Incentives and Internet Algorithms

Joan Feigenbaum Yale University http://www.cs.yale.edu/~jf Scott Shenker ICSI and U.C. Berkeley http://www.icir.org/shenker

Slides: <u>http://www.cs.yale.edu/~jf/IPCO04.{ppt,pdf</u>} Acknowledgments: Vijay Ramachandran (Yale) Rahul Sami (MIT)

Outline

- Motivation and Background
- Example: Multicast Cost Sharing
- Overview of Known Results
- Three Research Directions
- Open Questions

Three Research Traditions

- Theoretical Computer Science: complexity
 - What can be feasibly computed?
 - Centralized or distributed computational models
- Game Theory: incentives
 - What social goals are compatible with selfishness?
- Internet Architecture: robust scalability

 How to build large and robust systems?

Different Assumptions

- Theoretical Computer Science:
 Nodes are *obedient*, *faulty*, or *adversarial*.
 - Large systems, limited comp. resources
- Game Theory:
 - Nodes are *strategic* (selfish).
 - Small systems, unlimited comp. resources

Internet Systems (1)

- Agents often autonomous (users/ASs)
 Have their own individual goals
- Often involve "Internet" scales
 - Massive systems
 - Limited comm./comp. resources
- Both incentives and complexity matter.

Internet Systems (2)

• Agents (users/ASs) are dispersed.

- Computational nodes often dispersed.
- Computation is (often) distributed.

Internet Systems (3)

- Scalability and robustness paramount
 sacrifice strict semantics for scaling
 - many informal design guidelines
 - Ex: end-to-end principle, soft state, etc.
- Computation must be "robustly scalable."

 even if criterion not defined precisely
 If TCP is the answer, what's the question?

Fundamental Question

What computations are (simultaneously):

- Computationally feasible
- Incentive-compatible
- Robustly scalable

TCS

Game Theory

Internet Design

Game Theory and the Internet

- Long history of work:
 Networking: Congestion control [N85], etc.
 TCS: Selfish routing [RT02], etc.
- Complexity issues not explicitly addressed

 though often moot

TCS and Internet

- Increasing literature

 TCP [GY02,GK03]
 routing [GMP01,GKT03]
 etc.
- No consideration of incentives
- Doesn't always capture Internet style

Game Theory and TCS

- Various connections:
 - Complexity classes [CFLS97, CKS81, P85, etc.]
 - Price of anarchy, complexity of equilibria, *etc*.
 [KP99,CV02,DPS02]
- Algorithmic Mechanism Design (AMD)
 Centralized computation [NR01]
- Distributed Algorithmic Mechanism Design (DAMD)

Internet-based computation [FPS01]

DAMD: Two Themes

- Incentives in Internet computation

 Well-defined formalism
 - Real-world incentives hard to characterize
- Modeling Internet-style computation
 - Real-world examples abound
 - Formalism is lacking

Outline

- Motivation and Background
 Mechanism Design
 - Internet Computation
- Example: Multicast Cost Sharing
- Overview of Known Results
- Three Research Directions
- Open Questions

System Notation

Outcomes and *agents*:

- Φ is set of possible *outcomes*.
 - $o \in \Phi$ represents particular outcome.
- Agents have valuation functions v_i .
 - $v_i(o)$ is "happiness" with outcome o.

Societal vs. Private Goals

- System-wide performance goals:
 - Efficiency, fairness, *etc*.
 - Defined by set of outcomes $G(v) \subset \Phi$
- Private goals: Maximize own welfare

 $-v_i$ is private to agent *i*.

- Only reveal truthfully if in own interest

Mechanism Design

- Branch of game theory:
 reconciles private interests with social goals
- Involves esoteric game-theoretic issues

 will avoid them as much as possible
 only present MD content relevant to DAMD

Mechanisms

Actions: a_i Outcome: O(a) Payments: $p_i(a)$ Utilities: $u_i(a) = v_i(O(a)) + p_i(a)$

Mechanism Design

- A₀(v) = {action vectors} consistent w/selfishness
 - a_i "maximizes" $u_i(a) = v_i(O(a)) + p_i(a)$.
 - "maximize" depends on information, structure, etc.
 - Solution concept: Nash, Rationalizable, ESS, etc.
- Mechanism-design goal: $O(A_O(v)) \subseteq G(v)$ for all v
- Central MD question: For given solution concept, which social goals can be achieved?

Direct Strategyproof Mechanisms

• Direct: Actions are declarations of v_i .

- Strategyproof: $u_i(v) \ge u_i(v_{-i}, x_i)$, for all x_i, v_{-i}
 - Agents have no incentive to lie.
 - $A_O(v) = \{v\}$ "truthful revelation"

• Which social goals achievable with SP?

Strategyproof Efficiency

Efficient outcome: maximizes Σv_i

VCG Mechanisms:

- $O(v) = \tilde{o}(v)$ where $\tilde{o}(v) = \arg \max_{o} \sum v_{i}(o)$
- $p_i(v) = \sum_{j \neq i} v_j(\tilde{o}(v)) + h_i(v_{-i})$

Why are VCG Strategyproof?

- Focus only on agent *i*
 - v_i is truth; x_i is declared valuation

•
$$p_i(x_i) = \sum_{j \neq i} v_j(\tilde{o}(x_i)) + h_i$$

• $u_i(x_i) = v_i(\tilde{o}(x_i)) + p_i(x_i) = \sum_j v_j(\tilde{o}(x_i)) + h_i$

• Recall: $\tilde{o}(v_i)$ maximizes $\sum_j v_j(o)$

Group Strategyproofness

Definition:

- True: v_i Reported: x_i
- Lying set $S = \{i: v_i \neq x_i\}$

 $\exists i \in S \ u_i(x) > u_i(v) \implies \exists j \in S \ u_j(x) < u_j(v)$

• If any liar gains, at least one will suffer.

