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Three Research Traditions
• Theoretical Computer Science: complexity

– What can be feasibly computed?
– Centralized or distributed computational models

• Game Theory: incentives
– What social goals are compatible with 

selfishness? 

• Internet Architecture: robust scalability
– How to build large and robust systems?



4

Different Assumptions

• Theoretical Computer Science: 
– Nodes are obedient, faulty, or adversarial.
– Large systems, limited comp. resources

• Game Theory:
– Nodes are strategic (selfish).
– Small systems, unlimited comp. resources
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Internet Systems (1)

• Agents often autonomous (users/ASs)
– Have their own individual goals

• Often involve “Internet” scales
– Massive systems
– Limited comm./comp. resources

• Both incentives and complexity matter.
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Internet Systems (2)

• Agents (users/ASs) are dispersed.

• Computational nodes often dispersed.

• Computation is (often) distributed.



7

Internet Systems (3)

• Scalability and robustness paramount
– sacrifice strict semantics for scaling
– many informal design guidelines
– Ex: end-to-end principle, soft state, etc.

• Computation must be “robustly scalable.”
– even if criterion not defined precisely
– If TCP is the answer, what’s the question?
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Fundamental Question

What computations are (simultaneously):

• Computationally feasible

• Incentive-compatible

• Robustly scalable

TCS

Game 
Theory

Internet
Design
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Game Theory and the Internet

• Long history of work:
– Networking: Congestion control [N85], etc.
– TCS: Selfish routing [RT02], etc.

• Complexity issues not explicitly addressed
– though often moot
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TCS and Internet

• Increasing literature
– TCP [GY02,GK03]
– routing [GMP01,GKT03]
– etc.

• No consideration of incentives

• Doesn’t always capture Internet style
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Game Theory and TCS
• Various connections:

– Complexity classes [CFLS97, CKS81, P85, etc.]
– Price of anarchy, complexity of equilibria, etc.

[KP99,CV02,DPS02]

• Algorithmic Mechanism Design (AMD)
– Centralized computation [NR01]

• Distributed Algorithmic Mechanism Design 
(DAMD)
– Internet-based computation [FPS01]
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DAMD: Two Themes

• Incentives in Internet computation
– Well-defined formalism
– Real-world incentives hard to characterize

• Modeling Internet-style computation
– Real-world examples abound
– Formalism is lacking
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Outline
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System Notation

Outcomes and agents:

• Φ is set of possible outcomes.
• o ∈ Φ represents particular outcome.

• Agents have valuation functions vi.
• vi(o) is “happiness” with outcome o.
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Societal vs. Private Goals

• System-wide performance goals: 
– Efficiency, fairness, etc.

– Defined by set of outcomes G(v) ⊂ Φ

• Private goals: Maximize own welfare
– vi is private to agent i.

– Only reveal truthfully if in own interest
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Mechanism Design

• Branch of game theory:
– reconciles private interests with social goals

• Involves esoteric game-theoretic issues
– will avoid them as much as possible
– only present MD content relevant to DAMD
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Mechanisms

Actions: ai Outcome: O(a) Payments: pi(a)
Utilities: ui(a) = vi(O(a)) + pi(a)

Agent 1 Agent n

Mechanism        

. . .
p1 a1 pnan

O

v1 vn
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Mechanism Design
• AO(v) = {action vectors} consistent w/selfishness

• ai “maximizes” ui(a) = vi(O(a)) + pi(a).
• “maximize” depends on information, structure, etc.
• Solution concept: Nash, Rationalizable, ESS, etc.

• Mechanism-design goal: O(AO (v)) ⊆ G(v) for all v

• Central MD question: For given solution concept, 
which social goals can be achieved?
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Direct Strategyproof 
Mechanisms 

• Direct: Actions are declarations of vi.

