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ABSTRACT
Two-party secure-function evaluation (SFE) has become sig-
nificantly more feasible, even on resource-constrained de-
vices, because of advances in server-aided computation sys-
tems. However, there are still bottlenecks, particularly in the
input-validation stage of a computation. Moreover, SFE re-
search has not yet devoted sufficient attention to the impor-
tant problem of retaining state after a computation has been
performed so that expensive processing does not have to be
repeated if a similar computation is done again. This paper
presents PartialGC, an SFE system that allows the reuse of
encrypted values generated during a garbled-circuit compu-
tation. We show that using PartialGC can reduce computa-
tion time by as much as 96% and bandwidth by as much as
98% in comparison with previous outsourcing schemes for
secure computation. We demonstrate the feasibility of our
approach with two sets of experiments, one in which the
garbled circuit is evaluated on a mobile device and one in
which it is evaluated on a server. We also use PartialGC
to build a privacy-preserving “friend-finder” application for
Android. The reuse of previous inputs to allow stateful eval-
uation represents a new way of looking at SFE and further
reduces computational barriers.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – Cryp-
tographic Controls

Keywords
Garbled Circuits, Cut-and-Choose, Server-Aided Computa-
tion

1. INTRODUCTION
Secure function evaluation, or SFE, allows multiple parties

to jointly compute a function while maintaining input and
output privacy. The two-party variant, known as 2P-SFE,
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was first introduced by Yao in the 1980s [39] and was largely
a theoretical curiosity. Developments in recent years have
made 2P-SFE vastly more efficient [18, 27, 38]. However,
computing a function using SFE is still usually much slower
than doing so in a non-privacy-preserving manner.

As mobile devices become more powerful and ubiquitous,
users expect more services to be accessible through them.
When SFE is performed on mobile devices (where resource
constraints are tight), it is extremely slow – if the com-
putation can be run at all without exhausting the mem-
ory, which can happen for non-trivial input sizes and algo-
rithms [8]. One way to allow mobile devices to perform SFE
is to use a server-aided computational model [8, 22], allow-
ing the majority of an SFE computation to be “outsourced”
to a more powerful device while still preserving privacy. Past
approaches, however, have not considered the ways in which
mobile computation differs from the desktop. Often, the mo-
bile device is called upon to perform incremental operations
that are continuations of a previous computation.

Consider, for example, a “friend-finder” application where
the location of users is updated periodically to determine
whether a contact is in proximity. Traditional applications
disclose location information to a central server. A privacy-
preserving friend-finder could perform these operations in a
mutually oblivious fashion. However, every incremental lo-
cation update would require a full re-evaluation of the func-
tion with fresh inputs in a standard SFE solution. Our ex-
amination of an outsourced SFE scheme for mobile devices
by Carter et al. [8] (hereon CMTB), determined that the
cryptographic consistency checks performed on the inputs
to an SFE computation themselves can constitute the great-
est bottleneck to performance.

Additionally, many other applications require the ability
to save state, a feature that current garbled-circuit imple-
mentations do not possess. The ability to save state and
reuse an intermediate value from one garbled circuit execu-
tion in another would be useful in many other ways, e.g., we
could split a large computation into a number of smaller
pieces. Combined with efficient input validation, this be-
comes an extremely attractive proposition.

In this paper, we show that it is possible to reuse an en-
crypted value in an outsourced SFE computation (we use
a cut-and-choose garbled circuit protocol) even if one is re-
stricted to primitives that are part of standard garbled cir-
cuits. Our system, PartialGC, which is based on CMTB,
provides a way to take encrypted output wire values from
one SFE computation, save them, and then reuse them as



input wires in a new garbled circuit. Our method vastly re-
duces the number of cryptographic operations compared to
the trivial mechanism of simply XOR’ing the results with a
one-time pad, which requires either generating inside the cir-
cuit, or inputting, a very large one-time pad, both complex
operations. Through the use of improved input validation
mechanisms proposed by shelat and Shen [38] (hereon sS13)
and new methods of partial input gate checks and evalu-
ation, we improve on previous proposals. There are other
approaches to the creation of reusable garbled circuits [13,
10, 5], and previous work on reusing encrypted values in the
ORAM model [30, 11, 31], but these earlier schemes have
not been implemented. By contrast, we have implemented
our scheme and found it to be both practical and efficient;
we provide a performance analysis and a sample application
to illustrate its feasibility (Section 6), as well as a simplified
example execution (Appendix C).

By breaking a large program into smaller pieces, our sys-
tem allows interactive I/O throughout the garbled circuit
computation. To the best of our knowledge this is the first
practical protocol for performing interactive I/O in the mid-
dle of a cut-and-choose garbled circuit computation.

Our system comprises three parties - a generator, an eval-
uator, and a third party (“the cloud”), to which the evaluator
outsources its part of the computation. Our protocol is se-
cure against a malicious adversary, assuming that there is
no collusion with the cloud. We also provide a semi-honest
version of the protocol.

Figure 1 shows how PartialGC works at a high level: First,
a standard SFE execution (blue) takes place, at the end of
which we“save”some intermediate output values. All further
executions use intermediate values from previous executions.
In order to reuse these values, information from both parties
– the generator and the evaluator – has to be saved. In our
protocol, it is the cloud – rather than the evaluator – that
saves information. This allows multiple distinct evaluators
to participate in a large computation over time by saving
state in the cloud between different garbled circuit execu-
tions. For example, in a scenario where a mobile phone is
outsourcing computation to a cloud, PartialGC can save the
encrypted intermediate outputs to the cloud instead of the
phone (Figure 2). This allows the phones to communicate
with each other by storing encrypted intermediate values in
the cloud, which is more efficient than requiring them to
directly participate in the saving of values, as required by
earlier 2P-SFE systems. Our friend finder application, built
for an Android device, reflects this usage model and allows
multiple friends to share their intermediate values in a cloud.
Other friends use these saved values to check whether or not
someone is in the same map cell as themselves without hav-
ing to copy and send data.

By incorporating our optimizations, we give the following
contributions:

1. Reusable Encrypted Values – We show how to reuse an
encrypted value, using only garbled circuits, by mapping
one garbled value into another.

2. Reduced Runtime and Bandwidth – We show how reusable
encrypted values can be used in practice to reduce the ex-
ecution time for a garbled-circuit computation; we get a
96% reduction in runtime and a 98% reduction in band-
width over CMTB.

3. Outsourcing Stateful Applications – We show how our sys-
tem increases the scope of SFE applications by allowing
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Figure 1: PartialGC Overview. E is evaluator and G is gen-
erator. The blue box is a standard execution that produces
partial outputs (garbled values); yellow boxes represent exe-
cutions that take partial inputs and produce partial outputs.
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Figure 2: Our system has three parties. Only the cloud and
generator have to save intermediate values - this means that
we can have different phones in different computations.

multiple evaluating parties over a period of time to op-
erate on the saved state of an SFE computation without
the need for these parties to know about each other.

The remainder of our paper is organized as follows: Section 2
provides some background on SFE. Section 3 introduces the
concept of partial garbled circuits in detail. The PartialGC
protocol and its implementation are described in Section 4,
while its security is analyzed in Section 5. Section 6 evalu-
ates PartialGC and introduces the friend finder application.
Section 7 discusses related work and Section 8 concludes.

2. BACKGROUND
Secure function evaluation (SFE) addresses scenarios where

two or more mutually distrustful parties P1, . . . , Pn, with
private inputs x1, . . . , xn, want to compute a given function
yi = f(x1, . . . , xn) (yi is the output received by Pi), such
that no Pi learns anything about any xj or yj , i 6= j that is
not logically implied by xi and yi. Moreover, there exists no
trusted third party – if there was, the Pis could simply send
their inputs to the trusted party, which would evaluate the
function and return the yis.

SFE was first proposed in the 1980s in Yao’s seminal pa-
per [39]. The area has been studied extensively by the cryp-
tography community, leading to the creation of the first gen-
eral purpose platform for SFE, Fairplay [32] in the early
2000s. Today, there exist many such platforms [6, 9, 16, 17,
26, 37, 40].

The classic platforms for 2P-SFE, including Fairplay, use
garbled circuits. A garbled circuit is a Boolean circuit which
is encrypted in such a way that it can be evaluated when
the proper input wires are entered. The party that evaluates
this circuit does not learn anything about what any partic-
ular wire represents. In 2P-SFE, the two parties are: the
generator, which creates the garbled circuit, and the evalua-
tor, which evaluates the garbled circuit. Additional crypto-
graphic techniques are used for input and output; we discuss
these later.