Outline

- Motivation and Background

 Mechanism Design
 Internet Computation
- Example: Multicast Cost Sharing
- Overview of Known Results
- Three Research Directions
- Open Questions

Algorithmic Mechanism Design [NR01]

Require polynomial-time computability:

• O(a) and $p_i(a)$

Centralized model of computation:

- good for auctions, *etc*.
- not suitable for distributed systems

Complexity of Distributed Computations (Static)

Quantities of Interest:

- Computation at nodes
- Communication:
 - total
 - hotspots
- Care about both messages and bits

"Good Network Complexity"

- Polynomial-time local computation
 in total size or (better) node degree
- O(1) messages per link
- Limited message size

- F(# agents, graph size, numerical inputs)

Dynamics (partial)

- Internet systems often have "churn."
 - Agents come and go
 - Agents change their inputs
- "Robust" systems must tolerate churn.
 most of system oblivious to most changes
- Example of dynamic requirement:
 - -o(n) changes trigger $\Omega(n)$ updates.

Protocol-Based Computation

• Use standardized protocol as substrate for computation.

relative rather than absolute complexity

- Advantages:
 - incorporates informal design guidelines
 - adoption does not require new protocol
 - example: BGP-based mech's for routing

Outline

- Motivation and Background
- Example: Multicast Cost Sharing
- Overview of Known Results
- Three Research Directions
- Open Questions

Multicast Cost Sharing (MCS)

Users' valuations: v_i Link costs: c(l)

Receiver Set

Which users receive the multicast?

Cost Shares

How much does each receiver pay?

Model [FKSS03, §1.2]:

- Obedient Network
- Strategic Users

Notation

- *P* Users (or "participants")
- *R* Receiver set ($\sigma_i = 1$ if $i \in R$)
- p_i User *i*'s cost share (*change in sign!*)
- u_i User *i*'s utility $(u_i = \sigma_i v_i p_i)$
- *W* Total welfare $W(R) \stackrel{\Delta}{=} V(R) C(R)$

$$C(R) \stackrel{\Delta}{=} \sum_{l \in T(R)} c(l) \qquad V(R) \stackrel{\Delta}{=} \sum_{i \in R} v_i$$

"Process" Design Goals

- No Positive Transfers (NPT): $p_i \ge 0$
- Voluntary Participation (VP): $u_i \ge 0$

- Consumer Sovereignty (CS): For all trees and costs, there is a μ_{cs} s.t. $\sigma_i = 1$ if $v_i \ge \mu_{cs}$.
- Symmetry (SYM): If *i*,*j* have zero-cost path and $v_i = v_j$, then $\sigma_i = \sigma_j$ and $p_i = p_j$.

Two "Performance" Goals

• Efficiency (EFF): $R = \arg \max W$

• Budget Balance (BB): $C(R) = \sum_{i \in R} p_i$

Impossibility Results

Exact [GL79]: No strategyproof mechanism can be both efficient and budget-balanced.

Approximate [FKSS03]: No strategyproof mechanism that satisfies NPT, VP, and CS can be both γ-approximately efficient and κ-approximately budget-balanced, for any positive constants γ, κ.

Efficiency

Uniqueness [MS01]: The only strategyproof, efficient mechanism that satisfies NPT, VP, and CS is the Marginal-Cost mechanism (MC):

$$p_i = v_i - (W - W^{-i}),$$

where W is maximal total welfare, and W^{-i} is maximal total welfare without agent *i*.

• MC also satisfies SYM.

Budget Balance (1)

General Construction [MS01]: Any crossmonotonic cost-sharing formula results in a group-strategyproof and budget-balanced cost-sharing mechanism that satisfies NPT, VP, CS, and SYM.

• *R* is biggest set s.t. $p_i(R) \le v_i$, for all $i \in R$.
Budget Balance (2)

• *Efficiency loss* [MS01]: The Shapleyvalue mechanism (SH) minimizes the worst-case efficiency loss.

 SH Cost Shares: c(l) is shared equally by all receivers downstream of l.

Network Complexity for BB

Hardness [FKSS03]: Implementing a group-strategyproof and budgetbalanced mechanism that satisfies NPT, VP, CS, and SYM requires sending $\Omega(|P|)$ bits over $\Omega(|L|)$ links in worst case.

• Bad network complexity!

Network Complexity of EFF

- "*Easiness*" [FPS01]: MC needs only:
- One modest-sized message in each link-direction
- Two simple calculations per node

• Good network complexity!

Computing Cost Shares

 $p_i \equiv v_i - (W - W^{-i})$

Case 1: No difference in tree Welfare Difference = v_i Cost Share = 0

Case 2: Tree differs by 1 subtree. Welfare Difference = W^{γ} (minimum welfare subtree above *i*) Cost Share = $v_i - W^{\gamma}$

Two-Pass Algorithm for MC

Bottom-up pass:

- Compute subtree welfares W^{γ} .
- If $W^{\gamma} < 0$, prune subtree.

Top-down pass:

- Keep track of minimum welfare subtrees.
- Compare v_i to minimal W^{γ} .