• Strategyproof: ui(v) ≥ ui(v-i, xi), for all xi ,v-i
• Agents have no incentive to lie.
• AO(v) = {v}  “truthful revelation”

• Which social goals achievable with SP?
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Strategyproof Efficiency

Efficient outcome: maximizes Σvi

VCG Mechanisms:

• O(v) = õ(v) where õ(v) = arg maxo Σvi(o)

• pi(v) = ∑j≠i vj(õ(v)) + hi(v-i)
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Why are VCG Strategyproof?

• Focus only on agent i
• vi is truth; xi is declared valuation
• pi(xi) = ∑j≠i vj(õ(xi)) + hi

• ui(xi) = vi(õ(xi)) + pi(xi) = Σj vj(õ(xi)) + hi

• Recall: õ(vi) maximizes Σj vj(o)
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Group Strategyproofness

Definition:
• True: vi Reported: xi

• Lying set S={i: vi ≠ xi}

∃ i∈S ui(x) > ui(v)  ⇒ ∃ j∈S uj(x) < uj(v)

• If any liar gains, at least one will suffer.
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Algorithmic Mechanism Design [NR01]

Require polynomial-time computability:
• O(a) and pi(a)

Centralized model of computation:
– good for auctions, etc.
– not suitable for distributed systems
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Complexity of Distributed 
Computations (Static)

Quantities of Interest:
• Computation at nodes
• Communication:

– total
– hotspots 

• Care about both messages and bits
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“Good Network Complexity”

• Polynomial-time local computation
– in total size or (better) node degree

• O(1) messages per link

• Limited message size
– F(# agents, graph size, numerical inputs)
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Dynamics (partial)

• Internet systems often have “churn.”
– Agents come and go
– Agents change their inputs

• “Robust” systems must tolerate churn.
– most of system oblivious to most changes

• Example of dynamic requirement:  
– o(n) changes trigger Ω(n) updates.
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Protocol-Based Computation

• Use standardized protocol as substrate 
for computation.
– relative rather than absolute complexity

• Advantages:
– incorporates informal design guidelines
– adoption does not require new protocol
– example: BGP-based mech’s for routing
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Multicast Cost Sharing (MCS)

3 3

1 5 25

1,2 3,0

1,26,710

Users’ valuations: vi

Link costs: c(l)

Source
Which users receive   
the multicast?

Receiver Set

Cost Shares
How much does each 
receiver pay?

Model [FKSS03, §1.2]:
• Obedient Network
• Strategic Users
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Notation
P Users (or “participants”)
R Receiver set (σi = 1 if i ∈ R)
pi User i’s cost share (change in sign!)
ui User i’s utility (ui =σivi – pi)
W Total welfare W(R) V(R) – C(R)∆

=

C(R) ∑ c(l)
l ∈ T(R)

∆= V(R) ∑ vi
i ∈ R

∆=
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“Process” Design Goals

• No Positive Transfers (NPT):  pi ≥ 0

• Voluntary Participation (VP): ui ≥ 0

• Consumer Sovereignty (CS): For all trees 
and costs, there is a µcs s.t. σi = 1 if vi ≥ µcs.

• Symmetry (SYM): If i,j have zero-cost path 
and vi = vj, then σi = σj and pi = pj.
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Two “Performance” Goals

• Efficiency (EFF):   R = arg max W

• Budget Balance (BB):  C(R) = ∑i ∈ R pi
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Impossibility Results
Exact [GL79]:  No strategyproof mechanism 

can be both efficient and budget-balanced.

Approximate [FKSS03]:  No strategyproof
mechanism that satisfies NPT, VP, and CS 
can be both γ-approximately efficient and 
κ-approximately budget-balanced, for any 
positive constants γ, κ.
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Efficiency
Uniqueness [MS01]:  The only strategyproof, 

efficient mechanism that satisfies NPT, VP, and 
CS is the Marginal-Cost mechanism (MC):

pi = vi – (W – W-i), 
where W is maximal total welfare, and W-i is 
maximal total welfare without agent i.

• MC also satisfies SYM.
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Budget Balance (1)

General Construction [MS01]:  Any cross-
monotonic cost-sharing formula results in a 
group-strategyproof and budget-balanced
cost-sharing mechanism that satisfies NPT, 
VP, CS, and SYM. 