A two-input Boolean gate has four truth table entries. A
two-input garbled gate also has a truth table with four en-
tries representing 1s and 0s, but these entries are encrypted
and can only be retrieved when the proper keys are used.



The values that represent the 1s and 0s are random strings
of bits. The truth table entries are permuted such that the
evaluator cannot determine which entry she is able to de-
crypt, only that she is able to decrypt an entry. The entirety
of a garbled gate is the four encrypted output values.

Each garbled gate is then encrypted in the following way:
Each entry in the truth table is encrypted under the two
input wires, which leads to the result, truthi = Enc(inputx||
inputy)⊕outputi, where truthi is a value in the truth table,
inputx is the value of input wire x, inputy is the value of
input wire y, and outputi is the non-encrypted value, which
represents either 0 or 1.We use AES as the Enc function.
If the evaluator has inputx and inputy, then she can also
receive outputi, and the encrypted truth tables are sent to
her for evaluation.

For the evaluator’s input, 1-out-of-2 oblivious transfers
(OTs) [1, 20, 34, 35] are used. In a 1-out-of-2 OT, one party
offers up two possible values while the other party selects
one of the two values without learning the other. The party
that offers up the two values does not learn which value was
selected. Using this technique, the evaluator gets the wire
labels for her input without leaking information.

The only way for the evaluator to get a correct output
value from a garbled gate is to know the correct decryption
keys for a specific entry in the truth table, as well as the
location of the value she has to decrypt.

During the permutation stage, rather than simply ran-
domly permuting the values, the generator permutes values
based on a specific bit in inputx and inputy, such that, given
inputx and inputy the evaluator knows that the location of
the entry to decrypt is bitx ∗ 2 + bity. These bits are called
the permutation bits, as they show the evaluator which en-
try to select based on the permutation; this optimization,
which does not leak any information, is known as point and
permute [32].

2.1 Threat Models
Traditionally, there are two threat models discussed in

SFE work, semi-honest and malicious. The above description
of garbled circuits is the same in both threat models. In
the semi-honest model users stay true to the protocol but
may attempt to learn extra information from the system
by looking at any message that is sent or received. In the
malicious model, users may attempt to change anything with
the goal of learning extra information or giving incorrect
results without being detected; extra techniques must be
added to achieve security against a malicious adversary.

There are several well-known attacks a malicious adver-
sary could use against a garbled circuit protocol. A protocol
secure against malicious adversaries must have solutions to
all potential pitfalls, described in turn:

Generation of incorrect circuits If the generator does
not create a correct garbled circuit, he could learn extra
information by modifying truth table values to output the
evaluator’s input; he is limited only by the external structure
of the garbled circuit the evaluator expects.

Selective failure of input If the generator does not offer
up correct input wires to the evaluator, and the evaluator
selects the wire that was not created properly, the generator
can learn up to a single bit of information based on whether
the computation produced correct outputs.

Input consistency If either party’s input is not consis-
tent across all circuits, then it might be possible for extra

information to be retrieved.
Output consistency In the two-party case, the output

consistency check verifies that the evaluator did not modify
the generator’s output before sending it.

2.1.1 Non-collusion
CMTB assumes non-collusion, as quoted below:

“The outsourced two-party SFE protocol securely computes
a function f(a,b) in the following two corruption scenarios:
(1)The cloud is malicious and non-cooperative with respect
to the rest of the parties, while all other parties are semi-
honest, (2)All but one party is malicious, while the cloud is
semi-honest.”

This is the standard definition of non-collusion used in
server-aided works such as Kamara et al. [22]. Non-collusion
does not mean the parties are trusted; it only means the
two parties are not working together (i.e. both malicious).
In CMTB, any individual party that attempts to cheat to
gain additional information will still be caught, but collu-
sion between multiple parties could leak information. For
instance, the generator could send the cloud the keys to de-
crypt the circuit and see what the intermediate values are
of the garbled function.

3. PARTIAL GARBLED CIRCUITS
We introduce the concept of partial garbled circuits (PGCs),

which allows the encrypted wire outputs from one SFE com-
putation to be used as inputs to another. This can be ac-
complished by mapping the encrypted output wire values to
valid input wire values in the next computation. In order to
better demonstrate their structure and use, we first present
PGCs in a semi-honest setting, before showing how they can
aid us against malicious adversaries.

3.1 PGCs in the Semi-Honest Model
In the semi-honest model, for each wire value, the gen-

erator can simply send two values to the evaluator, which
transforms the wire label the evaluator owns to work in an-
other garbled circuit. Depending on the point and permute
bit of the wire label received by the evaluator, she can map
the value from a previous garbled circuit computation to a
valid wire label in the next computation.

Specifically, for a given wire pair, the generator has wires
wt−1

0 and wt−1
1 , and creates wires wt

0 and wt
1. Here, t refers

to a particular computation in a series, while 0 and 1 cor-
respond to the values of the point and permute bits of the
t− 1 values. The generator sends the values wt−1

0 ⊕ wt
0 and

wt−1
1 ⊕ wt

1 to the evaluator. Depending on the point and
permute bit of the wt−1

i value she possesses, the evaluator
selects the correct value and then XORs her wt−1

i with the
(wt−1

i ⊕ wt
i) value, thereby giving her wt

i , the valid partial
input wire.

3.2 PGCs in the Malicious Model
In the malicious model we must allow the evaluation of a

circuit with partial inputs and verification of the mappings,
while preventing a selective failure attack. The following fea-
tures are necessary to accomplish these goals:
1. Verifiable Mapping

The generator G is able to create a secure mapping from
a saved garbled wire value into a new computation that can
be checked by the evaluator E, without E being able to re-
verse the mapping. During the evaluation and check phase,
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Figure 3: This figure shows how we create a single partial
input gate for each input bit for each circuit and then link
the partial input gates to the remainder of the circuit.

E must be able to verify the mapping G sent. G must have
either committed to the mappings before deciding the parti-
tion of evaluation and check circuits, or never learned which
circuits are in the check versus the evaluation sets.
2. Partial Generation and Partial Evaluation

G creates the garbled gates necessary for E to enter the
previously output intermediate encrypted values into the
next garbled circuit. These garbled gates are called partial
input gates. As shown in Figure 3 each garbled circuit is
made up of two pieces: the partial input gates and the re-
mainder of the garbled circuit.
3. Revealing Incorrect Transformations

Our last goal is to let E inform G that incorrect values
have been detected. Without a way to limit leakage, G could
gain information based on whether or not E informs G that
she caught him cheating. This is a selective failure attack
and is not present in our protocol.

4. PARTIALGC PROTOCOL
We start with the CMTB protocol and add cut-and-choose

operations from sS13 before introducing the mechanisms
needed to save and reuse values. We defer to the original
papers for full details of the outsourced oblivious trans-
fer [8] and the generator’s input consistency check [38] sub-
protocols that we use as primitives in our protocol.

Our system operates in the same threat model as CMTB
(see Section 2.1.1): we are secure against a malicious adver-
sary under the assumption of non-collusion. A description of
the CMTB protocol is available in Appendix A.

4.1 Preliminaries
There are three participants in the protocol:
Generator – The generator is the party that generates

the garbled circuit for the 2P-SFE.
Evaluator –The evaluator is the other party in the 2P-

SFE, which is outsourcing computation to a third party, the
cloud.

Cloud – The cloud is the party that executes the garbled
circuit outsourced by the evaluator.

Notation

Ci - The ith circuit.

CKeyi - Circuit key used for the free XOR optimization [25].
The key is randomly generated and then used as the differ-
ence between the 0 and 1 wire labels for a circuit Ci.

CSeedi - This value is created by the generator’s PRNG and
is used to generate a particular circuit Ci.

POut#i,j - The partial output values are the encrypted wire
values output from an SFE computation. These are encrypted
garbled circuit values that can be reused in another garbled
circuit computation. # is replaced in our protocol descrip-
tion with either a 0, 1, or x, signifying whether it represents a

0, 1, or an unknown value (from the cloud’s point of view). i
denotes the circuit the POut value came from and j denotes
the wire of the POuti circuit.

