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Abstract

Distributed Algorithmic Mechanism Design

Rahul Sami

2003

Distributed algorithmic mechanism design (DAMD) is an approach to designing dis-

tributed systems that takes into account both the distributed-computational environment

and the incentives of autonomous agents. In this dissertation, we study two problems, mul-

ticast cost sharing and interdomain routing. We also touch upon several issues important

to DAMD in general, including approximation, compatibility with existing protocols, and

hardness that results from the interplay of incentives and distributed computation.

The multicast cost-sharing problem involves choosing a set of receivers for a multi-

cast transmission and determining payments for them to offset the bandwidth costs of

the multicast. We focus on cost-sharing mechanisms that are group-strategyproof and

budget-balanced. We prove fundamental lower bounds on the network complexity of group-

strategyproof mechanisms that are exactly or approximately budget-balanced. The Shapley-

value mechanism (SH) is perhaps the most economically compelling mechanism in this class.

We give a group-strategyproof mechanism that exhibits a tradeoff between the other prop-

erties of SH: It can be computed by an algorithm that is more communication-efficient than

SH, but it might fail to achieve exact budget balance or exact minimum welfare loss (albeit

by a bounded amount). We also show that no strategyproof mechanism for multicast cost

sharing can be both approximately efficient and approximately budget-balanced.

Interdomain routing is the routing of traffic between Internet domains or Autonomous

Systems, a task currently performed by the Border Gateway Protocol (BGP). We first show

that there is a unique strategyproof mechanism for lowest-cost routing. Moreover, the prices

required by this mechanism can be computed with a straightforward change to BGP that

causes only modest increases in routing-table size and convergence time.

We also formulate the policy routing mechanism-design problem. We show that, with

arbitrary route valuations, it is NP-hard to find a welfare-maximizing (or even approxi-

mately welfare-maximizing) set of routes. For an important class of restricted valuations,



next-hop preferences, a welfare-maximizing set of routes can be computed with a strate-

gyproof mechanism in polynomial time (in a centralized computational model). However,

we show that this mechanism appears to be incompatible with BGP, and hence is hard to

compute in the context of the current Internet.
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Chapter 1

Introduction

With the advent of the Internet, we are seeing the design and deployment of large-scale

distributed systems. The deployed systems include large-scale parallel computing projects

such as SETI@home [ACK+02] and factoring [LM90], Internet services such as file-sharing

and caching, and systems to support the basic network functionality, such as routing and

congestion control. Usually, the primary focus of research on these distributed systems is

the development of good distributed algorithms, i.e., algorithms with low computational

complexity and communication requirements. This research often tacitly assumes that the

different components of the system perform their tasks as specified by the system designer.

Sometimes, particularly in the cryptography literature, some of the participants are explic-

itly modeled as adversaries, who can deviate arbitrarily from the specification in order to

defeat the intentions of the system designer or the other participants; the focus is then

on designing systems that function well in spite of these adversaries. Often, distributed-

systems research is also concerned with issues of fault tolerance, i.e., developing algorithms

and protocols that are robust in the presence of failures.

Computational and communication complexity, security against adversaries, and fault

tolerance are certainly important features of Internet-based computation. However, one

aspect of distributed systems on the Internet that has not been addressed until recently

is the involvement of self-interested parties. Most of these distributed programs run on

computers at many different locations on the Internet, owned and operated by a wide

assortment of entities ranging from individual users to governmental and trans-national
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organizations. Each of these parties has its own goals and objectives; furthermore, these

parties often operate with partial or complete autonomy and can exercise this autonomy

in order to achieve their own objectives. Rather than follow the “rules” of the system as

laid down by the designer, they can strategize to manipulate the system to their advantage.

There are many situations in which such strategic deviation cannot be prevented. For

example, the party may be required to report information that is intrinsically private, such

as its own preferences; the party’s behavior may not be fully observable or verifiable by any

other component of the system; there may be legal difficulties that preclude enforcing any

contract. These strategizing parties are best modeled as the “selfish agents” studied in game

theory. An agent need not be a single individual but can also be a group or organization;

the precise character of an agent depends heavily on the particular context. For instance,

in the multicast scenario described in Chapter 3, a single user is the most natural “agent,”

whereas, in the interdomain-routing scenario in Chapter 4, an entire corporation is more

naturally treated as a single agent.

The selfish agents involved in the system cannot be relied on to blindly follow any

prescribed algorithm – whenever possible, they might strategize for their own gain. However,

it is frequently possible for the system designer to model the objectives of an individual agent

reasonably well; for example, if the agent is a corporation, we may assume that it seeks

to maximize its profit to create value for its shareholders. Then, the system designer can

exploit the fact that a selfish agent is primarily interested in maximizing its own personal

gain: Although the agent will not obediently follow any prescribed protocol, we can assume

that it will respond to incentives. Thus, we need not design algorithms that achieve correct

results in the face of adversarial behavior on the part of some agents, merely algorithms

that work correctly in the presence of predictably selfish behavior by all agents.

This approach – structuring incentives so as to induce the desired behavior of selfish

agents – lies at the heart of mechanism design, a large area of research in economics.

Informally, a mechanism is a system with the following form: Each agent can select a

strategy from an allowed range of strategies. The system then processes all the agents’

selected strategies and outputs an outcome as well as monetary payments to (or receipts

from) each agent. Our aim is for the outcome to achieve some desirable global goal (for
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example, a congestion-control mechanism may want to select flow rates to maximize overall

throughput). The mechanism is called incentive-compatible with this goal if the monetary

transfers (payments or receipts) are such that selfish behavior on the part of each agent will

lead to this desirable outcome’s being achieved.

Economic mechanism design focuses on issues of incentive and strategy and largely ig-

nores computational considerations. The algorithmic mechanism design approach of Nisan

and Ronen [NR01] combines the two considerations. For simplicity, Nisan and Ronen con-

sidered a centralized computational model; however, they suggested that a distributed com-

putational model would be more appropriate for the Internet, where agents are scattered

across a network, and communication may be expensive or slow.

Feigenbaum, Papadimitriou, and Shenker [FPS01] extended the Nisan-Ronen framework

to include distributed computation, in order to encompass systems in which the agents

are distributed across a network, and it is impractical to collect all the input data at a

single location and compute the mechanism in a centralized fashion. They initiated the

distributed algorithmic mechanism design (DAMD) approach to designing systems for the

Internet, which combines the incentive-compatibility considerations of mechanism design

with the distributed-computing objective of designing systems with modest computation

and communication requirements. A more detailed overview of mechanism design, algo-

rithmic mechanism design, and distributed algorithmic mechanism design can be found in

Chapter 2.

In this dissertation, I attempt to further our understanding on distributed algorithmic

mechanism design. The thesis of my research is:

The distributed-computing context can have a major impact on

the feasibility of a mechanism.

DAMD is a very general framework that can potentially be applied to a broad class of prob-

lems. However, the exact interplay of incentives and distributed-computation constraints

that arises in a system depends heavily on the context. Thus, my dissertation research is

focused on two specific problems: multicast cost sharing and interdomain routing.

The multicast cost-sharing problem is a mechanism-design problem that was first in-
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troduced by Feigenbaum et al. [FPS01] and has since been studied by many researchers,

including Jain and Vazirani [JV01], Adler and Rubenstein [AR02], Fiat et al. [FGHK02],

and Mitchell and Teague [MT02]. The problem is described in detail in Chapter 3; here,

we only outline it in brief. The problem is as follows: There is some digital content (say, a

movie) at one node of the network and a set of users who are potentially interested in re-

ceiving that content. The content can be delivered to any subset of users, using a multicast

tree for efficiency. However, bandwidth is costly, and each link has a certain associated cost

that must be met if the link is used. Each user is willing to pay up to a certain amount for

the content, but the maximum amount she will pay (the ‘utility’ of the content to her) is

private information known only to the user herself. A mechanism for this multicast cost-

sharing problem takes the users’ reported utilities as input and decides which users receive

the content, as well as how much each receiver pays.

There are two features that make this a useful problem for exploring issues in DAMD:

It involves dividing costs among many users of an Internet service, and the costs involved

exhibit economies of scale, i.e., the marginal cost of serving an additional user goes down

as the user base grows. These features are common to many network applications, and

we believe that the analytical ideas we use for the multicast cost-sharing problem can be

applied to other problem domains as well.

In joint work with Joan Feigenbaum, Arvind Krishnamurthy, and Scott Shenker [FKSS03,

AFK+03], I studied the communication requirements of multicast cost-sharing mechanisms.

We focused on mechanisms that are budget-balanced, i.e., the total payment exactly equals

the incurred cost, and group-strategyproof, i.e., no group of users can collude to manip-

ulate the mechanism to their advantage. (In addition, we assume that the mechanism

satisfies certain other natural properties, which are detailed in Chapter 3.) Feigenbaum et

al. [FPS01] studied one particularly attractive mechanism of this class, the Shapley-value

mechanism (SH). They proved a lower bound on the communication required to compute

this mechanism for a restricted class of algorithms called “linear distributed algorithms”:

Any such algorithm must use Ω(np) bits of communication in the worst case, where n is

the number of nodes in the multicast tree and p is the number of users.

In this dissertation, I present the following contributions towards our understanding of
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the multicast cost-sharing mechanism design problem:

• Any distributed algorithm, deterministic or randomized, that computes a budget-

balanced, group-strategyproof multicast cost-sharing mechanism must send Ω(p) bits

over Ω(n) links in the worst case. This lower bound applies, in particular, to the SH

mechanism.

• Any distributed algorithm, deterministic or randomized, that computes an approxi-

mately budget-balanced, group-strategyproof multicast cost-sharing mechanism must

send Ω(log p) bits over Ω(n) links in the worst case.

• There is no strategyproof multicast cost-sharing mechanism satisfying certain natural

properties that is both approximately efficient and approximately budget-balanced.

• There is a group-strategyproof mechanism that exhibits a trade-off between the prop-

erties of SH: It can be computed by an algorithm that is more communication-efficient

than the SH mechanism (exponentially more so in the worst case), but it might fail

to achieve exact budget balance or match the overall welfare of the SH mechanism

(albeit by a bounded amount).

Apart from their immediate relevance to multicast cost sharing, these results shed new

light on the general issue of approximation in algorithmic mechanism design. It is known

that approximating a mechanism’s output can destroy its strategic properties (see, e.g.,

Nisan and Ronen [NR00]). Our results show that, in some circumstances, it may be pos-

sible to preserve the strategic properties of a mechanism while trading off accuracy and

communication complexity.

The multicast cost-sharing problem is centered on an application-level Internet service.

In contrast, the interdomain-routing problem described in Chapter 4 attempts to capture

the incentive issues involved in providing basic network functionality: The discovery and

distribution of good Internet routes must be supported by many autonomous organizations

with independent goals. This touches upon additional complications that do not arise in

proposals for new user-level services such as multicast, e.g., issues of backward compatibility.

It is unlikely that a proposal for an interdomain-routing protocol that is radically different
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from, and perhaps incompatible with, the current de facto standard protocol (BGP, the

Border Gateway Protocol), will be adopted in the foreseeable future. Instead, it is important

that any new mechanism co-exist with BGP to facilitate a gradual phase-in. Thus, BGP is

a vital part of the distributed-computation context within which any interdomain routing

mechanism must operate.

In joint work with Joan Feigenbaum, Christos Papadimitriou, and Scott Shenker [FPSS02],

I studied the problem of lowest-cost interdomain routing. Our model is as follows: The nat-

ural strategic agents in the interdomain-routing context are the domains or Autonomous

Systems (ASes). We assume a simple cost model that is similar to earlier models of lowest-

cost routing in the algorithmic mechanism design literature [NR01, HS01], in which each

AS incurs a privately known, per-packet cost for every packet it carries. The goal of the

mechanism is to minimize the total cost of routing any given traffic, which requires us to

find the lowest-cost route for every source-destination pair. We show:

• There is a unique strategyproof mechanism for lowest-cost routing that pays nothing

to ASes that carry no transit traffic.

• There is a “BGP-based” algorithm for computing the prices required by this mech-

anism, i.e., an algorithm that requires only modest changes to BGP. The algorithm

has reasonable computational complexity: It requires a small constant-factor growth

in the size of the BGP routing tables and a modest increase in BGP convergence time.

Our idea of including the current standard protocol in the computational model is in

itself a novel addition to the mechanism-design approach. The existing protocol can steer

the design towards mechanisms that are easier to adopt and also serve as a yardstick for

“acceptable” complexity.

The lowest-cost routing model may be too simplistic – in practice, ASes have more

complex costs and preferences, which they express through their routing policies. In joint

work with Joan Feigenbaum, Tim Griffin, Vijay Ramachandran, and Scott Shenker, I stud-

ied extensions of the algorithmic mechanism design approach to more general policies than

lowest-cost routing. We formulated a model in which sources of network traffic have a val-

uation for potential routes to a destination, and this value need not be based on per-packet
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transit costs. The goal of the mechanism is to maximize the sum of all the ASes’ valuations.

We prove the following results, indicating that policy-routing mechanisms may be difficult

to implement in this “BGP-based” computational model:

• In the most general case (in which ASes have arbitrary valuation functions over all

paths to a given destination), finding an optimal outcome is NP-hard; it is even NP-

hard to find an outcome that is approximately optimal, up to any reasonable factor.

• An important restricted class of valuation functions is the one in which an AS’s valu-

ation of a route is only based on its next hop on that route. Valuations based on the

next hop alone can capture preferences due to customer/peer/provider relationships

that pairs of ASes may have, and so this is an interesting class of valuations. In this

case, finding the optimal routes reduces to finding a maximum-weight directed span-

ning tree and can be computed in polynomial time. The payment computation can

also be performed in polynomial time, and thus the mechanism appears to be feasible

in a centralized setting.

• The communication required to dynamically recompute the payments when valuations

change may be unacceptably high in the context of BGP: There is a family of networks

with n ASes, which are Internet-like in that they are sparse and have low diameter, for

which any update in valuations must result in Ω(n) messages, over a contiguous open

subset of valuations. With this generically high communication, routing could be done

in a link-state fashion, in which all relevant information is broadcast to all agents.

BGP uses the alternative path-vector approach in order to reduce communication

requirements, but adding the payment computation for this mechanism could defeat

this purpose.

In both the multicast cost-sharing and interdomain-routing problems, we find that some

(but not all) mechanisms that appear to be feasible in a centralized computational model

turn out to be impractical in the distributed-computing context. Taken together, the results

on multicast cost sharing and interdomain routing support my thesis that the distributed-

computation context must be taken into account when designing Internet mechanisms.
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The case of budget-balanced, group-strategyproof multicast cost-sharing is particularly

interesting: If either the incentive-compatibility requirement (group-strategyproofness) or

the distributed-computation requirement is dropped, the problem becomes easy to solve;

thus, the hardness arises from the interplay of incentives and distributed computation. We

call such problems canonically hard; they may form part of a “complexity theory” of dis-

tributed algorithmic mechanism design. Further, by showing the existence of canonically

hard problems, we have demonstrated that distributed computation and incentive com-

patibility are not orthogonal issues that can be tackled independently; an approach that

combines both is essential.