• R is biggest set s.t. pi(R) ≤ vi, for all i ∈ R.
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Budget Balance (2)

• Efficiency loss [MS01]: The Shapley-
value mechanism (SH) minimizes the 
worst-case efficiency loss.

• SH Cost Shares: c(l) is shared equally 
by all receivers downstream of l.
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Network Complexity for BB

Hardness [FKSS03]: Implementing a 
group-strategyproof and budget-
balanced mechanism that satisfies NPT, 
VP, CS, and SYM requires sending 
Ω(|P|) bits over Ω(|L|) links in worst case.

• Bad network complexity!
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Network Complexity of EFF

“Easiness” [FPS01]: MC needs only:
• One modest-sized message in each

link-direction
• Two simple calculations per node

• Good network complexity!
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Computing Cost Shares
pi ≡ vi – (W – W-i)

Case 1: No difference in tree
Welfare Difference = vi
Cost Share = 0

Case 2: Tree differs by 1 subtree.
Welfare Difference = Wγ

(minimum welfare subtree above i)
Cost Share = vi – Wγ
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Two-Pass Algorithm for MC

Bottom-up pass:
• Compute subtree welfares Wγ.
• If Wγ < 0, prune subtree.

Top-down pass:
• Keep track of minimum welfare subtrees.
• Compare vi to minimal Wγ.
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Computing the MC Receiver Set R

Σ
β ∈ Ch(α)
s.t. Wβ ≥ 0

Wα ≡ vα +      Wβ – cα

Proposition:
res(α) ⊆ R iff Wγ ≥ 0, ∀γ ∈ {anc. of α in T(P)}

Additional Notation:

{α, β, γ} ⊆ P

Ch(α)    children of α in T(P)

res(α)    all users “resident” at node α

loc(i)     node at which user i is “located”

∆=
∆=
∆=
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Bottom-Up Traversal of T(P)

∀α, after receiving Wβ,  ∀β ∈ Ch(α):
{

COMPUTE Wα

IF Wα ≥ 0, σi ← 1 ∀i ∈ res(α)
ELSE σi ← 0 ∀i ∈ res(α)
SEND Wα TO parent(α)

}
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Computing Cost Shares
pi ≡ vi – (W – W-i)

Case 1: No difference in trees.
Welfare Difference = vi
Cost Share = 0

Case 2: Trees differ by 1 subtree.
Welfare Difference = Wγ

(γ ≡ minimum welfare anc. of loc(i) )
Cost Share = vi – Wγ
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Need Not Recompute W
for each i ∈ P

W4

W3

W2

W1 … vi …

Subtract
vi or W1

from W2?
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Top-Down Traversal of T(P)
(Nodes have “state” from bottom-up traversal)
Init: Root αs sends W to Ch(αs)
∀α ≠ αs, after receiving A from parent(α) :

IF σi = 0, ∀i ∈ res(α), OR A < 0 {
pi ← 0 ∧ σi ← 0, ∀i ∈ res(α)
SEND -1 TO β, ∀β ∈ Ch(α) }

ELSE {
A ← min(A, Wα)
FOR EACH i ∈ res(α)

IF vi ≤A, pi ← 0
ELSE pi ← vi – A

SEND A TO β, ∀β ∈ Ch(α) }

αs
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Profit Maximization [FGHK02]
Mechanism:
• Treat each node as a separate “market.”
• Clearing prices approx. maximize revenue.
• Find profit-maximizing subtree of markets.
• Satisfies NPT and VP but not CS or SYM.

Properties:
• Strategyproof and O(1) messages per link
• Expected constant fraction of maximum profit if

– maximum profit margin is large (> 300%), and
– there is real competition in each market
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Multiple Transmission Rates [AR02]

r = # rates    h = tree height    K = size of numerical input

One layer per rate (“layered paradigm”):
• MC is computable with three messages per link and

O(rhK) bits per link.
• For worst-case instances, average number of bits per 

link needed to compute MC is Ω(rK).