Computing the MC Receiver Set R

$$W^{\alpha} \equiv v^{\alpha} + \sum_{\substack{\beta \in \operatorname{Ch}(\alpha) \\ \text{s.t. } W^{\beta} \ge 0}} W^{\beta} - c^{\alpha}$$

Proposition:

 $\operatorname{res}(\alpha) \subseteq R \text{ iff } W^{\gamma} \ge 0, \forall \gamma \in \{ \text{anc. of } \alpha \text{ in } T(P) \}$

Additional Notation:

 $\{\alpha, \beta, \gamma\} \subseteq P$

 $Ch(\alpha) \triangleq children of \alpha in T(P)$

 $res(\alpha) \Delta$ all users "resident" at node α

 $loc(i) \triangleq node at which user i is "located"$

Bottom-Up Traversal of *T*(*P*)

 $\forall \alpha, \text{ after receiving } W^{\beta}, \forall \beta \in Ch(\alpha):$ $\{ COMPUTE W^{\alpha} \\ IF W^{\alpha} \ge 0, \sigma_{i} \leftarrow 1 \quad \forall i \in res(\alpha) \\ ELSE \sigma_{i} \leftarrow 0 \quad \forall i \in res(\alpha) \\ SEND W^{\alpha} \text{ TO parent}(\alpha)$

Computing Cost Shares

 $p_i \equiv v_i - (W - W^{-i})$

Case 1: No difference in trees. Welfare Difference = v_i Cost Share = 0

Case 2: Trees differ by 1 subtree. Welfare Difference = W^{γ} ($\gamma \equiv$ minimum welfare anc. of loc(*i*))

Cost Share = $v_i - W^{\gamma}$

Need Not Recompute Wfor each $i \in P$

Top-Down Traversal of T(P)(Nodes have "state" from bottom-up traversal) **Init:** Root α_s sends W^{α_s} to $Ch(\alpha_s)$ $\forall \alpha \neq \alpha_{c}$, after receiving *A* from parent(α) : IF $\sigma_i = 0$, $\forall i \in \operatorname{res}(\alpha)$, OR A < 0 { $p_i \leftarrow 0 \land \sigma_i \leftarrow 0, \forall i \in \operatorname{res}(\alpha)$ SEND -1 TO β , $\forall \beta \in Ch(\alpha)$ } ELSE { $A \leftarrow \min(A, W^{\alpha})$ FOR EACH $i \in res(\alpha)$ IF $v_i \leq A, p_i \leftarrow 0$ ELSE $p_i \leftarrow v_i - A$ SEND *A* TO β , $\forall \beta \in Ch(\alpha)$ } 50

Profit Maximization [FGHK02]

Mechanism:

- Treat each node as a separate "market."
- Clearing prices approx. maximize revenue.
- Find profit-maximizing subtree of markets.
- Satisfies NPT and VP but not CS or SYM.

Properties:

- Strategyproof and O(1) messages per link
- Expected constant fraction of maximum profit if
 - maximum profit margin is large (> 300%), and
 - there is real competition in each market

Multiple Transmission Rates [AR02]

r = # rates h = tree height K = size of numerical input

One layer per rate ("layered paradigm"):

- MC is computable with three messages per link and O(rhK) bits per link.
- For worst-case instances, average number of bits per link needed to compute MC is $\Omega(rK)$.

One multicast group per rate ("split-session paradigm"):

- Same MC algorithm has communication and computational complexity proportional to 2^r.
- For variable *r*, no polynomial-time algorithm can approximate total welfare closely, unless NP=ZPP.

Outline

- Motivation and Background
- Example: Multicast Cost Sharing
- Overview of Known Results
- Three Research Directions
- Open Questions

Interdomain Routing

Agents: Transit ASs Inputs: Routing Costs or Preferences Outputs: Routes, Payments

Lowest-Cost Routing

- Agent *k*'s private info: per-packet cost *c*_k
- Mechanism-design goal: LCPs
- Centralized computation:
 - P-time VCG mechanism [NR01]
 - Faster P-time VCG mechanism [HS01]
- Distributed computation [FPSS02]:
 - BGP-based algorithm for VCG mechanism
 - All source-destination pairs

Policy-Routing

- Agents have preferences over routes: $v_i \colon \{P_{ij}\} \to \Re^{\geq 0}$
- Goal: routing tree maximizing $\sum_i v_i(P_{ij})$
- Arbitrary preferences [FSS04]:
 NP-hard to approximate w/in factor O(n^{1/4-ε})
- Next-hop preferences [FSS04]:
 - P-time (centralized) VCG mechanism
 - No good distributed implementation (dyn.)

Supply-Chain Auctions

- <u>Problem</u>: concurrent auctions where activities must be coordinated across markets

 – Example: Markets for rubber, tires, trucks
- <u>Solution</u> [BN01]: Mechanism that propagates supply and demand curves along the chain
 <u>Strategyproof</u> and achieves material balance
- Communication complexity:
 - Naïve algorithm sends $\Omega(q)$ prices per link.
 - Use binary search to find traded quantity. $\Rightarrow O(\log q)$ prices per link

Spatially Distributed Markets

- <u>Problem</u>: There are multiple markets for a single good, with a cost to transfer the between markets. Find an efficient set of market prices and transfer quantities.
- <u>Solutions</u> [BNP04]:

 Mechanism that is efficient and strategyproof
 Mechanism that is budget-balanced and strategyproof

• Mechanisms can be computed in polynomial time using a reduction to min-cost flow.