PIn#i,j - The partial input values are the re-entered POut
values after they have been obfuscated to remove the circuit
key from the previous computation. These values are input
to the partial input gates. #, i, and j, are the same as above.

GIn#i,j - The garbled circuit input values are the results
of the partial input gates and are input into the remaining
garbled circuit, as shown in Figure 3. #, i, and j, are the
same as above.

Partial Input Gates - These are garbled gates that take in
PIn values and output GIn values. Their purpose is to
transform the PIn values into values that are under CKeyi
for the current circuit.

4.2 Protocol
Each computation is self-contained; other than what is

explicitly described as saved in the protocol, each value or
property is only used for a single part of the computation
(i.e. randomness is different across computations).

Algorithm 0: PartialComputation

Input : Circuit File, Bit Security, Number of Circuits, Inputs,
Is First Execution

Output: Circuit File Output
Cut_and_Choose(is First Execution)
Eval Garbled Input ← Evaluator_Input(Eval Select Bits,
Possible Eval Input)
Generator_Input_Check(Gen Input)
Partial Garbled Input ← Partial_Input(Partial Outputtime−1)
Garbled Output, Partial Output ←
Circuit_Execution(Garbled Input (Gen, Eval, Partial))
Circuit_Output(Garbled Output)
Partial_Output(Partial Output)

Common Inputs: The program circuit file, the bit level
security, the circuit level security (number of circuits) S,
and encryption and commitment functions.

Private Inputs: The evaluator’s input evlInput and gen-
erator’s input genInput.

Outputs: The evaluator and generator can both receive gar-
bled circuit outputs.

Phase 1: Cut-and-choose
We modify the cut-and-choose mechanism described in

sS13 as we have an extra party involved in the computation.
In this cut-and-choose, the cloud selects which circuits are
evaluation circuits and which circuits are check circuits,

circuitSelection = rand()

where circuitSelection is a bit vector of size S; N evaluation
circuits and S−N check circuits are selected where N = 2

5
S.

The generator does not learn the circuit selection.
The generator generates garbled versions of his input and

circuit seeds for each circuit. He encrypts these values using
unique 1-time XOR pad keys. For 0 ≤ i < S,

CSeedi = rand()

garbledGenInputi = garble(genInput, rand())

checkKeyi = rand()

evlKeyi = rand()

encSeedIni = CSeedi ⊕ evlKeyi

encGarbledIni = garbledGenInputi ⊕ checkKeyi



Algorithm 1: Cut and Choose

Input : is First Execution
if is First Execution then

circuitSelection ← rand() // bit-vector of size S

N ← 2
5S // Number of evaluation circuits

//Generator creates his garbled input and circuit seeds for each
circuit
for i← 0 to S do

CSeedi ← rand()
garbledGenInputi ← garble(genInput, rand())
//generator creates or loads keys
if is First Execution then

checkKeyi ← rand()
evlKeyi ← rand()

else
loadKeys();
checkKeyi ← hash(loadedCheckKeyi)
evlKeyi ← hash(loadedEvlKeyi)

// encrypts using unique 1-time XOR pads
encSeedIni ← CSeedi ⊕ evlKeyi

encGarbledIni ← garbledGenInputi ⊕ checkKeyi

if is First Execution then
// generator offers input OR keys for each circuit seed
selectedKeys←
OT (circuitSelection, {evlKey, checkKey})

else
loadSelectedKeys()

for i← 0 to S do
genSendToEval(hash(checkKeyi),
hash(evaluationKeyi))

for i← 0 to S do
cloudSendToEval(hash(selectedKeyi), isCheckCircuiti)

// If all values match, the evaluator learns split, else abort.
for i← 0 to S do

j ← isCheckCircuiti
correct← (recievedGeni,j == recievedEvli)
if !correct then

abort()

The cloud and generator perform an oblivious transfer where
the generator offers up decryption keys for his input and
decryption keys for the circuit seed for each circuit. The
cloud can select the key to decrypt the generator’s input or
the key to decrypt the circuit seed for a circuit but not both.
For each circuit, if the cloud selects the decryption key for
the circuit seed in the oblivious transfer, then the circuit is
used as a check circuit.

selectedKeys = OT (circuitSelection, {evlKey, checkKey})

If the cloud selects the key for the generator’s input then
a given circuit is used as an evaluation circuit. Otherwise,
the key for the circuit seed was selected and the circuit is
a check circuit. The decryption keys are saved by both the
generator and cloud in the event a computation uses saved
values from this computation.

The generator sends the encrypted garbled inputs and
check circuit information for all circuits to the cloud. The
cloud decrypts the information he can decrypt using its keys.

The evaluator must also learn the circuit split. The generator
sends a hash of each possible encryption key the cloud could
have selected to the evaluator for each circuit as an ordered
pair. For 0 ≤ i < S,

genSend(hash(checkKeyi), hash(evaluationKeyi))

The cloud sends a hash of the value received to the evaluator
for each circuit. The cloud also sends bits to indicate which
circuits were selected as check and evaluation circuits to the
evaluator. For 0 ≤ i < S,

cloudSend(hash(selectedKeyi), isCheckCircuiti)

The evaluator compares each hash the cloud sent to one of
the hashes the generator sent, which is selected by the circuit
selection sent by the cloud. For 0 ≤ i < S,

j = isCheckCircuiti

correct = (receivedGeni,j == receivedEvli)

If all values match, the evaluator uses the isCheckCircuiti
to learn the split between check and evaluator circuits. Oth-
erwise the evaluator safely aborts.

We only perform the cut-and-choose oblivious transfer for
the initial computation. For any subsequent computations,
the generator and evaluator hash the saved decryption keys
and use those hashes as the new encryption and decryption
keys. The circuit split selected by the cloud is saved and
stays the same across computations.

Phase 2: Oblivious Transfer

Algorithm 2: Evaluator Input

Input : Eval Select Bits, Possible Eval Input
Output: Eval Garbled Input
// cloud gets selected input wires // generator offers both
possible input wire values for each input wire; evaluator selects
its input
outSeeds = BaseOOT (bitsEvl, possibleInputs).
// the generator sends unique IKey values for each circuit to the
evaluator
for i← 0 to S do

genSendToEval(IKeyi)

// the evaluator sends IKey values for all evaluation circuits to
the cloud
for i← 0 to S do

if !isCheckCircuit(i) then
EvalSendToCloud(IKeyi)

// cloud uses this to learn appropriate inputs
for i← 0 to S do

for j ← 0 to len(evlInputs) do
if !isCheckCircuit(i) then

inputEvlij ← hash(IKeysi, outSeedsj)

return inputEvl

We use the base outsourced oblivious transfer (OOT) of
CMTB. In this transfer the generator inputs both possible
input wire values for each evaluator’s input wire while the
evaluator inputs its own input. After the OOT is performed,
the cloud has the selected input wire values, which represent
the evaluator’s input.

As with CMTB, which uses the results from a single OOT
as seeds to create the evaluator’s input for all circuits, the
cloud in our system also uses seeds from a single base OT
(called“BaseOOT”below) to generate the input for the eval-
uation circuits. The cloud receives the seeds for each input
bit selected by the evaluator.

outSeeds = BaseOOT (evlInputSeeds, evlInput).

The generator creates unique keys, IKey, for each circuit
and sends each key to the evaluator. The evaluator sends the
keys for the evaluation circuits to the cloud. The cloud then
uses these values to attain the evaluator’s input. For 0 ≤ i <
S, for 0 ≤ j < len(evlInputs) where !isCheckCircuit(i),

inputEvlij = hash(IKeyi, outSeedsj)



Phase 3: Generator’s Input Consistency Check

Algorithm 3: Generator Input Check

Input : Generator Input
// The cloud takes a hash of the generator’s input or each
evaluation circuit for i← 0 to S do

if isCheckCircuit(i) then
ti ← UHF (garbledGenInputi)

//If a single hash is different then the cloud knows the generator
tried to cheat.
correct← ((t0 == t1)&(t0 == t2)& . . .&(t0 == tN−1))
if !correct then

abort()

We use the input consistency check of sS13. In this check, a
universal hash is used to prove consistency of the generator’s
input across each evaluation circuit. Simply put, if the hash
is different in any of the evaluation circuits, we know the
generator did not enter consistent input. More formally, a
hash of the generator’s input is taken for each circuit. For
0 < i < S where !isCheckCircuit(i),

ti = UHF (garbledGenInputi, Ci)

The results of these universal hashes are compared. If a sin-
gle hash is different then the cloud knows the generator tried
to cheat and safely aborts.

correct = ((t0 == t1)&(t0 == t2)& . . .&(t0 == tN−1))

Phase 4: Partial Input Gate Generation, Check,
and Evaluation

Generation
For 0 ≤ i < S, for 0 ≤ j < len(savedWires), the gener-

ator creates a partial input gate, which transforms a wire’s
saved values, POut0i,j and POut1i,j , into wire values that
can be used in the current garbled circuit execution, GIn0i,j

and GIn1i,j . For each circuit, Ci, the generator creates a
pseudorandom transformation value Ri, to assist with the
transformation.

