
ar
X

iv
:1

71
1.

08
51

3v
1 

 [
cs

.L
G

] 
 2

2 
N

ov
 2

01
7

Calibration for the (Computationally-Identifiable) Masses
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Abstract

As algorithms increasingly inform and influence decisions made about individuals, it becomes
increasingly important to address concerns that these algorithms might be discriminatory. The
output of an algorithm can be discriminatory for many reasons, most notably: (1) the data
used to train the algorithm might be biased (in various ways) to favor certain populations over
others; (2) the analysis of this training data might inadvertently or maliciously introduce biases
that are not borne out in the data. This work focuses on the latter concern.

We develop and study multicalbration – a new measure of algorithmic fairness that aims to
mitigate concerns about discrimination that is introduced in the process of learning a predictor
from data. Multicalibration guarantees accurate (calibrated) predictions for every subpopulation
that can be identified within a specified class of computations. We think of the class as being
quite rich; in particular, it can contain many overlapping subgroups of a protected group.

We show that in many settings this strong notion of protection from discrimination is both
attainable and aligned with the goal of obtaining accurate predictions. Along the way, we present
new algorithms for learning a multicalibrated predictor, study the computational complexity of
this task, and draw new connections to computational learning models such as agnostic learning.
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1 Introduction

Fueled by rapidly growing data sets and by breakthroughs in machine learning, algorithms are
informing decisions that affect all aspects of life. From news article recommendations to criminal
sentencing decisions to healthcare diagnostics, increasingly algorithms are used to make predic-
tions about individuals. Often, the predictions of an algorithm form the basis for deciding how
to treat these individuals (suggesting a conservative Op-Ed, approving early parole, or initiating
chemotherapy). A potential risk is that these algorithms might discriminate against groups of indi-
viduals that are protected by law or by ethics. This paper aims to mitigate such risks of algorithmic
discrimination.

We consider algorithms that predict the probabilities of events occurring for individuals. For
example, a financial institution may be interested in predicting the probability that an individual
will repay a mortgage. The institution may have at its disposal a large array of information for each
individual (as well as historic data and global information such as financial and political trends).
But as thorough as the company may be, a significant level of uncertainty will remain. Just as we
wouldn’t expect to be able to predict with absolute certainty whether it will rain on a particular
day a year from now, the financial institution wouldn’t expect to predict with absolute certainty
whether an individual will repay a loan. Thus, we consider algorithms that output, for every
individual i, a prediction xi of the probability that the event will occur for i; we call the mapping
from individuals to probabilities a predictor.

Our focus in this paper is mitigating biases that may arise as an algorithm analyzes given data –
specifically, as the algorithm learns a predictor from data. Continuing the above example, suppose
that in a particular protected community S, on average, individuals are financially disadvantaged
and are unlikely to repay a loan. A machine-learning algorithm that aims to optimize the institu-
tion’s returns might devote resources to learning outside of S – where there is more opportunity
for gains in utility – and assign a fixed, low probability to all i ∈ S. Such an algorithm would
discriminate against the qualified members of S. If S is an underrepresented subpopulation, this
form of discrimination has the potential to amplify S’s underrepresentation by refusing to approve
members that are capable of repaying the loan.

Focusing on such concerns, our primary contributions are as follows:

• We develop and study multicalibration, a new measure of algorithmic fairness aimed at mit-
igating concerns about discrimination that arises in the process of learning a predictor from
given data. In a nutshell, multicalibration guarantees highly-accurate predictions for every
group of individuals that can be identified by a specified (and often bounded) computational
class C. In the mortgage repayment example above, if the class of qualified members of S
can be identified by a circuit c ∈ C, then the predictions made on qualified members of S
must be accurate, and the prediction algorithm cannot ignore / discriminate against these
individuals. We emphasize that the class C can be quite rich and, in particular, can contain
many overlapping subgroups of a protected group S.

• We present a general-purpose algorithm for learning a predictor that is multicalibrated with
respect to any given class C. The complexity of evaluating the predictor is only slightly
larger than the complexity of evaluating circuits in C. The learning algorithm’s running time
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depends linearly on the size of C.

• We also study the computational complexity of learning multicalibrated predictors for more
structured classes C. We show a strong connection between the complexity of learning a
multicalibrated predictor and agnostic learning [Hau92,KSS94]. In the positive direction, if
there is an efficient (weak) agnostic learner [KMV08,Fel10] for a class C, then we can achieve
similarly efficient multicalibration with respect to sets defined by C. In the other direction,
we show that learning a multicalbirated predictor on sets defined by C is as hard as weak
agnostic learning on C. In this sense, the complexity of learning a multicalibrated predictor
with respect to a class C is equivalent to the complexity of weak agnostic learning on C.

• Finally, we demonstrate that multicalbration can go hand-in-hand with the goal of achieving
high-utility predictors. In particular, given a predictor h, we can use post-processing to obtain
a multicalibrated predictor x whose accuracy is no worse than that of h (accuracy is measured
in ℓ22 distance from the benchmark p∗). The complexity of evaluating the predictor x is only
slightly larger than that of h.

High-level setting. For an individual i from the population X , we denote i’s outcome by oi ∈
{0, 1}. We take p∗i ∈ [0, 1] to be the probability of outcome oi = 1, conditioned on all the information
which is available to the algorithm. We denote by p∗ the vector of these probabilities for all
individuals in X . Our goal is to make a prediction xi for the value of p∗i for every individual i. As
discussed above, we would like to avoid additional malicious or inadvertent discrimination (beyond
the biases contained in the data). Thus, we refer to p∗ as the benchmark predictor for measuring
discrimination.

Organization. We begin by elaborating on our setting. The remainder of the introduction is
structured as follows. In Section 1.1 we elaborate on the notion of multicalibration and on its
relationship to other notions in the larger context of fairness. We outline our main results on
learning multicalibrated predictors in Section 1.2. We further elaborate on related work and on
future directions in Section 1.3. Finally, we provide a brief overview of techniques in Section 1.4.

1.1 Calibration, Multicalibration and Balance

Calibration vs. balance If we do not want a predictor x to downplay the fitness of a group S, we
can require that it be (approximately) accurate in expectation over S; namely, that

∣

∣Ei∼S

[

xi − p∗i
]∣

∣ ≤
α, where α ≥ 0 is small. This means that the expectation of x and p∗ over S are almost identical.
Calibration, introduced as a fairness concept in [KMR16], strengthens this requirement by essen-
tially asking that for any particular value v, if we let Sv = {i ∈ S : xi = v} be the subset of S of
individuals with predicted probability v, then

∣

∣Ei∼Sv

[

xi − p∗i
]∣

∣ = |v − Ei∼Sv
[p∗i ]| ≤ α.1

1Calibration is often defined in the literature with respect to the instantiations of the events rather than their
probabilities. Namely, that for every v, the fraction of i in Sv with oi = 1 is roughly v. As long as Sv is sufficiently
large and the instantiations are sufficiently independent, the two definitions are equivalent (up to small sampling
errors) by concentration bounds. Necessarily, the formal definition given in Section 2 will allow for a small fraction
of the elements in S to be misclassified due to being in a small set Sv.
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While calibration already precludes some forms of discrimination, as a group notion of fairness, it
still allows for others (even if we assume that p∗ is perfectly fair). Indeed, weaknesses of group
notions of fairness were discussed in [DHP+12] (for a somewhat related notion called statistical
parity), as a motivation for introducing an individual notion of fairness (see further discussion and
comparisons below). A specific way to discriminate while satisfying calibration is to assign every
member of S the value Ei∼S [p

∗
i ]. While being perfectly calibrated over S, the qualified members of

S with large values p∗i will be hurt.

With this motivation and additional considerations in mind, other notions of fairness have been
studied, looking at the rate of false positives and false negatives of predictions. Several variants of
such properties have been recently studied on their own and in connection to calibration [KMR16,
Cho17,PRW+17,HPS16,WS17,CDPF+17]. Let us briefly consider the notions referred to as balance
in [KMR16]: balance for the positive class — the expected prediction xi for yes instances (oi = 1) in
group S equals the expected prediction for yes instances outside of S; and balance for the negative
class — the expected prediction for no instances (oi = 0) in group S equals the expected prediction
for no instances outside of S.

While both calibration and balance (as well as other related variants) intuitively seem like good
properties to expect in a fair predictor (even if they are a bit weak), it has been shown that
calibration and balance are impossible to obtain together (in non-degenerate cases) [KMR16,Cho17,
PRW+17]. In [HPS16] it is shown how to obtain equalized odds, a definition related to error-
rate balance, as a post-processing step of “correcting” any other predictor. Additional study
into such post-processing approaches was done in [WS17]. (See further discussion of “corrective
discrimination” below.)

Our approach in this paper towards mitigating the conflict between calibration and balance is to
strengthen the protections implied by calibration, rather than enforcing balance.

Multicalibration As mentioned, balance and calibration are often at odds. In our setting, the
benchmark predictor p∗ itself is unlikely to be balanced. Balance is therefore inconsistent with our
goal of approaching p∗. Indeed, in our setting the fact that balance is not satisfied might simply be
an artifact of the inherent randomness in the process of sampling the outcome oi, and this motivates
our definition of multicalibration.

To illustrate this point, consider the following (intentionally artificial) example: an algorithm is
tasked with predicting the probability of rain during 10 days of winter, in two cities, a year from
now. In city A the algorithm predicts rain on each day with probability 0.8; in city B it predicts
rain with probability 0.2 (note that the certainty of the predictions is identical for both cities). A
year passes and indeed in city A it rains on 8 of the days, whereas in city B it rains on only 2 days.
What surprising accuracy! Nevertheless, the predictions violate balance and indeed, the mayor of
city A complains that the predictor hurts tourism to her city: “our sunny days are just as sunny
as the sunny days of city B, so why were you so much more pessimistic about ours?” The point we
are making here is that the sunny days in A are not necessarily a priori different than the rainy
days. Given the inherent uncertainty, it is unreasonable to expect accuracy on a subgroup that is
only identifiable a posteriori. In this sense, different false negative (or false positive) rates between
groups are not necessarily a sign of discrimination.

More generally, consider an algorithm that produces a predictor x. The values oi are determined,
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and then an auditor comes up with a set S′ that over-performed compared with the predictions of
x. Perhaps the learning algorithm was lazy and neglected to identify the higher potential in S′?
Perhaps the individuals of S′ were simply lucky? How can we tell? To answer these questions,
we take the following perspective: on the one hand, we can only expect a learner to produce a
predictor that is calibrated on sets that could have been identified efficiently from the data at
hand; on the other hand, we expect the learner to produce a predictor that is calibrated on every
efficiently-identifiable subset. This motivates our definition of multicalibration, which loosely says:

A predictor x is α-multicalibrated with respect to a family of sets C if it is α-calibrated with
respect to every S ∈ C.

In the spirit of the discussion above, we take C to be a family of (sufficiently large) sets of indi-
viduals, such that for every S ∈ C, the predicate i ∈ S can be evaluated from the individual’s
data within a particular family of computations (circuits of quadratic size, conjunctions of four
attributes, or any other bounded complexity class). The more powerful the family, the stronger
the guarantee becomes; no subpopulation that can be identified by the family will be overlooked.
At the extreme, consider multicalibration with respect to the family of polynomial size circuits; in
this case, every efficiently-identifiable subpopulation is protected! Note that the subpopulations in
C can be overlapping, with complex relationships. In particular, they may well have no explicit
dependence on sensitive attributes. In this sense, multicalibration goes far beyond calibration for
several sensitive groups.

1.2 Our Results

Our study of multicalibration follows two major themes:

• We investigate the feasibility of obtaining multicalibration; specifically, we study the learn-
ability of multicalibrated predictors, showing both positive and negative results.

• We investigate the properties of multicalibrated predictors. While multicalibration provides
strong guarantees against forms of discrimination, we show that this protection can come at
little cost in terms of complexity and utility.

We begin with a high-level overview of our setup. For a formal description of our model and
assumptions, see Section 2. Suppose that for some universe of individuals X , we wish to predict
whether some event (ad click, loan repayment, cancer diagnosis, etc.) will occur for each individual
i ∈ X . We assume that for each individual, there is some true underlying probability p∗i that the
event will occur. We call any mapping from the universe to probabilities a predictor ; formally, a
predictor is a function2 x : X → [0, 1] that maps individuals from the universe to estimates of their
true probabilities. We denote by p∗ the benchmark predictor that gives the true probabilities.