Negotiation-Range Mechanisms

- Classical results in economics show that no strategyproof trade mechanism can be efficient and budget-balanced.
- One approach: Mechanism reports a range of prices for each trade, instead of a single price. Then, traders negotiate the final price [BGLM04].
- There is a strategyproof, budget-balanced, and efficient mechanism to match traders and report a price range to each pair [BGLM04].
- Catch: No strategyproof negotiation mechanisms for the second phase

Peer-to-Peer Networks

Distributed rating system [DGGZ03]:

- Constructs "reputation" of each peer
- Prevents lying (strategyproof)
- Fair allocation of resources [NWD03]:
- Strategyproof revelation of true usage

Outline

- Motivation and Background
- Example: Multicast Cost Sharing
- Overview of Known Results
- Three Research Directions
 - BGP-based interdomain-routing mechanisms
 - Canonically hard DAMD problems
 - Distributed implementation challenges
- Open Questions

Interdomain-Routing Mechanism-Design Problem

Agents: Transit ASs Inputs: Routing Costs or Preferences Outputs: Routes, Payments

Lowest-Cost-Routing MD

Agents' valuations: Per-packet costs $\{c_k\}$

(Unknown) global parameter: Traffic matrix $[T_{ij}]$

Outputs: {*route*(*i*, *j*)}

Payments: $\{p^k\}$

Objectives:

- Lowest-cost paths (LCPs)
- Strategyproofness
- "BGP-based" distributed algorithm

A Unique VCG Mechanism

Theorem [FPSS02]:

For a biconnected network, if LCP routes are always chosen, there is a unique strategyproof mechanism that gives no payment to nodes that carry no transit traffic. The payments are of the form

$$p^k = \sum_{i,j} T_{ij} p^k_{ij}$$
, where

$$p_{ij}^{k} = c_{k} + \operatorname{Cost}(P^{-k}(c; i, j)) - \operatorname{Cost}(P(c; i, j))$$

Proof is a straightforward application of [GL79].

Features of this Mechanism

- Payments have a very simple dependence on traffic [*T_{ij}*]: Payment *p^k* is weighted sum of per-packet prices *p^k_{ij}*.
- Cost c_k is independent of *i* and *j*, but price p_{ij}^k depends on *i* and *j*.
- Price p_{ij}^k is 0 if k is not on LCP between i, j.
- Price p^k_{ij} is determined by cost of min-cost path from *i* to *j* not passing through k (min-cost "k-avoiding" path).

BGP-Based Computational Model (1)

- Follow abstract BGP model of [GW99]: Network is a graph with nodes corresponding to ASs and bidirectional links; intradomain-routing issues are ignored.
- Each AS has a routing table with LCPs to all other nodes:

Dest.			LCP	LCP cost
AS1	AS3	AS5	AS1	3
AS2	AS7	AS2		2

Entire paths are stored, not just next hop.

Computational Model (2)

- An AS "advertises" its routes to its neighbors in the AS graph, whenever its routing table changes.
- The computation of a single node is an infinite sequence of stages:

- Complexity measures:
 - Number of stages required for convergence
 - Total communication

★ Surprisingly *scalable* in practice.

Computing the VCG Mechanism

- Need to compute *routes* and *prices*.
- Routes: Use Bellman-Ford algorithm to compute LCPs and their costs.
- Prices:

Structure of k-avoiding Paths

- BGP uses communication between neighbors only \Rightarrow we need to use "local" structure of $P^{-k}(c; i, j)$.
- Tail of $P^{-k}(c; i,j)$ is either of the form

• Conversely, for each neighbor a, either $P^{-k}(c; a, j)$ or P(c; a, j) gives a candidate for $P^{-k}(c; i, j)$.

Computing the Prices

- Classifying neighbors:
 - Set of LCPs to *j* forms a tree.
 - Each of *i*'s neighbors is either
 - (a) parent
 - (b) child
 - (d) unrelated

in tree of LCPs to *j*.

- Each case gives a candidate value for p_{ij}^k based on neighbor's LCP cost or price, e.g., (b) $p_{ij}^k \le p_{hi}^k + c_b + c_i$
- p_{ij}^k is the minimum of these candidate values \Rightarrow compute it locally with dynamic programming.

A "BGP-Based" Algorithm

Dest.	cost		LCP cost			
AS1		AS3	AS5	AS1		a(i, 1)
	c_1	p_{i1}^{3}	p_{i1}^{5}			$\mathcal{C}(l, I)$

- 1. LCPs are computed and advertised to neighbors.
- 2. Initially, all prices are set to ∞ .
- 3. In the following stages, each node repeats:
 - Receive LCP costs and path prices from neighbors.
 - Recompute candidate prices; select lowest price.
 - Advertise updated prices to neighbors.

Final state: Node *i* has accurate p_{ii}^k values.
Performance of Algorithm

 $d = max_{i,j} || P(c; i, j) ||$ $d' = max_{i,j,k} || P^{-k}(c; i, j) ||$

Theorem [FPSS02]:

This algorithm computes the VCG prices correctly, uses routing tables of size O(nd) (a constant factor increase over BGP), and converges in at most (d + d') stages (worst-case additive penalty of d' stages over the BGP convergence time).

Dealing with Strategic Computation

- Restoring strategyproofness: Cost c_k must be the only path information that AS k can manipulate.
- Possible because all other information reported by AS k is known to at least one other party, hence not "private" information of AS k.
- Solution [MSTT]: All information is signed by originating party.

cost c_i: signed by AS *i*.
existence of link *ij*: signed by AS *i* and AS *j*.
AS *k*'s message has to include all relevant signatures.

• AS k cannot benefit by suppressing real paths to k.

Modified BGP-Update Messages

Update from AS *k* to AS *j* for route to AS1:

Dest.	cost	LCP and path prices				LCP cost
AS1		AS3	AS5	AS1		
		p_{k1}^{3}	p_{k1}^{5}			c(k,1)
	c _k	<i>c</i> ₃	<i>c</i> ₅			
	$S_k(c_k)$	$s_3(c_3)$	$s_5(c_5)$			
	$s_k(l_{kj})$	$s_3(l_{3k})$	$s_5(l_{53})$	$s_1(l_{15})$		

General Policy-Routing Problem Statement

- Consider each destination *j* separately.
- Each AS *i* assigns a value $v_i(P_{ij})$ to each potential route P_{ij} .

