 and S2 are disjoint. We again construct the multicast tree shown in Figure 2

with (p/2) users at each of B and A, with utilities u1, u2, . . . , u p
2

and v1, v2, . . . , v p
2
, respectively.

We first prove some basic lemmas about group-strategyproof mechanisms for this multicast cost

sharing problem.

Lemma 4 Let M be a κ-approximately budget-balanced mechanism for the multicast cost sharing

problem in Figure 2 that satisfies GSP. Then, if µ is a utility profile of the p users such that

∃h ≥ 1 such that ∀i ∈ {1, 2, . . . , h} µi > κC/h

then the receiver set R(µ) specified by this mechanism is nonempty.

Proof: Let µ be such a utility profile, and consider any value of h for which the given condition

holds. Let µcs be the bound for which the CS condition holds, i.e., if µi ≥ µcs ⇒ i ∈ R(µ). Let

S = {1, 2, . . . , h}. Define a utility profile µS by

µS
i = µcs ∀i ∈ S

µS
i = µi ∀i /∈ S

By the CS condition, S ⊆ R(µS). Further, by the SYM condition, we must have ∀i, j ∈
S, xi(µS) = xj(µS). Further, because the NPT condition implies that xi(µS) ≥ 0, for all i /∈ S,

and the approximate budget-balance condition requires that the revenue be bounded by κC, we

must have xi(µS) ≤ κC/h, for all i ∈ S.

15

It follows that ∀i ∈ S, xi(µS) < µi. Now suppose that R(µ) is empty. Then, at utility profile µ,

the coalition S could strategize to report a utility profile µS; then, for each i ∈ S, i would receive

the transmission and pay less than µi for it. This would constitute a successful group strategy,

which contradicts the assumption that M is group-strategyproof. �

Lemma 5 Let M be a κ-approximately budget-balanced mechanism for the multicast cost sharing

problem in Figure 2 that satisfies GSP. Then, if µ is a utility profile such that

µ1 ≥ µ2 ≥ . . . ≥ µp and

� ∃h ≥ 1 such that µh ≥ C/(κh)

then the receiver set R(µ) specified by this mechanism is empty.

Proof: Let µ be such a utility profile, and let S = R(µ). Suppose that S �= ∅. Let h =

max{i|i ∈ S}, which implies that ∀i ∈ S, µi ≥ µh. By the conditions of the lemma, µh < C/(κh);

thus, the approximate budget-balance condition combined with VP implies that ∃j ∈ S such

that xj(µ) > xh(µ). It then follows that µj > µh. (If µj = µh, then by SYM we would have

xj(µ) = xh(µ).)

Now, define the utility profile µ′ by

µ′
h = µj

µ′
i = µi ∀i �= h

If h /∈ R(µ′), then at utility profile µ′, h could strategize to report µh and get transmission with

payment xh(µ); this would be a successful strategy because xh(µ) < xj(µ) ≤ µj = µ′
h. Mechanism

M is strategyproof, so we must have h ∈ R(µ′). Further, we must also have xh(µ′) = xh(µ) for the

same reason: If xh(µ′) > xh(µ), then h could strategize at µ′, and, if xh(µ) > xh(µ′), then h could

strategize at µ.

Now, by applying the SYM condition at µ′, we must have j ∈ R(µ′) and xj(µ′) = xh(µ′). This

implies that xj(µ′) = xh(µ) < xj(µ). But now, h and j could collude and strategize at µ to report

µ′; this strictly increases j’s welfare (as her payment is strictly reduced), and leaves h’s welfare

unchanged, and hence it would be a successful group strategy. This contradicts the fact that M

satisfies GSP. �

The ordering condition µ1 ≥ µ2 ≥ . . . ≥ µp in Lemma 5 is only included for simplicity of the

exposition; we can always relabel the agents such that it holds.

Theorem 3 Any distributed algorithm, deterministic or randomized, that computes a κ-approximately

budget-balanced, GSP multicast cost-sharing mechanism, where κ ≤ √
2 − ε for some fixed ε > 0,

must send Ω(log |P |
log κ) bits of communication over linearly many links in the worst case.

16

Proof: It is more convenient to work with an alternative representation of the input utility vectors.