The rest of this dissertation is structured as follows: In Chapter 2, I review some concepts

from Mechanism Design and Algorithmic Mechanism Design. In Chapter 3, I describe the

multicast cost-sharing problem. I review the earlier and related work on this problem and

then present our new results. In Chapter 4, I focus on the interdomain-routing problem.

I describe earlier work on formulating routing as a mechanism-design problem and then

explain where our model differs from the earlier ones. I then outline the “BGP-based”

computational model and present our results on lowest-cost routing and policy routing.

Finally, in Chapter 5, I summarize and mention some interesting open problems for future

work.

8



Chapter 2

Background: Distributed

Algorithmic Mechanism Design

In this chapter, we review concepts and terminology from classical mechanism design, as well

as algorithmic mechanism design and distributed algorithmic mechanism design. Our aim is

to present formal definitions of the concepts we use, to make clear the assumptions implicit

in our analysis, and to outline the relationship between our work and other research in this

field. We are not attempting a comprehensive survey of the literature in this vast field; we

refer the readers to the chapter on mechanism design theory in the book by Mas-Colell,

Whinston, and Green [MWG95, Ch. 13], and to the survey article by Jackson [Jac01]. A

recent survey of distributed algorithmic mechanism design can be found in [FS02].

2.1 Mechanism Design Framework

Figure 2.1 depicts a simple mechanism setting: There are n agents; each agent i has some

private information, called her private type ti. This type is drawn from a set T of possible

types; the set T is known to all, but ti is known only to agent i. For example, the agents

could be bidders at an auction; in this case, the private type of an agent is the amount she

is willing to pay for the item being auctioned. We use t to denote the vector (t1, t2, . . . , tn).

The function of a mechanism in this setting is to solve a decision or allocation problem

that affects all the agents. There is a set O of possible decisions (or allocations), and the

9



Mechanism

Agent n

Agent 1

a1

an

p1

pn

t1

tn

Private type
information Strategies

Parameter z

Payments
Output O

Figure 2.1: The general mechanism-design setting

mechanism must pick some decision o ∈ O. For example, an auction decides which agent

the item should belong to; in this case, the set of possible decisions is O = {1, 2, ...n}. Typ-

ically, we want the decision to follow certain principles or exhibit some ethically appealing

property; in the auction example, we might want the item to be allocated to the agent who

values it the most. This is not trivial when the desired decision must depend on the private

information of the agents (as in the auction case, where the value each agent places on

the item is private). These constraints on the decision are expressed by requiring that the

decision conform to a certain function of the agent types, the social choice function. We

discuss social choice functions in more detail in Section 2.1.4.

In order to implement a social choice function, the mechanism must get some input from

the agents. The design of the mechanism therefore includes a message space or strategy space

A; each agent i sends the mechanism some message ai ∈ A. (The mechanism could invite

each agent to declare her type, in which case we would have A = T , but the mechanism does

not have to take this form.) The mechanism thus receives as input a vector of strategies

a = (a1, . . . , an). It uses this input to compute a decision o, by following some output

function o = O(a).

The mechanism also decides on the money transfers that accompany this decision; this

gives the mechanism designer the tools to incentivize the agents. Formally, the mechanism

also computes payments p1, p2, . . . , pn. We use the convention that pi is the money paid by
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the mechanism to agent i; there is no restriction on the sign, however, and so a negative value

can be used to indicate money received from agent i. Returning to our auction example, pi

would typically be non-positive: The winner would have to pay the mechanism, but there

is no money transfer with any other agent. We use p to denote the vector of payments

(p1, p2, . . . , pn). The mechanism computes the payment vector by following some payment

function p(a) = (p1(a), p2(a), . . . , pn(a)).1

The goal of the mechanism designer is to design the output and payment functions

such that selfish behavior by the agents leads to a predictable strategy profile a(t) (which

depends on the true type t), and the output function for this predicted strategy exactly

corresponds to the social choice function. We will develop the game-theoretic framework to

describe “predictable strategies” in Section 2.1.1 and Section 2.1.3, and then mention some

overall objectives for the mechanism in Section 2.1.4.

One final addition to this model is that we allow the mechanism design framework to

include a parameter z from a space Z. We do this because we are often interested in solving

a class of related problems; for instance, in Chapter 3, we are interested in solving a class of

cost-sharing problems, each corresponding to a different instance of multicast tree topology

and cost. In a sense, this parameter represents the public information in the system; in the

multicast problem, the public information consists of the tree topology and the link costs.

This parameter z can influence the desired social choice function, the mechanism output

function, and the payments.

We are now ready to define a mechanism formally:

Definition 2.1 We are given a set of n agents, type space T , decision space O, and pa-

rameter space Z. A mechanism M is a tuple (A,O, p1, p2, . . . pn), where A is the strategy

space,

O : Z × An → O is the output function, and pi : Z × An → R is the payment function for

agent i. A game form Mz is the mechanism M with the parameter fixed to z ∈ Z.

The relevance of the type space T will become apparent when we discuss the SCF that the

mechanism is implementing.

1We use p and pi to denote the payment function as well as the actual payments computed. It will be
clear from the context which of these we are referring to.
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For conciseness, we will often let the strategy space A be implicit and write the mecha-

nism simply as a pair M = (O,p), where p = (p1, p2, . . . , pn).

We remark that this is not the most general model of a mechanism design problem.

Many variations are possible: For example, we could have different type spaces and strategy

spaces for different agents; there may also be probabilities assigned to the type profiles; or

the mechanism itself may be randomized. Further, we have depicted the running of the

mechanism as a one-round game (i.e., a game in strategic form). It is also possible to

consider iterative mechanisms, with many rounds of communication between the agents

and the mechanism; this would result in an extensive-form game.

2.1.1 Quasilinear utility model

An agent i’s chosen strategy ai thus affects both the final decision and her payment pi.

What is the combined impact of the decision and the payment on the agent? The answer

requires us to specify a utility model.

Throughout this dissertation, we use the quasilinear utility model. In this model, agent

i’s overall welfare2 wi is given by:

wi = ui(ti, o) + pi ,

where ui(ti, o) is the utility she derives from the decision o of the mechanism; this may

depend on the agent’s type. It is this welfare wi that agent i seeks to maximize.

The quasilinear model is characterized by the fact that the welfare is additively separable

into money and everything else and that it is linear in money. There are several consequences

to this assumption. Among other things, it implies that agents are risk-neutral and that

there is no “income effect,” i.e., the change in wealth of agent i (due to the payment pi) does

not influence her utility ui for the consumed good or service. In general, neither of these

assumptions is likely to be satisfied exactly; however, it is often a reasonable approximation

for a particular mechanism, such as a movie multicast, in which the money transfers induced

2The terms welfare and utility are used interchangeably in the algorithmic mechanism design literature;
what we call welfare is often referred to as utility. Throughout this dissertation, we stick to the convention
that the utility is that portion of the welfare that is derived from the decision of the mechanism.
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by the mechanism do not significantly alter the wealth of the participating agents. The

quasilinear model has the advantage of analytical simplicity. For this reason, most of the

algorithmic mechanism design literature to date assumes quasilinear utilities.

2.1.2 Induced Game

Suppose that we are given a mechanism M and a particular instance of the problem specified

by parameter z ∈ Z. For every type profile t, the game form Mz induces a strategic-form

game among the agents as follows: Each agent i chooses and plays some strategy ai. The

“payoff” for agent i when the strategy profile is a, is her resultant welfare:

wi(a) = ui(ti, O(z,a)) + pi(z,a)

Note that agent i’s type ti is an implicit argument in her welfare wi(a).

2.1.3 Solution Concepts

We assume that all the agents are rational, selfish maximizers, i.e., that they will only

attempt to maximize their own welfare. Further, we assume that they know the exact form

of the mechanism M. Recall that mechanism designers want to exploit the predictably

selfish behavior of the agents. This leads to the following question: Given a type profile t,

when can we predict the strategy profile a that results from selfish behavior by the agents?

Game theory provides us with many different ways to answer this question, depending

on the assumptions we make about the agents’ information about other agents’ types and

strategies, the agents’ ability to coordinate strategies, etc. These assumptions are embodied

in the solution concept used.

Nash equilibrium One solution concept that is very widely used is that of a Nash equi-

librium. A strategy profile a is said to be a Nash equilibrium if, given the equilibrium

strategy for all other agents, ai is an optimal strategy for agent i. Formally, we can express

this as follows: We use the notation a−i to denote the strategies of all agents except i, i.e.,

a−i = (a1, . . . , ai−1, ai+1, . . . an).
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Definition 2.2 A strategy profile a is a Nash equilibrium if

∀i ∀a′i ∈ A wi(a
−i, ai) ≥ wi(a

−i, a′i)

A Nash equilibrium can be viewed as a “self-enforcing” contract: if agent i is confident

that all other agents are going to play their equilibrium strategies, then she cannot improve

her welfare by playing any strategy other than ai. Thus, if a is a Nash equilibrium strategy

in the game induced by a mechanism, and all agents believe that every other agent is going

to play according to this strategy, then selfish behavior will lead all agents to choose strategy

profile a.

However, one major drawback of the Nash-equilibrium solution concept is that it requires

agents to have complete knowledge (or belief) about every other agent’s strategy. This

problem arises because, in any game, there may be many different Nash equilibria. For

the equilibrium strategy to be self-enforcing, all agents have to play according to the same

one of these multiple equilibria. This requires some coordination among agents; in some

domains, such coordination may be achieved (for instance, through repeated games and

learning), but it appears to be too stringent a requirement for many Internet mechanisms.

Attempts to get around this problem of multiple equilibria have been made in the

literature on implementation theory; Jackson [Jac01] surveys the literature in this field.

There has also been a lot of research on refinements of Nash equilibria: If we make additional

assumptions about which strategies are “reasonable” for an agent to play, most of the Nash

equilibria may be eliminated, leading to a simpler coordination problem.

Dominant strategy equilibrium A stronger solution concept is that of dominant strate-

gies.

Definition 2.3 A strategy profile a is said to be a dominant-strategy equilibrium if,

in the game under consideration, agent i’s optimal strategy is always to play ai, regardless

of the strategy played by any other agent:

∀i ∀a′i ∈ A ∀ã−i ∈ An−1 wi(ã
−i, ai) ≥ wi(ã

−i, a′i)
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A dominant-strategy equilibrium is also a Nash equilibrium.

Thus, dominant strategies do not suffer from the coordination problem of Nash equilib-

ria: An agent i can choose her optimal strategy ai without worrying about other agents’

types or strategies at all. This is particularly attractive in an Internet setting, where an

agent may not even know which other agents are participating in the mechanism. Thus, if

a mechanism always induces games with dominant strategy equilibria, an agent’s dominant

strategy only depends on her own private type ti (and perhaps the parameter z). In this

case, there is a very strong reason to believe that selfish behavior will lead the agents to

collectively play the dominant strategy profile a.3

Strategyproof Mechanisms While dealing with the dominant strategy solution con-

cept, we often focus our attention on strategyproof mechanisms. A strategyproof mecha-

nism is one in which the strategy space A is identical to the type space T , and, for every

instance z and every type profile t, the induced game has a dominant-strategy equilibrium

in which each agent i plays the truthful strategy ai = ti. The revelation principle says that

any mechanism with a dominant strategy solution can be transformed into a strategyproof

mechanism. It is easy to see why this is true: We can wrap the mechanism with a procedure

that asks for the type of each agent and computes their dominant strategies for them.

Definition 2.4 A mechanism is strategyproof if A = T and, for any parameter z, the

game form has the property that

∀z, ∀t ∈ T n [ ∀i, ∀ai ∈ T, ∀a−i ∈ T n−1,

wi(a
−i, ti) = ui(ti, O(z,a−i, ti)) + pi(z,a−i, ti)

≥ wi(a
−i, ai) = ui(ti, O(z,a−i, ai)) + pi(z,a−i, ai) ]

Thus, a strategyproof mechanism induces each agent i to reveal her private type in-

formation ti to the mechanism, in all circumstances. The mechanism will ideally use this

3It is possible for the induced game to have multiple dominant-strategy equilibria, but this is rarer than
in the case of Nash equilibria. Further, we are often dealing with strategyproof mechanisms, in which case
it is reasonable to expect an agent to play the simplest dominant strategy, which is to truthfully reveal her
type.
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information to output the desired social choice function SCF (t).

Group-strategyproof Mechanisms Strategyproofness implies that, in all circumstances,

no single agent can gain from lying about her type. However, it may still be possible for a

group of agents to collude to improve all their welfares. This leads us to the definition of a

stronger property: group-strategyproofness.

Let S ⊆ [1, 2, . . . , n] denote a subset of the agents, and let tS = {ti|i ∈ S}. We say

the group S has a successful strategy if there is some strategy t̃S that strictly increases at

least one member of the group without reducing the welfare of any other member. For any

strategy profile a, we use the notation a−S to denote the vector of strategies of all agents

not in S: a−S = {aj |j 6∈ S}.

Definition 2.5 A mechanism is called group-strategyproof if A = T and no group can

ever have a successful strategy, i.e.,

∀z, ∀t ∈ T n { ∀S, ∀t̃S ∈ T |S|, ∀a−S ∈ T n−|S|,

[

∃i ∈ S s.t. wi(a
−S , t̃S) > wi(a

−S , tS)

=⇒ ∃j ∈ S s.t. wj(a
−S , t̃S) < wj(a

−S , tS)
]}

(Recall that i’s true type ti is an implicit argument of the function wi(·).)

Which is the “right” solution concept? We have described some of the solution con-

cepts used in the mechanism-design literature; there are many more solution concepts that

we have not described. The question of which solution concept is most appropriate for Inter-

net mechanisms has been debated by many researchers (see, e.g., [NR01]), and was studied

at length by Friedman and Shenker [FS97]. Strategyproofness seems to be a safe choice,

provided collusion between agents is impractical, because the incentive compatibility of the

mechanism then holds regardless of the extent of any agent’s knowledge of other agents’

preferences and strategies. Group-strategyproofness will give security against collusion as

well.

However, there is a trade-off between the strength of the solution concept and the range
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of social choice functions that can be implemented. Classic impossibility results show that

certain social choice functions cannot be implemented by strategyproof mechanisms [Arr63,

Gib71, Sat75, GL79]. If the context of the particular mechanism justifies a weaker solution

concept (such as Nash equilibrium), these SCFs may be implemented.

In this dissertation, we follow most of the algorithmic mechanism design literature in

choosing strategyproofness and group-strategyproofness as our solution concepts.

2.1.4 Overall Goals

We now turn to defining overall goals for a mechanism. Recall that the mechanism selects

both a decision o ∈ O and a vector of payments p. However, the mechanism may not have

complete flexibility to choose them independently; requirements such as budget balance

(discussed below) may restrict the choice. In general, we assume that the mechanism must

choose an outcome (o,p) ∈ F ⊆ O × R
n, where F is the space of feasible outcomes. A

mechanism is designed to implement a given social choice function, SCF : T n → F , which

maps a type profile t to a “desirable” outcome (o,p). (More generally, we may have a

social choice correspondence that maps each type vector to a set of acceptable outcomes.)