- Mechanism-design goals:
 - Maximize $W = \sum_{i} v_i(P_{ij})$.
 - For each destination *j*, $\{P_{ij}\}$ forms a tree.
 - Strategyproofness
 - BGP-based distributed algorithm

NP-Hardness with Arbitrary Valuations

• Approximability-preserving reduction from Independent-set problem:

- NP-hard to compute maximum *W* exactly.
- NP-hard to compute $O(n^{1/4-\varepsilon})$ approximation to maximum W.

Next-Hop Preferences

- $v_i(P_{ij})$ depends only on first-hop AS *a*.
- Captures preferences due to customer/provider/peer agreements.

For each destination *j* , optimal routing tree is a Maximum-weight Directed Spanning Tree (MDST):

Strategyproof Mechanism

Let

 T^* = Maximum weight directed spanning tree (MDST) in G

 T^i = MDST in $G - \{i\}$

• For biconnected networks, there is a unique strategyproof mechanism that always picks a welfare-maximizing routing tree and never pays non-transit nodes. The payments required for this mechanism are

$$p^{i} = W(T^{*}) - v_{i}(T^{*}) - W(T^{i})$$

• Routes and payments can be computed in polynomial time (in a centralized computational model).

Proving Hardness for "BGP-Based" Routing Mechanisms [FSS04]

- Need to formalize requirements for "BGP compatibility."
- Hardness results need only hold for:
 - "Internet-like" graphs
 - *O*(1) average degree
 - $O(\log n)$ diameter and $O(\log n)$ diameter'
 - An open set of numerical inputs in a small range

Reasonable Routing-Table Size and Convergence Time

- Each AS uses O(l) space for a route of length l.
- Length of longest routes chosen (and convergence time) should be proportional to network diameter or diameter'.
- See related work on formal models of "path-vector" routing protocols [GJR03].

 Don't even know how to compute MDST prices in time proportional to length of longest route chosen.

Reasonably Stable Routing Tables

Most changes should not affect most routes.

 More formally, there are o(n) nodes that can trigger Ω(n) update messages when they fail or change valuations.

MDST Does Not Satisfy the Stability Requirement [FSS04] Proof outline:

- (i) Construct a network and valuations such that, for $\Omega(n)$ nodes *i*, *T*^{-*i*} is disjoint from the MDST *T**.
- (ii) A change in the valuation of any node *a* may change $p_i = W(T^*) v_i(T^*) W(T^{-i}).$
- (iii) Node *i* (or whichever node stores p_i) must receive an update when this change happens. $\Rightarrow \Omega(n)$ nodes can each trigger $\Omega(n)$ update messages.

Network Construction (1)

(a) Construct 1-cluster with two nodes:

(b) Recursively construct (*k*+1)-clusters:

Network Construction (2)

(c) Top level: *m*-cluster with $n = 2^m + 1$ nodes.

Optimal Spanning Trees

Lemma: *W*(*blue tree*) = *W*(*red tree*) + 1 ≥ *W*(*any other sp.tree*) + 2

Proof: If a directed spanning tree has red and blue edges, we can increase its weight by at least 2:

- MDST *T*^{*} is the blue spanning tree.
- For any blue node *B*, T^{-B} is the red spanning tree on $N \{B\}$.
- A small change in any edge, red or blue, changes

 $p^{B} = W(T^{*}) - v_{B}(T^{*}) - W(T^{-B})$

 \Rightarrow Any change triggers update messages to all blue nodes!

Alternative Policy Class: Subjective Costs

- AS *i* assigns a cost $c_i(k)$ to AS *k*. AS *i*'s subjective cost for route P_{ij} is $C_i(P_{ij}) = \sum_{k \in P_{ij}} c_i(k)$
- Overall goal: minimize total subjective cost to destination = $\sum_i C_i(P_{ij})$
- Natural generalization of Lowest-Cost Routing
- Expresses a broad range of policies.
- Question: Which subclasses of Subjective-Cost Policies lead to strategyproof, BGP-based mechanisms?

Forbidden-Set Policies

- AS *i* has a set S_i of ASes it does not want to route through.
- Goal: Find a routing tree in which no AS *i* uses a route through any AS in S_i.
- *0-1* subjective cost model:

 $c_i(k) = 1 \text{ if } k \in S_i$ $c_i(k) = 0 \text{ if } k \notin S_i$

 Theorem [FMKS]: It is NP-hard to find a routing tree that even approximately minimizes total subjective cost, within any factor.

1-2 Subjective costs

- Restricted subclass of subjective-cost policies with $c_i(k) \in \{1,2\}$ for all *i*,*k*.
- It is NP-hard to find a minimum subjective-cost routing tree with *1-2* subjective costs [FKMS].
- It is also APX-hard, *i.e.*, $(1+\varepsilon)$ -approximation is hard.
- Easy 2-approximation: Shortest path tree
- This approximation does not use private information at all. \Rightarrow No interesting mechanism design problem.

Question: Can we do better than 2-approximation with a non-trivial approximation algorithm?

Open Questions about Subjective-Cost Routing

 ASes "almost" agree about the cost of node k: Subjective costs are randomly distributed about an (unknown) objective value.

Question: How does the hardness change with the degree of subjectivity?

- Differences in cost arise because ASes value different objective metrics (*e.g.*, length *vs.* reliability).
- •
- •

Open Questions

- BGP-compatible special case of next-hop-preferences routing
- Fully fleshed-out BGP-based computational model
 - Incremental computation
 - "Smooth" convergence?
- New DA principle: Use an Internet protocol as a "computational substrate."