We use only a restricted set of the possible utility vectors u and v for the users located at nodes B

and A respectively, where (u, v) satisfies the following conditions:

• Let β = 3(κ + δ)2/(2 − (κ + δ)2), where δ > 0 is an arbitrarily small constant only required

to make the inequalities strict. Restrict the set of allowable utilities to T = {0, tβ,1, . . . , tβ,r},
where

tβ,i =
(κ + δ)C

2βi+1
.

• Each of u and v is (internally) sorted, i.e., i < j ⇒ ui ≥ uj and vi ≥ vj . There is no

restriction on the relationship between ui and vj .

Consider node B. Define nB(q) to be the number of users at node B who have utility at least

q. Let y = (y1, y2, . . . , yr), where yi = nB(tβ,i). Similarly, let nA(q) be the number of users at A

with utility at least q; let z = (z1, z2, . . . , zr), where zi = nA(tβ,i).

For this class of utility profiles, there is a one-to-one mapping between values of u and y. Because

u is sorted, the monotonically decreasing function nB(·) completely defines the utility vector; u1

must be the largest q for which nB(q) > 0, and so on. Furthermore, by definition, there is a unique

y for any u. A similar correspondence holds for v and z.

We first prove a useful lemma about approximately budget-balanced mechanisms on this class

of instances.

Lemma 6 Let M be a κ-approximately budget-balanced mechanism for the multicast cost sharing

problem in Figure 2 that satisfies GSP. Let vectors y, z be defined corresponding to the utility

profiles u and v, as described above. Then, M satisfies the following two properties:

(i). If there is an i such that (yi + zi) ≥ 2βi+1, then mechanism M will compute a non-empty

receiver set on this instance.

(ii). If for all i we have (yi+zi) ≤ (3βi+βi+1), then mechanism M will compute an empty receiver

set on this instance.

Proof: (i): Observe that with a suitable ordering of the players, the conditions of Lemma 4 are

satisfied if (yi + zi) ≥ 2βi+1.

(ii): Assume that the receiver set is non-empty and that the conditions of Lemma 5 do not apply

due to the presence of some h such that h · µh ≥ C/κ, where µ is the utility profile of P sorted in

decreasing order.

Let µh = tβ,k for some k. Since h ≤ yk + zk, we note that h · µh ≤ (yk + zk)tβ,k ≤ (3βk +

βk+1)tβ,k = C/(κ + δ). This violates the assumption that h · µh ≥ C/κ. �

We now use Lemma 6 to provide a reduction from the set disjointness problem as follows. Recall

that node A has a set S1 ⊆ {1, 2, . . . , r} and node B has another set S2 ⊆ {1, 2, . . . , r}. We must

17

make sure that, if S1 ∩ S2 �= ∅, there is a set of receivers who can share κC, and, if S1 ∩ S2 = ∅,
there is no set of receivers who can share even C/κ. For this, we construct the vectors y and z

using the rules:

yi = �βi+1� if i ∈ S2

yi = �βi� otherwise

zi = �βi+1� if i ∈ S1

zi = �βi� otherwise

These are valid input vectors, because yi ≤ yi+1 and similarly for z. If i ∈ S1 ∩ S2, then

yi + zi ≥ 2βi+1, and so there is transmission. If S1 and S2 are disjoint, then, for all i,

yi + zi < βi + βi+1 + 2 < 3βi + βi+1 ,

where the 2 arises because of the ceiling terms.

This means that, in the target instance,

(yi + zi)tβ,i <
C

κ
,

and consequently there is no transmission.

Thus, we can use this κ-approximate mechanism to solve the set-disjointness problem, and this

implies that the mechanism must use Ω(r) bits of communication, where

r = Θ
(

log p

log β

)
= Θ

(
log p

2 log(κ + δ) − log(2 − (κ + δ)2)

)
.

If we require κ to be upper-bounded away from
√

2, then the right-hand side is Θ(log p
log κ). Thus,

the statement of the theorem follows. �

We note that this lower bound applies to the approximate mechanisms described in [AFK+02]

and [JV01]. The mechanisms SF and SSF described in [AFK+02] provide the best known corre-

sponding upper bound: They require Ω(h · log p
log κ) utility values to be communicated on each link to

achieve κ-approximate budget balance, where h is the height of the multicast tree T (P).