One multicast group per rate (“split-session paradigm”):
• Same MC algorithm has communication and 

computational complexity proportional to 2r.
• For variable r, no polynomial-time algorithm can 

approximate total welfare closely, unless NP=ZPP.
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Outline

• Motivation and Background
• Example: Multicast Cost Sharing
• Overview of Known Results
• Three Research Directions
• Open Questions
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Interdomain Routing

Inputs: Routing Costs or Preferences
Outputs: Routes, Payments

Qwest

Sprint

UUNET

WorldNet

Agents: Transit ASs
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Lowest-Cost Routing

• Agent k’s private info: per-packet cost ck
• Mechanism-design goal: LCPs
• Centralized computation:

– P-time VCG mechanism [NR01]
– Faster P-time VCG mechanism [HS01]

• Distributed computation [FPSS02]:
– BGP-based algorithm for VCG mechanism
– All source-destination pairs
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Policy-Routing
• Agents have preferences over routes: 

vi: {Pij} → ℜ≥0

• Goal: routing tree maximizing ∑i vi(Pij)
• Arbitrary preferences [FSS04]:

NP-hard to approximate w/in factor O(n1/4–ε)
• Next-hop preferences [FSS04]:

– P-time (centralized) VCG mechanism
– No good distributed implementation (dyn.)
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Supply-Chain Auctions
• Problem: concurrent auctions where activities 

must be coordinated across markets
– Example: Markets for rubber, tires, trucks

• Solution [BN01]: Mechanism that propagates 
supply and demand curves along the chain
– Strategyproof and achieves material balance

• Communication complexity:
– Naïve algorithm sends  Ω(q) prices per link.
– Use binary search to find traded quantity.

⇒ O(log q) prices per link
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Spatially Distributed Markets
• Problem:  There are multiple markets for a single 

good, with a cost to transfer the between markets. 
Find an efficient set of market prices and transfer 
quantities.

• Solutions [BNP04]: 
1) Mechanism that is efficient and strategyproof
2) Mechanism that is budget-balanced and  
strategyproof

• Mechanisms can be computed in polynomial time
using a reduction to min-cost flow.
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Negotiation-Range Mechanisms
• Classical results in economics show that no 

strategyproof trade mechanism can be efficient and
budget-balanced.

• One approach:  Mechanism reports a range of prices
for each trade, instead of a single price. Then, traders 
negotiate the final price [BGLM04].

• There is a strategyproof, budget-balanced, and 
efficient mechanism to match traders and report a 
price range to each pair [BGLM04].

• Catch: No strategyproof negotiation mechanisms for 
the second phase 
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Peer-to-Peer Networks

Distributed rating system [DGGZ03]:
• Constructs “reputation” of each peer
• Prevents lying (strategyproof)

Fair allocation of resources [NWD03]:
• Strategyproof revelation of true usage
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Outline

• Motivation and Background
• Example: Multicast Cost Sharing
• Overview of Known Results
• Three Research Directions

– BGP-based interdomain-routing mechanisms
– Canonically hard DAMD problems
– Distributed implementation challenges

• Open Questions
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Interdomain-Routing
Mechanism-Design Problem

Inputs: Routing Costs or Preferences
Outputs: Routes, Payments

Qwest

Sprint

UUNET

WorldNet

Agents: Transit ASs
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Lowest-Cost-Routing MD

• Strategyproofness
• “BGP-based” distributed algorithm

• Lowest-cost paths (LCPs)

Per-packet costs {ck}Agents’ valuations:

{route(i, j)}Outputs:

(Unknown) global parameter: Traffic matrix [Tij]

{pk}Payments: 

Objectives:
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A Unique VCG Mechanism

For a biconnected network,  if LCP routes are 
always chosen, there is a unique strategyproof
mechanism that  gives no payment to nodes that 
carry no transit traffic. The payments are of the 
form 

pk = ∑ Tij ,          where

Theorem [FPSS02]:

pij
k

i,j

pij
k

Proof is a straightforward application of [GL79].