For each set of POut0i,j and POut1i,j , the generator
XORs each value with Ri. Both results are then hashed, and
put through a function to determine the new permutation
bit, as hashing removes the old permutation bit.

t0 = hash(POut0i,j ⊕Ri)

t1 = hash(POut1i,j ⊕Ri)

PIn0i,j , P In1i,j = setPPBitGen(t0, t1)

This function, setPPBitGen, pseudo-randomly finds a bit
that is different between the two values of the wire and notes
that bit to be the permutation bit. setPPBitGen is seeded
from CSeedi, allowing the cloud to regenerate these values
for the check circuits.

For each PIn0i,j , P In1i,j pair, a set of values, GIn0i,j and
GIn1i,j , are created under the master key of Ci, CKeyi, –
where CKeyi is the difference between 0 and 1 wire labels
for the circuit. In classic garbled gate style, two truth table
values, TT0i,j and TT1i,j , are created such that:

TT0i,j ⊕ PIn0i,j = GIn0i,j

TT1i,j ⊕ PIn1i,j = GIn1i,j

The truth table, TT0i,j and TT1i,j , is permuted so that
the permutation bits of PIn0i,j and PIn1i,j tell the cloud
which entry to select. Each partial input gate, consisting of
the permuted TT0i,j , TT1i,j values and the bit location

Algorithm 4: Partial Input

Input : Partial Output
Output: Partial Garbled Input
// Generation: the generator creates a partial input gate, which
transforms a wire’s saved values, POut0i,j and POut1i,j , into
values that can be used in the current garbled circuit execution,
GIn0i,j and GIn1i,j .
for i← 0 to S do

Ri ← PRNG.random()
for j ← 0 to len(savedWires) do

t0← hash(POut0i,j ⊕ Ri)
t1← hash(POut1i,j ⊕ Ri)
PIn0i,j , PIn1i,j ← setPPBitGen(t0, t1)
GIn0i,j ← TT0i,j ⊕ PIn0i,j

GIn1i,j ← TT1i,j ⊕ PIn1i,j

GenSendToCloud( Permute([TT0i,j , TT1i,j ]),
permute bit locations )

GenSendToCloud(Ri)

// Check: The cloud checks the gates to make sure the generator
didn’t cheat
for i← 0 to S do

if isCheckCircuit(i) then
for j ← 0 to len(savedWires) do

// the cloud has received the truth table
information, TT0i,j , TT1i,j , bit locations from
setPPBitGen, and Ri

correct← (generateGateFromInfo() ==
receivedGateFromGen())
// If any gate does not match, the cloud knows the
generator tried to cheat.
if !correct then

abort();

// Evaluation
for i← 0 to S do

if !isCheckCircuit(i) then
for j ← 0 to len(savedWires) do

//The cloud, using the previously saved POutxi,j

value, and the location (point and permute) bit sent
by the generator, creates PInxi,j

PInxi,j ←
setPPBitEval(hash(Ri ⊕ POutxi,j), location)
// Using PInxi,j , the cloud selects the proper
truth table entry TTxi,j from either TT0i,j or
TT1i,j to decrypt
// Creates GInxi,j to enter into the garbled circuit
GInxi,j ← TTxi,j ⊕ POutxi,j

return GIn;

from setPPBitGen is sent to the cloud. Each Ri is also sent
to the cloud.

Check
For 0 ≤ i < S where isCheckCircuit(i), for 0 ≤ j <

len(savedWires), the cloud receives the truth table informa-
tion, TT0i,j , TT1i,j , and bit location from setPPBitGen,
and proceeds to regenerate the gates based on the check cir-
cuit information. The cloud uses Ri (sent by the generator),
POut0i,j and POut1i,j (saved during the previous execu-
tion), and CSeedi (recovered during the cut-and-choose) to
generate the partial input gates in the same manner as de-
scribed previously. The cloud then compares these gates to
those the generator sent. If any gate does not match, the
cloud knows the generator tried to cheat and safely aborts.

Evaluation
For 0 ≤ i < S where !isCheckCircuit(i), for 0 ≤ j <

len(savedWires) the cloud receives the truth table informa-
tion, TTai,j , TTbi,j and bit location from setPPBitGen. a
and b are used to denote the two permuted truth table val-
ues. The cloud, using the previously saved POutxi,j value,
creates the PInxi,j value:

PInxi,j = setPPBitEval(hash(Ri ⊕ POutxi,j), location)



location is the location of the point and permute bit sent by
the generator. Using the point and permute bit of PInxi,j ,
the cloud selects the proper truth table entry TTxi,j from
either TTai,j or TTbi,j to decrypt, creates GInxi,j and then
enters GInxi,j into the garbled circuit.

GInxi,j = TTxi,j ⊕ POutxi,j

Phase 5: Circuit Generation and Evaluation

Algorithm 5: Circuit Execution

Input : Generator Input, Evaluator Input, Partial Input
Output: Partial Output, Garbled Output
// The generator generates each garbled gate and sends it to the
cloud. Depending on whether the circuit is a check or evaluation
circuit, the cloud verifies that the gate is correct or evaluates the
gate.
for i← 0 to S do

for j ← 0 to len(circuit) do
g ← genGate(Ci, j)
send(g)

// the cloud receives all gates for all circuits, and then checks
OR evaluates each circuit
for i← 0 to S do

for j ← 0 to len(circuit) do
g ← recvGate()
if isCheckCircuit(i) then

if ! verifyCorrect(g) then
abort()

else
eval(g)

return Partial Output, Garbled Output

Circuit Generation
The generator generates each garbled gate for each circuit

and sends them to the cloud. Since the generator does not
know the check and evaluation circuit split, nothing changes
for the generation for check and evaluation circuits. For 0 ≤
i < S, For 0 ≤ j < len(circuit),

g = genGate(Ci, j), send(g)

Circuit Evaluation and Check
The cloud receives each garbled gate for all circuits. For

evaluation circuits the cloud evaluates those garbled gates.
For check circuits the cloud generates the correct gate, based
on the circuit seed, and is able to verify it is correct.

For 0 ≤ i < S, For 0 ≤ j < len(circuit), g = recvGate(),
if(isCheckCircuit(j)) verifyCorrect(g) else eval(g)

If a garbled gate is found not to be correct, the cloud
informs the evaluator and generator of the incorrect gate
and safely aborts.

Phase 6: Output and Output Consistency Check

Algorithm 6: Circuit Output

Input : Garbled Output
// a MAC of the output is generated inside the garbled circuit,
and both the resulting garbled circuit output and the MAC are
encrypted under a one-time pad.
outEvlComplete = outEvl||MAC(outEvl)
result = (outEvlMAC == MAC(outEvl))
if !result then

abort() // output check fail

As the final step of the garbled circuit execution, a MAC
of the output is generated inside the garbled circuit, based
on a k-bit secret key entered into the function.

outEvlComplete = outEvl||MAC(outEvl)

Both the resulting garbled circuit output and the MAC are
encrypted under a one-time pad. The generator can also
have output verified in the same manner. The cloud sends
the corresponding encrypted output to each party.

The generator and evaluator then decrypt the received
ciphertext, perform a MAC over real output, and verify the
cloud did not modify the output by comparing the generated
MAC with the MAC calculated within the garbled circuit.

result = (outEvlMAC == MAC(outEvl))

Phase 7: Partial Output

Algorithm 7: Partial Output

Input : Partial Output
for i← 0 to S do

for j ← 0 to len(Partial Output) do
//The generator saves both possible wire values
GenSave(Partial Output0i,j)
GenSave(Partial Output1i,j)

for i← 0 to S do
for j ← 0 to len(Partial Output) do

if isCheckCircuit(i) then
EvlSave(Partial Output0i,j)
EvlSave(Partial Output1i,j)

else
// circuit is evaluation circuit
EvlSave(Partial OutputXi,j)

The generator saves both possible wire values for each
partial output wire. For each evaluation circuit the cloud
saves the partial output wire value. For check circuits the
cloud saves both possible output values.