4 An impossibility result for approximate budget-balance and ap-

proximate efficiency

As stated in Section 1, it is a classical result in game theory that no strategyproof cost-sharing

mechanism can be both budget-balanced and efficient [GL79, Rob79]. We now consider whether

this fundamental impossibility result holds when the budget-balance and efficiency considerations

are replaced by their approximate counterparts. In this section, we do not assume that the cost-

sharing mechanisms have the SYM property; the impossibility result that we present here does not

18

ROOT

A

αs

l1
Cost = (p-1)C/p + δ

u1 = C/p u2 = C/p un = C/p

Figure 3: An example of a multicast tree that fails to achieve approximate efficiency and approxi-

mate budget-balance.

require this assumption. Furthermore, this result only requires the mechanism to be strategyproof,

not GSP as in Section 3.

We first review the definition of the MC mechanism, which was shown by Moulin and Shenker [MS01]

to be the only efficient mechanism that satisfies VP, NPT, and CS. Given an input utility profile u,

the MC receiver set is the unique largest efficient set of users. To compute it, as shown in [FPS01],

one recursively computes the welfare (also known as net worth or efficiency) of each node β ∈ N :

W (β) =

∑
γ∈Ch(β)
W (γ)≥0

W (γ)

 − c(l) +

∑
i∈Res(β)

ui ,

where Ch(β) is the set of children of β in the tree, Res(β) is the set of users resident at β, and c(l)

is the cost of the link connecting β to its parent node. Then, the largest efficient set R(u) is the

set of all users i such that every node on the path from i to the root αs has nonnegative welfare.

The total efficiency is NW (R(u)) = W (αs).

Another way to view this is as follows: The algorithm partitions the universal tree T (P) into

a forest F (u) = {T1(u), T2(u), . . . , Tk(u)}. A link from T (P) is included in the forest if and only if

the child node has nonnegative welfare. R(u) is then the set of users at nodes in the subtree T1(u)

containing the root.

Once F (u) has been computed, for each user i, define X(i, u) to be the node with minimum

welfare value in the path from i to its root in its partition. Then, the cost share xi(u) of user i is

defined as

xi(u) = max(0, ui − W (X(i, u))) ∀i ∈ R(u)

xi(u) = 0 ∀i /∈ R(u)

If multiple nodes on the path have the same welfare value, we let X(i, u) be the one nearest to i.

By a γ-approximately efficient mechanism, where 0 < γ < 1, we mean one that always achieves

total efficiency that is at least γ times the total efficiency achieved by MC.

We can ask whether there is any strategyproof mechanism that satisfies the basic requirements

of NPT, VP, and CS and is both approximately efficient and approximately budget-balanced. We

19

now show that this is impossible, using the following approach: We construct a family of multicast

trees and utility profiles for which any approximately efficient mechanism must transmit to all

users. We show that the strategyproofness condition and the VP condition together place an upper

bound on the revenue collected in these instances. This upper bound is less than that required for

even approximate budget balance, and hence we have our negative result.

Consider the tree in Figure 3. There are p users, each with utility C/p resident at a node A

that is separated from the root node by a link of cost ((p − 1)C/p) + δ. It is easy to see that this

instance of multicast cost-sharing displays the following properties.

Property 1 Any γ-approximately efficient mechanism must transmit to all p users if 0 < δ < C/p.

Property 2 Any γ-approximately efficient mechanism must transmit to all p users even if one

user, say i, lowers his utility to δ + ε, for any δ, ε > 0.

Property 3 Any γ-approximately efficient, strategyproof mechanism that satisfies VP assigns to

each user a cost share of at most δ.

If the cost share xi(u) were greater than δ, the user i could strategize by claiming that his utility

was vi = δ + ε < xi(u). By VP and the requirement of γ-approximate efficiency, the mechanism

would need to include user i and assign him a cost share xi(u|ivi) ≤ vi < xi(u), which would imply

a violation of strategyproofness.

Therefore, the revenue collected by a strategyproof mechanism that achieves γ-approximate

efficiency is bounded from above by pδ.

Property 4 A γ-approximately efficient, strategyproof mechanism cannot be κ-approximately budget-

balanced if δ < (C(p − 1))/(p(κp − 1)).

In summary, we have:

Theorem 4 A strategyproof mechanism for multicast cost sharing that satisfies the basic require-

ments of NPT, VP, and CS cannot achieve both γ-approximate efficiency and κ-approximate budget-

balance for any pair of constants κ and γ.