= ck +  Cost ( P-k(c; i, j) ) – Cost ( P(c; i, j) )
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Features of this Mechanism
• Payments have a very simple dependence on 

traffic [Tij ]: Payment pk is weighted sum of 
per-packet prices .

• Cost ck is independent of i and j, but price
depends on i and j.

• Price      is 0 if k is not on LCP between i, j.

• Price is determined by cost of min-cost 
path from i to j not passing through k
(min-cost “k-avoiding” path).

pij
k

pij
k

pij
k

pijk



67

BGP-Based Computational 
Model  (1)

• Follow abstract BGP model of [GW99]:
Network is a graph with nodes corresponding to 
ASs and bidirectional links; intradomain-routing 
issues are ignored.

• Each AS has a routing table with LCPs to all other nodes:

Entire paths are stored, not just next hop.

Dest. LCP LCP cost
AS3 AS5 3AS1AS1
AS7 AS2 2AS2
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Computational Model (2)
• An AS “advertises” its routes to its neighbors in  
the AS graph, whenever its routing table changes.

• The computation of a single node is an infinite  
sequence of stages: 

Receive routes 
from neighbors

Update 
routing table

Advertise 
modified routes

• Complexity measures:
- Number of stages required for convergence
- Total communication

Surprisingly scalable in practice.
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Computing the VCG Mechanism

• Need to compute routes and prices.

• Routes: Use Bellman-Ford algorithm to compute
LCPs and their costs.

• Prices: 

= ck +   Cost ( P-k(c; i, j) ) – Cost ( P(c; i, j) )pij
k

⇒ Need algorithm to compute cost of 
min-cost k-avoiding path.
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Structure of k-avoiding Paths

i

• BGP uses communication between neighbors only
⇒ we need to use “local” structure of P-k(c; i,j).

• Tail of P-k(c; i,j) is either of the form

(1) P-k(c; a,j)

or  (2) P(c; a,j)

a k j

i k j

a

• Conversely, for each neighbor a, either P-k(c; a,j)
or P(c; a,j) gives a candidate for P-k(c; i,j).
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Computing the Prices

- Each of i’s neighbors is either 
(a)  parent 
(b)  child
(d)  unrelated

• Each case gives a candidate value for      based on
neighbor’s LCP cost or price, e.g.,

(b)         ≤ + cb + cipij
k pbj

k

pij
k

in tree of LCPs to j.

• Classifying neighbors: j

a

bd
i

k

- Set of LCPs to j forms a tree.

pij
k

• is the minimum of these candidate values
⇒ compute it locally with dynamic programming.
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A “BGP-Based” Algorithm

AS3 AS5
c(i,1)AS1 c1

Dest. cost LCP and path prices LCP cost
AS1

1. LCPs are computed and advertised to neighbors.
2. Initially, all prices are set to ∞.
3. In the following stages, each node repeats: 

- Receive LCP costs and path prices from neighbors.
- Recompute candidate prices; select lowest price.
- Advertise updated prices to neighbors.

Final state: Node i has accurate      values.pij
k

pi1
3 pi1

5
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Performance of Algorithm

d′ = maxi,j,k ||P-k ( c; i, j ) ||

d = maxi,j || P ( c; i, j ) ||

This algorithm computes the VCG prices correctly,   
uses routing tables of size O(nd) (a constant factor 
increase over BGP), and converges in at most (d + d′)
stages (worst-case additive penalty of d′ stages over 
the BGP convergence time).

Theorem [FPSS02]:
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Dealing with Strategic Computation
• Restoring strategyproofness: Cost ck must be the
only path information that AS k can manipulate.  

• Possible because all other information reported 
by AS k is known to at least one other party, hence 
not “private” information of AS k.

• Solution [MSTT]: All information is signed by
originating party.

cost ci:  signed by AS i.
existence of link ij:  signed by AS i and AS j.

AS k’s message has to include all relevant signatures.