Here, “desirability” is decided by the mechanism designer (or social planner), who must

set objectives for his mechanism. There is a large branch of economics, called social choice

theory, that deals with formalizing “desirable” goals for society.

How is the function SCF picked? Usually, it is built up from a combination of axioms,

each representing a constraint on the mechanism, or an ethical principle that we would

like to follow. For example, “If, at type profile t, all agents like decision o best, then,

SCF(t) = o.” In this section, we describe two objectives, efficiency and budget-balance,

which we target for the mechanisms in this thesis.

Efficiency (Pareto-optimality) The principle of Pareto-optimality says that, if all the

participants of the game induced by a mechanism prefer outcome (o′,p′) to outcome (o,p),

then (o,p) should not be the chosen outcome. In other words, if (o,p) is the chosen

decision, it should be “Pareto-optimal”: There should be no decision (o′,p′) ∈ F that

all the participants prefer to (o,p). Moulin [Mou91, pg. 14] calls the Pareto-optimality
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principle “the single most important concept in welfare economics.” A Pareto-optimal

outcome is also called an efficient outcome, and a mechanism is said to be efficient if it

always gives a Pareto-optimal outcome.

When we are dealing with quasilinear utilities (defined in Section 2.1.1), this concept

of efficiency takes on a convenient analytical form. The important feature of quasilinear

utilities here is that all agents derive the same welfare from money; thus, money transfers

among agents are irrelevant to the efficiency of the mechanism. Not all money need be

transferred between agents; the mechanism may run a deficit or generate a surplus. This

can be dealt with by assuming that there is a non-strategic party associated with the

mechanism, such as society at large or the mechanism operator, that bears the deficit or

surplus. In this case too, we can extend the quasilinear utilities to the party bearing the

deficit or the surplus, and hence the Pareto-optimality of the mechanism is independent

of the money transfers.4 This leads us to define the efficiency or overall welfare W (o) of

decision o:

W (o) =

n
∑

i=1

ui(ti, o)

With quasilinear utilities, an outcome (o, p) is efficient if and only if o is a decision in O

that maximizes the overall welfare W (o).5 Maximizing W (o), the sum of all agent utilities,

is the classical utilitarian goal.

When the decisions may have different intrinsic costs to society, these have to be taken

into account. For example, in the multicast cost-sharing problem described in Chapter 3,

each decision o corresponds to a different selected multicast tree, resulting in different costs

C(o).6 In such situations, the efficiency or overall welfare (with costs) W (o) is defined as:

W (o) =

n
∑

i=1

ui(ti, o) − C(o)

A mechanism is then efficient if and only if it maximizes the overall welfare with costs.

4For this reason, games with quasilinear utility functions are also known as transferable utility games.
5Here, we assume that all balanced money transfers are feasible; this is true of all the mechanism design

problems we consider.
6The cost may also depend on the problem instance, fixed by parameter z; for simplicity, we omit z from

the notation.
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Budget Balance The other overall mechanism goal we consider in this dissertation is

budget balance. As mentioned earlier, this can be viewed as a constraint on the mechanism’s

outcome: If there are no costs, then the payment vector p must satisfy
∑

i pi = 0. If there

is an intrinsic cost C(o) associated with each decision o, then the outcome (o,p) of the

mechanism must satisfy

C(o) +

n
∑

i=1

pi = 0

In other words, the revenue generated from the agents exactly balances the cost the

mechanism incurs.

It is also possible to consider a weaker budgetary constraint, in which the mechanism

is allowed to run a surplus, but not a deficit. If the mechanism is a commercial entity, it

is clear that this represents a real feasibility constraint: the mechanism can make a profit

and survive, but it cannot make a loss.

However, there are situations in which a large surplus could also be detrimental to the

company running the mechanism. In particular, a large surplus means that the agents are

being charged more than what is required to cover the cost of the service the mechanism

is providing, and so it is open to being undercut by competition. In such cases, we may

want a mechanism that is as close to achieving exact budget balance as possible. Another

situation in which exact budget balance may be required is when the mechanism is set up

by the agents to cooperatively solve an allocation problem.

2.1.5 Vickrey-Clarke-Groves Mechanisms

One of the most striking results in mechanism design is a general technique for construct-

ing strategyproof, efficient mechanisms in the quasilinear setting. This construction can

be traced back to Vickrey’s second-price auction [Vic61] and was further developed by

Clarke [Cla71] and Groves [Gro73]. In the algorithmic mechanism design literature, these

are called Vickrey-Clarke-Groves (VCG) mechanisms.

The VCG construction seems to give us all that we need– strategyproofness and optimal

efficiency. However, one drawback of VCG mechanisms is that they are usually not budget-

balanced; the construction relies on having the freedom to run a surplus or a deficit. This
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is one ramification of a result due to Green and Laffont [GL79], which shows that there is

in general no strategyproof mechanism that is both budget-balanced and efficient. VCG

mechanisms are also not group-strategyproof; typically, a colluding group of agents can

easily improve all their individual welfares.

2.2 Algorithmic Mechanism Design

In Section 2.1, we described the economic aspect of mechanism design. We now turn to the

computational aspect, which was first studied by Nisan and Ronen [NR01] in their seminal

paper on algorithmic mechanism design.

Nisan and Ronen observed that, for a mechanism to be feasible in practice, the functions

O(a) and p(a) have to be tractable. Specifically, for a mechanism to be tractable, the

output and payment functions must be polynomial-time computable; perhaps surprisingly,

even this simple requirement ruled out many mechanisms that would appear ideal from an

economic standpoint. This arises because, in many problem settings, finding an optimal

(e.g., efficient) decision is an NP-hard combinatorial optimization problem.

This naturally leads us to ask whether an approximation algorithm can be used to yield

a mechanism that is approximately optimal. However, Nisan and Ronen [NR00] showed

that this is not as straightforward as it may appear: Replacing an exact solution by an

approximate solution may destroy the game-theoretic properties (e.g., strategyproofness)

of the mechanism. Thus, approximation in the context of mechanism design has to be

done carefully; general approximation techniques have been developed for some classes of

mechanism design problems [AT01].

The original paper of Nisan and Ronen [NR01] sparked a large body of research on

algorithmic aspects of mechanism design. In particular, there is growing interest in incentive

compatibility in both distributed and centralized computation in the theoretical computer

science community (see, e.g., [AT02, FPS01, FGHK02, HS01, NR00, RT02]) and in the

“distributed agents” part of the AI community (see, e.g., [MT99, Par99, PU00, San99,

Wel93, WWWM01]). One problem that has been intensively studied is that of combinatorial

auctions, which are auctions in which bidders may bid for subsets of a set of goods rather
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than for individual goods. The computational challenge here arises from the combinatorial

explosion of the number of subsets that must be considered. Combinatorial auctions have

an immediate application in the FCC Spectrum Auctions.

2.3 Distributed Algorithmic Mechanism Design

Nisan and Ronen’s model of tractable computation is based on polynomial-time centralized

computation. One of the main motivations for algorithmic mechanism design is the study of

Internet mechanisms, and so they suggested that a distributed, Internet-like computational

model might be more suitable in some cases.

In the Internet, the agents are often dispersed across the network; thus, the input and

output of the mechanism must occur at dispersed locations. One way to compute the

mechanism is to send all the input strategies to a single location, compute the output and

payments in a centralized manner, and then send the required information back to the

agent locations. However, this approach may require prohibitively high communication and

it may cause congestion near the centralized server. This led Feigenbaum, Papadimitriou,

and Shenker to consider distributed computational models in their paper on multicast cost-

sharing mechanisms [FPS01]; this started the study of distributed algorithmic mechanism

design. Feigenbaum et al. pointed out that for a mechanism to be feasible in an Internet

setting, it must be computable by a distributed algorithm with low computational complex-

ity and modest communication requirements. More specifically, the distributed algorithm

should ideally have the following properties:

• The local computations require polynomial-time.

• Low communication complexity; the total number of messages sent is ideally O(s).

• Each message is reasonably small, e.g., polylog(s).

• No single link is congested, i.e., the maximum number of messages on a link is O(1).

(Here, s denotes the input size of a given instance of the problem.) They introduced the term

network complexity to cover these four aspects of a distributed algorithm. A mechanism is

said to have “good network complexity” if it satisfies all these properties.
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We remark that the communication complexity of mechanisms is related to the concept

of message space dimensionality that has been developed in the economics literature [MR74,

Wal77]. The parallels between the two approaches are demonstrated by Nisan and Segal,

in their analysis of combinatorial auctions [NS03]. However, the concepts are different in

that the message-space dimensionality only deals with the informational requirements at

equilibrium, whereas the communication complexity of computing the mechanism includes

the information transfers required to reach equilibrium as well.

Finally, we note that our framework of distributed algorithmic mechanism design in-

cludes both distributed information (inputs and outputs) and distributed computation;

there has also been work on studying the impact of distributed information alone on algo-

rithmic mechanism design [MT99, NS03].
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Chapter 3

Multicast Cost Sharing†

3.1 Introduction

In the standard unicast model of Internet transmission, each packet is sent to a single

destination. Although unicast service has great utility and widespread applicability, it

cannot efficiently transmit popular content, such as movies or concerts, to a large number

of receivers; the source would have to transmit a separate copy of the content to each

receiver independently. The multicast model of Internet transmission relieves this problem

by setting up a shared delivery tree spanning all the receivers; packets sent down this tree

are replicated at branch points so that no more than one copy of each packet traverses each

link. Multicast thus greatly reduces the transmission costs involved in reaching large user

populations.

The large-scale, high-bandwidth multicast transmissions required for movies and other

potential sources of revenue are likely to incur substantial transmission costs. The costs

when using the unicast transmission model are separable in that the total cost of the

transmission is merely the sum of the costs of transmission to each receiver. Multicast’s

use of a shared delivery tree greatly reduces the overall transmission costs, but, because the

total cost is now a submodular and nonlinear function of the set of receivers, it is not clear

how to share the costs among the receivers. A recent series of papers has addressed the

†This chapter describes joint work with Joan Feigenbaum, Arvind Krishanmurthy, and Scott Shenker;
parts of it were reported in [FKSS03, AFK+03]. Aaron Archer provided valuable comments.
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problem of cost sharing for Internet multicast transmissions. In the first paper on the topic,

Herzog et al. [HSE97] considered axiomatic and implementation aspects of the problem.

Subsequently, Moulin and Shenker [MS01] studied the problem from a purely economic point

of view. Several more recent papers [FPS01, AR02, FGHK02, MT02] adopt the distributed

algorithmic mechanism design approach, which augments a game-theoretic perspective with

distributed computational concerns. In this chapter, we extend the results of [FPS01] by

considering a more general computational model and approximate solutions. We also extend

a classic impossibility [GL79] result by showing that no strategyproof mechanism can be

both approximately efficient and approximately budget-balanced.

3.2 Multicast Cost Sharing Model

We use the multicast-transmission model of [FPS01]: There is a user population P residing

at a set of network nodes N , which are connected by bidirectional network links L. The

multicast flow emanates from a source node αs ∈ N ; given any set of receivers R ⊆ P , the

transmission flows through a multicast tree T (R) ⊆ L rooted at αs and spans the nodes at

which users in R reside. It is assumed that there is a universal tree T (P ) and that, for each

subset R ⊆ P , the multicast tree T (R) is merely the minimal subtree of T (P ) required to

reach the elements in R. This approach is consistent with the design philosophy embedded

in essentially all multicast-routing proposals (see, e.g., [BFC93, DEF+96, HC93, PLB+99]).

Each link l ∈ L has an associated cost c(l) ≥ 0 that is known by the nodes on each

end, and each user i assigns a utility value ui to receiving the transmission. Note that ui is

known only to user i a priori.

A cost-sharing mechanism determines which users receive the multicast transmission and

how much each receiver is charged. Using the mechanism-design terminology introduced

in Chapter 2, we can describe the mechanism-design problem: The users are the strategic

agents. The private type information that user i has is ui, her utility for the transmission.

We are interested in strategyproof mechanisms, and hence we can assume that the strategy

space A is the space of possible utility values, which is the set of all non-negative real

numbers. The mechanism asks each user i to report her utility value; user i can strategize
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by reporting any value µi ≥ 0 in place of ui. The decision space O is the set of all subsets

of receivers. We use σi to denote whether user i receives the transmission: σi = 1 if the

user receives the multicast transmission, and σi = 0 otherwise. The decision output by a

mechanism is thus a vector σ = (σ1, σ2, . . . , σ|P |).

This is a cost-sharing mechanism, and thus, it will receive payments from the users;

thus, the payments pi as defined in Chapter 2 will be negative. We let xi = −pi denote

how much user i is charged and σi denote whether user i receives the transmission; σi = 1

if the user receives the multicast transmission, and σi = 0 otherwise. We use u to denote

the input vector (u1, u2, . . . , u|P |).

We want mechanisms to solve the cost-sharing problem for all possible multicast trees,

rather than a simple problem. Therefore, the mechanism is parametrized by a parameter

z = (N,T (P ), {cl}, αs) that describes the non-private information in a particular problem

instance: the set of nodes, the universal multicast tree, the link costs, and the source of the

multicast. In order to keep the notation simple, we do not explicitly include this parameter

in our formulae; when we are dealing with a single instance of the problem, it will be clear

from the context.

The mechanism M is then a pair of functions M(u) = (σ(u),x(u)). The practical

feasibility of deploying the mechanism on the Internet depends on the network complexity

of computing the functions x(u) and σ(u). It is important to note that both the inputs

and outputs of these functions are distributed throughout the network; that is, each user

inputs his ui from his network location, and the outputs xi(u) and σi(u) must be delivered

to him at that location.

The receiver set for a given input vector is R(u) = {i | σi = 1}. A user’s individual

welfare is given by wi = σiui − xi. The cost of the tree T (R) reaching a set of receivers

R is c(T (R)), and the overall welfare, or net worth, is NW (R) = uR − c(T (R)), where

uR =
∑

i∈R ui and c(T (R)) =
∑

l∈T (R) c(l). The overall welfare measures the total benefit

of providing the multicast transmission (the sum of the utilities minus the total cost).

Figure 1 depicts an instance of the multicast cost-sharing problem. There are five

potential receivers, each located at a particular node of the multicast tree and each having a

certain utility value for receiving the multicast transmission. For example, the notation u1 =
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Figure 3.1: A multicast cost-sharing problem.

3 beside the leftmost node on the second level from the top means that potential receiver

number 1 is located at this node and is willing to pay at most 3 to receive the transmission.