5 Conclusions and open problems

As we explained in Section 1, one central challenge in the study of algorithmic mechanism de-

sign is the search for hard problems. A problem may be considered to be a “canonical hard

problem” if it cannot be solved in a manner that satisfies both the incentive-compatibility and

the computational-tractability requirements but becomes easy if one of these two requirements is

dropped. Our results show that, under the basic requirements of NPT, VP, CS, and SYM, ex-

act computation of budget-balanced multicast cost shares is such a problem. In this context, a

20

problem is considered computationally tractable if it can be solved by a distributed algorithm with

low network complexity; a solution is considered incentive compatible if it is group-strategyproof.

Theorem 2 shows that the problem is hard if both requirements are to be satisfied simultaneously.

If the computational-tractability requirement is dropped, the problem is easy: Just use the SH

mechanism and compute it using the natural (centralized) polynomial-time algorithm explained

in Section 2 above. If the incentive-compatibility requirement is dropped, it is easy as well: Just

do one bottom-up pass of T (P), computing U =
∑

i∈P ui and C =
∑

l∈L c(l). If C > U , no one

receives the transmission, and the mechanism does one top-down pass to inform all members of P

that this is the outcome; if C ≤ U , everyone receives the transmission, and the mechanism does

one top-down pass to communicate the cost share (ui · C)/U to user i, for all i ∈ P .

The most important general direction for future work is the search for more good distributed

algorithmic mechanisms and for more canonical hard problems. Additional general open questions

in DAMD can be found in [FS02].

More specifically, we ask whether the lower bound in Section 3 is tight. The “scaled step-

function” (SSF) mechanism considered in [AFK+02] gives some hope that it is, but the bounds

on budget-imbalance and efficiency-loss for SSF are not constant factors. Another interesting open

question is to ask if the communication lower bounds extend to strategyproof (but not necessarily

group-strategyproof) budget-balanced mechanisms.

References

[AFK+02] Archer, A., Feigenbaum, J., Krishnamurthy, A., Sami, R., and Shenker, S. (2002).

“Approximation and Collusion in Multicast Cost Sharing,” submitted.

Available in preprint form at http://www.cs.yale.edu/homes/jf/AFKSS.ps.

[AR02] Adler, M. and Rubenstein, D. (2002). “Pricing Multicast in More Practical Network

Models,” in Proceedings of the 13th Symposium on Discrete Algorithms, pp. 981–990,

ACM Press/SIAM, New York/Philadelphia.

[BFC93] Ballardie, A., Francis, P., and Crowcroft, J. (1993). “Core Based Trees (CBT),” in

Proceedings of SIGCOMM ’93, pp. 85–95, ACM Press, New York.

[DEF+96] Deering, S., Estrin, D., Farinacci, D., Jacobson, V., Liu, C., and Wei, L. (1996).

“The PIM architecture for wide-area multicast routing,” ACM/IEEE Transactions on

Networking 4, pp. 153–162.

[DR89] Dutta, B. and Ray, D. (1989). “A concept of egalitarianism under participation con-

straints,” Econometrica 57, pp. 615-635.

21

[FGH+02] Fiat, A., Goldberg, A., Hartline, J., and Karlin, A. (2002). “Competitive Generalized

Auctions,” in Proceedings of the 34th Symposium on the Theory of Computing, pp.

72–81, ACM Press, New York.

[FKS+02] Feigenbaum, J., Krishnamurthy, A., Sami, R., and Shenker, S. (2002). “Hardness

Results for Multicast Cost Sharing (Extended Abstract),” in Proceedings of the 22nd

Conference on Foundations of Software Technology and Theoretical Computer Science,

Lecture Notes in Computer Science, Volume 2556, pp. 133–144, Springer, Berlin.

[FNY89] Ferguson, D., Nikolaou, C., and Yemini, Y. (1989). “An economy for flow control in

computer networks,” in Proceedings of the 8th Infocom, pp. 100–118, IEEE Computer

Society Press, Los Alamitos.

[FPS01] Feigenbaum, J., Papadimitriou, C., and Shenker, S. (2001). “Sharing the cost of mul-

ticast transmissions,” Journal of Computer and System Sciences 63, pp. 21–41.