Outline

- Motivation and Background
- Example: Multicast Cost Sharing
- Overview of Known Results
- Three Research Directions
 - BGP-based interdomain-routing mechanisms
 - Canonically hard DAMD problems
 - Distributed implementation challenges
- Open Questions

"Hard to Solve on the Internet"

Intuitively, this means

- Cannot simultaneously achieve
 - Robust scalability
 - Incentive compatibility
- Can achieve either requirement separately

Recall that BB multicast cost sharing is hard. Scalability \triangleq low (absolute) network complexity Incentive compatibility \triangleq GSP'ness

GSP'ness Without Scalability

Iterative SH Algorithm

- Start with R = P.
- Calculate cost shares as above.
- Eliminate from *R* all *i* s.t. current $p_i > v_i$.
- Repeat until $R \neq \emptyset$ or no *i* eliminated.

Worst case: |P| iterations.

Lower bound in [FKSS03] shows that bad network complexity is unavoidable.

Scalability Without GSP'ness

Bottom-up pass: Compute

$$C = \sum_{l \in L} c(l)$$
 and $V = \sum_{i \in P} v_i$

Top-down pass:

If C > V, $\sigma_i = 0$ for all iIf $C \le V$, $\sigma_i = 1$ for all iand $p_i = (v_i \cdot C) / V$

Open Question

- More canonically hard problems?
- Open for centralized AMD as well
- Complexity theory of Internet computation
 - Formal models
 - Complexity classes
 - Reductions

Outline

- Motivation and Background
- Example: Multicast Cost Sharing
- Overview of Known Results
- Three Research Directions
 - BGP-based interdomain-routing mechanisms
 - Canonically hard DAMD problems
 - Distributed implementation challenges
- Open Questions

Revelation Principle

If there is a DS mechanism (O, p) that implements a design goal, then there is one that does so truthfully.

Note: Loss of privacy Shift of computational load Assumes centralized, obedient mechanism 101

Is Truthtelling Really "Dominant"?

Consider Lowest-Cost Routing:

- Mechanism is strategyproof, in the technical sense: Lying about its cost cannot improve an AS's welfare *in this particular game*.
- But truthtelling reveals to competitors information about an AS's internal network. This may be a disadvantage in the long run.
- Note that the goal of the mechanism is not acquisition of private inputs per se but rather evaluation of a function of those inputs.

Secure, Multiparty Function Evaluation

- Each *i* learns *O*.
- No *i* can learn anything about v_j (except what he can infer from v_i and *O*).
- Extensive SMFE theory; see, e.g., [C00, G03].

Constructive, "Compiler"-Style Results

Natural approach:

Must be careful about strategic models and solution concepts.

Combining MD and SMFE

Example: Transform a centralized, strategyproof mechanism using the "secure" (against an active adversary) protocol construction in [BGW88] (with t = 1). Result is:

- An *input game*, with a dominant-strategy equilibrium in which every agent "shares" his true valuation.
- A *computational game*, with a Nash equilibrium in which every agent follows the protocol.
- Agent privacy!

Need specific properties of [BGW88] construction (*e.g.*, initial input commitment) as well as general definition of security.

Open Questions

- Complete understanding of what follows from known SMFE constructions
- Privacy-preserving DAMs that have good network complexity
- New solution concepts designed for Internet computation
- New kinds of mechanisms and protocols with highly transient sets of agents

Outline

- Motivation and background
- Example: Multicast cost sharing
- Overview of known results
- BGP-based interdomain-routing mechanisms
- Canonically hard DAMD problems
- Distributed implementation challenges
- Other research directions

More Problem Domains

- Caching
- Distributed Task Allocation
- Overlay Networks
- * Ad-hoc and/or Mobile Networks
 - •
Ad-Hoc and/or Mobile Networks

- Nodes make same incentive-sensitive decisions as in traditional networks, *e.g.*:
 - Should I connect to the network?
 - Should I transit traffic?
 - Should I obey the protocol?
- These decisions are made more often and under faster-changing conditions than they are in traditional networks.
- Resources (*e.g.*, bandwidth and power) are scarcer than in traditional networks. Hence:
 - Global optimization is more important.
 - Selfish behavior by individual nodes is potentially more rewarding.

Approximation in DAMD

- AMD approximation is subtle. One can easily destroy strategyproofness.
- "Feasibly dominant strategies" [NR00]
- "Strategically faithful" approximation [AFK+04]
- "Tolerable manipulability" [AFK+04]
- "Approximate strategyproofness" [APTT03, GH03, KPS03, S01]

Indirect Mechanisms

Explore tradeoffs among

- agent computation
- mechanism computation
- communication
- privacy
- approximation factors

References (1)

[AFK+04] A. Archer, J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. "Approximation and Collusion in Multicast Cost Sharing," *Games and Economic Behavior* 47 (2004), pp. 36-71. http://www.cs.yale.edu/~jf/AFKSS.pdf.

[APTT03] A. Archer, C. Papadimitriou, K. Talwar, and E. Tardos. "An Approximate Truthful Mechanism for Combinatorial Auctions with Single Parameter Agents," in *Proceedings of the 14th Symposium on Discrete Algorithms*, ACM Press / SIAM, New York / Philadelphia, 2003, pp. 205-214.

http://www.orie.cornell.edu/~aarcher/Research/logcopySODAproc.ps.

- [AR02] M. Adler and D. Rubenstein. "Pricing Multicast in More Practical Network Models," in *Proceedings of the 13th Symposium on Discrete Algorithms*, ACM Press / SIAM, New York / Philadelphia, 2002, pp. 981-990. <u>http://www.cs.umass.edu/~micah/pubs/pricing.ps</u>.
- [AT02] A. Archer and É. Tardos. "Frugal Path Mechanisms," in Proceedings of the 13th Symposium on Discrete Algorithms, ACM Press / SIAM, New York / Philadelphia, 2002, pp. 991-999. <u>http://www.orie.cornell.edu/~aarcher/Research/fpSODAproc.ps</u>.