4.3 Implementation
As with most garbled circuit systems there are two stages

to our implementation. The first stage is a compiler for cre-
ating garbled circuits, while the second stage is an execution
system to evaluate the circuits.

We modified the KSS12 [27] compiler to allow for the sav-
ing of intermediate wire labels and loading wire labels from
a different SFE computation. By using the KSS12 compiler,
we have an added benefit of being able to compare circuits
of almost identical size and functionality between our sys-
tem and CMTB, whereas other protocols compare circuits
of sometimes vastly different sizes.

For our execution system, we started with the CMTB sys-
tem and modified it according to our protocol requirements.
PartialGC automatically performs the output consistency
check, and we implemented this check at the circuit level.
We became aware and corrected issues with CMTB relat-
ing to too many primitive OT operations performed in the
outsourced oblivious transfer when using a high circuit pa-
rameter and too low a general security parameter in general.
The fixes reduced the run-time of the OOT.

5. SECURITY OF PARTIALGC
In this section, we provide a basic proof sketch of the

PartialGC protocol, showing that our protocol preserves the
standard security guarantees provided by traditional garbled
circuits - that is, none of the parties learns anything about
the private inputs of the other parties that is not logically
implied by the output it receives. Since we borrow heavily
from [8] and [38], we focus on our additions, and defer to the
original papers for detailed proofs of those protocols. Due to



space constraints, we do not provide a formal proof here; a
complete proof will be provided in the technical report.

We know that the protocol described in [8] allows us to
garble individual circuits and securely outsource their eval-
uation. In this paper, we modify certain portions of the pro-
tocol to allow us to transform the output wire values from
a previous circuit execution into input wire values in a new
circuit execution. These transformed values, which can be
checked by the evaluator, are created by the generator using
circuit “seeds.”

We also use some aspects of [38], notably their novel cut-
and-choose technique which ensures that the generator does
not learn which circuits are used for evaluation and which
are used for checking - this means that the generator must
create the correct transformation values for all of the cut-
and-choose circuits.

Because we assume that the CMTB garbled circuit scheme
can securely garble any circuit, we can use it individually on
the circuit used in the first execution and on the circuits used
in subsequent executions. We focus on the changes made at
the end of the first execution and the beginning of subse-
quent executions which are introduced by PartialGC.

The only difference between the initial garbled circuit ex-
ecution and any other garbled circuit in CMTB is that the
output wires in an initial PartialGC circuit are stored by the
cloud, and are not delivered to the generator or the evalua-
tor. This prevents them from learning the output wire labels
of the initial circuit, but cannot be less secure than CMTB,
since no additional steps are taken here.

Subsequent circuits we wish to garble differ from ordinary
CMTB garbled circuits only by the addition, before the first
row of gates, of a set of partial input gates. These gates don’t
change the output along a wire, but differ from normal gar-
bled gates in that the two possible labels for each input wire
are not chosen randomly by the generator, but are derived
by using the two labels along each output wire of the initial
garbled circuit.

This does not reduce security. In PartialGC, the input
labels for partial input gates have the same property as the
labels for ordinary garbled input gates: the generator knows
both labels, but does not know which one corresponds to the
evaluator’s input, and the evaluator knows only the label
corresponding to its input, but not the other label. This is
because the evaluator’s input is exactly the output of the
initial garbled circuit, the output labels of which were saved
by the evaluator. The evaluator does not learn the other
output label for any of the output gates because the output
of each garbled gate is encrypted. If the evaluator could learn
any output labels other than those which result from an
evaluation of the garbled circuit, the original garbled circuit
scheme itself would not be secure.

The generator, which also generated the initial garbled
circuit, knows both possible input labels for all partial eval-
uation gates, because it has saved both potential output
labels of the initial circuit’s output gates. Because of the
outsourced oblivious transfer used in CMTB, the generator
did not know which input labels to use for the initial garbled
circuit, and therefore will not have been able to determine
the output labels for that circuit. Therefore, the generator
will likewise not know which input labels are being used for
subsequent garbled circuits.
Generator’s Input Consistency Check

We use the generator’s input consistency check from sS13.

We note there is no problem with allowing the cloud to per-
form this check; for the generator’s inconsistent input to
pass the check, the cloud would have to see the malicious
input and ignore it, which would violate the non-collusion
assumption.
Correctness of Saved Values

Scenarios where either party enters incorrect values in the
next computation reduce to previously solved problems in
garbled circuits. If the generator does not use the correct
values, then it reduces to the problem of creating an incor-
rect garbled circuit. If the evaluator does not use the correct
saved values then it reduces to the problem of the evaluator
entering garbage values into the garbled circuit execution;
this would be caught by the output consistency check.
Abort on Check Failure

If any of the check circuits fail, the cloud reports the in-
correct check circuit to both the generator and evaluator. At
this point, the remaining computation and any saved values
must be abandoned. However, as is standard in SFE, the
cloud cannot abort on an incorrect evaluation circuit, even
when she knows that it is incorrect.
Concatenation of Incorrect Circuits

If the generator produces a single incorrect circuit and the
cloud does not abort, the generator learns that the circuit
was used for evaluation, and not as a check circuit. This leaks
no information about the input or output of the computa-
tion; to do that, the generator must corrupt a majority of
the evaluation circuits without modifying a check circuit. An
incorrect circuit that goes undetected in one execution has
no effect on subsequent executions as long the total amount
of incorrect circuits is less than the majority of evaluation
circuits.
Using Multiple Evaluators

One of the benefits of our outsourcing scheme is that the
state is saved at the generator and cloud allowing the use of
different evaluators in each computation. Previously, it was
shown a group of users working with a single server using
2P-SFE was not secure against malicious adversaries, as a
malicious server and last k parties, also malicious, could re-
play their portion of the computation with different inputs
and gain more information than they can with a single com-
putation [15]. However, this is not a problem in our system
as at least one of our servers, either the generator or cloud,
must be semi-honest due to non-collusion, which obviates
the attack stated above.
Threat Model

As we have many computations involving the same gen-
erator and cloud, we have to extend the threat model for
how the parties can act in different computations. There can
be no collusion in each singular computation. However, the
malicious party can change between computations as long as
there is no chain of malicious users that link the generator
and cloud – this would break the non-collusion assumption.

6. PERFORMANCE EVALUATION
We now demonstrate the efficacy of PartialGC through a

comparison with the CMTB outsourcing system. Apart from
the cut-and-choose from sS13, PartialGC provides other ben-
efits through generating partial input values after the first
execution of a program. On subsequent executions, the par-
tial inputs act to amortize overall costs of execution and
bandwidth.

We demonstrate that the evaluator in the system can be a



mobile device outsourcing computation to a more powerful
system. We also show that other devices, such as server-
class machines, can act as evaluators, to show the generality
of this system. Our testing environment includes a 64-core
server containing 1 TB of RAM, which we use to model
both the Generator and Outsourcing Proxy parties. We run
separate programs for the Generator and Outsourcing Proxy,
giving them each 32 threads. For the evaluator, we use a
Samsung Galaxy Nexus phone with a 1.2 GHz dual-core
ARM Cortex-A9 and 1 GB of RAM running Android 4.0,
connected to the server through an 802.11 54 Mbps WiFi
in an isolated environment. In our tests, which outsource
the computation from a single server process we create that
process on our 64-core server as well. We ran the CMTB
implementation for comparison tests under the same setup.

6.1 Execution Time
The PartialGC system is particularly well suited to com-

plex computations that require multiple stages and the sav-
ing of intermediate state. Previous garbled circuit execution
systems have focused on single-transaction evaluations, such
as computing the “millionaires” problem (i.e., a joint evalua-
tion of which party inputs a greater value without revealing
the values of the inputs) or evaluating an AES circuit.

Our evaluation considers two comparisons: the improve-
ment of our system compared with CMTB without reusing
saved values, and comparing our protocol for saving and
reusing values against CMTB if such reuse was implemented
in that protocol. We also benchmark the overhead for sav-
ing and loading values on a per-bit basis for 256 circuits, a
necessary number to achieve a security parameter of 2−80

in the malicious model. In all cases, we run 10 iterations of
each test and give timing results with 95% confidence inter-
vals. Other than varying the number of circuits our system
parameters are set for 80-bit security.