• AS k cannot benefit by suppressing real paths to k. 
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Modified BGP-Update 
Messages

AS3 AS5
c(k,1)AS1

Dest. cost LCP and path prices LCP cost
AS1

pk1
3 pk1

5

c3 c5ck

sk(lkj)

sk(ck)

s3(l3k) s5(l53) s1(l15)

s3(c3) s5(c5)

Update from AS k to AS j for route to AS1:
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– Maximize W = Σ vi(Pij).

– For each destination j, {Pij } forms a tree.
– Strategyproofness
– BGP-based distributed algorithm

General Policy-Routing 
Problem Statement

• Each AS i assigns a value vi(Pij) to each potential route Pij.

i

i
b d

a j

• Consider each destination j separately.

• Mechanism-design goals:
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NP-Hardness with
Arbitrary Valuations

• Approximability-preserving reduction from Independent-set problem:

b

a f

e2e1

j

tftbta

e1 e1

e1

e2

e2
e2

a

b f

b

Paths from terminals ta, tb, tf have 
valuation 1, all other paths 0. 

• NP-hard to compute maximum W exactly.
• NP-hard to compute O(n1/4 -ε ) approximation to maximum W.
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Next-Hop Preferences
• vi(Pij) depends only on first-hop AS a.

• Captures preferences due to 
customer/provider/peer agreements.

For each destination j , optimal routing tree is a
Maximum-weight Directed Spanning Tree (MDST):

i
b

a

j

cEdge weight =
vi([i a … j])
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Strategyproof Mechanism

T* =  Maximum weight directed spanning tree (MDST) in G

T-i =  MDST in G – {i}

pi =    W(T*) – vi(T*) – W(T-i )

Let

• For biconnected networks, there is a unique strategyproof
mechanism that always picks a welfare-maximizing routing tree
and never pays non-transit nodes. The payments required for 
this mechanism are 

• Routes and payments can be computed in polynomial time
(in a centralized computational model).
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Proving Hardness for “BGP-Based”
Routing Mechanisms [FSS04]

• Need to formalize requirements for 
“BGP compatibility.”

• Hardness results need only hold for:
– “Internet-like” graphs

• O(1) average degree
• O(log n) diameter and O(log n) diameter′

– An open set of numerical inputs in a
small range
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Reasonable Routing-Table Size 
and Convergence Time

• Each AS uses O(l) space for a route
of length l.

• Length of longest routes chosen
(and convergence time) should be 
proportional to network diameter or 
diameter′.

• See related work on formal models of
“path-vector” routing protocols [GJR03].
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Long Paths Chosen 
by MDST [FSS04]

• Example:

• Don’t even know how to compute MDST 
prices in time proportional to length of 
longest route chosen.

1

1

1 1 1 1 1

2 2 2 2
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Reasonably Stable
Routing Tables

• Most changes should not affect most 
routes.

• More formally, there are o(n) nodes that 
can trigger Ω(n) update messages when 
they fail or change valuations.
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MDST Does Not Satisfy the 
Stability Requirement [FSS04]

Proof outline:

(i)   Construct a network and valuations such that,
for Ω(n) nodes i, T-i is disjoint from the MDST T*.

(ii) A change in the valuation of any node a may change 
pi =  W(T*) – vi(T*) – W(T-i).

(iii) Node i (or whichever node stores pi) must receive 
an update when this change happens.
⇒ Ω(n) nodes can each trigger Ω(n) update messages.
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Network Construction (1)
(a) Construct 1-cluster with two nodes:

B R

1-cluster

red
port

blue
port

(b) Recursively construct (k+1)-clusters:

blue
port

red
port

L-1

L-1

B R B R

k-cluster k-cluster
(k+1)-cluster

L- 2k -1
L- 2k -1

L  ≈ 2 log n + 4
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Network Construction (2)
(c) Top level: m-cluster with n = 2m + 1 nodes.

