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Online platforms today are being used in deplorably diverse ways: recruiting and radicalizing 
terrorists; exploiting children; buying and selling illegal weapons and underage prostitutes; 
bullying, stalking, and trolling on social media; distributing revenge porn; stealing personal 
and financial data; propagating fake and hateful news; and more. Technology companies have 
been and continue to be frustratingly slow in responding to these real threats with real conse-
quences. I advocate for the development and deployment of new technologies that allow for 
the free flow of ideas while reining in abuses. As a case study, I will describe the development 
and deployment of two such technologies—photoDNA and eGlyph—that are currently being 
used in the global fight against child exploitation and extremism.
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INTRODUCTION

 Here are some sobering statistics: In 2016, the 
National Center for Missing and Exploited Children 
(NCMEC) received 8,000,000 reports of child por-
nography (CP), 460,000 reports of missing children, 
and 220,000 reports of sexual exploitation. Moreover, 
NCMEC reports a 1000% increase in sex trafficking 
over the past five years, and 12 is the average age of 
a child involved in sex trafficking and CP. These are 
deeply troubling numbers particularly when you 
consider that these are primarily U.S.-based statis-
tics and the U.S. accounts for only 5% of the world’s 
population. While all of these numbers are troubling, 
I would like to focus on the 8,000,000 reports of CP 
that NCMEC received last year. 
 It is helpful to look at the historical record to 
understand how we arrived at such a staggering 

number of CP reports. In the early 1980s, it was 
illegal in New York State for an individual to “pro-
mote any performance which includes sexual conduct 
by a child less than sixteen years of age.” In 1982, 
Paul Ferber was charged under this law with selling 
material that depicted underage children involved 
in sexual acts. After having been found guilty under 
the New York State obscenity laws, Ferber appealed 
and the New York Court of Appeals overturned the 
conviction, finding that the obscenity law violated 
the First Amendment of the U.S. Constitution. The 
U.S. Supreme Court, however, reversed the appeal, 
finding that the New York State obscenity law was 
constitutional (1). Among several reasons for their 
ruling, the Supreme Court found that the govern-
ment has a compelling interest in preventing the 
sexual exploitation of children and that this interest 
outweighs any speech protections.
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 The landmark case of New York v. Ferber made it 
illegal to create, distribute, or possess CP. The result 
of this ruling, along with significant law enforcement 
efforts, was effective, and by the mid-1990s, child 
pornography was, according to NCMEC, largely a 
“solved problem.” By the early 2000s, the rise of the 
internet brought with it an explosion in the global 
distribution of CP. Alarmed by this growth, in 2003, 
Attorney General Ashcroft convened executives from 
the top technology firms to ask them to propose a 
solution to eliminate this harmful content from their 
networks. Between 2003 and 2008, despite contin-
ued pressure from the attorney general’s office, these 
technology companies did nothing to address the 
ever-growing problem of their online platforms being 
used to distribute a staggering amount of CP with 
increasingly violent acts on increasingly younger 
children (as young, in some cases, as a only a few 
months old).
 In 2008, Microsoft and NCMEC invited me to 
attend a yearly meeting of a dozen or so technology 
companies to provide insight into why, after five years, 
there was no solution to the growing and troubling 
spread of CP online. This meeting led me on a nearly 
decade-long journey to develop and deploy technol-
ogy to curb harmful online speech. Along the way, 
I learned many lessons about how to develop and 
deploy technology at internet scale, as well as learning 
about public and media relations, corporate indif-
ference, and the horrific things that are being done 
online and offline to some of the most vulnerable in 
our society. I will share some of these insights along 
with some technical details of the technology that 
we developed.

COUNTERING CHILD EXPLOITATION
 At the first of what would be many meetings on 
this topic, I listened to several hours of discussion 
on the scope and scale of the problem of online child 
exploitation. I heard why various technological solu-
tions did not or would not work, and I heard many 
lawyers talk about liability, profits, and user privacy. 
Around midday, I was asked to share my thoughts. I 
started with a simple question: Just out of curiosity, 
how many of you are engineers, mathematicians, or 
computer scientists? One or two hands shot up, out 
of a room of 60 or so people. I then asked how many 

were lawyers. More than half of the remaining hands 
shot up. I don’t recall if I said this out loud or not, 
but I certainly thought, “Well, there is at least part of 
your problem. It is difficult to get things done when 
the lawyers outnumber the scientists and engineers.”
 Throughout the day of that first meeting, I 
repeatedly heard that it is incredibly difficult to 
automatically and efficiently scrub CP from online 
platforms without interfering with the business inter-
ests of the titans of tech represented in the room. 
Among several challenges, managing the massive 
volume of data uploaded every day to social media 
platforms was of particular concern. My second ques-
tion to the group was, therefore, “Specifically, how 
hard is the problem?” Here are the numbers that all 
the attendees agreed upon. Any technology must 
satisfy the following requirements:

1. Analyze an image in under two milliseconds 
(500 images/second)

2. Misclassify an image as CP at a rate of no more 
than one in 50 billion

3. Correctly classify an image as CP at a rate of 
no less than 99%

4. Do not extract or share any identifiable image 
content (because of the sensitive nature of CP)

 Developing a fully automatic algorithm to distin-
guish CP from other content with these engineering 
demands was, in my opinion, not feasible. It was not 
feasible in 2008 when we started to work on this 
problem, and I would argue that it is not feasible 
today despite all of the advances in machine learning 
and computer vision in the intervening years.
 I was ready to concede that a solution was not 
possible until I heard NCMEC’s then-CEO Ernie 
Allen mention two interesting facts: 1) NCMEC is 
home to millions of known CP images that have 
been manually reviewed and determined to contain 
explicit sexual contact with a minor (in many cases, 
under the age of 12) and 2) These same images are 
continually distributed for years and even decades 
after they are first reported to NCMEC. I thought that 
even if we did not have the technological innovation 
to fully distinguish CP from other content, we could 
perhaps stop the redistribution of known CP content 
instead. While this would not address the problem 
in its entirety, surely it would, given what we know, 
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be a first step to disrupting the global distribution 
of CP.
 In collaboration with NCMEC and researchers 
at Microsoft, we set out to develop technology that 
could quickly and reliably identify images from the 
NCMEC database of known CP images. At first 
glance, this may seem like an easy problem to solve. 
Hard-hashing algorithms such as MD5 or SHA-1 
(2,3) can be used to extract from an image a unique 
compact alphanumeric signature (Figure 1). This 
signature can then be compared against all uploads 
to an online service like Facebook or Twitter. In prac-
tice, however, this type of hard hash would not work 
because most online services automatically modify 
all uploaded images. Facebook, for example, resizes, 
recompresses, and strips metadata from every image. 
The result of these and similar modifications is that, 
although the original and modified images are per-
ceptually similar, the signature (hash) is completely 
different. The reason is that hard hashing is designed 
to yield distinct signatures in light of any modification 
to the underlying image. Hard hashing, therefore, is 
ineffective at matching images that are modified in 
any way at the time of upload.

 At a conceptual level, however, hashing has many 
desirable properties: A signature is computation-
ally efficient to extract; the signature is unique and 
compact; and hashing completely sidesteps the diffi-
cult task of content-based image analysis that would 
be needed to recognize the presence of a person, 
determine the person’s age, and recognize the diffi-
cult-to-define concept of sexually explicit. Building 
on the basic framework of hard hashing, we sought to 
develop a robust hashing algorithm that generates a 
compact and distinct signature that is stable to simple 
modifications to an image, such as re-compression, 
resizing, color changes, and annotated text.
 Although I will not go into too much detail on the 
algorithmic specifics, I will provide a broad overview 
of the robust hashing algorithm—named Pho-
toDNA—that we developed (see also (4,5)). Shown in 
Figure 2 is an overview of the basic steps involved in 
extracting a robust hash. First, a full-resolution color 
image is converted to grayscale and downsized to a 
lower and fixed resolution of 400 × 400 pixels. This 
step reduces the processing complexity in subsequent 
steps, makes the robust hash invariant to image reso-
lution, and eliminates high-frequency differences that 
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Figure 1. The MD5 hash of this image is 78ba217bccd6e6b4d032e54213006928.



may result from compression artifacts. Next, a high-
pass filter is applied to the reduced resolution image 
to highlight the most informative parts of the image. 
Then, the image is partitioned into non-overlapping 
quadrants from which basic statistical measurements 
of the underlying content are extracted and packed 
into a feature vector. Finally, we compute the similar-
ity of two hashes as the Euclidean distance between 
two feature vectors, with distances below a specified 
threshold qualifying as a match. Despite its simplicity, 
this robust-hashing algorithm has proved to be highly 
accurate and computationally efficient to calculate.
 After a year and a half of development and test-
ing, photoDNA was launched in 2009 on Microsoft’s 
SkyDrive and search engine Bing. In 2010, Facebook 