The benchmark predictor is, itself, multicalibrated with respect to every collection of subsets C.
Thus, if we can efficiently learn a predictor from the data at hand with sufficient accuracy across the

2 We will interchange between function and vector notation; generally we will denote the prediction that x assigns
to an individual i ∈ X as xi.
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entire population (specifically, with small ℓ1 distance from p∗), then the learned predictor will be
multicalibrated. That said, in most interesting situations, p∗ will be too complex to learn efficiency
with such uniform accuracy (especially given that the values of p∗ themselves will usually not be
observable). Focusing on such settings, we aim for multicalibration (see above) as a notion of
protection from discrimination.

The first question to address is whether multicalibration is feasible. For instance, it could be the
case that the requirements of multicalibration are so strong that they would require learning and
representing an arbitrarily complex function p∗ exactly, which we’ve established can be infeasible.
Our first result characterizes the complexity of representing a multicalbrated predictor. We demon-
strate that multicalibration indeed can be achieved efficiently: for any p∗ and any collection of large
subsets C, there exists a predictor that is α-multicalibrated on C, whose complexity is only slightly
larger than the complexity required to describe the sets of C. For concreteness, we use circuit size
as our measure of complexity in the following theorem.

Theorem 1. Suppose C ⊆ 2X is collection of sets where for S ∈ C, there is a circuit of size s that
computes membership in S and |S| ≥ γ |X |. For any p∗ : X → [0, 1], there is a predictor that is
α-multicalibrated with respect to C implemented by a circuit of size O(s/α4γ).

As stated, this result claims the existence of multicalibrated predictors whose predictions are effi-
cient to evaluate. The existence of such predictors, while interesting from a complexity-theoretic
perspective, begs the more practical question of whether we can get our hands on such a predictor.

In fact, Theorem 1 is a corollary of our main result – an algorithm for learning α-multicalibrated
predictors from labeled samples. While our model assumes the existence of some underlying true
probabilities p∗, in most applications, these probabilities will not be directly observable. As such,
we design algorithms that learn predictors from samples of individuals labeled with their outcomes;
specifically, we assume access to labeled samples (i, oi) of individual-outcome pairs, where i is
sampled according to some distribution D on the universe and oi is the realized value of a Bernoulli
trial with probability p∗i . Naturally, in this model, our goal is to give algorithms that are efficient
in terms of running time and sample complexity.

In Section 3, we give an algorithm for learning a multicalibrated predictor from labeled samples,
whose running time scales linearly with |C| and polynomially with α and γ. A consequence of our
analysis is that naively, the sample complexity can be upper-bounded by log(|C|)/α6γ6. We show
how to improve the sample complexity over the naive approach by polynomial factors in both α
and γ.

Theorem 2. Suppose C ⊆ 2X is collection of sets such that for all S ∈ C, |S| ≥ γ |X|, and
suppose set membership can be evaluated in time t. Then there is an algorithm that learns a
predictor of p∗ : X → [0, 1] that is α-multicalibrated on C from O(log(|C|)/α11/2γ3/2) samples in
time O(|C| · t · poly(1/α, 1/γ)).

Observing the linear dependence in the running time on |C|, it is natural to try and develop a
learning procedure with subpolynomial, or even polylogarithmic, dependence on |C|. Our next
results aim to characterize when this optimistic goal is possible – and when it is not. We emphasize
that the algorithm of Theorem 2 learns a multicalibrated predictor for arbitrary p∗ : X → [0, 1]
and C. In the setting where we cannot exploit structure in p∗ to learn efficiently, we might hope to
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exploit structure, if it exists, in the collection of subsets C. Indeed, we demonstrate a connection
between our goal of learning a multicalibrated predictor and weak agnostic learning, introduced in
the literature on agnostic boosting [BDLM01,KMV08,KK09, Fel10]. Our next result shows that
efficient weak agnostic learning over C implies efficient learning of α-multicalibrated predictors on
C.

Theorem 3 (Informal). If there is a weak agnostic learner for C that runs in time T , then there
is an algorithm for learning an α-multicalibrated predictor on C′ = {S ∈ C : |S| γ |X|} that runs in
time O(T · poly(1/α, 1/γ)).

Slightly more formally, we require a (ρ, τ)-weak agnostic learner in the sense first introduced by
[KMV08] and generalized by [Fel10]. For the specifics of the requirements and parameters, see the
formal statement in Section 4.

These results show that under the right structural assumptions on p∗ or on C, a multicalibrated
predictor may be learned more efficiently than our upper bound for the general case. Returning
to the general case, we may wonder if these structural assumptions are necessary; we answer this
question in the positive. We show that for worst-case p∗ learning a multicalibrated predictor on C
is as hard as weak agnostic learning for the class C.

Theorem 4 (Informal). If there is an algorithm for learning an α-multicalibrated predictor on a
collection of sets C′ = {S ∈ C : |S| ≥ γN} that runs in time T , then there is an algorithm that
implements a (ρ, τ)-weak agnostic learner in time O(T · poly(1/τ)) for any ρ, τ > 0 such that
τ ≤ min {ρ− 3α, ρ − 6α}.

In general, agnostic learning is considered a notoriously hard computational problem. In particular,
under cryptographic assumptions [Val84, GGM84, BR17], this result implies that there is some
constant t > 0, such that any algorithm that learns an α-multicalibrated predictor requires Ω(|C|t)
time.

Finally, we return our attention to investigating the utility of multicalibrated predictors. Above,
we have argued that multicalibration provides a strong protection of groups against discrimination.
We show that this protection comes at (next to) no cost in the utility of the predictor. This result
adds to the growing literature on fairness-accuracy trade-offs [FKL16,BHJ+17,CG17].

Theorem 5. Suppose C ⊆ 2X is a collection of subsets of X and H is a set of predictors. There is
a predictor x that is α-multicalibrated on C such that

E
i∼X

[(xi − p∗i )
2]− E

i∼X
[(h∗i − p∗i )

2] < 6α,

where h∗ = argminh∈H Ei∼X [(h− p∗)2]. Further, suppose that for all S ∈ C, |S| ≥ γN , and suppose
that set membership for S ∈ C and h ∈ H are computable by circuits of size at most s; then x is
computable by a circuit of size at most O(s/α4γ).

We can interpret Theorem 5 in different ways based on the choice of H. Suppose there is some
sophisticated learning algorithm (say, a neural network) that produces some predictor h that obtains
exceptional performance, but may violate calibration arbitrarily. If we take H = {h}, then this
result says: enforcing calibration on h after learning does not hurt the accuracy by much. Further,
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our proof will demonstrate that if calibration changes the predictions of h significantly, then this
change amounts to an improvement in accuracy. See Lemma 5.2 for the exact statement. Taking
a different perspective, we can also think of H as a set of predictors that, say, are implemented
by a circuit class of bounded complexity (e.g. conjunctions of k variables, halfspaces, circuits of
size s). This theorem shows that for any such class of predictors H of bounded complexity, there
exists a multicalibrated predictor with similar complexity that performs as well as the best h∗ ∈ H.
In this sense, with just a slight overhead in complexity, multicalibrated predictors can achieve
“best-in-class” predictions.

1.3 More on related work and future directions

Between populations and individuals In [DHP+12], an individual notion of fairness was de-
fined, referred to as “fairness through awareness.” This notion relied on a task-specific metric of
similarity between individuals and formalized the idea that similar individuals (under this metric)
are treated similarly. It is natural, in an array of applications, to view p∗ as defining a metric –
two individuals i and j will be assigned the distance |p∗i − p∗j |. In this work we consider cases in
which figuring out p∗ in its entirety is difficult. Thus, one can view our approach as a meaning-
ful compromise between group fairness (satisfying calibration) and individual-calibration (closely
matching p∗i ). It seems plausible that our approach could be applied to more general notions of
similarity metrics, and we intend to explore this in future work.

Subgroup Fairness Contemporary independent work of [KNRW17] also investigates strength-
ening the guarantees of notions of group fairness by requiring that these properties hold for a much
richer collection of sets. Unlike our work, their definitions require balance or statistical parity on
these collection of sets. Their motivation is similar to ours, namely to bridge the gap between
notions of individual fairness (powerful but hard to obtain) and population-level fairness (easy to
work with but weak).

Despite similar motivations, the two approaches to subgroup fairness differ in substantial ways.
As a concrete example, Theorem 5 demonstrates that achieving multicalibration is aligned with
the incentives of achieving high-utility predictors; this is not necessarily the case with balance-
based notions of fairness. Indeed, in the setting considered in this work, one of the motivations
for multicalibration is a critique of balance that may only be heightened when considering “multi-
balance”. Consider the example in [DHP+12] where in a population S the strongest students apply
to Engineering whereas in the general population T they apply to Business. Even if predictor p∗

(for the probability of success in school) is balanced between S and T , forcing balance between
the two populations within Business applicants and within Engineering applicants would be unfair
to qualified applicants in both groups. (For more discussion, see the section below on “Corrective
discrimination”.)

On a technical level, both works draw connections between agnostic learning and the task of finding
a group on which the fairness condition is violated ( [KNRW17] refer to this as auditing). Lever-
aging this connection, we show how to use an agnostic learner to learn a multicalibrated predictor
efficiently. [KNRW17] also leverage this connection: they derive an algorithm that converges to the
best (most accurate) distribution over classifiers in a given class, given an oracle that solves the
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learning (and auditing) tasks. While the convergence rate of their algorithm is not known to be
polynomial, they implement it and show that it performs well in practice.

Preventing discrimination by algorithms is subtle; different scenarios will call for different notions
of protection. As such, it is hard to imagine a universal definition of fairness. Nevertheless,
these two independent works validate the need to investigate attainable approaches to mitigating
discrimination beyond large protected groups. It will be interesting to further understand how these
notions of subgroup fairness relate to one another, and when each approach is most appropriate.

Calibration for multiple protected sets vs. multicalibration The literature on fairness
commonly considers more than a single protected set (cf. [CSV17] which studies fairness in ranking
algorithms, with protected groups being defined by each attribute of interest). The major difference
in our work is that we think of protected groups as any group that can be efficiently identified,
rather than those defined by sensitive properties. One side benefit of the generality of our approach
is that it does not single out groups based on sensitive values for special treatment (which can be
illegal in some contexts).

Calibration, Bandits, and Regret There is a growing literature on designing fair selection
policies in the multi-arm bandits setting [JKMR16, JKM+17,LRD+17]. Recently [LRD+17] initi-
ated the study of calibration in this context. Motivated by the aforementioned work of [DHP+12],
their notion of calibrated fairness aims to “treat similar individuals similarly” by designing sampling
policies that have low fairness regret.

Causality and discrimination in the data Discrimination can occur at any stage throughout
the algorithmic pipeline and in many forms. The most important aspect of developing a theory
of algorithmic fairness that multicalibration does not address is “unfair” data (see more below).
Kilbertus et al. [KRCP+17] voice an important criticism of any notion of fairness based solely on
observational criteria, as discrimination can occur through unresolved causal relationships. This
criticism applies to the notions of balance, calibration, and multicalibration, which all depend only
on the joint distribution of predictions, outcomes, and features.

Rather than attempting to provide a general-purpose definition of fairness, our work tackles a
particular concern about discrimination that can occur as part of the process of learning a predictor
from given data. In this context, we believe that multicalibration provides an important anti-
discrimination guarantee.

Corrective discrimination Let us look deeper into the biases that may be present in the gath-
ered data, by considering the mortgage example again: perhaps the number of members of S that
received loans in the past is small (and thus there are too few examples for fine-grained learning
within S); perhaps the attributes are too limited to identify the qualified members of S (taking
this point to the extreme, perhaps the only available attribute is membership in S). In these cases,
the data may be insufficient for multicalibration to provide meaningful guarantees. Further, even
if the algorithm was given access to unlimited rich data such that refined values of p∗ could be
recovered, there are situations where preferential treatment may be in order: after all, the salaries
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of members of S may be lower due to historical discrimination.

For these reasons, our concern that balance is inconsistent with p∗ could be answered with: “yes,
and purposely so!” Indeed, [HPS16] promotes enforcing a balance-related property, called equal-
ized odds, as a form of “corrective discrimination.” While this type of advocacy is important in
many settings, multicalibration represents a different addition to the quiver of anti-discrimination
measures, which we also believe is natural and desirable in many settings.