B R

m-clusterL- 2m -1 L- 2m -2

j
Destination

Final network (m = 3):

red
port

blue
port

B R
9

9
B R

9

97

79

9

9

9

7

j

B R B R

5

3
5

2
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Optimal Spanning Trees
Lemma: W(blue tree)  =  W(red tree) + 1  ≥

W(any other sp.tree) + 2
Proof: If a directed spanning tree has red and blue edges, we can 

increase its weight by at least 2:

B

B R

k-cluster k-cluster
(k+1)-cluster

L- 2k -3L- 2k -3

B

k-cluster k-cluster
(k+1)-cluster

L- 2k -1L- 2k -3
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B R
9

9
B R

9

97

79

9

9

9

7

j

B R B R

5

3
5

2

• MDST T* is the blue spanning tree.

• For any blue node B, T-B is the red spanning tree on N – {B}.
• A small change in any edge, red or blue, changes

⇒ Any change triggers update messages to all blue nodes!

pB =    W(T*) – vB(T*) – W(T-B)
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Alternative Policy Class: 
Subjective Costs

• AS i assigns a cost ci(k) to AS k.
AS i’s subjective cost for route Pij is
Ci(Pij) = Σk∈ Pij ci(k)

• Overall goal: minimize total subjective cost to 
destination = Σi Ci(Pij)

• Natural generalization of Lowest-Cost Routing
• Expresses a broad range of policies.
• Question: Which subclasses of Subjective-Cost 

Policies lead to  strategyproof, BGP-based 
mechanisms?
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Forbidden-Set Policies
• AS i has a set Si of ASes it does not want to 

route through.
• Goal: Find a routing tree in which no AS i uses a 

route through any AS in Si.
• 0-1 subjective cost model: 

ci(k) = 1 if k ∈ Si
ci(k) = 0 if k ∉ Si

• Theorem [FMKS]:  It is NP-hard to find a routing tree 
that even approximately minimizes total subjective 
cost, within any factor.
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1-2 Subjective costs
• Restricted subclass of subjective-cost policies

with ci(k) ∈ {1,2} for all i,k.
• It is NP-hard to find a minimum subjective-cost 

routing tree with 1-2 subjective costs [FKMS].
• It is also APX-hard, i.e., (1+ε)-approximation is hard.
• Easy 2-approximation:  Shortest path tree
• This approximation does not use private information

at all. ⇒ No interesting mechanism design problem.
Question: Can we do better than 2-approximation 
with a non-trivial approximation algorithm?
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Open Questions about 
Subjective-Cost Routing

• ASes “almost” agree about the cost of node k:
Subjective costs are randomly distributed about an 
(unknown) objective value.
Question: How does the hardness change with the 
degree of subjectivity?

• Differences in cost arise because ASes value 
different objective metrics (e.g., length vs. reliability).

•
•
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Open Questions
• BGP-compatible special case of

next-hop-preferences routing

• Fully fleshed-out BGP-based 
computational model
– Incremental computation
– “Smooth” convergence?

• New DA principle:  Use an Internet 
protocol as a “computational substrate.”
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Outline

• Motivation and Background
• Example: Multicast Cost Sharing
• Overview of Known Results
• Three Research Directions

– BGP-based interdomain-routing mechanisms
– Canonically hard DAMD problems
– Distributed implementation challenges

• Open Questions
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“Hard to Solve on the Internet”

Intuitively, this means
• Cannot simultaneously achieve

– Robust scalability
– Incentive compatibility

• Can achieve either requirement separately

Recall that BB multicast cost sharing is hard.
Scalability low (absolute) network complexity
Incentive compatibility GSP’ness

∆=
∆=
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Iterative SH Algorithm

• Start with R = P.
• Calculate cost shares as above.
• Eliminate from R all i s.t. current pi > vi.
• Repeat until R ≠ ∅ or no i eliminated.

Worst case:  |P| iterations.
Lower bound in [FKSS03] shows that bad 

network complexity is unavoidable.
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Scalability Without GSP’ness

Bottom-up pass:  Compute

Top-down pass:
If C > V, σi = 0 for all i
If C ≤ V, σi = 1 for all i

and pi = (vi ⋅ C) / V

C =  ∑ c(l)
l ∈ L

V =  ∑ vi
i ∈ P

and
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Open Question

• More canonically hard problems?