The programs used for our evaluation are exemplars of
differing input sizes and differing circuit complexities:
Keyed Database: In this program, one party enters a data-
base and keys to it while the other party enters a key that
indexes into the database, receiving a database entry for that
key. This is an example of a program expressed as a small
circuit that has a very large amount of input.
Matrix Multiplication: Here, both parties enter 32-bit
numbers to fill a matrix. Matrix multiplication is performed
before the resulting matrix is output to both parties. This
is an example of a program with a large amount of inputs
with a large circuit.
Edit (Levenstein) Distance: This program finds the dis-
tance between two strings of the same length and returns
the difference. This is an example of a program with a small
number of inputs and a medium sized circuit.
Millionaires: In this classic SFE program, both parties en-
ter a value, and the result is a one-bit output to each party
to let them know whether their value is greater or smaller
than that of the other party. This is an example of a small
circuit with a large amount of input.

Gate counts for each of our programs can be found in Ta-
ble 1. The only difference for the programs described above
is the additional of a MAC function in PartialGC. We dis-
cuss the reason for this check in Section 6.4.

Table 2 shows the results from our experimental tests. In
the best case, execution time was reduced by a factor of
32 over CMTB, from 1200 seconds to 38 seconds, a 96%

CMTB PartialGC
KeyedDB 64 6,080 20,891
KeyedDB 128 12,160 26,971
KeyedDB 256 24,320 39,131
MatrixMult8x8 3,060,802 3,305,113

Edit Distance 128 1,434,888 1,464,490
Millionaires 8192 49,153 78,775

LCS Incremental 128 4,053,870 87,236
LCS Incremental 256 8,077,676 160,322
LCS Incremental 512 16,125,291 306,368

LCS Full 128 2,978,854 -
LCS Full 256 13,177,739 -

Table 1: Non-XOR gate counts for the various circuits. In the
first 6 circuits, the difference between CMTB and PartialGC
gate counts is in the consistency checks. The explanation
for the difference in size between the incremental versions of
longest common substring (LCS) is given in Reusing Values.

speedup over CMTB. Ultimately, our results show that our
system outperforms CMTB when the input checks are the
bottleneck. This run-time improvement is due to improve-
ments we added from sS13 and occurs in the keyed database,
millionaires, and matrix multiplications programs. In the
other program, edit distance, the input checks are not the
bottleneck and PartialGC does not outperform CMTB. The
total run-time increase for the edit distance problem is due
to overhead of using the new sS13 OT cut-and-choose tech-
nique which requires sending each gate to the evaluator for
check circuits and evaluation circuits. This is discussed fur-
ther in Section 6.4. The typical use case we imagine for our
system, however, is more like the keyed database program,
which has a large amount of inputs and a very small circuit.
We expand upon this use case later in this section.
Reusing Values

For a test of our system’s wire saving capabilities we tested
a dynamic programming problem, longest common substring,
in both PartialGC and CMTB. This program determines
the length of the longest common substring between two
strings. Rather than use a single computation for the solu-
tion, our version incrementally adds a single bit of input to
both strings each time the computation is run and outputs
the results each time to the evaluator. We believe this is
a realistic comparison to a real-world application that in-
crementally adds data during each computation where it is
faster to save the intermediate state and add to it after see-
ing an intermediate result than rerun the entire computation
many times after seeing the result.

For our testing, PartialGC uses our technique to reuse
wire values. In CMTB, we save each desired internal bit
under a one-time pad and re-enter them into the next com-
putation, as well as the information needed to decrypt the
ciphertext. We use a MAC (the AES circuit of KSS12) to
verify that the party saving the output bits did not modify
them. We also use AES to generate a one-time pad inside
the garbled circuit. We use AES as this is the only cryp-
tographically secure function used in CMTB. Both parties
enter private keys to the MAC functions. This program is
labeled CMTB-Inc, for CMTB incremental. The size of this
program represents the size of the total strings. We also cre-
ated a circuit that computes the complete longest common
substring in one computation labeled CMTB-Full.

The resulting size of the PartialGC and CMTB circuits
are shown in Table 1, and the results are shown in Figure 4.
This result shows that saving and reusing values in Par-
tialGC is more efficient than completely rerunning the com-



16 Circuits 64 Circuits 256 Circuits
CMTB PartialGC CMTB PartialGC CMTB PartialGC

KeyedDB 64 18 ± 2% 3.5 ± 3% 5.1x 72 ± 2% 8.3 ± 5% 8.7x 290 ± 2% 26 ± 2% 11x
KeyedDB 128 33 ± 2% 4.4 ± 8% 7.5x 140 ± 2% 9.5 ± 4% 15x 580 ± 2% 31 ± 3% 19x
KeyedDB 256 65 ± 2% 4.6 ± 2% 14x 270 ± 1% 12 ± 6% 23x 1200 ± 3% 38 ± 5% 32x
MatrixMult8x8 48 ± 4% 46 ± 4% 1.0x 110 ± 8% 100 ± 7% 1.1x 400 ± 10% 370 ± 5% 1.1x

Edit Distance 128 21 ± 6% 22 ± 3% 0.95x 47 ± 7% 50 ± 9% 0.94x 120 ± 9% 180 ± 6% 0.67x
Millionaires 8192 35 ± 3% 7.3 ± 6% 4.8x 140 ± 2% 20 ± 2% 7.0x 580 ± 1% 70 ± 2% 8.3x

Table 2: Timing results comparing PartialGC to CMTB without saving any values. All times in seconds.
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Figure 4: Results from testing our largest common substring
(LCS) programs for PartialGC and CMTB. This shows
when changing a single input value is more efficient un-
der PartialGC than either CMTB program. CMTB crashed
on running LCS Incremental of size 512 due to memory re-
quirements. We were unable to complete the compilation of
CMTB Full of size 512.

putation. The input consistency check adds considerably to
the memory use on the phone for CMTB-Inc and in the case
of input bit 512, the CMTB-Inc program will not complete.
In the case of the 512-bit CMTB-Full, the program would
not complete compilation in over 42 hours. In our CMTB-
Inc program, we assume the cloud saves the output bits so
that multiple phones can have a shared private key. We do
not provide a full program due to space requirements.

Note that the growth of CMTB-Inc and CMTB-Full are
different. CMTB-Full grows at a larger rate (4x for each
2x factor increase) than CMTB-Inc (2x for each 2x factor
increase), implying that although at first it seems more ef-
ficient to rerun the program if small changes are desired in
the input, eventually this will not be the case. Even with a
more efficient AES function, CMTB-Inc would not be faster
as the bottleneck is the input, not the size of the circuit.

The overhead of saving and reusing values is discussed
further in Appendix B.
Outsourcing to a Server Process

PartialGC can be used in other scenarios than just out-
sourcing to a mobile device. It can outsource garbled circuit
evaluation from a single server process and retain perfor-
mance benefits over a single server process of CMTB. For
this experiment the outsourcing party has a single thread.
Table 4 displays these results and shows that in the KeyedDB
256 program, PartialGC has a 92% speedup over CMTB.
As with the outsourced mobile case, keyed database prob-
lems perform particularly well in PartialGC. Because the
computationally-intensive input consistency check is a greater
bottleneck on mobile devices than servers, these improve-
ments for most programs are less dramatic. In particular,

256 Circuits
CMTB PartialGC

KeyedDB 64 64992308 3590416 18x
KeyedDB 128 129744948 3590416 36x
KeyedDB 256 259250228 3590416 72x
MatrixMult8x8 71238860 35027980 2.0x

Edit Distance 128 2615651 4108045 0.64x
Millionaires 8192 155377267 67071757 2.3x

Table 3: Bandwidth comparison of CMTB and PartialGC.
Bandwidth counted by instrumenting PartialGC to count
the bytes it was sending and receiving and then adding them
together. Results in bytes.

both edit distance and matrix multiplication programs ben-
efit from higher computational power and their bottlenecks
on a server are no longer input consistency; as a result, they
execute faster in CMTB than in PartialGC.