Consider a concrete example where multicalibration is appropriate, but equalizing error rates might
not be: Suppose a genomics company offers individuals a prediction of their likelihood of developing
certain genetic disorders. These disorders have different rates across different populations; for
instance, Tay-Sachs disease is rare in the general population, but occurs much more frequently in
the Ashkenazi Jewish population. We certainly do not want to enforce corrective discrimination
on the Ashkenazi population by down-weighting the prediction that individuals would have Tay-
Sachs (as they are endogenously more likely to have the disease). However, we also don’t want the
company to base its prediction solely on the Ashkenazi feature (either positively or negatively).
Instead, enforcing multicalibration would require that the learning algorithm investigate both the
Ashkenazi and non-Ashkenazi population to predict accurately in each group (even if this means
a higher false positive rate in the Ashkenazi population). In this case, relying on p∗ seems to be
well-aligned with promoting fairness.

Finally, we consider the interplay between multicalibration and “corrective discrimination” to be
an important direction for further research. For example, one can imagine applying corrective
measures, such as the transformation of [HPS16], to a multi-calibrated predictor.

1.4 Our Techniques

Here, we give a high-level technical overview of our results. Our techniques draw from the litera-
ture on computational learning theory, online optimization, differential privacy, and adaptive data
analysis.

Learning a multicalibrated predictor In Section 3.2, we describe an algorithm for learn-
ing α-multicalibrated predictors as stated in Theorem 2. Our algorithm is an iterative proce-
dure. In particular, we will maintain a candidate predictor x, and at each iteration, the algo-
rithm corrects the candidate values of some subset that violates calibration until the candidate
predictor is α-multicalibrated. Recall that calibration over a set S requires that on the subsets
Sv = {i ∈ S : xi = v} (which we will refer to throughout as categories), the expected value of the
true probabilities Ei∼Sv

[p∗i ] on this set is close to v. As such, the algorithm is easiest to describe
in the statistical query model, where we query for noisy estimates of the true statistics on subsets
of the population and update the predictor based on these estimates. In particular, given a statis-
tical query oracle that guarantees tolerance ω = O(αγ), the estimates will be accurate enough to
guarantee α-calibration on sets S with |S| ≥ γ |X|.

When we turn to adapting the algorithm to learn from random samples, the algorithm answers
these statistical queries using the empirical estimates on some random sample from the population.
Standard generalization arguments [KV94] show that if the set of queries we might ask is fixed in
advance, then we could bound the sample complexity needed to answer these non-adaptive queries
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as Õ(log |C|/ω2). Note, however, that the categories Sv whose expectations we query are selected
adaptively (i.e. with dependence on the results of prior queries). In particular, the definition of
the categories Sv depends on the current values of the predictor x; thus, when we update x based
on the result of a statistical query, the set of categories on which we might ask a statistical query
changes. In this case, we cannot simply apply concentration inequalities and take a union bound
to guarantee good generalization without resampling every time we update the predictor.

To avoid this blow-up in sample complexity, we appeal to recently-uncovered connections be-
tween differential privacy and adaptive data analysis developed in [DFH+15c,DFH+15c,BNS+16,
DFH+15b]. In Section 3.3, we show how to answer the statistical queries in a way that guarantees
the learning algorithm is differentially private. This, in turn, allows us to argue that the predictor
our algorithm learns from a small sample will be multicalibrated, not just for the observed individ-
uals but also the unseen individuals. In particular, using a privacy-based approach with an analysis
tailored to the goal of calibration, we obtain sample complexity that depends on 1/α11/2γ3/2 as
opposed to the naive approach which results in 1/α6γ6.

As stated earlier, Theorem 1 can be seen as a corollary of Theorem 2. Bounding the number of
iterations needed by the algorithm to converge not only upper-bounds the algorithm’s running time
and sample complexity, but also implies that the circuit complexity of the learned predictor is not
much larger than the complexity of evaluating membership for S ∈ C. We explain this implication
in Section 3.5.

The complexity of multicalibration In Section 3.4, we discuss the complexity of learning
a multicalibrated predictor and draw connections to agnostic learning [Hau92,KSS94]. We show
that the algorithm learns a multicalibrated predictor in a bounded number of iterations; however,
without additional assumptions about p∗ or C, each iteration could take Ω(|C|) time. In the cases
where |C| is large, we might hope to improve the dependence on |C| to polylogarithmic or perhaps
subpolynomial. If p∗ can be learned directly, then we can eliminate the dependence on |C| and
instead, only depend on the minimum γ such that for all S ∈ C, |S| ≤ γN .

In the case where p∗ is arbitrary, we show that improving the dependence on |C| is possible if C
is structured in a certain way, drawing a connection to the literature on agnostic learning [Hau92,
KSS94,KMV08,Fel10]. Recall, in our algorithm for learning multicalibrated predictors, we maintain
a candidate predictor x, and iteratively search for some set S ∈ C on which x is not calibrated.
To solve this search problem more quickly, we frame the search as weak agnostic learning over a
concept class derived from C and over the hypothesis class of H = {h : X → [−1, 1]}.

Specifically, consider the concept class defined by the collection of subsets C, where for each S ∈ C,
we include the concept cS : X → {−1, 1} where cS(i) = 1 if and only if i ∈ S. We show how to
design a “labeling” ℓ : X → [−1, 1] for individuals such that if x violates the calibration constraint
on any S ∈ C, then the concept cS correlates nontrivially with the labels over the distribution of
individuals, i.e. 〈cS , ℓ〉 ≥ ρ for some ρ > 0.

Thus, if x is not yet multicalibrated on C, then we are promised that there is some concept cS with
nontrivial correlation with the labels; we observe that this promise is exactly the requirement for
a weak agnostic learner, as defined in [KMV08,Fel10]. In particular, given labeled samples (i, ℓ(i))
sampled according to D, if there is a concept cS with correlation at least ρ with ℓ, then the weak
agnostic learner returns a hypothesis h that is τ correlated with ℓ for some τ < ρ. The catch is
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that this hypothesis may not be in our concept class C, so we cannot directly “correct” any S ∈ C.
Nevertheless, the labeling on individuals ℓ is designed such that given the hypothesis h, we can still
extract an update to x that will make global progress towards the goal of attaining calibration. As
long as τ is nontrvially lower bounded, we can upper bound the number of calls we need to make
to the weak learner. The details of our choice of labels and how we track progress are given in
Section 4.

Additionally, we show that our reduction to weak agnostic learning is unavoidable. In particular,
we show that if it is possible to learn a multicalibrated predictor with respect to C, then it is
possible to weak agnostic learn on C (if we view C as a concept class). Specifically, we will show
how to implement a weak agnostic learner for C, given an algorithm to learn an α-multicalibrated
predictor x with respect to C (in fact, we only need the predictor to be multicalibrated on C′ =
{S ∈ C : |S| ≥ γ |X|}). The key lemma for this reduction says that if there is some c ∈ C that is
nontrivially correlated with the labels, then x is also nontrivially correlated with c. As there are
many natural classes C for which agnostic learning is conjectured to be hard, this gives a strong
negative result to the question of whether we can obtain speedups in the general case.

In combination, these results show that the complexity of learning a multicalibrated predictor with
respect to a class C is equivalent to the complexity of weak agnostic learning C. Section 4 contains
the formal statements and proofs that imply this equivalence.

“Best-in-class” prediction In Section 5, we turn to understanding how requiring a predictor
to be multicalibrated affects the accuracy of the predictor. We show – in contrast to many other
notions of fairness – multicalibration does not limit the utility of a predictor. In particular, given
any collection of predictors H, and any collection of subsets C, we design a procedure for obtaining
a predictor x that is α-multicalibrated on C and achieves expected squared prediction error less
than or equal to the the best predictor in H (plus a small additive error on α). Further, leveraging
Theorem 1 and Theorem 2, we show that the predictor x can be learned from samples and imple-
mented by a circuit of comparable size to the predictors h ∈ H. To prove that multicalibration
does not negatively impact the utility, we in fact, show a much stronger statement: if applying
multicalibration to some h ∈ H changes the predictions of h significantly (i.e. if ‖x− h‖ is large),
then this change represents an improvement in accuracy (i.e. ‖x− p∗‖ < ‖h− p∗‖). In this sense,
requiring multicalibration is aligned with the goals of learning a high-utility predictor.

Organization of the paper In Section 2, we provide a description of our model and the for-
mal definitions related to multicalibration. In Section 3, we describe and analyze our algorithm
for learning multicalibrated predictors. In Section 4, we investigate the complexity of obtaining
multicalibration, showing a tight connection to the complexity of weak agnostic learning. Finally,
in Section 5, we demonstrate how multicalibration achieves “best-in-class” prediction.

2 Preliminaries

Predictors Let X denote the universe of N individuals over which we wish to make predictions
about some outcome o ∈ {0, 1}N . We assume that outcomes are the result of some underlying
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random process, where for each i, oi is sampled independently3 as a Bernoulli random variable with
success probability p∗i . We aim to predict the underlying parameters of the process, rather than
the realized outcome of the process. A predictor x : X → [0, 1] of outcome o is some mapping from
individuals i ∈ X to [0, 1], where xi is the prediction of p∗i . We refer to p∗ as the baseline predictor.
When it is notationally convenient, we will sometimes treat predictors as vectors x ∈ [0, 1]N rather
than as functions x : X → [0, 1], where we assume a bijection from X to [N ].

Remark. Often in learning theory, we think of learning functions h : F → [0, 1] over the space of
possible features F . We find it preferable to reason about predictions about individuals; nevertheless,
in our model, we can think of xi as given by the composition of two separate functions, where
xi = x′(φ(i)) for x′ : F → [0, 1] and φ : X → F . As φ will be fixed and assumed to be some
simple function (say, mapping individuals to their 〈 age, height, ZIP code, . . .〉) we drop the explicit
reference to F and φ.

Sampling from X Throughout, we will assume that our learning algorithms have the ability to
efficiently obtain randomly sampled individuals from X (and by rejection sampling, large subsets
of X ). Specifically, we will use i ∼ S to denote sampling i uniformly at random from S ⊆ X .

Remark. Our focus on the uniform distribution is mostly syntactic; as per our distinction between
the identities of individuals i ∈ X and their features φ(i), the uniform distribution over individuals
gives rise to a rich class of distributions over the features of individuals.

We will further assume that sampling i ∼ X is inexpensive compared to obtaining a corresponding
outcome oi ∈ {0, 1} for i ∼ X that is Bernoulli distributed with parameter p∗i . As such, when
measuring the sample complexity, we will only count the latter type of labeled samples. The
learner has a good sense of the distribution over features, but not of the outcomes that arise from
these features.

When measuring the accuracy of a predictor x, we will use the squared prediction error ‖p∗ − x‖2,
as this measure of divergence penalizes large individual deviations. The ℓ22 distance will also be
useful for measuring the similarity of predictors. While we elect to use ℓ22, much of our analysis
could be performed using any Bregman divergence; in particular, if we elected to work over arbitrary
multinomial distributions over individuals in X , we could measure accuracy in terms of the squared
Mahalanobis distance from the optimal predictor, i.e. (p∗− x)TD(p∗−x), where D is the diagonal
matrix in which Dii is the probability of sampling individual i ∈ X .

2.1 Calibration

Next, we give formal definitions of the criteria we use to measure algorithmic discrimination. The
first notion captures the idea that, on average, we would like an algorithm’s predictions to be
unbiased.

3In many cases, complete independence may not hold; individuals’ outcomes may be correlated in nontrivial ways.
The only place we will use independence is to argue that the reliable statistics can be estimated from the observable
data; our arguments can be applied to any model for which one can prove the appropriate tail inequalities. For
further consideration, continue to our discussion on “observable” calibration after Claim 2.3.
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Definition 2.1 (Accurate in expectation). For any α > 0 and S ⊆ X , a predictor x is α-accurate
in expectation (α-AE) with respect to S if

∣

∣

∣

∣

E
i∼S

[xi − p∗i ]

∣

∣

∣

∣

≤ α.