deployed photoDNA on their entire network. In 2011, 
Twitter followed suit, while Google waited until 2016 
to deploy. In addition to these titans of technology, 
photoDNA is now in worldwide deployment. In 
2016, with an NCMEC-supplied database of approx-
imately 80,000 images, photoDNA was responsible 
for removing over 10,000,000 CP images, without 
any disputed take-downs. This database could just as 
easily be three orders of magnitude bigger, giving you 
a sense of the massive scale of the global production 
and distribution of CP.
 Child exploitation is, of course, not the only harm-
ful content online. The internet has been a boon for 
extremist groups, cybercriminals, and trolls. Since 
2015, I have been thinking about how technology 
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Figure 2. The three basic processing steps of photoDNA: 1) convert a full-resolution color image (top) to grayscale and lower reso-
lution (bottom left); 2) use a high-pass filter to highlight salient image features (bottom center); and 3) partition the high-pass image 
into quadrants from which basic statistical measurements are extracted to form the photoDNA hash (bottom right).



like photoDNA can be deployed to mitigate some of 
the damage caused by these individuals and groups.

COUNTERING ONLINE EXTREMISM
 Over the past few years, our world leaders have 
expressed grave concern about how extremist groups 
have harnessed the power of the internet to spread 
hate and violence. In 2015, President Obama said, 
“The high-quality videos, the online magazines, the 
use of social media, terrorist Twitter accounts—it’s 
all designed to target today’s young people online, in 
cyberspace.”
 And in 2017, Prime Minister May’s office said, 
“The fight against terrorism and hate speech has to 
be a joint one. The government and security services 
are doing everything they can and it is clear that social 
media companies can and must do more.”
 Since 2015, I have been working with the Counter 
Extremism Project (a non-governmental organiza-
tion) to develop the next generation of robust hashing 
technologies with the goal of eliminating the worst-
of-the-worst extremism-related content, including 
content with explicit violence, explicit calls to vio-
lence, and glorification of violence (each of which are 
violations of most terms of service—more on this in 
the next section).
 Conceptually, eliminating extremism-related 
material can follow a similar model as eliminating CP: 
Build a database of known harmful content, extract a 
hash from each piece of material, and automatically 
screen all uploaded material against a database of 
hashes. Because extremism-related material tends to 
come in the form of audio and video recordings, we 
had to generalize the image-based robust hashing to 
be applicable to videos and audios. Although I will 
not go into too much detail on the algorithmic specif-
ics, I will provide a broad overview of the multimedia 
robust hashing algorithm—named eGlyph—that we 
have developed.
 The largest challenge with analyzing video is the 
massive amount of data in even a short video: At 24 
frames per second, a three-minute video contains 
4,320 still images. At even a modest resolution of 
640 × 480 pixels per frame, a three-minute video 
contains over 1.3 billion pixels. The complexity of 
hashing a video, as compared to analyzing a single 
image, is at least three orders of magnitude larger. 

There are, however, typically only small changes 
between successive frames of a video leading to a 
large amount of information redundancy in a video. 
We can, therefore, reduce the complexity of analyzing 
a video by first reducing this redundancy.
 We, conveniently, just described a mechanism 
for measuring the similarity between two images—
photoDNA. In addition to finding nearly identical 
images, robust hashing can be used to find similar 
images by controlling the threshold on the Euclidean 
metric for image similarity (as described in the previ-
ous section). We start a video analysis by using robust 
image hashing to eliminate redundant video frames 
(this variant is a modified version of photoDNA that 
is slightly more computationally efficient and yields 
slightly more compact hashes). This elimination of 
redundant frames typically reduces the length of a 
video by approximately 75%. The image hash is then 
extracted from each of the remaining frames and 
concatenated to yield a final video hash. Unlike the 
image-based hashing that yields a fixed length hash, 
a video hash can be of arbitrary length. This presents 
both a challenge and an opportunity for comparing 
two hashes.
 A Euclidean distance cannot, of course, be used to 
compare two hashes of arbitrary length. Instead, we 
utilize the longest common substring (LCS) (not to 
be confused with the longest common sub-sequence 
algorithm) (6). By way of intuition, the LCS of the two 
strings “ABABACABBC” and “ABACABACBBCA” 
is six because the longest common string shared by 
these strings is “ABACAB.” Note that these strings 
also have the substring “BBC” in common, but this 
is shorter than the substring of length six. Given 
two strings of length m and n, the LCS can be found 
efficiently using dynamic programming with a run-
time complexity of O(mn). The advantage of using 
LCS to compare two hashes is that it allows us to find 
not just matching videos but also video segments 
that are extracted or video segments that are embed-
ded within a larger video (e.g., a video compilation). 
Running on a standard Linux machine, a Java-based 
implementation of this robust video hashing requires 
approximately 10 ms to process a single video frame 
and approximately 2.5 ms to compare two hashes. 
To improve the efficiency, we have implemented a 
multi-core version of this algorithm that allows for 
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a video to be partitioned into an arbitrary number of 
short segments, each of which can be analyzed on a 
separate computer core. The individual results from 
each segment are then combined to create a single 
hash. With this approach, the rate-limiting step to 
analyze any video is simply the number of computing 
cores that are available.