The numerical values on the links represent the costs of sending the transmission over those

links. The source of the transmission is the root node at the top level of the tree. If

R ⊆ {1, . . . , 6} is the set of actual receivers, then the transmission will be sent only to the

nodes of the tree at which members of R are located. The total cost of this transmission

will be the sum of the costs of the links in the smallest subtree that contains these nodes

and the root. For example, if R = {2, 3, 4}, then the total cost of the transmission would

be 15. The role of the cost-sharing mechanism is to determine, for each instance, what the

receiver-set R should be and how much each member of R should be charged.

Our goal is to explore the relationship between incentives and computational complexity,

but, before we do so, we first comment on several aspects of the model. The cost model

we employ is a poor reflection of reality, in that transmission costs are not per-link; current

network-pricing schemes typically only involve usage-based or flat-rate access fees, and the

true underlying costs of network usage, though hard to determine, involve small incremental

costs (i.e., sending additional packets is essentially free) and large fixed costs (i.e., installing

a link is expensive). However, we are not aware of a well-validated alternative cost model,

and the per-link cost structure is intuitively appealing, relatively tractable, and widely used

(e.g., in [AR02, FGHK02, FPS01, JV01, MT02]).

We assume that the total transmission costs are shared among the receivers. There

26



are certainly cases in which the costs would more naturally be borne by the source (e.g.,

broadcasting an infomercial) or the sharing of costs is not relevant (e.g., a teleconference

among participants from the same organization); in such cases, our model would not apply.

However, we think that there will be many cases, particularly those involving the widespread

dissemination of popular content, in which the costs would be borne by the receivers.

There are certainly cases, such as the high-bandwidth broadcast of a long-lived event

such as a concert or movie, in which the bandwidth required by the transmission is much

greater than that required by a centralized cost-sharing mechanism (i.e., sending all the

link costs and utility values to a central site at which the receiver set and cost shares

could be computed). For these cases, our feasibility concerns would be moot. However,

Internet protocols are designed to be general-purpose; what we address here is the design

of a protocol that would share multicast costs for a wide variety of uses, not just long-lived

and high-bandwidth events. Thus, the fact that there are scenarios (e.g., the transmission

of a shuttle mission, as explained below) in which our feasibility concerns are relevant is

sufficient motivation; they need not be relevant in all scenarios.

In comparing the bandwidth required for transmission to the bandwidth required for

the cost-sharing mechanism, one must consider several factors. First, and most obvious,

is the transmission rate b of the application. For large multicast groups, it will be quite

likely that there will be at least one user connected to the Internet by a slow modem.

Because the multicast rate must be chosen to accommodate the slowest user, one can’t

assume that b will be large. Second, the bandwidth consumed on any particular link by

centralized cost sharing mechanisms scales linearly with the number of users n = |P |, but

the multicast’s usage of the link is independent of the number of users. Third, one must

consider the time increment ∆ over which the cost accounting is done. For some events,

such as a movie, it would be appropriate to calculate the cost shares once (at the beginning

of the transmission) and not allow users to join after the transmission has started. For other

events, such as the transmission of a shuttle mission, users would come and go during the

course of the transmission. To share costs accurately in such cases, the time increment ∆

must be fairly short. The accounting bandwidth on a single link scales roughly as n, which

must be compared to the bandwidth ∆b used over a single accounting interval. Although
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small multicast groups with large ∆ and b could easily use a centralized mechanism, large

multicast groups with small ∆ and b could not.

We have assumed that budget-balanced cost sharing, where the sum of the charges

exactly covers the total incurred cost, is the goal of the charging mechanism. If the charging

mechanism were being designed by a monopoly network operator, then one might expect

the goal to be maximizing revenue. There have been some recent investigations of revenue-

maximizing charging schemes for multicast (see, e.g., [FGHK02]), but here we assume, as in

[HSE97, MS01, FPS01, AR02], that the charging mechanism is decided by society at large

(e.g., through standards bodies) or through competition. Competing network providers

could not charge more than their real costs (or otherwise their prices would be undercut)

nor less than their real costs (or else they would lose money), and so budget balance is

a reasonable goal in such a case. For some applications, such as big-budget movies, the

bandwidth costs will be insignificant compared to the cost of the content, and then different

charging schemes will be needed, but for low-budget or free content (e.g., teleconferences)

budget-balanced cost-sharing is appropriate.

Lastly, in our model it is the users who are selfish. The routers (represented by tree

nodes), links, and other network-infrastructure components are obedient. Thus, the cost-

sharing algorithm does not know the individual utilities ui, and so users could lie about

them, but once they report them to the network infrastructure (e.g., by sending them to

the nearest router or accounting node), the algorithms for computing x(u) and σ(u) can

be reliably executed by the network. Ours is the simplest possible strategic model for the

distributed algorithmic mechanism-design problem of multicast cost sharing, but, even in

this simplest case, determining the inherent network complexity of the problem is non-

trivial. Alternative strategic models (e.g., ones in which the routers are selfish, and their

strategic goals may be aligned or at odds with those of their resident users) may also present

interesting distributed algorithmic mechanism-design challenges. Preliminary work along

these lines is reported in [MT02].
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3.3 Notation and Terminology

In order to state our results more precisely, we need additional notation and terminology.

In general, we only consider mechanisms that satisfy four natural requirements1:

No Positive Transfers (NPT): xi(u) ≥ 0; in other words, the mechanism cannot pay

receivers to receive the transmission.

Voluntary Participation (VP): wi(u) ≥ 0; this implies that users are not charged if

they do not receive the transmission and that users who do receive the transmission are not

charged more than their reported utilities.

Consumer Sovereignty (CS): For any given problem instance z there exists some µcs

such that σi(u) = 1 if ui ≥ µcs; this condition ensures that the network cannot exclude any

agent who is willing to pay a sufficiently large amount, regardless of other agents’ utilities.

Symmetry2 (SYM): If i and j are at the same node or are at different nodes separated

by a zero-cost path, and ui = uj , then σi = σj and xi = xj.

We are concerned with mechanism that are strategyproof, or group-strategyproof (GSP);

these properties were defined in Chapter 2.

3.4 Overall Objectives

In addition to these basic requirements, there are certain other desirable properties that

one could expect a cost-sharing mechanism to possess. A cost-sharing mechanism is said

to be efficient if it maximizes the overall welfare, and it is said to be budget-balanced if the

revenue raised from the receivers covers the cost of the transmission exactly. It is a classical

result in game theory [GL79] that a strategyproof cost-sharing mechanism that satisfies

NPT, VP, and CS cannot be both budget-balanced and efficient.

Moulin and Shenker [MS01] have shown that there is only one strategyproof, efficient

mechanism, called marginal cost (MC), defined in Section 3.9 below, that satisfies NPT,

VP, and CS. They have also shown that, while there are many GSP, budget-balanced

1The one exception is Section 3.9, in which we do not assume SYM; that section contains an impossibility
result, and so not making this assumption only makes the result stronger.

2This straightforward definition is less restrictive than the one given by Moulin and Shenker [MS01]. The
SH, JV, and EG mechanisms that we use as examples satisfy the more stringent definition of symmetry in
[MS01] as well.
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mechanisms that satisfy NPT, VP, and CS, the most natural one to consider is the Shapley

value (SH), defined in Section 3.7 below, because it minimizes the worst-case efficiency loss.

Both MC and SH also satisfy the SYM property. The egalitarian (EG) mechanism

of Dutta and Ray [DR89] is another well studied GSP, budget-balanced mechanism that

satisfies the four basic requirements. Jain and Vazirani [JV01] present a novel family of

GSP, approximately budget-balanced mechanisms3 that satisfy NPT, VP, and CS. Each

mechanism in the family is defined by its underlying cost-sharing function, and the resulting

mechanism satisfies the SYM property whenever the underlying function satisfies it. We

use the notation JV to refer to the members of the Jain-Vazirani family that satisfy SYM.

It is noted in [FPS01] that, for multicast cost sharing, both MC and SH are polynomial-

time computable by centralized algorithms. Furthermore, there is a distributed algorithm

given in [FPS01] that computes MC using only two short messages per link and two simple

calculations per node. By contrast, [FPS01] notes that the obvious algorithm that computes

SH requires Ω(|P | · |N |) messages in the worst case and shows that, for a restricted class of

algorithms (called “linear distributed algorithms”), there is an infinite set of instances with

|P | = O(|N |) that require Ω(|N |2) messages. Jain and Vazirani [JV01] give centralized,

polynomial-time algorithms to compute the approximately budget-balanced mechanisms in

the class JV.

3.5 Our Results

In this chapter, we show that:

• Any distributed algorithm, deterministic or randomized, that computes a budget-

balanced, GSP multicast cost-sharing mechanism must send Ω(|P |) bits over linearly

many links in the worst case. This lower bound applies, in particular, to the SH and

EG mechanisms.

• Any distributed algorithm, deterministic or randomized, that computes an approxi-

mately budget-balanced, GSP multicast cost-sharing mechanism must send Ω(log(|P |))
3The mechanisms in [JV01] actually satisfy a more stringent definition of approximate budget balance

than we use; thus, our network-complexity lower bounds apply to them a fortiori.
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bits over linearly many links in the worst case. This lower bound applies, in particular,

to the SH, EG, and JV mechanisms.

(In both these results, the “worst case” is worst with respect to all possible network topolo-

gies, link costs, and user utilities.)

In order to prove the first of these lower bounds (i.e., the one for exact budget balance),

we first prove a lower bound that holds for all mechanisms that correspond to strictly

cross-monotonic cost-sharing functions. Cross-monotonicity, a technical property defined

precisely in Section 3.6, means roughly that the cost share attributed to any particular

receiver cannot increase as the receiver set grows; the SH and EG cost-sharing functions for

a broad class of multicast trees are examples of strictly cross-monotonic functions but not

the only examples. Our lower bound on the network complexity of strictly cross-monotonic

mechanisms may be applicable to problems other than multicast.

It is well known that there is no strategyproof mechanism that is both (exactly) efficient

and budget-balanced on all problem instances [GL79]. This in itself does not rule out the

existence of a strategyproof mechanism that is approximately efficient and approximately

budget-balanced. However, we prove that this is also impossible:

• There is no strategyproof multicast cost-sharing mechanism satisfying NPT, VP, and

CS that is both approximately efficient and approximately budget-balanced.

Finally, we attack the question of finding an approximation to the SH mechanism:

• We present a group-strategyproof mechanism that exhibits a trade-off between the

properties of SH: It can be computed by an algorithm that is more communication-

efficient than the natural SH algorithm (exponentially more so in the worst case), but

it might fail to achieve exact budget balance or exact minimum welfare loss (albeit

by a bounded amount).

3.6 Submodular Cost-sharing Problems

We briefly digress from the multicast problem to study a more general class of cost-sharing

problems. Consider the general situation in which we want a mechanism to allow the users
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to share the cost of a common service. We restrict our attention to the case of binary

preferences: User i is either “included,” by which he attains utility ui, or he is “excluded”

from the service, giving him 0 utility. A mechanism can use the utility vector u as input to

compute a set R(u) of users who receive the service and a payment vector x(u). Further,

suppose that the cost of serving a set S ⊆ P of the users is given by C(S).

Definition 3.1 A cost function C is called submodular if, for all S, T ⊆ P , it satisfies

C(S ∪ T ) + C(S ∩ T ) ≤ C(S) + C(T ).

Submodularity is often used to model economies of scale, in which the marginal costs

decrease as the serviced set grows. One example of a submodular cost function is the

multicast presented in Section 3.1, where the cost of delivering a multicast to a set R of

receivers is the sum of the link costs in the smallest subtree of the universal tree that

includes all locations of users in R.

Moulin [Mou99] has shown that any mechanism for submodular cost sharing that sat-

isfies budget-balance, GSP, VP, and NPT must belong to the class of cross-monotonic

cost-sharing mechanisms. A mechanism in this class is completely characterized by its set

of cost-sharing functions g = {gi : 2P → R≥0}. Here gi(S) is the cost that g attributes

to user i if the receiver set is S. For brevity, we will refer to g = {gi} as a “cost-sharing

function,” rather than a set of cost-sharing functions.

Definition 3.2 We say that g is cross-monotonic if, ∀i ∈ S,∀T ⊆ P, gi(S ∪ T ) ≤ gi(S).

In addition, we require that gi(S) ≥ 0 and, ∀j /∈ S, gj(S) = 0.

Then, the corresponding cross-monotonic mechanism Mg = (σ(u),x(u)) is defined as fol-

lows: The receiver set R(u) is the unique largest set S for which gi(S) ≤ ui, for all i. This

is well defined, because, if sets S and T each satisfy this property, then cross-monotonicity

implies that S ∪ T satisfies it. The cost shares are then set at xi(u) = gi(R(u)).

There is a natural iterative algorithm to compute a cross-monotonic cost-sharing mecha-

nism [MS01, FPS01]: Start by assuming the receiver set R0 = P , and compute the resulting

cost shares x0
i = gi(R

0). Then drop out any user j such that uj < x0
j ; call the set of re-

32



maining users R1. The cost shares of other users may have increased, and so we need to

compute the new cost shares x1
i = gi(R

1) and iterate. This process ultimately converges,

terminating with the receiver set R(u) and the final cost shares xi(u).

Jain and Vazirani [JV01] give a geometric characterization of the space of cross-monotonic

mechanisms for a given submodular cost-sharing problem. A mechanism Mg can be repre-

sented as a point in R
n2n−1

as follows: For each S ⊆ P and each i ∈ S, we have a coordinate

variable x(S, i). Then, we represent Mg by the point xg defined by xg(S, i) = gi(S). Given

any submodular cost function C = {C(S)}, the cross-monotonic mechanisms Mg for sharing

the cost function C satisfy these conditions:

budget balance:
∑

i∈S

gi(S) = C(S) ∀S ⊆ P (3.1)

cross-monotonicity: gi(S) ≤ gi(S ∪ j) ∀S ⊂ P ∀i ∈ S ∀j /∈ S (3.2)

Moreover, any point xg for which conditions (3.1) and (3.2) hold corresponds to a cross-

monotonic mechanism for C. Thus, the set of points corresponding to feasible cross-

monotonic mechanisms for C forms a polytope P(C), defined by the linear equalities and

inequalities in conditions (3.1) and (3.2) and the implicit constraints gi(S) ≥ 0.

3.7 Lower bound for exact submodular cost sharing

In this section, we prove a basic communication-complexity lower bound that applies to

the distributed computation of many submodular cost-sharing mechanisms. We first prove

this lower bound for all mechanisms that satisfy “strict cross-monotonicity” as well as the

four basic properties discussed in Section 3.1. We then show that, whenever the underlying

cost function is strictly subadditive, the resulting Shapley-value mechanism is strictly cross-

monotonic and hence has poor network complexity. Finally, we discuss the special case of

multicast cost sharing and describe very general conditions under which the multicast cost

will be strictly subadditive. In particular, we present an infinite family of instances that have

strictly subadditive costs and show that, on these instances, any cost-sharing mechanism

that satisfies the four basic requirements is equivalent to SH and must have poor network
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complexity.