That is, the predictions, averaged over the set S, are accurate up to some additive α slack. This basic
condition is necessary to ensure unbiased predictions, but it is too weak to guarantee discrimination
hasn’t occurred. In particular, suppose the underlying probabilities are such that p∗i = 1/2 for
all i ∈ S. A predictor that predicts 1 on half of the individuals in S and 0 on the other half
is accurate in expectation, but it is arguably discriminatory; there is no difference between the
individuals in S, but the predictor has artificially created two categories within this population. This
example motivates the definition of calibration. Calibration mitigates this form of discrimination
by considering the expected values over categories Sv = {i : xi = v} defined by the predictor x.
Specifically, α-calibration with respect to S requires that for all but an α-fraction of a set S, the
average of the true probabilities of the individuals receiving prediction v is α-close to v.

Definition 2.2 (Calibration). For any v ∈ [0, 1], S ⊆ X , and predictor x, let Sv = {i : xi = v}.
For α ∈ [0, 1], x is α-calibrated with respect to S if there exists some S′ ⊆ S with |S′| ≥ (1−α) |S|
such that for all v ∈ [0, 1],

∣

∣

∣

∣

E
i∼Sv∩S′

[xi − p∗i ]

∣

∣

∣

∣

≤ α.

Note that α-calibration with respect to S implies 2α-AE with respect to S. To see this, observe
that calibration implies that on a (1−α)-fraction of S, the average of the values are α-close to the
expectation on this fraction; even if the other α-fraction is arbitrary, it can only introduce another
additive α error.

Departures from prior definitions This notion of calibration departs from prior definitions in
a few ways. Earlier definitions required exact calibration with respect to X ; we find it meaningful
to consider approximate calibration. Introducing approximation into the definition of calibration
has practical motivation. In particular, we don’t expect to know the exact probabilities, nor can we
observe the entire population. Given a desired accuracy and access to samples from the population,
we can quantify how many samples are needed to guarantee calibration with good probability.

Note that in our definition of α-calibration, we require relative additive error that scales with
the size of Sv. That is, for some S and category Sv = {i : xi = v} ∩ S, the magnitude of the
sum of errors on Sv,

∣

∣

∑

i∈Sv
(v − p∗i )

∣

∣, scales with |Sv|, not N . This relative approximation model
prevents certain “attacks” against approximate calibration. Specifically, one natural way a predictor
might attempt to sidestep the anti-discrimination properties of approximate calibration would be
to support many distinct values of v ∈ [0, 1], each with a very small number of individuals. If our
notion of approximation allowed for absolute errors (i.e. errors whose sum over Sv scale with N
instead of |Sv|), then this attack would be viable, leading to essentially no guarantees

Another subtle distinction is that we evaluate calibration with respect to the underlying probabili-
ties p∗ ∈ [0, 1]N , as opposed to the realized outcomes o ∈ {0, 1}N . We refer to the earlier notion as
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observable calibration. Formally, a predictor is observably α-calibrated with respect to S ⊆ X and
outcome o ∈ {0, 1}N if for all v ∈ [0, 1],

∣

∣

∣

∣

E
i∼Sv∩S′

[xi − oi]

∣

∣

∣

∣

≤ α,

where Sv and S′ are as in Definition 2.2. In our terminology, earlier references to calibration
require that a predictor be observably 0-calibrated with respect to each protected group S. Our
introduction of a non-zero α in these definitions allows us to relate our notion of calibration and
the previous notion of observable calibration.

Claim 2.3. Let S ⊆ X , δ > 0, and α >
√

log(1/δ)
2|S| . Suppose the outcome o ∈ {0, 1}N is drawn

according to the true probabilities p∗. Then, with probability at least 1− δ over the draw of o, any
predictor that is α-calibrated with respect to S will be observably 2α-calibrated with respect to S.

Claim 2.3 follows directly from an application of Hoeffding’s inequality over the random outcome
o. The claim implies that for sufficiently large α, to guarantee observable 2α-calibration with high
probability, it suffices to consider our notion of α-calibration.

Independence and observability We note that to prove Claim 2.3, we use the independence
of oi’s in our application of Hoeffding’s inequality. Throughout, the only times we invoke the
independence of the realization of the oi’s are to prove that the empirical statistics over a sufficiently
large sample of observations will be concentrated around the corresponding statistics of the true
parameters. Thus, the independence assumption isn’t strictly necessary; our results should hold
for any model where the outcomes admit similar tail inequalities. We note, however, that if strong
dependencies exist in the realization of the outcomes, our techniques will still achieve observable
calibration from samples. Recall that in observable calibration, we compare the value v output by
the predictor on a category Sv to the empirical average of outcomes over the category

∑

i∈Sv
oi.

If we only need to guarantee closeness with respect to these observable outcomes, we do not need
to ensure that sums over outcomes will be concentrated around their expectation (i.e. sums of the
underlying true probabilities).

2.2 Learning model

In Section 3, we present algorithms to learn predictors satisfying accuracy-in-expectation and cal-
ibration. The algorithms can be viewed as statistical query algorithms [Kea98]. Specifically, the
algorithms only require access to approximate statistical queries of the following form.

Definition 2.4 (Statistical Query [Kea98]). For a subset of the universe S ⊆ X , let p∗S =
∑

i∈S p∗i .
For τ ∈ [0, 1], a statistical query with tolerance τ returns some p̃(S) satisfying

p∗S − τN ≤ p̃(S) ≤ p∗S + τN.

Note that this query model guarantees absolute additive error τN . As discussed above, our notion
of calibration with respect to S asks for relative additive error; however, if we know a lower bound

14



on |S| ≥ γN , then, asking a statistical query with tolerance τ = αγ will guarantee relative error α
on S.

In addition to giving algorithms that work in this statistical learning framework, we also address
the question of learning a calibrated predictor from a set of samples of outcomes. Formally, we
define the access to sampled outcomes as follows.

Definition 2.5 (Random sample). For p∗ ∈ [0, 1]N , a random sample s(p∗) returns an individual-
outcome pair (i, oi) ∈ X × {0, 1}, where i ∼ X is drawn uniformly at random and oi is sampled
according to the Bernoulli distribution with parameter p∗i .

We say an algorithm learns a predictor from samples if its only access to the true parameters p∗ is
through random samples of this form. It’s easy to see that we can always implement a statistical
query algorithm with access to enough random samples – for every query, we could sample a fresh
set of outcomes to estimate the statistic accurately. Our goal will be to avoid resampling in order
to prevent a blow-up in the sample complexity.

2.3 Multicalibration

We introduce the notion of multicalibration, which requires calibration to hold simultaneously
on subsets of the population. We will show that multicalibration not only guarantees fairness
across protected populations, but also helps us uncover more accurate predictions. To motivate
multicalibration further, consider the following toy example: suppose p∗ is such that there is some
population S (possibly, a traditionally protected group) and a subpopulation S′ ⊆ S with |S′| =
|S| /2, where for every i ∈ S′, p∗i = 1, and for every i ∈ S \ S′, p∗i = 0. The predictor x that
predicts xi = 1/2 for all i ∈ S is calibrated on the population S, but clearly is suboptimal. Further,
if S′ was identifiable in advance, then this predictor is arguably discriminatory – there are two
clearly identifiable groups within S, but we are treating them the same way. If, however, we insist
on calibration with respect to S′ in addition to S, then the predictor will be required to output
accurate predictions for each group. Earlier approaches to using calibration to achieve fairness, as
introduced in [KMR16], would prevent this form of discrimination for subsets S that are identified
as a protected group (defined, for example, by race), but not for subpopulations of these groups –
even if the subpopulations could be easily distinguished as outstanding.

For a collection of subsets C, we say that a predictor is α-multicalibrated on C if it is α-calibrated
simultaneously on all S ∈ C.

Definition 2.6 (α-multicalibration). Let C ⊆ 2X be a collection of subsets of X and α ∈ [0, 1]. A
predictor x is α-multicalibrated on C if for all S ∈ C, x is α-calibrated with respect to S.

We also define the corresponding definition for the weaker notion of α-AE.

Definition 2.7 (α-multi-AE). Let C ⊆ 2X be a collection of subsets of X and α ∈ [0, 1]. A predictor
x is α-multi-AE on C if for all S ∈ C, x is α-AE with respect to S.

Discretization Even though α-calibration is a meaningful definition if we allow for arbitrary
predictions xi ∈ [0, 1], when designing algorithms to learn calibrated predictors, it will be useful to
maintain some discretization on the values v ∈ [0, 1]. Formally, we will use the following definition.
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Definition 2.8 (λ-discretization). Let λ > 0. The λ-discretization of [0, 1], denoted by Λ[0, 1] =
{

λ
2 ,

3λ
2 , . . . , 1− λ

2

}

, is the set of 1/λ evenly spaced real values over [0, 1]. For v ∈ Λ[0, 1], let

λ(v) = [v − λ/2, v + λ/2)

be the λ-interval centered around v (except for the final interval, which will be [1− λ, 1]).

At times, it will be convenient to work with a more technical variant of multicalibration, which
implies α-multicalibration. In particular, this definition will allow us to work with an explicit
discretization of the values v ∈ [0, 1]. Throughout, for a predictor x, we refer to the “categories”
Sv(x) = {i : xi ∈ λ(v)} ∩ S for all S ∈ C and v ∈ Λ[0, 1].

Definition 2.9 ((α, λ)-multicalibration). Let C ⊆ 2X be a collection of subsets of X . For any
α, λ > 0, a predictor x is (α, λ)-calibrated on C if for all S ∈ C, v ∈ Λ[0, 1], and all categories
Sv(x) such that |Sv(x)| ≥ αλ |S|, we have

∣

∣

∣

∣

∣

∣

∑

i∈Sv(x)

xi − p∗i

∣

∣

∣

∣

∣

∣

≤ α |Sv(x)| .

We claim that if learn a predictor that satisfies (α, λ)-multicalibration, we can easily transform this
predictor into one that satisfies our earlier notion of α-multicalibration. In particular, let xλ be the
λ-discretization of a predictor x if for all i ∈ Sv(x), x

λ
i = Ei∼Sv(x)[xi].

Claim 2.10. For α, λ > 0, suppose C ⊆ 2X is a collection of subsets of X . If x is (α, λ)-
multicalibrated on C, then xλ is (α+ λ)-multicalibrated on C.

Proof. Consider the categories Sv(x) where |Sv(x)| < αλ |S|. By the λ-discretization, there are at
most 1/λ such categories, so the cardinality of their union is at most (1/λ)αλ |S| = α |S|. Thus,
for each S ∈ C, there is a subset S′ ⊆ S with |S′| ≥ (1− α) |S| where for all v ∈ Λ[0, 1],

∣

∣

∣

∣

E
i∼Sv(x)∩S′

[xi − p∗i ]

∣

∣

∣

∣

≤ α.

Further, λ-discretization will “move” the values of xi by at most λ, so overall, xλ will be (α + λ)-
calibrated.

Typically, we will imagine λ = Θ(α), but our results hold for any λ ∈ (0, 1]. Choosing a smaller λ
will allow the predictor to be more expressive, but will also increase the running time and sample
complexity. Choosing a larger λ leads to a decay in the calibration guarantees.

Representing subsets of individuals When representing collections of subsets, we will assume
that the subsets are represented implicitly. In particular, we will assume that S ∈ C is given as a
circuit cS : X → {0, 1}, where S = c−1

S (1); that is, for i ∈ X , cS(i) = 1 if and only if i ∈ S. Using
this implicit representation serves two purposes. First, in many cases, we may want to calibrate
on a collection of subsets over a large universe; in these cases, assuming an explicit representation
of each set is unreasonable. Second, associating a set S with a circuit that computes membership
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in S allows us to quantify the complexity of the sets in C. In particular, it seems natural to
apply multicalibration to guarantee calibration with respect to a collection of efficiently-identifiable
subsets (say, subsets defined by conjunctions of four attributes, or any other simple circuit class).
It seems comparatively unreasonable to require calibration on, say, a random subsets, each of which
would require Ω(|X |) bits to describe.