References (2)

[BGLM04] Y. Bartal, R. Gonen, and P. La Mura. "Negotiation-Range Mechanisms: Exploring the Limits of Truthful Efficient Markets," in *Proceedings of the 5th Conference on Electronic Commerce*, ACM Press, New York, 2004, pp. 1-8.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. "Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation," in *Proceedings of the 20th Symposium on Theory of Computing*, ACM Press, New York, 1988, pp. 1-10.

http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/GBW88/ GBW88.pdf.

[BN01] M. Babaioff and N. Nisan. "Concurrent Auctions Across the Supply Chain," in *Proceedings of the 3rd Conference on Electronic Commerce*, ACM Press, New York, 2001, pp. 1-10.

http://www.cs.huji.ac.il/~noam/chain.ps.

[BNP04] M. Babaioff, N. Nisan, and E. Pavlov. "Mechanisms for a Spatially Distributed Market," in *Proceedings of the 5th Conference on Electronic Commerce*, ACM Press, New York, 2004, pp. 9-20.

http://www.cs.huji.ac.il/~mosheb/markets-flow.ps.

References (3)

- [C71] E. Clarke. "Multipart Pricing of Public Goods," *Public Choice* **11** (1971), pp. 17-33.
- [C00] R. Canetti. "Security and Composition of Multiparty Cryptographic Protocols," *Journal of Cryptology* 13 (2000), pp. 143-202. <u>http://www.research.ibm.com/security/sfe-def.ps</u>.
- [CFLS97] A. Condon, J. Feigenbaum, C. Lund, and P. Shor. "Random Debaters and the Hardness of Approximating Stochastic Functions," *SIAM Journal on Computing* 26 (1997), pp. 369-400. <u>http://www.cs.yale.edu/~jf/CFLS.ps</u>.
- [CKS81] A. Chandra, D. Kozen, and L. Stockmeyer. "Alternation," Journal of the Association for Computing Machinery 28 (1981), pp, 114-133. <u>http://doi.acm.org/10.1145/322234.322243</u>.
- [CV02] Artur Czumaj and Berthold Vöcking. "Tight Bounds for Worst-Case Equilibria," in Proceedings of the 13th Symposium on Discrete Algorithms, ACM Press / SIAM, New York / Philadelphia, 2002, pp. 413-420. <u>http://www.cis.njit.edu/~czumaj/PUBLICATIONS/SODA-</u> 2002-Proceedings-Final-Revision.pdf.

References (4)

[DGGZ03] D. Dutta, A. Goel, R. Govindan, and H. Zhang. "The Design of a Distributed Rating Scheme for Peer-to-Peer Systems," in *Proceedings of the Workshop on the Economics of Peer-to-Peer Systems*, 2003. <u>http://cs.usc.edu/~ramesh/papers/freeride.pdf</u>.

[DPS02] X. Deng, C. Papadimitriou, and S. Safra. "On the Complexity of Equilibria," in *Proceedings of the 34th Symposium on Theory of Computing*, ACM Press, New York, 2002, pp. 67-71. <u>http://www.cs.berkeley.edu/~christos/equi.ps</u>.

[FGHK02] A. Fiat, A. Goldberg, J. Hartline, and A. Karlin. "Competitive Generalized Auctions," in *Proceedings of the 34th Symposium on Theory of Computing*, ACM Press, New York, 2002, pp. 72-81. <u>http://www.math.tau.ac.il/~fiat/stocauc.ps</u>.

[FKSS03] J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. "Hardness Results for Multicast Cost Sharing," *Theoretical Computer Science* 304 (2003), pp. 215-236. <u>http://www.cs.yale.edu/~jf/FKSS2.pdf</u>.

References (5)

[FPS01] J. Feigenbaum, C. Papadimitriou, and S. Shenker. "Sharing the Cost of Multicast Transmissions," *Journal of Computer and System Sciences* 63 (2001), pp. 21-41. <u>http://www.cs.yale.edu/~jf/FPS.pdf</u>.

- [FPSS02] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. "A BGP-based Mechanism for Lowest-Cost Routing," in *Proceedings* of the 21st Symposium on Principles of Distributed Computing, ACM Press, New York, 2002, pp. 173-182. <u>http://www.cs.yale.edu/~jf/FPSS.pdf</u>.
- [FS02] J. Feigenbaum and S. Shenker. "Distributed Algorithmic Mechanism Design: Recent Results and Future Directions," in Proceedings of the 6th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, ACM Press, New York, 2002, pp. 1-13. <u>http://www.cs.yale.edu/~jf/FS.pdf</u>.
- [FSS04] J.Feigenbaum, R. Sami, and S. Shenker. "Mechanism Design for Policy Routing," to appear in *Proceedings of the 23rd Symposium on Principles of Distributed Computing,* ACM Press, New York, 2004.

http://www.cs.yale.edu/~jf/FSS.pdf

[G73] T. Groves. "Incentives in Teams," *Econometrica* **41** (1973), pp. 617-663.

References (6)

[G03] O. Goldreich. "Cryptography and Cryptographic Protocols," Distributed Computing 16 (2003), pp. 149-159. <u>http://www.wisdom.weizmann.ac.il/~oded/PS/foc-sur01.ps</u>.