In section Section 3.6, we noted that any mechanism for a submodular cost-sharing

problem that is group-strategyproof and satisfies the properties NPT, VP, and CS must

be a cross-monotonic cost-sharing mechanism. Now, we consider a subclass of the cross-

monotonic mechanisms:

Definition 3.3 A cross-monotonic cost-sharing function g = {gi : 2P → R≥0} is called

strictly cross-monotonic if, for all S ⊂ P, i ∈ S, and j /∈ S, gi(S ∪ {j}) < gi(S). The

corresponding mechanism Mg is called a strictly cross-monotonic mechanism.

We now prove a lower bound on the communication complexity of strictly cross-monotonic

cost-sharing mechanisms. Our proof is a reduction from the set disjointness problem: Con-

sider a network consisting of two nodes A and B, separated by a link l (see Figure 3.2).

Node A has a set S1 ⊆ {1, 2, . . . , r}, node B has another set S2 ⊆ {1, 2, . . . , r}, and one must

determine whether the sets S1 and S2 are disjoint. It is known that any deterministic or

randomized algorithm to solve this problem must send Ω(r) bits between A and B. (Proofs

of this and other basic results in communication complexity can be found in [KN97].)

BA

S1 ⊆ S S2 ⊆ S

S = {1, 2, · · · r}

l

S1 ∩ S2 = ∅?

Figure 3.2: The set disjointness problem

Theorem 3.1 Suppose Mg is a strictly cross-monotonic mechanism corresponding to a

cost-sharing function g and satisfying VP, CS, and NPT. Further, suppose that the mech-

anism must be computed in a network in which a link (or set of links) l is a cut and there

are Ω(|P |) users on each side of l. Then, any deterministic or randomized algorithm to

compute Mg must send Ω(|P |) bits across l in the worst case.

Proof: For simplicity, assume that the network consists of two nodes A and B connected

by one link l and that there are r = |P |/2 users at each of the two nodes. (For the more

general case, we consider equal-sized subsets of the users at A and B, and the remainder of
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the proof is identical.) Arbitrarily order the users at each node. We can now call the users

a1, a2, . . . , ar and b1, b2, . . . , br. Because the mechanism Mg is strictly cross-monotonic, we

can find a real value d > 0 such that, for all S ⊂ P, i ∈ S, j /∈ S,

gi(S ∪ {j}) < gi(S) − d.

For each user i ∈ P , we will define two possible utility values tL
i and tHi as follows:

• First, the values for a1 and b1 are

tHa1
= ga1({a1, b1}), tLa1

= tHa1
− d

tHb1 = gb1({a1, b1}), tLb1 = tHb1 − d

• Similarly, the values for ak and bk are

tHak
= gak

({a1, a2, . . . , ak, b1, b2, . . . , bk}), tLak
= tHak

− d

tHbk
= gbk

({a1, a2, . . . , ak, b1, b2, . . . , bk}), tLbk
= tHbk

− d

Now, we show how to reduce from the set disjointness problem to the mechanism Mg.

Node A gets a subset S1 ⊆ {1, . . . , r} and constructs a utility vector u for the users at A,

defined by

∀i ∈ S1 uai
= tHai

∀i /∈ S1 uai
= tLai

Similarly, node B is given set S2 and constructs a utility vector v for the users at B, defined

by

∀i ∈ S2 vbi
= tHbi

∀i /∈ S2 vbi
= tLbi

They now run mechanism Mg on input (u,v) and check whether the receiver set Rg(u,v)
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is empty.

Claim: Rg(u,v) is empty iff S1 and S2 are disjoint.

Proof of claim: To show the “if” direction, we can simulate the iterative algorithm to

compute the receiver set. We start with R = P . Then, because S1 and S2 are disjoint,

either r /∈ S1 or r /∈ S2. Assume, without loss of generality, that r /∈ S1. Now, uar =

tLar
< gar (R), and hence ar must drop out of the receiver set R. But now, because of strict

cross-monotonicity, it follows that gbr (P − {ar}) > gbr(P ) = tHbr
, and so br must also drop

out of the receiver set. Repeating this argument for r − 1, r − 2, . . . , 1, we can show that

the receiver set must be empty.

To show the “only if” direction, assume that i ∈ S1 ∩ S2. Then, let T = {a1, . . . , ai,

b1, . . . , bi}. uai
= tHai

= gai
(T ), and vai

= tHbi
= gbi

(T ). Further, for all j < i, it follows

from strict cross-monotonicity that gaj
(T ) < tLaj

≤ uaj
, and gbj

(T ) < tLbj
≤ vbj

. Thus, the

receiver set Rg(u,v) ⊇ T , and hence it is nonempty. 2

Theorem 3.1 follows from this claim and the communication complexity of set disjoint-

ness. 2

3.7.1 Strictly Subadditive Cost Functions

In this section, we show that, for a class of submodular cost functions, the Shapley-value

mechanism (which is perhaps the most compelling mechanism from an economic point of

view) is strictly cross-monotonic and hence has poor network complexity.

Theorem 3.1 provides a sufficient condition, strict cross-monotonicity, for a mechanism

to have poor network complexity. However, for some submodular cost functions, it is

possible that no mechanism satisfies this condition: If the costs are additive, i.e., if the cost

of serving a set S is exactly the sum of the costs of serving each of its members individually,

then there is a unique mechanism satisfying the basic properties. This mechanism is defined

by:

R(u) = {i|ui ≥ C({i})}

xi(u) = C({i}) if i ∈ R(u), and xi(u) = 0 otherwise.

This mechanism is very easy to compute, either centrally or in a distributed manner, because
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there is no interaction among the users’ utilities; in essence, we have |P | independent local

computations to perform.

We need to exclude these trivial cost functions in order to prove general lower bounds

for a class of submodular functions. This leads us to consider submodular cost functions

that are strictly subadditive:

∀S ⊆ P, S 6= ∅, ∀i ∈ P, C(S ∪ {i}) < C(S) + C({i})

For a given cost function C, there may be many g = {gi} for which the corresponding

mechanism Mg satisfies the basic properties NPT, VP, CS, and SYM. However, Moulin

and Shenker [Mou99, MS01] have shown that, for any given submodular cost function, the

cross-monotonic mechanism that minimizes the worst-case efficiency loss is the Shapley-

value mechanism (SH). This is a cross-monotonic cost-sharing mechanism corresponding to

a function gSH , defined by:

∀S ⊆ P ∀i ∈ S, gSH
i (S) =

∑

R⊆S−{i}

|R|!(|S| − |R| − 1)!

|S|! [C(R ∪ {i}) − C(R)] (3.3)

The SH mechanism is therefore a natural mechanism to choose for submodular cost sharing.

The following lemma shows that this mechanism has poor network complexity.

Lemma 3.1 The SH mechanism for a strictly subadditive cost function is strictly cross-

monotonic.

Proof: We need to show that, for all sets S, for all i ∈ S, j /∈ S, gSH
i (S ∪ {j}) < gSH

i (S).

The proof follows directly from the definition of gSH
i (S) in Equation 3.3. We use MCi(R)

to denote [C(R ∪ {i}) − C(R)], the marginal cost of serving i in set R. Consider a set
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S ⊆ P − {j} and a user i ∈ S. Let r = |R|, s = |S|.

gSH
i (S ∪ {j}) =

∑

R⊆S∪{j}−{i}

r!(s − r)!

(s + 1)!
MCi(R)

=
∑

R⊆S−{i}

[

r!(s − r)!

(s + 1)!
MCi(R) +

(r + 1)!(s − r − 1)!

(s + 1)!
MCi(R ∪ {j})

]

=
∑

R⊆S−{i}

r!(s − r − 1)!

s!

[

s − r

s + 1
MCi(R) +

r + 1

s + 1
MCi(R ∪ {j})

]

(3.4)

It follows from submodularity of costs that, for all R, MCi(R ∪ {j}) ≤ MCi(R). Further,

strict subadditivity implies that, for R = ∅, MCi(R ∪ {j}) < MCi(R). Thus, Equation 3.4

yields

gSH
i (S ∪ {j}) <

∑

R⊆S−{i}

r!(s − r − 1)!

s!
MCi(R)

gSH
i (S ∪ {j}) < gSH

i (S)

2

Corollary 3.1 For a strictly subadditive cost function, any algorithm (deterministic or

randomized) that computes the SH mechanism in a network must communicate Ω(|P |) bits

across any cut that has Θ(|P |) users on each side of the cut. 2

Note that the network may consist of a root node αs with no resident users, a node A

with |P |
2 resident users, another node B with |P |

2 resident users, a link from αs to A, and

a path from A to B consisting of |N | − 3 nodes, each with no resident users. Each link in

the path from A to B is a cut with Θ(|P |) users on each side, and thus Ω(|P |) bits must be

sent across linearly many links. In what follows, we call these the path instances.

3.7.2 A class of strictly cross-monotonic mechanisms

Feigenbaum et al. [FPS01] conjectured (in the context of multicast cost sharing) that the

high communication requirements are not specific to the Shapley-value mechanism but arise

for any cross-monotonic mechanism that satisfies a property they called nonseparability.
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Here, we present a result that captures the essence of their conjecture – that “most” cross-

monotonic mechanisms have poor network complexity.

Recall the polytope P(C) of cross-monotonic mechanisms, first introduced by Jain and

Vazirani [JV01], that was described in Section 3.6. We observe that, for strictly subadditive

cost functions, xg ∈ P(C) is an interior point of P(C) if and only if none of the inequalities

in condition (3.2) is satisfied with equality. In other words, for any interior point xg, the

mechanism Mg is strictly cross-monotonic. This leads to the following result:

Theorem 3.2 For a strictly subadditive submodular cost function C, let Mg be a cross-

monotonic cost sharing mechanism corresponding to an interior point of the polytope P(C).

Then, any deterministic or randomized algorithm that computes Mg in a network must

communicate Ω(|P |) bits across any cut that has Θ(|P |) users on each side of the cut. 2

3.7.3 Multicast cost sharing

We now return to the special case of multicast cost sharing. Recall that the cost function

associated with an instance of the multicast cost-sharing problem is determined by the

structure of the universal multicast tree T , the link costs, and the locations of the users

in the tree; so the cost C(S) of serving user set S ⊆ P is
∑

l∈T (S) c(l), where T (S) is the

smallest subtree of T that includes all nodes at which users in S reside. It is not hard to

show that there are many instances that give rise to strictly subadditive functions C. In

fact, we have the following lemma:

Lemma 3.2 Consider any instance of multicast cost sharing in which, for every two po-

tential receivers i and j, there exists a link l ∈ T ({i})∩T ({j}) such that c(l) > 0. The cost

function associated with this instance is strictly subadditive.

Proof: Given S ⊆ P − i, pick any j ∈ S. Let l be any link in T ({j})∩T ({i}) with c(l) > 0.

Then, C(S ∪ {i}) ≤ C(S) + C({i}) − c(l) < C(S) + C({i}). 2

For example, whenever the source of the multicast has only one link from it, and this

link has non-zero cost, the associated cost function is strictly subadditive. One such family

of instances (parametrized by n = |P |) is shown in Figure 3.3. There are three nodes, αs, A,

and B, and n users. There are (n/2) users at each of B and A, with utilities u1, u2, . . . , un
2
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and v1, v2, . . . , vn
2
, respectively. The link l1 between αs and A costs C, while the link l2

between A and B is free (has 0 cost).

ROOT

A

B

Cost = C

Cost = 0

u1 u2

v1 v2

αs

l1

l2
v n

2

u n

2

Figure 3.3: Multicast tree with strictly subadditive costs

It follows immediately from Corollary 3.1 that the Shapley-value mechanism for this

family of trees requires Ω(|P |) bits of communication across linearly many links. In addition,

we now show that any mechanism that satisfies the basic properties, such as EG, must be

identical to the SH mechanism on instances of the type shown in Figure 3.3; thus, the lower

bound extends to all such mechanisms.

Lemma 3.3 Consider multicast cost-sharing instances of the type shown in Figure 3.3.

Let Mg be a cross-monotonic cost-sharing mechanism that satisfies SYM, corresponding to

a cost-sharing function g = {gi}. Then, g (and Mg) are completely determined on these

instances by

∀S ⊆ P,∀i ∈ S gi(S) =
C

|S| .

Proof: For any receiver set S, if the utility values of all users in S are increased to some

sufficiently large value, the receiver set will still be S. Because the mechanism satisfies SYM,

this implies that gi(S) = gj(S) for any pair i, j in this set. The budget-balance requirement

then forces gi(S) = C
|S| for all i in set S. 2

It follows from Lemma 3.3 that any such mechanism must be strictly cross-monotonic on

this family of instances. Thus, Theorem 3.1 and Lemma 3.3 imply the following lower bound
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for multicast cost sharing. The worst-case instances include the path instances defined in

Section 3.7.1, with cost C on the link from αs to A and cost 0 on all the other links; these

instances are identical to the ones in Figure 3.3, except that they contain a zero-cost path

of length |N | − 2 from A to B instead of a single zero-cost link.

Theorem 3.3 Any distributed algorithm, deterministic or randomized, that exactly com-

putes a budget-balanced, GSP multicast cost-sharing mechanism that satisfies the four basic

properties must send Ω(|P |) bits over linearly many links in the worst case. 2

Note that this lower bound applies to the EG mechanism for multicast cost-sharing

referred in Section 3.1.

3.8 Network complexity of approximately budget-balanced

mechanisms

In view of the lower bounds presented in Section 3.7, it is natural to ask whether one

can approximate a budget-balanced, GSP mechanism in a communication-efficient manner.

In this case, we do not have a clean analogue of Corollary 3.1, because cross-monotonic

cost functions no longer characterize the class of feasible mechanisms. However, for the

special case of multicast cost sharing, we can still prove a result similar to Theorem 3.3

that provides a lower bound on the network complexity of approximately budget-balanced,

GSP mechanisms.

First, we recall the definition of an “approximately budget-balanced” mechanism. As

explained at length in, e.g., [NR00], one cannot define an approximation of a cost-sharing

mechanism (σ,x) simply as a pair (σ′,x′) such that σ′ and x′ approximate σ and x, re-

spectively, as functions. Such an approach may destroy the game-theoretic properties of

(σ,x), e.g., the resulting “mechanism” (σ ′,x′) may not be strategyproof! For our purposes

in this section, a κ-approximately budget-balanced mechanism, where κ > 1 is a constant, is

a mechanism (σ,x) with the following properties: VP, NPT, CS, SYM, and

∀z = (N,T (P ), c(·), αs), and u : (1/κ) · c(T (R(u))) ≤
∑

i∈R(u)

xi(u) ≤ κ · c(T (R(u))).
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An approximation to a specific budget-balanced mechanism such as SH or EG would

have to satisfy at least one additional (non-strategic) condition. For example, because

SH is the GSP, budget-balanced mechanism that minimizes worst-case efficiency loss, an

approximation to SH would have to come within a constant factor of SH’s efficiency loss in

the worst case.