3 Learning α-multicalibrated predictors

In this section, we prove Theorem 2; that is, we provide an algorithm for efficiently learning
α-multicalibrated predictors. The algorithms we describe are iterative and fit into the online opti-
mization framework [SS12,Haz16] as well as the statistical query framework [Kea98]. In Section 3.1,
we give an algorithm that solves the simpler task of learning an α-multi-AE predictor, as a warm-up
to introduce the main ideas. In Section 3.2, we describe the algorithm for learning α-multicalibrated
predictors in full. Then, in Section 3.3, we will give a nontrivial implementation of the statistical
query oracle that will imply nontrivial upper bounds on the running time and sample complexity
of the learning algorithm. This implementation borrows ideas from the literature on differentially
private query release and optimization [HR10,Ull15,HRRU14]. We conclude in Section 3.5 with
the observation that our algorithm also has implications for the circuit complexity of calibrated
predictors: for any collection of sets C, there is an α-calibrated predictor whose circuit complexity is
a small factor larger than the circuit complexity required to describe the sets in C. This establishes
Theorem 1.

3.1 α-multi-AE predictors

We begin our discussion with a simpler statistical query algorithm for learning an α-multi-AE
predictor. This algorithm serves as a warm-up for the subsequent algorithm for learning an α-
multicalibrated predictor.

Algorithm 3.1 – Learning an α-multi-AE predictor on C

Let α, γ > 0 and let C ⊆ 2X be such that for all S ∈ C, |S| ≥ γN .
For S ⊆ X , let p̃(S) be the output of a statistical query with tolerance τ < αγ/4.

• Initialize:
◦ Let x = (1/2, . . . , 1/2) ∈ [0, 1]N

• Repeat:
◦ For each S ∈ C:

– Let ∆S = p̃(S)−
∑

i∈S xi

– If |∆S| > α |S| − τN :
update xi ← xi +

∆S

|S| for all i ∈ S (projecting xi onto [0, 1] if necessary)

◦ If no S ∈ C updated: exit and output x
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Algorithm 3.1 describes an iterative statistical query procedure for learning a α-multi-AE predictor
on C. Note that the problem of finding an α-multi-AE predictor for some collection of sets C can
be written as a linear program; the algorithm presented can be viewed as an instance of projected
subgradient descent (see [Haz16]). The algorithm iteratively updates a predictor x until it cannot
find a set S ∈ C where the current estimate deviates significantly from the value reported by the
statistical query. We claim that if no set violates this condition, then x is α-multi-AE on C.

Claim 3.1. If Algorithm 3.1 outputs a predictor x, then x is α-multi-AE on C.

Proof. Let pS =
∑

i∈S p∗i and xS =
∑

i∈S xi. By the assumed tolerance of the statistical queries
p̃(S), we know that the queries are close to the pS . Specifically, we know |p̃(S)− p∗S| ≤ τN for
some τ < αγ. By the termination condition and the triangle inequality, for all S ∈ C we get the
estimate |p∗S − xS | ≤ |p̃(S)− xS |+ τN ≤ α |S|; thus x is α-AE on C.

Thus, to show the correctness of the algorithm, it remains to show that the algorithm will, in fact,
terminate; we show the algorithm can make at most O(1/α2γ) updates.

Lemma 3.2. Suppose α, γ > 0 and C ⊆ 2X such that for all S ∈ C, |S| ≥ γN . Let τ = αγ/4.
Then Algorithm 3.1 makes O(1/α2γ) updates to x before terminating.

Proof. We use a potential argument, tracking the progress the algorithm makes on each update in
terms of the ℓ22 distance between our learned predictor x and the true predictions p∗. Let x′ be
the predictor after updating x on set S and let π : R → [0, 1] denote projection onto [0, 1]. We
use the fact that the ℓ22 can only decrease under this projection. For notational convenience, let

δS =
∆S

|S|
=

1

|S|
(p̃(S)−

∑

i∈S xi). We have

‖p∗ − x‖2 −
∥

∥p∗ − x′
∥

∥

2
=
∑

i∈S

(p∗i − xi)
2 −

∑

i∈S

(p∗i − π(xi + δS))
2

≥
∑

i∈S

((p∗i − xi)
2 − (p∗i − (xi + δS))

2)

=
∑

i∈S

(2(p∗i − xi)δS − δ2S)

=

(

2δS
∑

i∈S

(p∗i − xi)

)

− δ2S |S|

≥ 2δS (δS |S| − sgn(δS)τN)− δ2S |S|

≥ δ2S |S| − 2 |δS | τN.

By setting τ = αγ/4 and by the bound |∆S | ≥ α |S| − τN ≥ 3α |S| /4, the final quantity is at least
Ω(α2 |S|). We also have

δ2S |S| − 2 |δS | τN ≥

(

3α

4

)2

|S| − 2

(

3α

4

)

(αγ

4

)

N

=
3α2

16
|S| .
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The ℓ22 distance between p∗ and any other predictor (in particular, our initial choice for x) is upper-
bounded by N . Thus, given that all S ∈ C have |S| ≥ γN , we make at least Ω(α2γN) progress in
potential at each update, so the lemma follows.

In combination, these statements show the correctness of Algorithm 3.1 and imply an upper bound
on the number of statistical queries necessary.

Theorem 3.3. For α, γ > 0 and for any C ⊆ 2X satisfying |S| ≥ γN for all S ∈ C, there is
a statistical query algorithm with tolerance τ = αγ/4 that learns a α-multi-AE predictor on C in
O(|C| /α2γ) queries.

Recall that, trivially, we could implement this statistical query algorithm from random samples by
resampling for every query; however, in this case, we can easily improve the sample complexity
exponentially over the trivial solution. Specifically, the queries we make are non-adaptive because,
up front, we know a fixed collection of subsets whose expectation we might query. To guarantee
accurate expectations on this fixed collection, we only need enough samples to guarantee that the
sample is inaccurate on a fixed subset with very small probability, and then union bound over all
|C| subsets. Appealing to a standard generalization argument [KV94], we can show the following
theorem.

Corollary 3.4. Suppose α, γ, ξ > 0 and C ⊆ 2X is such that for all S ∈ C, |S| ≥ γN . Then
there is an algorithm that learns an α-multi-AE predictor on C with probability at least 1− ξ from

n = O

(

log(|C| /ξ)

α2γ

)

samples.

Note that the γ dependence in the sample complexity is only 1/γ. Naively, applying the guarantees
of the statistical query oracle, we would obtain a 1/γ2 dependence. To achieve this bound, we note
that because calibration requires relative error, we can be more judicious with our use of samples.
We will exploit this observation subsequently to obtain improvements to the sample complexity for
learning α-multicalibrated predictors.

Proof. To obtain the claimed sample complexity bound, we observe that in Algorithm 3.1, we
only use the statistical query oracle to guarantee bounds on the relative error of each query – not
absolute error. In particular, for S ⊆ X with |S| ≥ γN , let p̄S = 1

|S|

∑

i∈S p∗i . To run Algorithm 3.1,

we need only implement an oracle p̂(S) satisfying

p̄S − τ ≤ p̂(S) ≤ p̄S + τ.

By Chernoff bounds, for a fixed set S of cardinality at least γN , if we take O(t/γα2) independent
samples, the probability that the estimate of p̄S differs by more than α |S| is at most e−Ω(t). Taking
t = c(log |C|+ log(1/ξ)) for an appropriate constant c, a union bound implies the probability that
the estimate of every set S ∈ C is α-accurate is at least 1− ξ.

3.2 α-Multicalibrated predictors

Next, we present the full algorithm for learning α-multicalibrated predictors on C. The algorithm
is based on Algorithm 3.1 but differs in a few key ways. First, instead of updating the predictions
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on entire sets S ∈ C whose overall expectation is wrong, we update the predictions on uncalibrated
categories Sv = S ∩ {i : xi = v}. This is a simple change to the algorithm in the statistical query
model; however, when we wish to implement this statistical query oracle from a finite sample, we
need to be more careful.

In particular, the categories of the predictor we learn are not fixed a priori, so our queries will be
selected adaptively based on the results of earlier statistical queries. Stated another way, we cannot
simply union bound against the collection of sets on which we wish to be calibrated. The most
naive approach to bounding the sampling complexity would be as follows: at each iteration take
a fresh sample large enough to guarantee ωN absolute error, for ω = αγ. Following our analysis
below for this naive strategy, it’s easy to see that this approach would result in Ω(1/α4γ4) iterations
and sample complexity n ≥ Ω(1/α6γ6). We will improve on this approach by polynomial factors
achieving a bound of at most O(1/α4γ) iterations with O(1/α5/2γ3/2) samples.

To achieve these improvements, we combine two ideas. As before, we will leverage the observa-
tion that calibration only requires relative error (as in Corollary 3.4), and thus, in principle should
require fewer samples. Additionally, to avoid naively resampling but still guarantee good generaliza-
tion from a small sample, we interact with the sample through a mechanism which we call a guess-
and-check statistical query (similar in spirit to mechanisms proposed in [HR10, BH15, GRU12]).
We show how to implement this mechanism in a manner that guarantees generalization on the
unseen data even after asking many adaptively chosen statistical queries. We defer our discussion
of privacy to Section 3.3.

Details of the algorithm Next, we give an iterative procedure to learn a (α, λ)-multicalibrated
predictor on C as described in Algorithm 3.2. The procedure is similar to Algorithm 3.1, but
deliberately interacts with its statistical queries through a so-called guess-and-check oracle. In
particular, each time the algorithm needs to know the value of a statistical query on a set S,
rather than asking the query directly, we require that the algorithm submit its current guess
xS = 1

|S|

∑

i∈S xi to the oracle, as well as an acceptable “window” ω ∈ [0, 1]. Intuitively, if the
algorithm’s guess is far from the window centered around the true expectation, then the oracle will
respond with the answer to a statistical query with tolerance ω. If, however, the guess is sufficiently
close to the true value, then the oracle responds with X to indicate that the current guess is close
to the expectation, without revealing another answer.

Definition 3.5 (Guess-and-check oracle). Let q̃ : 2X × [0, 1] × [0, 1] → [0, 1] ∪ {X}. q̃ is a guess-
and-check oracle with window ω0 if for S ⊆ X with pS =

∑

i∈S p∗i , v ∈ [0, 1], and any ω ≥ ω0, the
response to q̃(S, v, ω) satisfies the following conditions:

• if
∣

∣pS − |S| v
∣

∣ < 2ωN , then q̃(S, v, ω) = X

• if
∣

∣pS − |S| v
∣

∣ > 4ωN , then q̃(S, v, ω) ∈ [0, 1]

• if q̃(S, v) 6= X, then
pS − ωN ≤ q̃(S, v, ω) |S| ≤ pS + ωN.

Note that if the guess is such that
∣

∣pS − |S| v
∣

∣ ∈ [2ωN, 4ωN ], the the oracle may respond with
some ω-accurate r ∈ [0, 1] or with X. Of course, if we have a lower bound ω0 on the window over
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a sequence of guess-and-check queries, we can implement the queries given access to a statistical
query oracle with tolerance τ ≤ ω0; it is also clear that a statistical oracle with tolerance τ can be
implemented with access to a guess-and-check oracle with window τ/4. The advantage of using this
guess-and-check framework is that it can be implemented in a differentially private manner. This
will in turn allow us to give an algorithm for learning α-multicalibrated predictors from a small
number of samples that generalizes well.

Algorithm 3.2 – Learning a (α, λ)-calibrated predictor on C

Let α, λ > 0 and let C ⊆ 2X be such that for all S ∈ C, |S| ≥ γN .
For S ⊆ X and v ∈ [0, 1], let q̃(·, ·, ·) be a guess-and-check oracle.

• Initialize:
◦ Let x = (1/2, . . . , 1/2) ∈ [0, 1]N

• Repeat:
◦ For each S ∈ C, v ∈ Λ[0, 1], for each Sv = S ∩ {i : xi = λ(v)} such that |Sv| = βN ≥ αλ |S|

– Let v̄ = 1
|Sv|

∑

i∈Sv
xi

– Let r = q̃(Sv, v̄, αβ/4)

– If r 6= X:
update xi ← xi + (r − v̄) for all i ∈ Sv (projecting xi onto [0, 1] if necessary)

◦ If no Sv updated, exit

• For v ∈ Λ[0, 1]:
◦ Let v̄ =

∑

i∈λ(v) xi
◦ For i ∈ λ(v): xi ← v̄

• Output x

Algorithm 3.2 runs through each possible category Sv and if Sv is large enough, queries the oracle.
The algorithm continues searching for uncalibrated categoires until x’s guesses on all sufficiently
large categories receive X. By the definition of the guess-and-check oracle, if for some category Sv

where |Sv| = βN the query returns X, then v̄ is at most 4 · (αβN/4) = α |Sv| far from the true
value 1

Sv

∑

i∈Sv
p∗i . Thus, by the stopping condition of the loop, the predictor where all i ∈ λ(v)

receive xi = v̄ will be α-calibrated on every large category. Finally, the algorithm updates x to
be λ-discretized, so by Claim 2.10, x will be (α + λ)-calibrated. Further, the number of updates
necessary to terminate is bounded.