• Open for centralized AMD as well

• Complexity theory of Internet computation
– Formal models
– Complexity classes
– Reductions
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Outline

• Motivation and Background
• Example: Multicast Cost Sharing
• Overview of Known Results
• Three Research Directions

– BGP-based interdomain-routing mechanisms
– Canonically hard DAMD problems
– Distributed implementation challenges

• Open Questions
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Revelation  Principle
If there is a DS mechanism (O, p) that implements a 
design goal, then there is one that does so truthfully.

. . .Agent 1 Agent n

FOR i ← 1 to n
SIMULATE i to COMPUTE ai

O ← O(a1, …, an); p ← p (a1, …, an)

p1 v1 pnvn

O
Note: Loss of privacy

Shift of computational load
Assumes centralized, obedient mechanism
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Is Truthtelling Really “Dominant”?

Consider Lowest-Cost Routing:

• Mechanism is strategyproof,  in the technical 
sense:  Lying about its cost cannot improve 
an AS’s welfare in this particular game.

• But truthtelling reveals to competitors 
information about an AS’s internal network.  
This may be a disadvantage in the long run.

• Note that the goal of the mechanism is not 
acquisition of private inputs per se but rather 
evaluation of a function of those inputs.
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Secure, Multiparty
Function Evaluation

. . .

v1

v2

v3vn-1

vn

O = O (v1, …, vn)

• Each i learns O.
• No i can learn anything about vj
(except what he can infer from vi and O).

• Extensive SMFE theory; see, e.g., [C00, G03].
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Constructive, “Compiler”-Style Results

trusted
party

generic SMFE
transformation

…

…

agent 1 agent n…
v1 O vn O

SMFE Protocol

Natural approach:

Must be careful about strategic models and solution concepts.

centralized mechanism  ≈ trusted party
DAM                  ≈ SMFE protocol
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Combining MD and SMFE
Example:  Transform a centralized, strategyproof

mechanism using the “secure” (against an active 
adversary) protocol construction in [BGW88]
(with t = 1).  Result is:
• An input game, with a dominant-strategy equilibrium in which 

every agent “shares” his true valuation.
• A computational game, with a Nash equilibrium in which 

every agent follows the protocol.
• Agent privacy!

Need specific properties of [BGW88] construction (e.g., 
initial input commitment) as well as general definition 
of security.
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Open Questions

• Complete understanding of what follows from 
known SMFE constructions

• Privacy-preserving DAMs that have good 
network complexity

• New solution concepts designed for Internet 
computation

• New kinds of mechanisms and protocols with 
highly transient sets of agents
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Outline

• Motivation and background
• Example: Multicast cost sharing
• Overview of known results
• BGP-based interdomain-routing mechanisms
• Canonically hard DAMD problems
• Distributed implementation challenges
• Other research directions
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More Problem Domains

• Caching

• Distributed Task Allocation

• Overlay Networks

Ad-hoc and/or Mobile Networks

• …
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Ad-Hoc and/or Mobile Networks

• Nodes make same incentive-sensitive decisions 
as in traditional networks, e.g.:
– Should I connect to the network?
– Should I transit traffic?
– Should I obey the protocol?

• These decisions are made more often and under 
faster-changing conditions than they are in 
traditional networks.

• Resources (e.g., bandwidth and power) are 
scarcer than in traditional networks.  Hence:
– Global optimization is more important.
– Selfish behavior by individual nodes is potentially more rewarding.
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Approximation in DAMD
• AMD approximation is subtle.  One can

easily destroy strategyproofness. 

• “Feasibly dominant strategies”  [NR00]

• “Strategically faithful” approximation 
[AFK+04]

• “Tolerable manipulability”  [AFK+04]

• “Approximate strategyproofness”
[APTT03, GH03, KPS03, S01]



111

Indirect Mechanisms

• agent computation
• mechanism computation
• communication
• privacy
• approximation factors

Explore tradeoffs among
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