We extend the lower-bound technique of the previous section so that it applies to κ-

approximately budget-balanced mechanisms, when κ is upper-bounded away from
√

2, i.e.,

when κ ≤
√

2 − ε, for some fixed ε > 0. As before, we want to reduce from the set-

disjointness problem where node A has a set S1 ⊆ {1, 2, . . . , r}, node B has another set

S2 ⊆ {1, 2, . . . , r}, and one must determine whether the sets S1 and S2 are disjoint. We

again construct the multicast tree shown in Figure 3.3 with (n/2) users at each of B and

A, with utilities u1, u2, . . . , un
2

and v1, v2, . . . , vn
2
, respectively.

We first prove some basic lemmas about group-strategyproof mechanisms for this mul-

ticast cost sharing problem.

Lemma 3.4 Let M be a κ-approximately budget-balanced mechanism for the multicast cost

sharing problem in Figure 3.3 that satisfies GSP. Then, if µ is a utility profile of the n users

such that

∃h ≥ 1 such that ∀i ∈ {1, 2, . . . , h} µi > κC/h

then the receiver set R(µ) specified by this mechanism is nonempty.

Proof: Let µ be such a utility profile, and consider any value of h for which the given

condition holds. Let µcs be the bound for which the CS condition holds, i.e., if µi ≥

µcs =⇒ i ∈ R(µ). Let S = {1, 2, . . . , h}. Define a utility profile µS by

µS
i = µcs ∀i ∈ S

µS
i = µi ∀i /∈ S

By the CS condition, S ⊆ R(µS). Further, by the SYM condition, we must have

∀i, j ∈ S, xi(µ
S) = xj(µ

S). Further, because the NPT condition implies that xi(µ
S) ≥ 0,

for all i /∈ S, and the approximate budget-balance condition requires that the revenue be
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bounded by κC, we must have xi(µ
S) ≤ κC/h, for all i ∈ S.

It follows that ∀i ∈ S, xi(µ
S) < µi. Now suppose that R(µ) is empty. Then, at utility

profile µ, the coalition S could strategize to report a utility profile µS; then, for each i ∈ S, i

would receive the transmission and pay less than µi for it. This would constitute a successful

group strategy, which contradicts the assumption that M is group-strategyproof. 2

Lemma 3.5 Let M be a κ-approximately budget-balanced mechanism for the multicast cost

sharing problem in Figure 3.3 that satisfies GSP. Then, if µ is a utility profile such that

µ1 ≥ µ2 ≥ . . . ≥ µn and

6 ∃h ≥ 1 such that µh ≥ C/(κh)

then the receiver set R(µ) specified by this mechanism is empty.

Proof: Let µ be such a utility profile, and let S = R(µ). Suppose that S 6= ∅. Let

h = max{i|i ∈ S}, which implies that ∀i ∈ S, µi ≥ µh. By the conditions of the lemma,

µh < C/(κh); thus, the approximate budget-balance condition combined with VP implies

that ∃j ∈ S such that xj(µ) > xh(µ). It then follows that µj > µh. (If µj = µh, then by

SYM we would have xj(µ) = xh(µ).)

Now, define the utility profile µ′ by

µ′
h = µj

µ′
i = µi ∀i 6= h

If h /∈ R(µ′), then at utility profile µ′, h could strategize to report µh and get trans-

mission with payment xh(µ); this would be a successful strategy because xh(µ) < xj(µ) ≤

µj = µ′
h. Mechanism M is strategyproof, so we must have h ∈ R(µ′). Further, we must also

have xh(µ′) = xh(µ) for the same reason: If xh(µ′) > xh(µ), then h could strategize at µ′,

and, if xh(µ) > xh(µ′), then h could strategize at µ.

Now, by applying the SYM condition at µ′, we must have j ∈ R(µ′) and xj(µ
′) = xh(µ′).

This implies that xj(µ
′) = xh(µ) < xj(µ). But now, h and j could collude and strategize
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at µ to report µ′; this strictly increases j’s welfare (as her payment is strictly reduced),

and leaves h’s welfare unchanged, and hence it would be a successful group strategy. This

contradicts the fact that M satisfies GSP. 2

The ordering condition µ1 ≥ µ2 ≥ . . . ≥ µn in Lemma 3.5 is only included for simplicity

of the exposition; we can always relabel the agents such that it holds.

Theorem 3.4 Any distributed algorithm, deterministic or randomized, that computes a κ-

approximately budget-balanced, GSP multicast cost-sharing mechanism, where κ ≤
√

2 − ε

for some fixed ε > 0, must send Ω( log |P |
log κ ) bits of communication over linearly many links

in the worst case.

Proof: It is more convenient to work with an alternative representation of the input utility

vectors. We use only a restricted set of the possible utility vectors u and v for the users

located at nodes B and A respectively, where (u,v) satisfies the following conditions:

• Let β = 3(κ + δ)2/(2 − (κ + δ)2), where δ > 0 is an arbitrarily small constant only

required to make the inequalities strict. Restrict the set of allowable utilities to

T = {0, tβ,1, . . . , tβ,r}, where

tβ,i =
(κ + δ)C

2βi+1
.

• Each of u and v is (internally) sorted, i.e., i < j =⇒ ui ≥ uj and vi ≥ vj . There is

no restriction on the relationship between ui and vj.

Consider node B. Define nB(q) to be the number of users at node B who have utility

at least q. Let ~y = (y1, y2, . . . , yr), where yi = nB(tβ,i). Similarly, let nA(q) be the number

of users at A with utility at least q; let ~z = (z1, z2, . . . , zr), where zi = nA(tβ,i).

For this class of utility profiles, there is a one-to-one mapping between values of u and

~y. Because u is sorted, the monotonically decreasing function nB(·) completely defines the

utility vector; u1 must be the largest q for which nB(q) > 0, and so on. Furthermore, by

definition, there is a unique ~y for any u. A similar correspondence holds for v and ~z.

We first prove a useful lemma about approximately budget-balanced mechanisms on

this class of instances.
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Lemma 3.6 Let M be a κ-approximately budget-balanced mechanism for the multicast cost

sharing problem in Figure 3.3 that satisfies GSP. Let vectors ~y, ~z be defined corresponding

to the utility profiles u and v, as described above. Then, M satisfies the following two

properties:

(i). If there is an i such that (yi + zi) ≥ 2βi+1, then mechanism M will compute a non-

empty receiver set on this instance.

(ii). If for all i we have (yi +zi) ≤ (3βi +βi+1), then mechanism M will compute an empty

receiver set on this instance.

Proof: (i): Observe that with a suitable ordering of the players, the conditions of Lemma 3.4

are satisfied if (yi + zi) ≥ 2βi+1.

(ii): Assume that the receiver set is non-empty and that the conditions of Lemma 3.5 do

not apply due to the presence of some h such that h ·µh ≥ C/κ, where µ is the utility profile

of P sorted in decreasing order.

Let µh = tβ,k for some k. Since h ≤ yk + zk, we note that h · µh ≤ (yk + zk)tβ,k ≤

(3βk + βk+1)tβ,k = C/(κ + δ). This violates the assumption that h · µh ≥ C/κ. 2

We now use Lemma 3.6 to provide a reduction from the set disjointness problem as

follows. Recall that node A has a set S1 ⊆ {1, 2, . . . , r} and node B has another set

S2 ⊆ {1, 2, . . . , r}. We must make sure that, if S1 ∩ S2 6= ∅, there is a set of receivers who

can share κC, and, if S1 ∩ S2 = ∅, there is no set of receivers who can share even C/κ. For

this, we construct the vectors ~y and ~z using the rules:

yi = dβi+1e if i ∈ S2

yi = dβie otherwise

zi = dβi+1e if i ∈ S1

zi = dβie otherwise

These are valid input vectors, because yi ≤ yi+1 and similarly for ~z. If i ∈ S1 ∩S2, then
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yi + zi ≥ 2βi+1, and so there is transmission. If S1 and S2 are disjoint, then, for all i,

yi + zi < βi + βi+1 + 2 < 3βi + βi+1 ,

where the 2 arises because of the ceiling terms.

This means that, in the target instance,

(yi + zi)tβ,i <
C

κ
,

and consequently there is no transmission.

Thus, we can use this κ-approximate mechanism to solve the set-disjointness problem,

and this implies that the mechanism must use Ω(r) bits of communication, where

r = Θ

(

log n

log β

)

= Θ

(

log n

2 log(κ + δ) − log(2 − (κ + δ)2)

)

.

If we require κ to be upper-bounded away from
√

2, then the right-hand side is Θ( log n
log κ).

Thus, the statement of the theorem follows. 2

We note that this lower bound applies to the approximate mechanisms described in

[JV01], as well as to the approximations to SH that we will present in Section 3.11. The

mechanisms SF and SSF described in this chapter provide the best known corresponding

upper bound: They require Ω(h · log n
log κ) utility values to be communicated on each link to

achieve κ-approximate budget balance, where h is the height of the multicast tree T (P ).

3.9 An impossibility result for approximate budget-balance

and approximate efficiency

As stated in Section 3.1, it is a classical result in game theory that no strategyproof cost-

sharing mechanism can be both budget-balanced and efficient [GL79]. We now consider

whether this fundamental impossibility result holds when the budget-balance and efficiency

considerations are replaced by their approximate counterparts. In this section, we do not

assume that the cost-sharing mechanisms have the SYM property; the impossibility result
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that we present here does not require this assumption. Furthermore, this result only requires

the mechanism to be strategyproof, not GSP as in Section 3.8.

We first review the definition of the MC mechanism, which was shown by Moulin and

Shenker [MS01] to be the only efficient mechanism that satisfies VP, NPT, and CS. Given

an input utility profile u, the MC receiver set is the unique largest efficient set of users. To

compute it, as shown in [FPS01], one recursively computes the welfare (also known as net

worth or efficiency) of each node β ∈ N :

W (β) =











∑

γ∈Ch(β)
W (γ)≥0

W (γ)











− c(l) +
∑

i∈Res(β)

ui ,

where Ch(β) is the set of children of β in the tree, Res(β) is the set of users resident at β,

and c(l) is the cost of the link connecting β to its parent node. Then, the largest efficient

set R(u) is the set of all users i such that every node on the path from i to the root αs has

nonnegative welfare. The total efficiency is NW (R(u)) = W (αs).

Another way to view this is as follows: The algorithm partitions the universal tree T (P )

into a forest F (u) = {T1(u), T2(u), . . . , Tk(u)}. A link from T (P ) is included in the forest

if and only if the child node has nonnegative welfare. R(u) is then the set of users at nodes

in the subtree T1(u) containing the root.

Once F (u) has been computed, for each user i, define X(i,u) to be the node with

minimum welfare value in the path from i to its root in its partition. Then, the cost share

xi(u) of user i is defined as

xi(u) = max(0, ui − W (X(i,u))) ∀i ∈ R(u)

xi(u) = 0 ∀i /∈ R(u)

If multiple nodes on the path have the same welfare value, we let X(i,u) be the one nearest

to i.

By a γ-approximately efficient mechanism, where 0 < γ < 1, we mean one that always

achieves total efficiency that is at least γ times the total efficiency achieved by MC.
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Figure 3.4: An example of a multicast tree that fails to achieve approximate efficiency and
approximate budget-balance.

We can ask whether there is any strategyproof mechanism that satisfies the basic re-

quirements of NPT, VP, and CS and is both approximately efficient and approximately

budget-balanced. We now show that this is impossible, using the following approach: We

construct a family of multicast trees and utility profiles for which any approximately effi-

cient mechanism must transmit to all users. We show that the strategyproofness condition

and the VP condition together place an upper bound on the revenue collected in these in-

stances. This upper bound is less than that required for even approximate budget balance,

and hence we have our negative result.

Consider the tree in Figure 3.4. There are n users, each with utility C/n resident at a

node A that is separated from the root node by a link of cost ((n − 1)C/n) + δ. It is easy

to see that this instance of multicast cost-sharing displays the following properties.

Property 1 Any γ-approximately efficient mechanism must transmit to all n users if 0 <

δ < C/n.

Property 2 Any γ-approximately efficient mechanism must transmit to all n users even if

one user, say i, lowers his utility to δ + ε, for any δ, ε > 0.

Property 3 Any γ-approximately efficient, strategyproof mechanism that satisfies VP as-

signs to each user a cost share of at most δ.

If the cost share xi(u) were greater than δ, the user i could strategize by claiming that his

utility was vi = δ + ε < xi(u). By VP and the requirement of γ-approximate efficiency, the
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mechanism would need to include user i and assign him a cost share xi(u|ivi) ≤ vi < xi(u),

which would imply a violation of strategyproofness.

Therefore, the revenue collected by a strategyproof mechanism that achieves γ-approx-

imate efficiency is bounded from above by nδ.

Property 4 A γ-approximately efficient, strategyproof mechanism cannot be κ-approxi-

mately budget-balanced if δ < (C(n − 1))/(n(κn − 1)).

In summary, we have:

Theorem 3.5 A strategyproof mechanism for multicast cost sharing that satisfies the basic

requirements of NPT, VP, and CS cannot achieve both γ-approximate efficiency and κ-

approximate budget-balance for any pair of constants κ and γ. 2

3.10 Strategically Faithful Approximate Mechanisms

In view of the proof given in Section 3.7 that exact computation of the SH mechanism has

unacceptably high communication cost, it is natural to ask the following question: Can one

compute an approximation to the SH mechanism using an algorithm that is significantly

more communication-efficient? To approach this question, we must first say what it means

to “approximate the SH mechanism.”

A multicast cost-sharing mechanism is a pair of functions (σ,x). Thus, one may be

tempted to define an approximation of the mechanism as a pair of functions (σ ′,x′) such

that σ′ approximates σ well (for each u, these are characteristic vectors of subsets of P ; so,

we may call σ′ a good approximation to σ if, for each u, the Hamming distance between the

vectors is small), and x′ approximates x well (in the sense, say, that, for some p, the Lp-

difference of x(u) and x′(u) is small, for each u). The mechanism (σ ′,x′), however, would

not be interesting if its game-theoretic properties were completely different from those of

(σ,x). In particular, if (σ′,x′) were not strategyproof, then agents might misreport their

utilities; thus, even if (σ,x) and (σ ′,x′) were, for each u, approximately equal as pairs of

functions, the resulting equilibria might be very different, i.e., (σ ′(µ),x′(µ)) might be very

far from (σ(u),x(u)), where µ is the reported utility vector when using the approximate
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mechanism (σ′,x′). Thus, we require that our approximate mechanisms retain the strategic

properties – strategyproof or group-strategyproof – of the mechanism that they are approx-

imating. In addition, if the original mechanism has some property, such as budget balance

or efficiency, that does not relate to the underlying strategic behavior of agents but is an

important design goal of the mechanism, then we would want the approximate mechanism

to approximate that property closely.