[FS02] Feigenbaum, J. and Shenker, S. (2002). “Distributed Algorithmic Mechanism Design:

Recent Results and Future Directions,” in Proceedings of the 6th International Work-

shop on Discrete Algorithms and Methods for Mobile Computing and Communication,

pp. 1–13, ACM Press, New York.

[FS97] Friedman, E., and Shenker, S. (1997). “Learning and Implementation in the Internet,”

preprint. Available at http://www.icir.org/shenker/decent.ps

[GL79] Green, J. and Laffont, J-J. (1979). Incentives in Public Decision Making, North

Holland, Amsterdam.

[HA88] Hsiao, M.-T. and Lazar, A. (1988). “A game theoretic approach to decentralized flow

control of Markovian queueing networks,” in Proceedings of Performance ’87, pp. 55–

74, North-Holland, Amsterdam.

[HC99] Holbrook, H. and Cheriton, D. (1999). “IP multicast channels: Express support for

large-scale single-source applications,” in Proceedings of SIGCOMM ’99, pp. 65–78,

ACM Press, New York.

[HSE97] Herzog, S., Shenker, S., and Estrin, D. (1997). “Sharing the ‘cost’ of multicast trees:

An axiomatic analysis,” IEEE/ACM Transactions on Networking 5, pp. 847–860.

[J01] Jackson, M. (2001). “A Crash Course in Implementation Theory,” Social Choice and

Welfare 18, pp. 655–708.

[JV01] Jain, K. and Vazirani, V. (2001). “Applications of approximation to cooperative

games,” in Proceedings of the 33rd Symposium on the Theory of Computing, pp. 364–

372, ACM Press, New York.

22

[KLO95] Korilis, Y., Lazar, A., and Orda, A. (1995). “Architecting noncooperative networks,”

Journal on Selected Areas in Communications 13, 1241–1251.

[KN97] Kushilevitz, E. and Nisan, N. (1997). Communication Complexity, Cambridge

University Press, Cambridge.

[KS89] Kurose, J. F. and Simha, R. (1989). “A microeconomic approach to optimal resource

allocation in distributed computer systems,” IEEE Transactions on Computers 38,

705–717.

[M99] Moulin, H. (1999). “Incremental cost sharing: characterization by strategyproofness,”

Social Choice and Welfare 16, pp. 279–320.

[MS01] Moulin, H. and Shenker, S. (2001). “Strategyproof Sharing of Submodular Costs: Bud-

get Balance Versus Efficiency,” Economic Theory 18, pp. 511–533.

[MT02] Mitchell, J. and Teague, V. (2002). Private communication.

[MT99] Monderer, D. and Tennenholtz, M. (1999). “Distributed Games: From Mechanisms

to Protocols,” in Proceedings of the Sixteenth National Conference on Artificial Intel-

ligence and Eleventh Conference on Innovative Applications of Artificial Intelligence

(AAAI/IAAI ’99), pp. 32–37, AAAI/MIT Press.

[NR00] Nisan, N. and Ronen, A. (2000). “Computationally feasible VCG mechanisms,” in

Proceedings of the 2nd Conference on Electronic Commerce (EC-00), pp. 242–252,

ACM Press, New York.

[NR01] Nisan, N. and Ronen, A. (2001). “Algorithmic mechanism design,” Games and Eco-

nomic Behavior 35, pp. 166–196.

[NS02] Nisan, S. and Segal, I. (2002). “The Communication Complexity of Efficient Allocation

Problems,” (working paper).

[PLB+99] Perlman, R., Lee, C.-Y., Ballardie, A., Crowcroft., J., Wang, Z., Maufer, T., Diot, C.,

and Green, M. (1999). “Simple multicast: A design for simple low-overhead multicast,”

IETF Internet Draft (Work in Progress).

[Rob79] Roberts, K. (1979). “The Characterization of Implementable Choice Rules,” in J-

J. Laffont, editor, Aggregation and Revelation of Preferences, pp. 321–348,

North-Holland, Amsterdam.

[S88] Sanders, B. (1988). “An incentive compatible flow control algorithm for rate allocation

in computer networks,” IEEE Transactions on Computers 37, 1067–1072.

23

[S90] Shenker, S. (1990). “Efficient network allocations with selfish users,” in Proceedings of

Performance ’90, pp. 279–285, North-Holland, Amsterdam.

[S95] Shenker, S. (1995). “Making greed work in networks,” ACM/IEEE Transactions on

Networking 3, 819–831.

24