6.2 Bandwidth
Since the main reason for outsourcing a computation is

to save on resources, we give results showing a decrease in
the evaluator’s bandwidth. Bandwidth is counted by making
the evaluator to count the number of bytes PartialGC sends
and receives to either server. Our best result gives a 98%
reduction in bandwidth (see Table 3). For the edit distance,
the extra bandwidth used in the outsourced oblivious trans-
fer for all circuits, instead of only the evaluation circuits,
exceeds any benefit we would otherwise have received.

6.3 Secure Friend Finder
Many privacy-preserving applications can benefit from us-

ing PartialGC to cache values for state. As a case study,
we developed a privacy-preserving friend finder application,
where users can locate nearby friends without any user di-
vulging their exact location. In this application, many differ-
ent mobile phone clients use a consistent generator (a server
application) and outsource computation to a cloud. The gen-
erator must be the same for all computations; the cloud must
be the same for each computation. The cloud and generator
are two different parties. After each computation, the map
is updated when PartialGC saves the current state of the
map as wire labels. Without PartialGC outsourcing values
to the cloud, the wire labels would have to be transferred
directly between mobile devices, making a multi-user appli-
cation difficult or impossible.

We define three privacy-preserving operations that com-
prise the application’s functionality:
MapStart - The three parties (generator, evaluator, cloud)
create a “blank” map region, where all locations in the map
are blank and remain that way until some mobile party sets
a location to his or her ID.
MapSet - The mobile party sets a single map cell to a
new value. This program takes in partial values from the
generator and cloud and outputs a location selected by the



16 Circuits 64 Circuits 256 Circuits
CMTB PartialGC CMTB PartialGC CMTB PartialGC

KeyedDB 64 6.6 ± 4% 1.4 ± 1% 4.7x 27 ± 4% 5.1 ± 2% 5.3x 110 ± 2% 24.9 ± 0.3% 4.4x
KeyedDB 128 13 ± 3% 1.8 ± 2% 7.2x 54 ± 4% 5.8 ± 2% 9.3x 220 ± 5% 27.9 ± 0.5% 7.9x
KeyedDB 256 25 ± 4% 2.5 ± 1% 10x 110 ± 7% 7.3 ± 2% 15x 420 ± 4% 33.5 ± 0.6% 13x
MatrixMult8x8 42 ± 3% 41 ± 4% 1.0x 94 ± 4% 79 ± 3% 1.2x 300 ± 10% 310 ± 1% 0.97x

Edit Distance 128 18 ± 3% 18 ± 3% 1.0x 40 ± 8% 40 ± 6% 1.0x 120 ± 9% 150 ± 3% 0.8x
Millionaires 8192 13 ± 4% 3.2 ± 1% 4.1x 52 ± 3% 8.5 ± 2% 6.1x 220 ± 5% 38.4 ± 0.9% 5.7x

Table 4: Timing results from outsourcing the garbled circuit evaluation from a single server process. Results in seconds.

(a) Location selected. (b) After computation.
Figure 5: Screenshots from our application. (a) shows the
map with radio buttons a user can select to indicate position.
(b) show the result after “set new position” is pressed when
a user is present. The application is set to use 64 different
map locations. Map image from Google Maps.

mobile party.
MapGet - The mobile party retrieves the contents of a sin-
gle map cell. This program retrieves partial values from the
generator and cloud and outputs any ID set for that cell to
the mobile.

In the application, each user using the Secure Friend Finder
has a unique ID that represents them on the map. We divide
the map into ‘cells’, where each cell is a set amount of area.
When the user presses “Set New Location’, the program will
first look to determine if that cell is occupied. If the cell is
occupied, the user is informed he is near a friend. Otherwise
the cell is updated to contain his user ID and remove his ID
from his previous location. We assume a maximum of 255
friends in our application since each cell in the map is 8 bits.

Figure 6 shows the performance of these programs in the
malicious model with a 2−80 security parameter (evaluated
over 256 circuits). We consider map regions containing both
256 and 2048 cells. For maps of 256 cells, each operation
takes about 30 seconds.1 As there are three operations for
each “Set New Location” event, the total execution time is
about 90 seconds, while execution time for 2048 cells is about
3 minutes. The bottleneck of the 64 and 256 cell maps is the
outsourced oblivious transfer, which is not affected by the
number of cells in the map. The vastly larger circuit associ-

1Our 64-cell map, as seen the application screenshots, also
takes about 30 seconds for each operation.
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Figure 6: Run time comparison of our map programs with
two different map sizes.

ated with the 2048-cell map makes getting and setting values
slower operations, but these results show such an application
is practical for many scenarios.
Example - As an example, two friends initiate a friend
finder computation using Amazon as the cloud and Face-
book as the generator. The first friend goes out for a coffee
at a café. The second friend, riding his bike, gets a message
that his friend is nearby and looks for a few minutes and
finds him in the café. Using this application prevents either
Amazon or Facebook from knowing either user’s location
while they are able to learn whether they are nearby.

6.4 Discussion
Analysis of improvements

We analyzed our results and found the improvements came
from three places: the improved sS13 consistency check, the
saving and reusing of values, and the fixed oblivious trans-
fer. In the case of the sS13 consistency check, there are two
reasons for the improvement, first there is less network traf-
fic and second it does not use exponentiations. In the case of
saving and reusing values, we save time by the faster input
consistency check and not requiring a user to recompute a
circuit multiple times. Lastly, we reduced the runtime and
bandwidth by fixing parts of the OOT. The previous out-
sourced oblivious transfer performed the primitive OT S
times instead of a single time, which turn forced many ex-
tra exponentiations. Each amount of improvement varies de-
pending upon the circuit.
Output check

Although the garbled circuit is larger for our output check,
this check performs less cryptographic operations for the
outsourcing party, as the evaluator only has to perform a
MAC on the output of the garbled circuit. We use this check
to demonstrate using a MAC can be an efficient output check
for a low power device when the computational power is not
equivalent across all parties.



Commit Cut-and-Choose vs OT Cut-and-Choose
Our results unexpectedly showed that the sS13 OT cut-

and-choose used in PartialGC is actually slower than the
KSS12 commit cut-and-choose used in CMTB in our ex-
perimental setup. Theoretically, sS13, which requires fewer
cryptographic operations, as it generates the garbled circuit
only once, should be the faster protocol. The difference be-
tween the two cut-and-choose protocols is the network usage
– instead of 2

5
of the circuits (CMTB), all the circuits must

be transmitted in sS13. The sS13 cut-and-choose is required
in our protocol so that the cloud can check that the gener-
ator creates the correct gates.

7. RELATED WORK
SFE was first described by Yao in his seminal paper [39]

on the subject. The first general purpose platform for SFE,
Fairplay [32], was created in 2004. Fairplay had both a com-
piler for creating garbled circuits, and a run-time system for
executing them. Computations involving three or more par-
ties have also been examined; one of the earliest examples
is FairplayMP [2]. There have been multiple other imple-
mentations since, in both semi-honest [6, 9, 16, 17, 40] and
malicious settings [26, 37].

Optimizations for garbled circuits include the free-XOR
technique [25], garbled row reduction [36], rewriting compu-
tations to minimize SFE [23], and pipelining [18]. Pipelining
allows the evaluator to proceed with the computation while
the generator is creating gates.

KSS12 [27] included both an optimizing compiler and an
efficient run-time system using a parallelized implementa-
tion of SFE in the malicious model from [37].

The creation of circuits for SFE in a fast and efficient man-
ner is one of the central problems in the area. Previous com-
pilers, from Fairplay to KSS12, were based on the concept of
creating a complete circuit and then optimizing it. PAL [33]
improved such systems by using a simple template circuit,
reducing memory usage by orders of magnitude. PCF [26]
built from this and used a more advanced representation to
reduce the disk space used.

Other methods for performing MPC involve homomorphic
encryption [3, 12], secret sharing [4], and ordered binary
decision diagrams [28]. A general privacy-preserving com-
putation protocol that uses homomorphic encryption and
was designed specifically for mobile devices can be found
in [7]. There are also custom protocols designed for partic-
ular privacy-preserving computations; for example, Kamara
et al. [21] showed how to scale server-aided Private Set In-
tersection to billion-element sets with a custom protocol.