The SH mechanism is GSP, budget-balanced, and, among all mechanisms with these two

properties, the unique one that minimizes the worst-case welfare loss. We should therefore

strive for a GSP mechanism that has low network complexity and is approximately budget-

balanced and approximately welfare-loss minimizing in the worst case. “Approximately

budget-balanced”4 can be taken to mean that there is a constant β > 1 such that, for all

problem instances z = (N,T (P ), c(·), αs, and utility profiles u:

(1/β) · c(T (R(u))) ≤
∑

i∈R(u)

xi(u) ≤ β · c(T (R(u)))

The efficiency loss of a mechanism M on a particular run I = (z,u) is the difference

between the optimal net worth of I (i.e., that realized by the MC mechanism) and the net

worth realized by M . (Recall that the parameter z = (N,T (P ), {c(l)}, αs) describes the

non-private information for a particular instance of the problem, i.e., it describes the cost

structure associated with the multicast.) The SH mechanism minimizes the worst-case loss

in the following sense: For any given cost structure z , the worst-case efficiency loss L(z)

of a mechanism M on this cost structure is the maximum, over all possible utility profiles

u, of the efficiency loss of M on the instance (z,u). Among all GSP, budget-balanced

mechanisms, the SH mechanism achieves the minimum L(z), for any parameter z; further,

SH is the only mechanism to achieve this minimum for all cost structures z. A mechanism

M is “approximately efficiency-loss minimizing in the worst case” if there is a constant

γ > 1 such that, for all cost structures z, the worst-case efficiency loss of M on this cost

structure is at most γ times the worst-case efficiency loss of SH on the same cost structure.

4An alternative definition of approximate budget balance could allow for only a one-sided error, e.g., a
surplus but not a deficit, as in [JV01].

50



We do not obtain an approximate SH mechanism here, but we do make some progress

toward the goal; our mechanism is GSP and fails to achieve exact budget balance and

exact minimum-welfare loss by bounded amounts, but the bounds are not constant factors.

Furthermore, there is a distributed algorithm that computes this mechanism using far less

communication over the links of T (P ) than appears to be needed for SH computation.

This notion of approximating a mechanism M that we use in this chapter – roughly,

“retain the strategic properties of M but approximate the other mechanism design goals” –

is called strategically faithful approximation. Approximation is an increasingly active area

of algorithmic mechanism design, and several other interesting notions of approximation

have been put forth – see Section 5 of [FS02] for an overview. Here we mention only the

work that is most closely related to the results in this chapter.

[NR00] were the first to address the question of approximate computation in algorith-

mic mechanism design. They considered VCG mechanisms in which optimal outcomes are

NP-hard to compute (as they are in combinatorial auctions). They pointed out that, if an

optimal outcome is replaced by a computationally tractable approximate outcome, the re-

sulting mechanism may no longer be strategyproof. The above discussion of how we should

define “approximating the SH mechanism” and why approximating the pair of functions

(σ,x) is not sufficient is based on the analogous observation in our context. [NR00] ap-

proach this problem by developing a notion of “feasible” strategyproofness and describing

a broad class of situations in which NP-hard VCG mechanisms have feasibly strategyproof

approximations. This approach is not applicable to SH-mechanism approximation for sev-

eral reasons: SH is not a VCG mechanism; we are not seeking an approximation to an

NP-hard optimization problem but rather a communication-efficient approximation to an

apparently communication-inefficient, but polynomial-time computable, function; we are

interested in network complexity in a distributed computational model, and [NR00] were

interested in time complexity in a centralized computational model. Approximate mul-

ticast cost sharing was first addressed by [JV01]. They exhibited a GSP, approximately

budget-balanced,5 polynomial-time mechanism based on a 2-approximation algorithm for

5The [JV01] definition of approximate budget balance is more stringent than the one we suggest in this
section; it does not allow a budget deficit (and also requires, as ours does, a constant-factor bound on the
budget surplus).
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the minimum-Steiner-tree problem. Their approach is also not applicable to SH-mechanism

approximation, because they are concerned with time complexity in a centralized compu-

tational model, their network is a general directed graph (rather than a multicast tree, as

it is in our case), and they are not attempting to approximate minimum worst-case welfare

loss. Finally, “competitive-ratio” analysis (a form of approximation) has been studied for

a variety of strategyproof auctions (see, e.g., [FGHK02], [GHW01], and [LN00]).

3.11 Towards approximating the SH mechanism

In this section, we develop a GSP mechanism that exhibits a trade-off between the other

properties of the Shapley value: It can be computed by an algorithm that is more communi-

cation-efficient than the natural SH algorithm (exponentially more so in the worst case),

but it might fail to achieve exact budget balance or exact minimum welfare loss (albeit by

a bounded amount).

First, in Section 3.1, we review the natural SH algorithm given in [FPS01]. In Section

3.2, we give an alternative SH algorithm that also has unacceptable network complexity but

that leads naturally to our approach to approximation. In Sections 3.3, 3.4, and 3.5, we

define a new mechanism that has low network complexity, prove that it is GSP, and obtain

bounds on the budget deficit and the welfare loss.

3.11.1 The natural multi-pass SH algorithm

The Shapley-value mechanism divides the cost of a link l equally among all receivers down-

stream of l. The mechanism can be characterized by its cost-sharing function g : 2P 7→

R
P
≥0 [MS01, Mou99]. For a receiver set R ⊆ P , player i’s cost share is gi(R). [FPS01]

present a natural, iterative algorithm that computes SH. We restate it here:

The simplest case of the SH cost-share problem is the one in which all ui are sufficiently

large to guarantee that all of P receives the transmission. (For example, ui > C(T (P )),

for all i, would suffice.) For this case, the SH cost shares can be computed as follows.6

Do a bottom-up traversal of the tree that determines, for each node α, the number nα of

6This simple case is essentially a distributed version of the linear-time algorithm given in [Meg78].
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users in the subtree rooted at α. Then, do a top-down traversal, which the root initiates by

sending the number md = 0 to its children. After receiving message md, node α computes

md′ ≡
(

c(l)
nα

)

+ md, where l is the network link between α and its parent, assigns the cost

share md′ to each of its resident users, and sends md′ to each child. Thus, each user ends

up paying a fraction of the cost of each link in its path from the source, where the fraction

is determined by the number of users sharing this link.

In the general case, we initially start, as before, with R = P and compute the cost

shares as above. However, we cannot assume that ui ≥ md′ for all i, and so some users may

prefer not to receive the transmission. After each pass up and down the tree, we update R

by omitting all users i such that ui < md′ and repeat. The algorithm terminates when no

more users need to be omitted.

Unfortunately, this algorithm could make as many as |P | passes up and down the tree

and send a total of Ω(|N | · |P |) messages in the worst case. Moreover, [FPS01] contains a

corresponding lower bound for a broad family of algorithms: There is an infinite class of

inputs, with |P | = O(|N |), for which any “linear distributed algorithm” that computes SH

sends Ω(|N |2) messages in the worst case.

3.11.2 A one-pass SH algorithm

Our first step toward a more communication-efficient mechanism that has some of the

desirable properties of SH is to present a distributed algorithm for SH that makes just one

pass up and down the tree. We do this by communicating, in a single message, a digest

of the utility profile of all the players in a subtree. This algorithm still sends more than

|N | · |P | communication bits in the worst case, and thus it is not directly usable. However,

we show in Section 2.3 how approximating the functions communicated in this one-pass

SH algorithm leads to a new mechanism that can be computed in a significantly more

communication-efficient manner and has other desirable properties.

Let µ be the (reported) utility profile. Then, for every link l in T (P ), the digest we

compute is:

nl(p, µ)
def
= the number of players in the subtree beneath l who are each willing to pay p for

the links above l (i.e., the number of players in this subtree who will not drop out of the
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receiver set when their cost share for the links from the root down to but excluding l is p).
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ñl(p, µ)

Figure 3.5: The function nl(p, µ) computed for each link l

(We put the utility profile µ in explicitly as an argument so that it can be used below in

the proof of group strategyproofness; however, in any one run of the algorithm, µ is fixed.)

Note that this definition requires that the cost from the leaves through l has already

been adjusted for. The information conveyed through the function nl(p, µ) is a sufficient

digest of the costs and utilities in the subtree beneath l, because the SH mechanism does not

distinguish between receivers downstream of l when sharing the cost of l or its ancestors;

all such receivers pay the same amount for these links. For each link, we compute this

function at all prices p. The function nl(p, µ) is monotonically decreasing with p, and, for

any given utility profile µ, can be represented with at most |P | points with coordinates

(pi, ni) corresponding to the “corners” in the graph of nl(p, µ) in Figure 3.5. We use this

list-of-points representation of nl(p, µ) in our algorithm.

The [FPS01] statement of the multicast cost-sharing problem allows for players at in-

termediate (non-leaf) nodes; however, to simplify the discussion, we can treat each of these

players as if it were a child node with one player and parent link-cost zero. Thus, we assume,

without loss of generality, that all players are at leaf nodes only.

The function nl(p, µ) is computed at the node αl below l in the tree. The computation

is easy if αl is a leaf node. Let pαl
be the number of agents at αl, and assume that

µ1 ≥ µ2 ≥ . . . ≥ µpαl
. Let c(l) be the cost of link l. For a given price p, compute nl(p, µ) as

follows. Let k = 0. If p + c(l)
pαl

−k ≤ µ(pαl
−k), then stop with nl(p, µ) = pαl

− k. Otherwise,

increment k by 1 and repeat the test. If k reaches pαl
− 1, and the test fails (i.e., if
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p + c(l) > µ1), then stop with nl(p, µ) = 0.

If αl is not a leaf node, we have to include the functions reported by its children in this

calculation. Suppose we are at node αl and have received the functions nli(p, µ) from all

the child links {l1, l2, . . . lr} of l. We can compute nl(p, µ) in two steps:

• Step 1: First, we compute a function

ml(p, µ) =
r

∑

i=1

nli(p, µ)

Intuitively, ml(p, µ) is the number of players beneath l who are willing to pay p each

towards the cost from the root down to (and including) l. This is apparent from

the definition of nli(p, µ). If each nli(·) is specified as a sorted list of points, we can

compute ml(·) by merging the lists and adding up the numbers of players.

• Step 2: Now, we have to account for the cost c(l) of the link l to compute the function

nl(p, µ). For any p such that p · ml(p, µ) ≥ c(l), we have

nl(p − c(l)

ml(p, µ)
, µ) ≥ ml(p, µ) , (3.5)

because the ml(p, µ) players who were willing to pay p for the path including l can

share the cost of l. Equation 3.5 need not be a strict equality because it is possible

that, for a price q < p, the larger set of size ml(q, µ) has

q − c(l)

ml(q, µ)
≥ p − c(l)

ml(p, µ)

and so could also support the price p′ = p− (c(l)/ml(p, µ)) each for the links above l.

However, the value of nl(p, µ) must correspond to ml(p
′, µ) for some p′ ≥ p, because

every player beneath l who receives the transmission pays an equal amount for the

link l. It follows that

nl(p, µ) = max
{

p′− c(l)

ml(p
′,µ)

≥p
}

ml(p
′, µ) (3.6)

When the right hand side of Equation 3.6 is undefined (because there is no p′ satisfy-
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ing the condition), we set nl(p, µ) = 0. Given a list of points (p(i),m(i)) correspond-

ing to ml(·), we can compute nl(·) through the following procedure: For each point

(p(i),m(i)), we get the transformed point (p(i) − (c(l)/m(i)),m(i)). We then sort the

list of these transformed points and throw away any point that is dominated by a

higher mi at the same or higher price.

In this manner, we can inductively compute nl(·) for all links, until we reach the root.

At the root, we can combine the functions received from the root’s children to get mroot(·).

Because there are no further costs to be shared, it follows that there are m = mroot(0, µ)

players that are willing to share the costs up to the root. Also, there is no set of more

than m players that can support the cost up to the root, and so m is the size of the unique

largest fixed-point set computed by the Shapley-value mechanism.

Now, we have to compute the prices charged to each player. Assuming that the nodes

have stored the functions nl(·) on the way up the tree, we compute the prices on the way

down as follows: For each link l, we let xl be the cost share of any receiver below l for the

path down to (but not including) l. If l is the link from node β to β’s parent, then we use

xl and xβ interchangeably. Then, xroot = 0 and, if l has child links l1, l2, . . . lk,

xlj = xl +
c(l)

nl(xl, µ)
(3.7)

We descend the tree in this manner until we get a price xi for every player i ∈ P : If i is

at node β, and l is the link from β to its parent, then xi = xl + c(l)
nl(xl,µ) . Then, we include i

in R(µ) iff xi ≤ µi, and if included i pays xi.

The following two lemmas show that this one-pass algorithm computes the SH mecha-

nism.

Lemma 3.7 The outcome computed by this algorithm is budget-balanced.

Proof: By definition, there are exactly nl(xl, µ) players beneath l who can pay xl for the

path down to but excluding l. It follows that

∀j nl(xl, µ) = ml(xlj , µ) =
∑

i nli(xli , µ) .
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Using this inductively until we reach the leaves, we can show that there are nl(xl, µ) players

downstream of l in the receiver set chosen by the algorithm, i.e., with xi ≤ µi. Equation 3.7

then shows that the cost of each link is exactly balanced, and hence the overall mechanism

is budget-balanced. 2

Lemma 3.8 The receiver set computed by this algorithm is the same as the receiver set

computed by the Shapley-value algorithm given in Section 2.1.

Proof: By Lemma 3.7, we know that the set R(µ) constructed can bear the cost of

transmitting to R(µ). Let R(µ) be the receiver set chosen by the iterative Shapley-value

algorithm (i.e., the one in Section 2.1). Because R(µ) is the greatest fixed point, R(µ) ⊇

R(µ).

We show that R(µ) = R(µ) as follows. Let xl(µ) be the cost shares of individual

receivers for the path down to but excluding l corresponding to the receiver set R(µ). Let

nl(µ) be the number of receivers below l in this outcome. By induction, we can show that

Steps 1 and 2 of the algorithm described in this section maintain the property

nl(xl(µ), µ) ≥ nl(µ)

Because this is true at the root, it follows that |R(µ)| ≥ |R(µ)|. Hence R(µ) = R(µ). 2

The two algorithms (one-pass and iterative) are both budget-balanced, with the same

receiver set and the same cost-sharing function; thus they both compute the SH mechanism.

3.11.3 A communication-efficient approximation of nl(·)

The algorithm for the Shapley-value mechanism described in the previous section makes

only one pass up and down the tree. However, in the worst case, the function nl(·) passed

up link l requires |P | points (pi, ni) to represent it, which is undesirable.

Our approach to approximating the SH mechanism is as follows: We replace the function

nl(·) in the one-pass SH mechanism by a small approximate representation of nl(·); only

this approximate representation is communicated up the tree, resulting in an exponential

saving in the worst-case number of communication bits. What should this approximation
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look like? To begin with, we would like to underestimate nl(·) at every point, effectively

underestimating the players’ utilities, so that we can still compute a feasible receiver set in

one pass.

For each link l, instead of nl(p, µ), the mechanism uses an under-approximation ñl(p, µ).

The approximation we choose is simple and is illustrated in Figure 3.6. For some parameter

κ > 1, we round down all values of nl(p, µ) to the closest power of κ. The resulting function

ñl(p, µ) has at most (log |P |/ log κ) “corners,” and so it can be represented by a list of

O(log |P |) points.
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Figure 3.6: Approximation to nl(p, µ).