Lemma 3.6. Suppose α, λ > 0 and C ⊆ 2X where for all S ∈ C, |S| ≥ γN . Algorithm 3.2
returns x after receiving at most O(1/α3λγ) guess-and-check responses where r ∈ [0, 1] and at most
O(|C| /α4λγ) responses r = X.

Proof. For some non-X response on Sv = {i : xi ∈ λ(v)} ∩ S, by the properties of the guess-and-
check oracle, we can lower bound the update step size. Recall, we only query on sets wherer
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|Sv| = βN ≥ α |S| with a window of ω = αβ/4.

∣

∣

∣

∣

∣

∑

i∈Sv

p∗i − xi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

i∈Sv

p∗i − v̄

∣

∣

∣

∣

∣

≥ 2 (αβ/4)N

= α |Sv| /2.

Letting δv = r − v̄. We can measure progress in the same way as in Lemma 3.2.

‖p∗ − x‖2 −
∥

∥p∗ − x′
∥

∥

2
=
∑

i∈Sv

(p∗i − xi)
2 −

∑

i∈Sv

(p∗i − π(xi + δv))
2

≥
∑

i∈Sv

((p∗i − xi)
2 − (p∗i − (xi + δv))

2)

=
∑

i∈Sv

(2(p∗i − xi)δv − δ2v)

=

(

2δv
∑

i∈Sv

(p∗i − xi)

)

− δ2v |Sv|

Let ν = 1
|Sv|

∑

i∈Sv
(p∗i − xi). By the properties of the guess-and-check oracle, we can rewrite δv as

ν − η for some η ∈ [−ω/β, ω/β]. This gives us a lower bound on the progress as follows.

(

2(ν − η)ν − (ν − η)2
)

|Sv| =
(

ν2 + νη − (η)2
)

|Sv|

This concave function in η is minimized at an extreme value for η (depending on the sign of ν).
Noting that |ν| ≥ α/2 and |η| ≤ ω/β = α/4, we can lower bound our progress by (α/4)2 |Sv| =
α2βN/16 = α3λγN/16. As ‖p∗‖2 ≤ N , we make at most O(1/α3λγ) updates upper bounding the
number of non-X responses. By working with a λ-discretization, there are at most |C| /λ categories
to consider in every phase, so we receive at most O(|C| /α3λ2γ) X responses.

Thus, we conclude the following theorem.

Theorem 3.7. For α, λ > 0 and C ⊆ 2X where for all S ∈ C, |S| ≥ γN , there is a statistical query
algorithm that learns a (α, λ)-multicalibrated predictor with respect to C in O(|C| /α3λ2γ) queries.

Again, note that our output is, in fact, (α + λ)-multicalibrated, so taking λ = α, we obtain a
(2α)-multicalibrated predictor in O(|C| /α5γ) queries.

3.3 Answering guess-and-check queries from a random sample

Next, we argue that we can implement a guess-and-check oracle from a set of random samples in
a manner that guarantees good generalization. This, in turn, allows us to translate our statistical
query algorithm for learning an (α, λ)-multicalibrated predictor with respect to C into an algorithm
that learns from samples. As mentioned in the beginning of Section 3, naively, we could resample
for every update the algorithm makes to the predictor. Suppose that C is such that for all S ∈
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C, |S| ≥ γN ; let β = αλγ. Using our tighter analysis of Algorithm 3.2, we could take n =
Õ(log(|C|)/α2β) samples per update to guarantee generalization, resulting in an overall sample
complexity of Õ(log(|C|)/α4β2). We show how to improve upon this approach further. In particular,
we argue that there is a differentially private algorithm that can answer the entire sequence of
guess-and-check queries accurately. Appealing to known connections between differential privacy
and adaptive data analysis [DFH+15c,DFH+15a,BNS+16,DFH+15b], this will guarantee that our
calibration algorithm generalizes given a set of Õ(log(|C|)/α5/2β3/2) random samples.

Algorithm 3.2 only interacts with the sample through the guess-and-check oracle. Thus, to give
a differentially private implementation of the algorithm, it suffices to give a differentially private
implementation of the guess-and-check oracle [DR14].

Consider the sequence of queries that Algorithm 3.2 makes to the guess-and-check oracle. We say
the sequence 〈(S1, v1, ω1), . . . , (Sk, vk, ωk)〉 is a (k,m)-sequence of guess-and-check queries if, over
the course of the k queries, the response to at most m of the queries is some r ∈ [0, 1], and the
responses to the remaining queries are all X. We will assume that we know a lower bound on the
minimum window ω = minj∈[k] ωj over all of the queries. We say that some algorithm A responds
to a guess-and-check query (S, v, ω) according to a random sample X if its response satisfies the
guess-and-check properties with

∑

i∈S p∗i replaced by its empirical estimate on X,

p̂S(X) =
|S|

|S ∩X|

∑

i∈S∩X

oi.

Responding to such a sequence in a differentially private manner can be achieved using techniques
from the private multiplicative weights mechanism.

Theorem 3.8 ( [HR10] ). Suppose ε, δ, ω, ξ > 0 and suppose X ∼ (X × {0, 1})n is a set of n
random samples. Then there exists an (ε, δ)-differentially private algorithm A that responds to any
(k,m)-sequence of guess-and-check queries with minimum window ω according to X provided

n = Ω

(
√

log(k/ξ) ·m · log(1/δ)

ε · ω2

)

with probability at least 1− ξ over the randomness of A.

Using this differentially private algorithm, we can apply generalization bounds based on privacy
developed in [DFH+15c, BNS+16, DFH+15a, DFH+15b] to show that, with a modest increase in
sample complexity, we can respond to all k guess-and-check queries.

Theorem 3.9. Let sk = 〈(S1, v1, ω̂1), . . . , (Sk, vk, ω̂k)〉 be a (k,m)-sequence of guess-and-check
queries such that for all j ∈ [k], |Sj | = βjN ≥ βN and ω̂j = Ω(αβj). Then there is an algorithm
A that, given n random samples X ∼ (X × {0, 1})n, responds to sk such that for all j ∈ [k], the
response A(Sj, vj , ω̂j;X) satisfies the guess-and-check properties with window ωj = αβj provided

n = Ω

(

log(|C| /αβξ)

α5/2 · β3/2

)

with probability at least 1− ξ over the randomness of A and the draw of X.
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This theorem implies that, asymptotically, we can answer the k adaptively chosen guess-and-check
queries with only a

√

1/αβ factor increase in the sample complexity compared to if we knew the
queries in advance. Theorem 3.9 follows from tailoring the proof of the main “transfer” theorem
of [BNS+16] (Theorem 3.4) specifically to the requirements of our guess-and-check oracle and
applying the differentially private mechanism described in Theorem 3.8. Combining these theorems
and Algorithm 3.2 and the fact that β = αλγ, we obtain an algorithm for learning α-multicalibrated
predictors from random samples.

Theorem 3.10. Suppose α, λ, γ, ξ > 0, and C ⊆ 2X where for all S ∈ C, |S| ≥ γN . Then there
is an algorithm that learns an (α, λ)-multicalibrated predictor with respect to C with probability at

least 1− ξ from n = O

(

log(|C| /αλγξ)

α4 · λ3/2 · γ3/2

)

samples.

3.4 Runtime analysis of Algorithm 3.2

Here, we present a high-level runtime analysis of Algorithm 3.2 for learning an (α, λ)-calibrated
predictor on C. In Lemma 3.6, we claim an upper bound of O(|C| /α3λ2γ) on the number of guess-
and-check queries needed before Algorithm 3.2 converges. Here, we formally argue that each of
these queries can be implemented in the random sample model without much overhead, which
upper-bounds the running time of the algorithm overall. This upper bound is not immediate from
our earlier analysis, as the sets and our predictor are represented implicitly as circuits.

Claim 3.11. Algorithm 3.2 runs in time O(|C| · t · poly(1/α, 1/λ, 1/γ)), where t is an upper bound
on the time it takes to evaluate set membership for S ∈ C.

Proof. As before, let β = αλγ. First, for each S ∈ C, we need to evaluate |Sv| for Sv =
{i : xi ∈ λ(v)} ∩ S for each of the O(1/λ) values v ∈ Λ[0, 1]. We do this by sampling i ∼ X
and evaluating whether i ∈ S, and if so, checking the current value of xi. Each of the membership
queries takes at most t time and each evaluation of xi takes at most O(t/α2β) time by the same
argument as our upper bound on the circuit size from Theorem 3.12. After Õ(1/λβ2) samples,
we will be able to detect with constant probability which of the Sv have cardinality |Sv| ≥ βN .
Further, if |Sv| is large, we can estimate v̄ by evaluating the current predictor on samples from Sv,
by rejection sampling. Similarly, to answer the guess-and-check queries, we will estimate the true
empirical estimate of the query based on samples from Sv and respond based on a noisy comparison
between the v̄ and the estimate of

∑

i∈Sv
oi. These estimates can all be computed in poly(1/α, 1/β).

Then, as discussed in the proof of Theorem 3.12, each update to the predictor can be implemented
in time proportional to the bit complexity of the arithmetic computations, which is upper bounded
by t. Repeating this process for each S ∈ C gives the upper bound of O(|C| · t ·poly(1/α, 1/λ, 1/γ)).
Finally, applying the upper bound on the number of guess-and-check queries from Lemma 3.6, the
claim follows.

3.5 The circuit complexity of multicalibrated predictors

As discussed in Section 1.2, an interesting corollary of our algorithm is a theorem about the com-
plexity of representing a multicalibrated predictor. Indeed, from the definition of multicalibration
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alone, it is not immediately clear that there should be succinct descriptions of multicalibrated
predictors; after all, C could contain many sets. We argue that the cardinality of C is not the
operative parameter in determining the circuit complexity of a predictor x that is multicalibrated
on C; instead it is the circuit complexity necessary to describe sets S ∈ C, as well as the cardinality
of the subsets in C, and the degree of approximation.

Leveraging Lemma 3.6, we can see that Algorithm 3.2 actually gives us a way to build up a circuit
that computes the mapping from individuals to the probabilities of our learned multicalibrated
predictor x. Suppose that for all sets S ∈ C, set membership can be determined by a circuit
family of bounded complexity; that is, for all S ∈ C, there is some cS with size at most s, such
that cS(i) = 1 if and only if i ∈ S. Then we can use this family of circuits to build a circuit
that implements x. We assume that we maintain real-valued numbers up to b ≥ log(1/α) bits of
precision.

Theorem 3.12. Suppose C ⊆ 2X is a collection of sets where each S ∈ C can be implemented by
a boolean circuit cS and for all S ∈ C, the size of cS is O(s). Then there is a predictor that is
α-multicalibrated on C implemented by a circuit of size O((s+ b)/α4γ). Further, Algorithm 3.2 can
be used to learn such a circuit.

Proof. We describe how to construct a circuit fx that, on input i, will output the prediction xi
according to the predictor learned by our algorithm. We initialize fx to be the constant function
fx(i) = 1/2 for all i ∈ X . Throughout, we will update fx based on the current outputs of fx.

Consider an iteration of Algorithm 3.2 where for some S described by cS ∈ C, we update x based
on a category Sv = S ∩ {i : xi ∈ λ(v)}. This occurs when the guess-and-check query returns some
r = q̃(Sv, v̄, ω) ∈ [0, 1]. Our goal is to implement the update to x (i.e. update fx), such that for all
i ∈ Sv, the new value xi = r and all other values are unchanged.

We achieve this update by testing membership i ∈ S and separately testing if the current value
fx(i) = v; if both tests pass, then we update the value output by fx(i) to be r. Specifically, we
include a copy of cS and hard-code v and δv = r − v̄ into the circuit; if cS(i) = 1 and the current
value of fx(i) is in λ(v), then we update fx(i) to add the hardcoded δv to its current estimate of
xi; if either test fails, then fx(i) remains unchanged. This logic can be implemented with addition
and subtraction circuits to a precision of λ with boolean circuits of size O(b). We string these
update circuits together, one for each iteration. Learning an (α/2, α/2)-multicalibrated predictor
with Algoirthm 3.2 only requires O(α4γ) updates. By this upper bound, we obtain an O(α4γ)
upper bound on the resulting circuit size.