Previous reusable garbled-circuit schemes include that of
Brandão [5], which uses homomorphic encryption, Gentry
et al. [10], which uses attribute-based functional encryption,
and Goldwasser et al. [13], which introduces a succinct func-
tional encryption scheme. These previous works are purely
theoretical; none of them provides experimental performance
analysis. There is also recent theoretical work on reusing
encrypted garbled-circuit values [30, 11, 31] in the ORAM
model; it uses a variety of techniques, including garbled cir-
cuits and identity-based encryption, to execute the underly-
ing low-level operations (program state, read/write queries,
etc.). Our scheme for reusing encrypted values is based on
completely different techniques; it enables us to do new kinds
of computations, thus expanding the set of things that can
be computed using garbled circuits.

The Quid-Pro-Quo-tocols system [19] allows fast execu-
tion with a single bit of leakage. The garbled circuit is ex-
ecuted twice, with the parties switching roles in the latter
execution, then running a secure protocol to ensure that the
output from both executions are equivalent; if this fails, a
single bit may be leaked due to the selective failure attack.

8. CONCLUSION
This paper presents PartialGC, a server-aided SFE scheme

allowing the reuse of encrypted values to save the costs of in-
put validation and to allow for the saving of state, such that
the costs of multiple computations may be amortized. Com-
pared to the server-aided outsourcing scheme by CMTB, we
reduce costs of computation by up to 96% and bandwidth
costs by up to 98%. Future work will consider the general-
ity of the encryption re-use scheme to other SFE evaluation
systems and large-scale systems problems that benefit from
the addition of state, which can open up new and intriguing
ways of bringing SFE into the practical realm.
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APPENDIX
A. CMTB PROTOCOL

As we are building off of the CMTB garbled circuit exe-
cution system, we give an abbreviated version of the proto-
col. In our description we refer to the generator, the cloud,
and the evaluator. The cloud is the party the evaluator out-
sources her computation to.

Circuit generation and check: The template for the gar-
bled circuit is augmented to add one-time XOR pads on the
output bits and split the evaluator’s input wires per the in-
put encoding scheme. The generator generates the necessary
garbled circuits and commits to them and sends the com-
mitments to the evaluator. The generator then commits to
input labels for the evaluator’s inputs.

CMTB relies on Goyal et al.’s [14] random seed check,
which was implemented by Kreuter et al. [27] to combat
generation of incorrect circuits. This technique uses a cut-
and-choose style protocol to determine whether the genera-
tor created the correct circuits by creating and committing
to many different circuits. Some of those circuits are used
for evaluation, while the others are used as check circuits.

Evaluator’s inputs: Rather than a two-party oblivious
transfer, we perform a three-party outsourced oblivious trans-
fer. An outsourced oblivious transfer is an OT that gets the
select bits from one party, the wire labels from another, and
returns the selected wire labels to a third party. The party
that selects the wire labels does not learn what the wire la-
bels are, and the party that inputs the wire labels does not
learn which wire was selected; the third party only learns
the selected wire labels. In CMTB, the generator offers up
wire labels, the evaluator provides the select bits, and the
cloud receives the selected labels. CMTB uses the Ishai OT
extension [20] to reduce the number of OTs.

CMTB uses an encoding technique from Lindell and Pinkas
[29], which prevents the generator from finding out any in-
formation about the evaluator’s input if a selective failure
attack transpires. CMTB also uses the commitment tech-
nique of Kreuter et al. [27] to prevent the generator from
swapping the two possible outputs of the oblivious transfer.
To ensure the evaluator’s input is consistent across all cir-
cuits, CMTB uses a technique from Lindell and Pinkas [29],
whereby the inputs are derived from a single oblivious trans-
fer.

Generator’s input and consistency check: The gener-
ator sends his input to the cloud for the evaluation circuits.
Then the generator, evaluator, and cloud all work together
to prove the input consistency of the generator’s input. For
the generator’s input consistency check, CMTB uses the
malleable-claw free construction from shelat and Shen [37].

Circuit evaluations: The cloud evaluates the garbled cir-
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Figure 7: The amount of time it takes to save and load a bit
in PartialGC when using 256 circuits.

cuits marked for evaluation and checks the circuits marked
for checking. The cloud enters in the generator and eval-
uator’s input into each garbled circuit and evaluates each
circuit. The output for any particular bit is then the ma-
jority output between all evaluator circuits. The cloud then
recreates each check circuit. The cloud creates the hashes of
each garbled circuit and sends those hashes to the evaluator.
The evaluator then verifies the hashes are the same as the
ones the generator previously committed to.

Output consistency check and output: The three par-
ties prove together that the cloud did not modify the output
before she sent it to the generator or evaluator. Both the
evaluator and generator receive their respective outputs. All
outputs are blinded by the respective party’s one-time pad
inside the garbled circuit to prevent the cloud from learning
what any output bit represents.

CMTB uses the XOR one-time pad technique from Ki-
raz [24] to prevent the evaluator from learning the gener-
ator’s real output. To prevent output modification, CMTB
uses the witness-indistinguishable zero-knowledge proof from
Kreuter et al. [27].

B. OVERHEAD OF REUSING VALUES
We created several versions of the keyed database program

to determine the runtime of saving and loading the database
on a per bit basis using our system (See Figure 7). This
figure shows it is possible to save and load a large amount
of saved wire labels in a relatively short time. The time to
load a wire label is larger than the time to save a value since
saving only involves saving the wire label to a file and loading
involves reading from a file and creating the partial input
gates. Although not shown in the figure, the time to save or
load a single bit also increases with the circuit parameter.
This is because we need S copies of that bit - one for every
circuit.

C. EXAMPLE PROGRAM
In this section we describe the execution of an attendance

application. Imagine a building where the host wants each
user to sign in from their phones to keep a log of the guests,
but also wants to keep this information secret.

This application has three distinct programs. The first
program initializes a counter to a number input by the eval-
uator. The second program, which is used until the last pro-
gram is called, takes in a name and increments the counter



by one. The last program outputs all names and returns the
count of users.

For this application, users (rather, their mobile phones)
assume the role of evaluators in the protocol (Section 4).

First, the host runs the initial program to initialize a
database. We cannot execute the second program to add
names to the log until this is done, lest we reveal that there
is no memory saved (i.e., there is no one else present).
Protocol in Brief: In this first program, the cut-and-choose
OT is executed to select the circuit split (the circuits that
are for evaluation and generation). Both parties save the de-
cryption keys: the cloud saves the keys attained from the OT
and the generator saves both possible keys that could have
been selected by the cloud. The evaluator performs the OOT
with the other parties to input the initial value into the pro-
gram. There is no input by the generator so the generator’s
input check does not execute. There is no partial input so
that phase of the protocol is skipped. The garbled circuit to
set the initial value is executed; while there is no output to
the generator or evaluator, a partial output is produced: the
cloud saves the garbled wire value, which it possesses, and
the generator saves both possible wire values (the generator
does not know what value the cloud has, and the cloud does
not know what the value it has saved actually represents).
The cloud also saves the circuit split.

Saved memory after the program execution (when the
evaluator inputs 0 as the initial value):

Count
0

Saved Guests

Guest 1 then enters the building and executes the pro-
gram, entering his name (“Guest 1”) as input.
Protocol in Brief: In this second program, the cut-and-
choose OT is not executed. Instead, both the generator and
cloud load the saved decryption key values, hash them, and
use those values for the check and evaluation circuit infor-
mation (instead of attaining new keys through an OT, which
would break security). The new keys are saved, and the eval-
uator then performs the OOT for input. The generator does
not have any input in this program so the check for the gen-
erator’s input is skipped. Since there exists a partial input,
the generator loads both possible wire values and creates
the partial input gates. The cloud loads the attained values,
receives the partial input gates from the generator, and then
executes (and checks) the partial input gates to receive the
garbled input values. The garbled circuit is then executed
and partial output saved as before (although there is more
data to save for this program as there is a name present in
the database).

After executing the second program the memory is as fol-
lows:

Count
1

Saved Guests
Guest1

Guest 2 then enters the dwelling and runs the program.
The execution is similar to the previous one (when Guest 1
entered), except that it’s executed by Guest 2’s phone.

At this point, the memory is as follows:

Count
2

Saved Guests
Guest1
Guest2

Guest 3 then enters the dwelling and executes the program
as before. At this point, the memory is as follows:

Count
3

Saved Guests
Guest1
Guest2
Guest3

Finally, the host runs the last program that outputs the
count and the guests in the database. In this case the count
is 3 and the guests are Guest1, Guest2, and Guest3.
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