- [GK03] A. C. Gilbert and H. Karloff. "On the Fractal Behavior of TCP," in Proceedings of the 35th Symposium on Theory of Computing, ACM Press, New York, 2003, pp. 297-306. <u>http://doi.acm.org/10.1145/780542.780588</u>.
- [GKT03] A. Gupta, A. Kumar, and M. Thorup. "Tree Based MPLS Routing," in Proceedings of the 15th Symposium on Parallelism in Algorithms and Architectures, ACM Press, New York, 2003, pp. 193-199. <u>http://doi.acm.org/10.1145/777412.777443</u>.
- [GH03] A. Goldberg and J. Hartline. "Envy-Free Auctions for Digital Goods," in Proceedings of the 4th ACM Conference on Electronic Commerce, ACM Press, New York, 2003, pp. 29-35. <u>http://www.avglab.com/andrew/pub/ec03.ps</u>.
- [GJR03] T. Griffin, A. Jaggard, and V. Ramachandran. "Design Principles of Policy Languages for Path Vector Protocols," in *Proceedings of ACM SIGCOMM '03,* ACM Press, New York, 2003, pp. 61-72. <u>http://www.cs.yale.edu/~vijayr/papers/0203-griffin.pdf</u>.

References (7)

- [GMP01] A. Goel, A. Meyerson, and S. Plotkin. "Distributed Admission Control, Scheduling, and Routing with Stale Information," in *Proceedings of the 12th Symposium on Discrete Algorithms*, ACM Press / SIAM, New York / Philadelphia, 2001, pp. 611-619. <u>http://pollux.usc.edu/~agoel/papers/multiple.ps</u>.
- [GL79] J. Green and J.-J. Laffont. Incentives in Public Decision Making, North Holland, Amsterdam, 1979.
- [GW99] T. Griffin and G. Wilfong. "An Analysis of BGP Convergence Properties," in *Proceedings of SIGCOMM* '99, ACM Press, New York, 1999, pp. 277-288.

http://www.acm.org/sigcomm/sigcomm99/papers/session8-1.html.

[GY02] N. Garg and N. E. Young. "On-Line End-to-End Congestion Control," in *Proceedings of the 43rd Symposium on Foundations of Computer Science*, IEEE Computer Society Press, Los Alamitos, 2002, pp. 303-312. <u>http://arxiv.org/pdf/cs.DS/0205032</u>.

References (8)

[HS01] J. Hershberger and S. Suri. "Vickrey Prices and Shortest Paths: What is an Edge Worth?" in *Proceedings of the 42nd Symposium on Foundations of Computer Science*, IEEE Computer Society Press, Los Alamitos, 2001, pp. 129-140. <u>http://www.cs.yale.edu/~jf/HS01.ps</u>.

[KP99] E. Koutsoupias and C. Papadimitriou. "Worst-Case Equilibria," in Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 1563, Springer, Berlin, 1999, pp. 404-413.

http://www.cs.ucla.edu/~elias/publications/paper-kp99.pdf.

[KPS03] A. Kothari, D. Parkes, and S. Suri. "Approximately Strategyproof and Intractable Multi-Unit Auctions," in *Proceedings of the 4th Conference on Electronic Commerce*, ACM Press, New York, 2003, pp. 166-175. <u>http://www.cs.ucsb.edu/~suri/psdir/ec03.pdf</u>.

- [MS01] H. Moulin and S. Shenker. "Strategyproof Sharing of Submodular Costs: Budget Balance Versus Efficiency," *Economic Theory* 18 (2001), pp. 511-533. <u>http://www.cs.huji.il/~noam/econcs/2001/ms.ps</u>.
- [N85] J. Nagle. "On Packet Switches With Infinite Storage," RFC 970 (1985). <u>http://www.faqs.org/rfcs/rfc970.html</u>.

References (9)

[NR00] N. Nisan and A. Ronen. "Computationally Feasible VCG Mechanisms," in *Proceedings of the 2nd Conference on Electronic Commerce*, ACM Press, New York, 2000, pp. 242-252. <u>http://www.cs.huji.ac.il/~noam/vcgbased.ps</u>.

[NR01] N. Nisan and A. Ronen. "Algorithmic Mechanism Design," Games and Economic Behavior 35 (2001), pp. 166-196. <u>http://www.cs.huji.ac.il/~noam/selfishJ.ps</u>.

[NWD03] T.-W. Ngan, D. Wallach, and P. Druschel. "Enforcing Fair Sharing of Peer-to-Peer Resources," in *Proceedings of Peer-to-Peer* Systems II: 2nd International Workshop on Peer-to-Peer Systems, Revised Papers, LNCS 2735, Springer, Heidelberg, 2003, pp. 149-159. <u>http://www.cs.rice.edu/~druschel/publications/p2pquota.pdf</u>.

[P85] C. Papadimitriou. "Games Against Nature," *Journal of Computer and System Sciences* **31** (1985), pp. 288-301.

- [RT02] T. Roughgarden and É. Tardos. "How Bad Is Selfish Routing?" Journal of the Association for Computing Machinery 49 (2002), pp. 236-259. <u>http://www.cs.cornell.edu/timr/papers/routing.pdf</u>.
- [S01] J. Schummer. "Almost Dominant Strategy Implementation," 2001. http://www.kellogg.nwu.edu/faculty/schummer/ftp/research/esp.ps.

References (10)

[S03] R. Sami. *Distributed Algorithmic Mechanism Design*, Ph.D. Thesis, Yale University, 2003.

http://www.cs.yale.edu/~jf/Rahul-thesis.pdf.

- [SP04] J. Shneidman and D. Parkes. "Specification Faithfulness in Networks with Rational Nodes," to appear in *Proceedings of the 23rd Symposium on Principles of Distributed Computing,* ACM Press, New York, 2004. <u>http://www.eecs.harvard.edu/econcs/pubs/pp068-</u> <u>shneidman.pdf</u>.
- [V61] W. Vickrey. "Counterspeculation, Auctions, and Competitive Sealed Tenders," *Journal of Finance* **16** (1961), pp. 8-37.