4 Multicalibration and weak agnostic learning

Note that in the algorithm and analysis in Section 3, we’ve assumed nothing about the structure of
the underlying p∗ or C; the true probabilities could be adversarially chosen and yet, our algorithm
guarantees α-multicalibration on C. That said, the running time of the algorithm depends linearly
on |C|. As we imagine C to be a large, rich class of subsets of X , in many cases linear depedence
on |C| will be expensive. Thus, we turn our attention to when we can exploit structure within the
collection of subsets C to speed up the learning process.
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The main running time bottleneck in the algorithms arises from searching for some S ∈ C where
calibration is violated. Without any assumptions about C, we need to loop over the collection;
however, if we can find such a set without looping over the entire collection of sets, then we would
improve the running time of the algorithm. At a high level, we will show a connection between
the agnostic learnability of C and the ability to speed up learning a multicalibrated predictor
on C. Imagining the sets S ∈ C as boolean concepts, we show that if it is possible to perform
weak agnostic learning over a class C efficiently (in the sense of [KMV08,Fel10]), then there is an
efficient search algorithm to find an update to the current predictor that will make progress towards
multicalibration.

While there are some classes for which we have weak agnostic learners, in general, agnostic learning
is considered a notoriously challenging problem. A natural question to ask is whether there is a way
to speed up learning a multicalibrated predictor that does not involve agnostic learning. We answer
this question in the negative. Roughly, we show that for a concept class C, any predictor that is α-
multicalibrated on the large sets of C can be used as the response to a query for distribution-specific
weak agnostic learning on C. In this sense, the reduction to weak agnostic learning is inherent; any
efficient algorithm for multicalibration gives rise to an algorithm for weak agnostic learning.

In all, these results show that weak agnostic learning on a class C is equivalent to learning an
α-multicalibrated predictor with respect to C = {S ∈ C : |S| ≥ γN}, the large sets defined by C, up
to polynomial factors in 1/α, 1/γ where ρ and τ will be a function of α and γ.

4.1 Weak agnostic learning

For this discussion, we think of boolean concepts c ∈ C as c : X → {−1, 1}. We will overload
the notions of a concept class C of boolean functions c : X → {−1, 1} and our collection of
subsets C ⊆ 2X ; in particular, there is a natural bijection between concepts and sets: a concept
c : X → {−1, 1} defines a set S ⊆ 2X where i ∈ S if c(i) = 1 and i 6∈ S if c(i) = −1. We will connect
the problem of finding a set S ∈ C on which a predictor x violates calibration to the problem of
learning over the concept class C on a distribution D.

For some distribution D supported on X and x, y ∈ [−1, 1]N , let 〈x, y〉D =
∑

i∈X Dixiyi. This
inner product measures the correlation between x and y in [−1, 1]N over the discrete distribution
D. Throughout our discussion, we will focus on learning over the uniform distribution on X and
drop explicit reference to D. As per Remark 2, this may be a rich distribution over the features of
individuals.

In our results, we will work with the distribution-specific weak agnostic learners of [Fel10]4.

Definition 4.1 (Weak agnostic learner). Let ρ ≥ τ > 0. Let D be a distribution supported on X .
A (ρ, τ)-weak agnostic learner L for D solves the following promise problem: given a collection of
labeled samples {(i, yi)} where i ∼ D and yi ∈ [−1, 1], if there is some c ∈ C such that 〈c, y〉D > ρ,
then L returns some h : X → [−1, 1] such that 〈h, y〉D > τ .

Intuitively, if there is a concept c ∈ C that correlates nontrivially with the observed labels, then

4Often, such learners are defined in terms of their error rates rather than correlations; the definitions are equivalent
up to factors of 2 in ρ and τ . Also, we will always work with a hypothesis class H = [−1, 1]X the set of functions
from X to [−1, 1], so we fix this class in the definition.
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the weak agnostic learner returns a hypothesis h (not necessarily from C), that is also nontrivially
correlated with the observed labels. In particular, ρ and τ are typically taken to be ρ = 1/p(d) and
τ = 1/q(d) for polynomials p(d) ≤ q(d), where d = log(|X |).

4.2 Multicalibration from weak agnostic learning

In this section, we show how we can use a weak agnostic learner to solve the search problem that
arises at each iteration of Algorithm 3.2: namely, to find an update that will make progress towards
mulitcalibration. Formally, we show the following theorem.

Theorem 4.2 (Formal statement of Theorem 3). Let ρ, τ > 0 and C ⊆ 2X be some concept
class. If C admits a (ρ, τ)-weak agnostic learner that runs in time T (|C| , ρ, τ), then there is an
algorithm that learns a predictor that is (α, λ)-multicalibrated on C′ = {S ∈ C : |S| ≥ γN} in time
O(T (|C| , ρ, τ) · poly(1/α, 1/λ, 1/γ)) as long as ρ ≤ α2λγ/2 and τ ≥ poly(1/α, 1/λ, 1/γ).

That is, if there is an algorithm for learning the concept class C over the hypothesis class of real-
valued functions H = {h : X → [−1, 1]} on the distribution of individuals in polynomial time in
log(|C|), 1/ρ, and 1/τ , then there is an algorithm for learning an α-multicalibrated predictor on the
large sets in C that runs in time polynomial in log(|C|), 1/α, 1/λ, 1/γ. For clarity of presentation in
the reduction, we make no attempts to optimize the sample complexity or running time. Indeed,
the exact sample complexity and running time will largely depend on how strong the weak learning
guarantee is for the specific class C.

We prove Theorem 4.2 by using the weak learner for C to learn a (α, λ)-calibrated predictor. Recall
Algorithm 3.2: we maintain a predictor x and iteratively look for a set S ∈ C where x violates the
calibration constraint on Sv = {i : xi ∈ λ(v)}∩S for some value v. In fact, the proof of Lemma 3.6
reveals that we are not restricted to updates on Sv for S ∈ C. As long as there is some uncalibrated
category Sv, we can find an update that makes nontrivial progress in ℓ22 distance from p∗ – even if
this update is not on any S ∈ C – then we can bound the number of iterations it will take before
there are no more uncalibrated categories. We show that a weak agnostic learner allows us to find
such an update.

Proof. Throughout the proof, let β = αλγ, ρ = αβ/2, and τ = ρd for some constant d ≥ 1. Let x
be a predictor initialized to be the constant function xi = 1/2 for all i ∈ X .

Consider the search problem that arises during Algorithm 3.2 immediately after updating the
predictor x. Let Xv = {i : xi ∈ λ(v)} be the set of individuals in the λ-interval surrounding v. Our
goal is to determine if there is some v ∈ Λ[0, 1] and S ∈ C such that |Sv| ≥ βN , where

∣

∣

∣

∣

∣

∑

i∈Sv

xi − p∗i

∣

∣

∣

∣

∣

≥ α |Sv| . (1)

We reduce this search problem to the problem of weak agnostic learning over C on the distribution
DX . For any v ∈ Λ[0, 1], if |Xv| < βN , then clearly there is no uncalibrated category Sv with
|Sv| ≥ βN ; for each v ∈ Λ[0, 1], we will test if Xv is large enough by taking O(log(1/βξ)/β) random
draws from X .
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Supposing Xv is large enough, we take a fresh sample of size n ≥ Õ(log(|C/ξ|)/β2τ2). We take n
large enough that over all categories Sv of |Sv| ≥ βN , the observable statistics deviate from their
expectation by at most τ/4:

∣

∣

∣

∣

∣

∣

1

n

∑

j∈[n]

oj −
1

|Sv|

∑

i∈Sv

p∗i

∣

∣

∣

∣

∣

∣

≤ τ/4 (2)

Additionally, assume that x is overall observably τ/4-calibrated with respect to X (recall, this
means calibrated on the set of observations). Note that observable calibration on X implies that
for each v ∈ Λ[0, 1],

∣

∣

∣

∣

∣

∣

1

n

∑

j∈[n]

(oj − xj)

∣

∣

∣

∣

∣

∣

≤ τ/4. (3)

(If x is not τ/4-calibrated then for the Xv that violates calibration, offset all the values of xi from
their current values such that

∣

∣

∑

i∈X xi − oi
∣

∣ ≤ τN/4 and resample; as in Algorithm 3.1, this will
make at least Ω(τ2) progress towards p∗).

For each v ∈ Λ[0, 1], we consider the following learning problem. For i ∈ Xv, let ∆i =
xi−oi

2 . For
i ∈ X \ Xv, let ∆i = 0. We claim that if there is some Sv satisfying (1), then for i ∼ DX , the
labeled samples of either (i,∆i) or (i,−∆i) satisfy the weak learning promise for ρ = αβ/2.

Claim 4.3. Let cS : X → {−1, 1} be the boolean function associated with some S ∈ C. For
v ∈ Λ[0, 1], if Sv = {i : xi ∈ λ(v)} ∩ S satisfies

∑

i∈Sv
(xi − p∗i ) ≥ α |Sv|, then

〈cS ,∆〉DX
≥ ρ.

Note that the supposition of the claim is satisfied when (1) holds without the absolute value. In
the case where (1) holds in the other direction, the claim will hold for −∆. The argument will be
identical.

〈cS ,∆〉DX
=

1

N

∑

i∈X

(

xi − oi
2

)

· cS(i)

=
1

N

∑

i∈Xv

(

xi − oi
2

)

· cS(i) +
∑

i∈X\Xv

0 · cS(i)

=
1

N





∑

i∈Sv

(

xi − oi
2

)

−
∑

i∈Xv\Sv

(

xi − oi
2

)





=
1

N

(

∑

i∈Sv

(

xi − oi
2

)

−

(

∑

i∈Xv

(

xi − oi
2

)

−
∑

i∈Sv

(

xi − oi
2

)

))

≥
2

N

∑

i∈Sv

(

xi − oi
2

− τ |Xv| /4

)

(4)

≥
2

N
(αβN − τN/4) (5)

≥ 2ρ− τ/2 (6)
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where the inequality (4) follows from (3), (5) follows from the assumption that |Sv| ≥ βN and our
assumption on

∑

i∈Sv
(xi − p∗i ), and (6) follows from our assumption that the sample size is large

enough to guarantee at most τ/8 error. Noting that τ/2 ≤ ρ gives the claim.

Thus, because the (ρ, τ)-weak agnostic learning promise is satisfied, the learner will return to us
some h : X → [−1, 1] satisfying the following inequality.

τ ≤ 〈∆i, hi〉Dv

=
1

2 |X |

∑

i∈Xv

(xi − oi) · hi

≤
1

2 |X |

∑

i∈Xv

(v − p∗i ) · hi + τ/8.

where the final inequality follows by the assumed statistical accuracy. This shows that the h
returned to us by the weak agnostic learner is nontrivally correlated with x−p∗ on Xv. In particular,
if we use this h as a gradient step, updating xi → v − ηhi (projecting onto [0, 1] if necessary) for
η = Ω(τ/β), then we can guarantee that each such update will achieve τ2N progress in ‖x− p∗‖2.
The analysis follows in the same way as the analysis of Algorithm 3.2.

4.3 Weak agnostic learning from multicalibration

In this section, we show the converse reduction. In particular, we will show that for a concept
class C, an efficient algorithm for obtaining an α-multicalibrated predictor with respect to C′ =
{S ∈ C : |S| ≥ γN}, gives an efficient algorithm for responding to weak agnostic learning queries
on C. In fact, we will show that we can obtain a weak agnostic learner even by learning a multi-AE
predictor.

Theorem 4.4. Let α, γ > 0 and suppose C ⊆ 2X is a concept class. If there is an algorithm for
learning an α-multicalibrated predictor on C′ = {S ∈ C : |S| ≥ γN} in time T (|C| , α, γ) then we can
implement a (ρ, τ)-weak agnostic learner for C in time O(T (|C| , α, γ) · poly(1/τ)) for any ρ, τ > 0
such that τ ≤ min {ρ− 2γ, ρ− 6α}.

Proof. Suppose we want to weak agnostically learn over C on sampled observations from y ∈
[−1, 1]N . We assume there is some cS ∈ C such that 〈cS , y〉 > 1/2 + ρ. There are two cases to
handle. First, suppose the support of cS is small; that is, for the corresponding S ∈ C, |S| < γ.
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Then, consider the correlation between y and the the constant hypothesis h(i) = −1 for all i ∈ X .