DISCUSSION
 The First Amendment of the U.S. Constitution 
reads as follows: “Congress shall make no law respect-
ing an establishment of religion, or prohibiting the 
free exercise thereof; or abridging the freedom of 
speech, or of the press; or the right of the people 
peaceably to assemble, and to petition the Govern-
ment for a redress of grievances.”
 Facebook’s terms of service, which all users agree 
to, reads in part: “You will not post content that: is 
hate speech, threatening, or pornographic; incites 
violence; or contains nudity or graphic or gratuitous 
violence. We can remove any content or information 
you post on Facebook if we believe that it violates this 
Statement or our policies.”
 Because the First Amendment states that Congress 
“shall make no law…,” the restrictions imposed by 
Facebook (and virtually all online services) are not 
at odds with our Constitution. This does not mean, 
however, that we should not discuss the implications 
of technology like photoDNA and eGlyph in the 
context of encouraging and supporting an open and 
free internet.
 The most common question that we have received 
during the development and deployment of pho-
toDNA and eGlyph is, “Who will decide what is and 
what is not CP and extremism-related material?,” 
while the most common criticism has been, “This 
technology will eventually be misused to restrict pro-
tected speech, political dissent, or unpopular ideas.” 
These are legitimate questions and concerns worthy 
of debate.
 Although it may seem that the definition of CP 
should be straightforward, the federal statute is any-
thing but (7):

Images of child pornography are not protected 
under First Amendment rights, and are illegal 
contraband under federal law. Section 2256 of 

Title 18, United States Code, defines child pornog-
raphy as any visual depiction of sexually explicit 
conduct involving a minor (someone under 18 
years of age).

 While a person’s age is generally straightforward to 
determine, this determination is less straightforward 
if that determination is based on a single image. The 
definition of “sexually explicit” is also open to inter-
pretation. When deploying photoDNA, we avoid the 
complexity of classifying content whose legality might 
be disputed by only adding content to the database 
that contains images of children under the age of 12 
involved in an explicit sexual act. Because children 
under the age of 12 are typically prepubescent, there 
is no disagreement that the child is under the age 
of 18. And, because the images contain an explicit 
sexual act, there is no disagreement of the legal stat-
ute of “sexually explicit.” This content—termed the 
worst-of-the-worst by former NCMEC CEO Ernie 
Allen—eliminates any ambiguity in the interpretation 
of the federal statute and ensures that photoDNA 
eliminates only clearly illegal content.
 In the counter-extremism space, eGlyph faces 
similar challenges in classifying material. In building 
a database of extremism-related content, we want to 
avoid any content that might be considered political 
dissent or commentary or otherwise protected under 
a company’s terms of service. Fortunately, Facebook, 
and most other internet-based terms of service, 
clearly specify that explicit violence or explicit calls 
to violence are forbidden. Following the model of 
eliminating the worst-of-the-worst, we populate the 
extremism-related database only with content that 
clearly and unambiguously falls into the categories 
of explicit violence or explicit calls to violence.
 I take solace from the fact that some have argued 
that this conservative approach to defining CP and 
extremism-related content is not aggressive enough, 
while others have argued that it is too aggressive. We 
should work to ensure an open and free internet that 
allows for an open exchange of ideas and for vigor-
ous debate. At the same time, we must acknowledge 
the real harm that is resulting from certain types of 
content and do everything we can to eliminate this 
type of content from our online platforms.
 It is important to understand that any tech-
nology such as that which we have developed and 
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deployed can be misused. The underlying technology 
is agnostic as to what it searches for and removes. 
When deploying photoDNA and eGlyph, we have 
been exceedingly cautious to control its distribution 
through strict licensing arrangements. It is my hope 
and expectation that this technology will not be used 
to impinge on an open and free internet but to elim-
inate some of the worst and most heinous content 
online.
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