〈y,−1〉 = −
∑

i∈X

yi

= −
∑

i∈S

yi −
∑

i∈X\S

yi

≥ −γ −
∑

i∈X\S

yi

= −γ + (〈cS , y〉 −
∑

i∈S

yi)

≥ −2γ + 〈cS , y〉

≥ ρ− 2γ

Thus, for τ < ρ−2γ, in the case when the support of cS is small, then we can return the hypothesis
−1. We can test if the constant hypothesis is sufficiently correlated with y in poly(1/τ) time by
random sampling.

Turning to the case when cS defines a set where |S| ≥ γN , we show that responding with a
multicalibrated predictor will satisfy the weak agnostic learning guarantee. To do this, we prove
the following lemma.

Lemma 4.5. Let α, ρ > 0 and suppose C′ ⊆ 2X . Suppose x is an α-multi-AE predictor with
respect to C′ ∪ {X}. Then, if there is some S ∈ C such that the associated circuit cS satisfies
〈cS , 2p

∗ − 1〉 ≥ ρ, then 〈cS , 2x− 1〉 ≥ τ for τ ≤ ρ− 6α.

This lemma implies that for sufficiently large ρ, the ability to learn an α-multi-AE predictor with
respect to C′ = {S ∈ C : |S| ≥ γN} gives a way to answer weak agnostic learning queries. In
particular, given labeled samples for agnostic learning, we can let the labels define p∗, learn a
multicalibrated predictor, and use these predictions as the weak agnostic learning hypothesis.

Proof. Consider N · 〈cS , p
∗ − x〉.

∑

i∈X

cS(i) · (p
∗
i − xi) =

∑

i∈S

(p∗i − xi)−
∑

i∈X\S

(p∗i − xi)

= 2
∑

i∈S

(p∗i − xi)−
∑

i∈X

(p∗i − xi)

≤ 3αN

where the final inequality follows by the assumption that S ∈ C and x is α-multi-AE on C ∪ {X}.
The lemma follows by linearity and rearranging.

Thus, for τ ≤ min {ρ− 2γ, ρ− 6α}, if we can learn an α-multicalibrated predictor on sets C′ =
{S ∈ C : |S| ≥ γN}, then we can implement a (ρ, τ)-weak agnostic learner on C.
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5 Multicalibration achieves “best-in-class” prediction

While our notion of multicalibration provides a protection against discrimination for groups, we
argue that this protection comes at virtually no cost in the utility of the predictor. In fact, we
argue that Algorithm 3.2 can be used as an effective post-processing step to turn any predictor,
or family of predictors, into a multicalibrated predictor that achieves comparable (or improved)
prediction error.

Suppose we are given a collection C of sets of individuals on which we wish to be multicalibrated.
Additionally, suppose we have a collection of candidate predictors H, which achieves low prediction
error but might violate calibration arbitrarily. From these collections, we would like to produce
a predictor x that is α-multicalibrated on C but achieves prediction error commensurate with the
best predictor in H; in particular, ‖x− p∗‖2 should be not much larger than ‖h∗ − p∗‖2 (and ideally
would be smaller). In this sense, the calibrated x would not only be fair, but would also achieve
(approximately) best-in-class prediction error over H.

Consider some h ∈ H and consider the partition of X into sets according to the predictions of h
– in particular, we will first apply a λ-discretization to the range of each h to partition X into
categories. That is, let Sv(h) = {i : hi ∈ λ(v)}, and note that Sv(h) is disjoint from Sv′(h) for
v 6= v′, and

⋃

v∈Λ[0,1] Sv(h) = X . In addition to calibrating with respect to S ∈ C, we can also ask
for calibration on Sv(h) for all h ∈ H and v ∈ Λ[0, 1]. Specifically, let S(H) = {Sv(h)}h∈H,v∈Λ[0,1];
we consider imposing calibration on C ∪ S(H). Calibrating in this manner protects the groups
defined by C but additionally gives a strong utility guarantee.

Theorem 5.1 (Best-in-class prediction). Suppose C ⊆ 2X is a collection of subsets of X and H is
a set of predictors. Then there is a predictor x that is α-multicalibrated on C such that

‖x− p∗‖2 − ‖h∗ − p∗‖2 < 6αN,

where h∗ = argminh∈H ‖h− p∗‖2. Further, suppose that for all S ∈ C, |S| ≥ γN , and suppose
that set membership for S ∈ C and h ∈ H are computable by circuits of size at most s; then x is
computable by a circuit of size at most O(s/α4γ).

The proof of Theorem 5.1 actually reveals something stronger: if x is calibrated on the set S(H),
then for every category Sv(h) ∈ S(H), if x is significantly different from h on this category – that
is, if

∑

i∈Sv(h)
(hi − xi)

2 is large – then x actually achieves significantly improved prediction error
on this category compared to h. This is stated formally in Lemma 5.2.

Lemma 5.2. Suppose y is an arbitrary predictor and let S(y) = {Sv(y)}v∈Λ[0,1]. Suppose x is an
arbitrary α-multicalibrated predictor on S(y). Then for all v ∈ Λ[0, 1],

∑

i∈Sv(y)

(

(yi − p∗i )
2 − (xi − p∗i )

2
)

≥
∑

i∈Sv(y)

(v − xi)
2 − (4α + λ) |Sv(y)| .

Consequently,
‖y − p∗‖2 − ‖x− p∗‖2 ≥ ‖x− y‖2 − (4α+ λ)N.

This lemma shows that calibrating on the categories of a predictor not only prevents the squared
prediction error from degrading beyond a small additive approximation, but it also guarantees that
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if calibrating changes the predictor significantly on any category, this change represents signifi-
cant progress towards the true underlying probabilities on this category. Assuming Lemma 5.2,
Theorem 5.1 follows.

Proof of Theorem 5.1. Note that if x is α-multicalibrated on C, then x is α-multicalibrated on
any C′ ⊆ C. Consider enforcing calibration on the collection C ∪ S(H) as defined above. If x is α-
calibrated on C ∪ S(H) then it is α-multicalibrated on {Sv(h)}v∈Λ[0,1] for all h ∈ H and specifically
for h∗. By Lemma 5.2, and the fact that the squared difference is nonnegative, we obtain the
following inequality:

‖h∗ − p∗‖2 − ‖x− p∗‖2 ≥ ‖x− h∗‖2 − (4α + λ)N ≥ −(4α+ λ)N.

This inequality suffices to prove the accuracy guarantee; however, to also guarantee the predictor
x can be implemented by a small circuit, we have to be a bit more careful. In particular, when
calibrating, we will ignore any Sv(h) such that |Sv(h)| < λαN . Note that because we have λ-
discretized, there are at most 1/λ categories; thus, excluding the sets Sv(h) where |Sv(h)| < αλN
introduces at most an additional αN error. Taking λ = α, in turn, this implies that the difference
in squared prediction error can be bounded as ‖x− p∗‖2−‖h∗ − p∗‖2 ≤ 6αN . Finally, because the
sets we want to calibrate on are at least α2γN in cardinality, the circuit complexity bound follows
by applying Algorithm 3.2 and Theorem 3.12. �

Thus, given any method for learning an accurate predictor h, we can turn it into a method for
learning a fair and accurate predictor h′ by running Algorithm 3.2 on the set of categories of h.
Combined with Theorem 3.12, this theorem shows that for any such class of predictorsH of bounded
complexity, there exists a calibrated predictor with similar circuit complexity that performs nearly
as well as the best h ∈ H in terms of accuracy. Further, by Lemma 5.2, this (nearly) best-in-class
property will hold not just over the entire domain X , but on every sufficiently large category Sv(h)
identified by some h ∈ H. That is, if x is calibrated on S(H), then for every category Sv(h), the
average squared prediction error Ei∈Sv(h)

[

(xi − p∗i )
2
]

will be at most 6α worse than prediction given
by h on this set. If we view H as defining a set S(H) of “computationally-identifiable” categories,
then we can view any predictor that is calibrated on S(H) as at least as fair and at least as accurate
on this set of computationally-identifiable categories as the predictor that identified the group (up
to some small additive approximation).

We turn to proving Lemma 5.2. The lemma follows by expanding the difference in squared predic-
tion errors and invoking the definition of α-calibration.

Proof of Lemma 5.2. Let Svu represent the set of individuals i where y ∈ λ(v) and x assigns
value u. By the assumption that x is α-calibrated on S(y), we know for every Sv(y) ∈ S(y), there
is some subset S′

v(y) ⊆ Sv(y) such that |S′
v(y)| ≥ (1 − α) |Sv(y)| for which x’s predictions are

approximately correct. In particular, let S′
vu = S′

v(y) ∩ Su(x); if x is α-calibrated with respect to
Sv(y), this guarantees that for all values u ∈ [0, 1], we have

∣

∣

∣

∣

∣

∣

∑

i∈S′
vu

p∗i − u

∣

∣

∣

∣

∣

∣

≤ α
∣

∣S′
vu

∣

∣ . (7)

Using this fact, and the fact that the remaining α-fraction of Sv(y) can contribute at most α |Sv(y)|
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to the squared error, we can express the difference in the squared errors of y and x on Sv(y):
∑

i∈Sv(y)

(yi − p∗i )
2 −

∑

i∈Sv(y)

(xi − p∗i )
2 =

∑

i∈Sv(y)

(v − p∗i + (yi − v))2 −
∑

i∈Sv(y)

(xi − p∗i )
2

=
∑

i∈Sv(y)

(v − p∗i )
2 −

∑

i∈Sv(y)

(xi − p∗i )
2 + 2

∑

i∈Sv(y)

(v − p∗i )(yi − v)

≥
∑

i∈Sv(y)

(2(p∗i − v)(xi − v)− (xi − v)2)− λ |Sv(y)| . (8)

where (8) follows by the observation that if yi ∈ λ(v), then |yi − v| ≤ λ/2 and |v − p∗i | is trivially
bounded by 1. We bound the sum over i ∈ X of the first term:

∑

i∈Sv(y)

(p∗i − v)(xi − v) =
∑

u∈[0,1]

∑

i∈Svu

(p∗i − v)(u − v)

=
∑

u∈[0,1]

(u− v)
∑

i∈Svu

(p∗i − v)

=
∑

u∈[0,1]

(u− v)
∑

i∈Svu

(u− v + p∗i − u)

=
∑

u∈[0,1]

(

|Svu| (u− v)2 + (u− v)
∑

i∈Svu

(p∗i − u)

)

.

At this point, we note that |u− v| ≤ 1. Thus, we can bound the contribution of the sum over Svu

by its negative absolute value:

≥
∑

u∈[0,1]

(

|Svu| (u− v)2 − |u− v|

∣

∣

∣

∣

∣

∑

i∈Svu

(p∗i − u)

∣

∣

∣

∣

∣

)

≥
∑

u∈[0,1]



|Svu| (u− v)2 −

∣

∣

∣

∣

∣

∣

∑

i∈S′
vu

(p∗i − u) +
∑

i∈Svu\S′
vu

(p∗i − u)

∣

∣

∣

∣

∣

∣





≥
∑

u∈[0,1]



|Svu| (u− v)2 −

∣

∣

∣

∣

∣

∣

∑

i∈S′
vu

(p∗i − u)

∣

∣

∣

∣

∣

∣

− α |Sv(y)|





≥
∑

u∈[0,1]

|Svu| (u− v)2 − 2α |Sv(y)|

=
∑

i∈Sv(y)

(v − xi)
2 − 2α |Sv(y)| ,

where we bound the sums over Svu by invoking α-calibration and applying (7). Plugging this bound
into (8), we see that

∑

i∈Sv(y)

(

(yi − p∗i )
2 − (xi − p∗i )

2
)

≥ 2





∑

i∈Sv(y)

(v − x∗i )
2 − 2α |Sv(y)|



− λ |Sv(y)| −
∑

i∈Sv(y)

(v − xi)
2

=
∑

i∈Sv(y)

(v − x∗i )
2 − (4α− λ) |Sv(y)| .
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Summing over v ∈ [0, 1], we can conclude

‖y − p∗‖2 − ‖x− p∗‖2 ≥ ‖x− y‖2 − (4α− λ)N

showing the lemma. �
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