At the leaf nodes, we first compute the exact function nl(p, µ) as before, and from this

we compute the approximation ñl(p, µ) as illustrated in Figure 3.6. At non-leaf nodes, we

compute ñl(p, µ) by using the following modified versions of Steps 1 and 2 of the one-pass

algorithm:

• Step 1’: Compute

m̂l(p, µ) =
∑

li

ñli(p, µ)

(This step is unchanged; we do an exact summation, but the input functions are

approximate.)

• Step 2’: First, adjust for cost c(l) as before

n̂l(p, µ) = max
{

p′− c(l)

m̂l(p
′,µ)

≥p
}

m̂l(p
′, µ)
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Then, approximate the function n̂l(·) by ñl(·):

ñl(p, µ) = κblogκ n̂l(p,µ)c

Because ñ(·) is given in the list-of-points representation, this is easily done by dropping

elements of the list that do not change ñl(p, µ).

The function n̂l(·) computed on the way up is stored at the node beneath l.7 On the

way down, we compute

xlj = xl +
c(l)

n̂l(xl, µ)

Note that Step 2’ guarantees that there are at least n̂l(xlj , µ) players beneath l who can

afford to pay p′ = xlj for the links from the root through l.

We can now define a mechanism (called Mechanism SF, for “step function”) by com-

puting xi for i ∈ P as in the one-pass algorithm for SH in Section 2.2, including i in the

receiver set if xi ≥ µi, and assigning cost share xi to i if i is included. However, we now

have a situation in which the number of receivers downstream of link l is potentially greater

than ñl(xl, µ), because ñl(·) is an under-approximation. Thus, SF does not achieve exact

budget balance; there may be a budget surplus.

For example, consider running mechanism SF on the instance shown in Figure 3.7 with

κ = 2. Node B computes n̂l1(·) as follows: If only player 4 is included, he would have to pay

the entire cost of link l1 and hence have only 12 left to pay for link l3; this gives us a corner

at point (12, 1). Further computations show that the other corner points are (11, 2), (10, 3),

and (3, 4). Figure 3.7 also shows the approximate function ñl1(·): the only difference is that

the corner at (10, 3) is dropped. Similarly, node C computes ñl2(·); in this case, there is a

single corner at (7, 2).

Now, node A receives the approximate functions ñl1(·) and ñl2(·). It then combines

them to compute n̂l3(·). It turns out that the only way to share the cost of l3, based on

the received ñl1(·) and ñl2(·), is to admit two players from each of A and B; each of these

players is willing to pay at least 7 for links l3 and above, and so can share the cost of link l3

7If there are space constraints, it is easy to modify the mechanism to store ñl(·) instead, by rounding m̂l

to a compact approximation m̃l and using this function to compute ñl(·) in Step 2.
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Figure 3.7: Example illustrating budget surplus of Mechanism SF with κ = 2.

and be willing to pay up to 1 more. Thus, the function n̂l3(·) has a single corner at (1, 4).

Our approximation procedure makes no difference in this case, and so the function ñ l3 is

identical. Finally, the root receives ñl3 , and as there are no additional costs to share, it

computes that transmission is feasible.

On the way down, the payments are computed as follows: At node A, the cost of l3 is

divided by n̂l3(0,u) = 4, and thus xl1 = xl2 = 6. Node B then adds on the additional cost

of l1, and divides it among n̂l1(6,u) = 3 players. Thus, the ask price for players at node B

is 6 + 4 = 10; players 2, 3, and 4 are included in the receiver set and pay 10 each. Similarly,

the ask price at node C is computed to be 6+12 = 18; players 7 and 8 are included and pay

18 each. The total amount collected is 66, but the cost of transmission is only 60, resulting

in a surplus of 6. This surplus arises because node A counted on having only 4 receivers

sharing the cost of l3, whereas there were actually 5 receivers.

3.11.4 Group strategyproofness of mechanism SF

Notation

Throughout this section, we use u = (u1, u2, . . . , un) to indicate the true utility profile of

the players. Recall that µ|iri denotes the utility profile (µ1, µ2 . . . , µi−1, ri, µi+1, . . . , µn),

60



i.e., the utility vector µ perturbed by replacing µi by ri.

Now, let µ be the reported utility profile. Then S = {i | ui 6= µi} is the strategizing

group. This strategy is successful if no member of S has a lower welfare as a result of the

strategy, and at least one member has a higher welfare as a result of the strategy:

∀i ∈ S wi(µ) ≥ wi(u)

∃j ∈ S such that wj(µ) > wj(u)

We prove that mechanism SF is GSP in three steps: First, we prove that, if there is

a successful (individual or group) strategy, there is a successful strategy µ in which all

colluding players raise their utility, i.e., µi ≥ ui. This is intuitive, because, if a player

receives the transmission, she is not hurt by raising her utility further. Next, we show that

a receiver has no strategic value in raising her utility: If xi ≤ ui < µi, then the outcome of

the mechanism (both receiver set and cost shares) is unchanged in moving from strategy µ

to µ|iui. Finally, we combine these two results to show that a successful strategy against

mechanism SF cannot exist.

For the first part, we formalize our argument that it is sufficient to consider strategies

in which all members raise their utilities. The key to this is showing that the following

monotonicity property holds:

Lemma 3.9 Monotonicity: Let u be a utility profile and µ be the perturbed profile obtained

by increasing one element of u (µ = u|iµi, where µi > ui). Then, the following properties

hold:

(i). ∀l, x ñl(x, µ) ≥ ñl(x,u)

(ii). ∀j ∈ P xj(µ) ≤ xj(u)

(iii). R̃(µ) ⊇ R̃(u)

(Here xj(µ) is the ask price computed for player j in the downward pass.)

Proof: Note that our approximation technique has the property that, if n̂l(x, µ) ≥ n̂l(x,u),

then ñl(x, µ) ≥ ñl(x,u). Statement (i) is then immediately true at the leaves and follows
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by induction at non-leaf nodes. Because the cost of any link l is divided among n̂l(xl, µ)

players, statement (ii) follows from statement (i). Finally, because the utilities are the same

(or higher in the case of player j), statement (ii) implies statement (iii). 2

Lemma 3.9 suggests that, for any successful strategy µ, we can get a successful strategy

µ′ by raising µi to ui whenever µi < ui. However, we first have the technical detail of

eliminating non-receivers from the strategizing group:

Lemma 3.10 Let µ be a strategy for group S. Suppose i ∈ S and i /∈ R̃(µ). Let µ′ be the

strategy µ|iui. Then, xj(µ
′) ≤ xj(µ), for all j ∈ P .

Proof: Because i /∈ R̃(µ), xi(µ) > µi. When µi ≤ ui, the statement follows directly from

Lemma 3.9. When µi > ui, we can show that ñl(xl(µ), µ′) = ñl(xl(µ), µ) by induction on

the height of l (where l is the link from the location of i to its parent), and the statement

follows. 2

Combining the last two results, we get:

Lemma 3.11 Suppose a group S has a successful strategy. Then, S has a successful strategy

µ′ where µ′
i ≥ ui.

Proof: By lemma 3.10, we can assume, without loss of generality, that S has a successful

strategy µ such that S ⊆ R(µ). Define a sequence of strategies

µ = µ(0), µ(1), . . . µ(n−1), µ(n) = µ′

where µ(k) = µ(k−1)|kuk if uk > µk, µ(k) = µ(k−1) otherwise. The monotonicity property

implies that, if µ(k−1) is a successful strategy, so is µ(k). 2

Now, we prove that, if a receiver i raises his utility, the solution is not altered:

Lemma 3.12 Let u be a utility profile, and let µ be the perturbed profile obtained by in-

creasing one element of u (µ = u|iµi, where µi > ui). If ui ≥ xi(u), then

∀l,∀x < xl(u) ñl(x, µ) = ñl(x,u)
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Proof: It is obviously true if i is at a leaf and l is the link from the leaf to its parent,

because the utility µi only affects the value of ñl(·) at prices above ui ≥ xi. (This is a result

of our pointwise approximation scheme; not all approximations would have this property.)

Also, because of the monotonically decreasing nature of ñl(·), this property is maintained

by Steps 1’ and 2’ as we move up the tree. 2

A corollary of lemma 3.12 is that, when the conditions of the lemma hold, the output

of the mechanism is identical for inputs u and µ. This follows from the fact that ñl(·) is

not evaluated at prices above xl(u) on the way down, and so inductively xl(µ) = xl(u) for

all links l. Hence, each player gets the same ask price xi(µ) = xi(u).

We can now prove the main result:

Theorem 3.6 Mechanism SF is GSP.

Proof: Assume the opposite, i.e., that there is a successful group strategy against mech-

anism SF. Then, by lemma 3.11, there is a group strategy µ for some set S, where every

member of S receives the transmission after the strategy. Define the sequence of strategies:

µ = µ(0), µ(1), . . . µ(n−1), µ(n) = u

where µ(k) = µ(k−1)|kuk. It follows from lemma 3.12 that, if µ(k−1) is a successful strategy

for S, so is µ(k). This implies that u is a successful strategy, which is a contradiction. 2

3.11.5 Alternative proof that mechanism SF is GSP

We now present an alternative proof of Theorem 3.6 that builds on previous results in

the mechanism-design literature Moulin and Shenker [MS01, Mou99] discussed a family of

budget balanced mechanisms based on cross-monotonic cost-sharing functions and proved

them to be group strategyproof. In this section, we develop a new characterization of

the family of cross-monotonic cost-sharing mechanisms and show that mechanism SF is a

member of this family.

Let g be a cross-monotonic cost-sharing function, and let Mg = (σ(µ),x(µ)) be the

corresponding cross-monotonic mechanism.
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Lemma 3.13 Mg is group strategyproof.

This was proved by [Mou99] in the context of budget-balanced mechanisms, but his proof

extends directly to all cross-monotonic mechanisms.

Let M = {Mg | g is cross-monotonic} be the set of cross-monotonic mechanisms. We

give an alternate characterization of the mechanisms in this set that does not explicitly use

the cost-sharing function in the construction of the receiver set.

Theorem 3.7 Fix the tree and the costs c(l), and let U = R
P
≥0 be the space of possible utility

profiles. A mechanism M = (σ(µ),x(µ)) is in M iff it satisfies the following properties:

1. Consumer sovereignty: ∃B such that, for all i, for all u ∈ U such that ui ≥ B,

i ∈ R(u).

2. Monotonicity of receiver set: if u,u′ are utility profiles such that, for all i, ui ≤ u′
i,

then R(u) ⊆ R(u′).

3. Let u,u′ ∈ U be utility profiles such that R(u) = R(u′). Then, xi(u) = xi(u
′), for all

i. In other words, the cost shares are a function of the receiver set alone, and we can

use the notation xi(S) to indicate the payment of player i when the receiver set is S.

4. xi(.) is cross-monotonic on the space of receiver sets, i.e., if S ⊆ S ′, then xi(S
′) ≤

xi(S), for all i ∈ S.

5. For any S ⊆ P , let U(S) = {u ∈ U | R(u) = S}. Then, U(S) is closed under the

pointwise minimum operation: If u,u′ ∈ U(S), and u′′ is defined by u′′
i = min(ui, u

′
i),

then u′′ ∈ U(S).

6. xi(S) = min
u∈U(S) ui

Proof:

If direction: Consider a mechanism M = (σ(µ),x(µ)), and let R(µ) be the receiver set

corresponding to σ(µ). Assume M satisfies properties 1-6.
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Properties 5 and 6 say that this mechanism partitions the utility space into “regions”

U(S) corresponding to every receiver set S. Every region has a unique minimum point u(S)

defined by

ui(S) = xi(S) if i ∈ S

ui(S) = 0 if i /∈ S

Consider the utility profile uS given by

uS
i = B if i ∈ S

uS
i = 0 if i /∈ S

Then, by property 1, R(uS) ⊇ S.

Now, consider the cost-sharing function g defined by

gi(S)
def
= ui(R(uS)) (3.8)

For any S′ ⊇ S, we know by property 2 that R(uS′
) ⊇ R(uS). Then, by property 4, it

follows that, for all i ∈ S, gi(S
′) ≤ gi(S), and hence g is a cross-monotonic cost-sharing

function. It only remains to be shown that, for all µ, R(µ) is the unique largest set S for

which

∀i ∈ S gi(S) ≤ µi (3.9)

R(µ) satisfies equation (3.9), because µi ≥ ui(R(µ)) = xi(R(µ)). Consider any set T

that also satisfies this condition. Then, by assumption,

∀i gi(T ) ≤ µi

=⇒ ui(R(uT )) ≤ µi

=⇒ R(u(R(uT ))) ⊆ R(µ) by property 2
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We note that R(u(R(uT ))) = R(uT ) ⊇ T , and so it follows that T ⊆ R(µ). Because this is

true for all such T , R(µ) must be the largest set for which equation (3.9) is satisfied.

Only If direction: Consider any cross-monotonic mechanism Mg. Let B = maxi gi({i}).

Then, it is easy to verify that each of the properties above is satisfied. 2

Figure 3.8 illustrates one possible partition for two players. The mechanisms in M are

u1

u
2

U({1, 2})

U({2})

U(φ)
U({1})

0
0

u({1})u(φ)

u({1, 2})

u({2})

Figure 3.8: Partition of utility space for a two player mechanism

completely characterized by the points u(S), over all S ⊆ P .

Theorem 3.8 Mechanism SF ∈ M.

Proof: We show that mechanism SF has all the properties listed in Theorem 3.7.

Property 1: Let B be the maximum cost of a path from any player to the root. Then, if

ui ≥ B, i ∈ R̃(u).

Property 2: The monotonicity of mechanism SF was proved in Lemma 3.9.

Property 3: Suppose R(u) = R(u′) = S. Then, using Lemma 3.12 repeatedly, we can show

that xi(u) = xi(u
S), where uS is defined as in the proof of theorem 3.7. Similarly, it also

follows that xi(u
′) = xi(u

S), and so xi(u) = xi(u
′). Hence this property is valid, and we

can refer to the payment function as xi(S).

Property 4: For receiver sets S and S ′ such that S ⊆ S ′, consider the utility profiles uS and

uS′
. The conditions of Lemma 3.9 apply, and so xi(S) = xi(u

S) < xi(u
S′

) = xi(S
′).

Properties 5 and 6: For any utility profile u, with receiver set R(u) = S, consider the utility
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profile u defined by

ui = xi(S) if i ∈ S

ui = 0 if i /∈ S

Note that it is sufficient to show that R(u) = S to prove both properties 5 and 6.

We can prove that R(u) = R(u) = S by increasing the elements of ui to ui one at

time and showing that the receiver set remains the same at each step. For i /∈ S, we can

show this by induction on ñl(.), as in Lemma 3.10. For i ∈ S, this follows directly from

Lemma 3.12. 2

3.11.6 Mechanism SSF: bounded budget deficit and welfare loss

While mechanism SF is group strategyproof and has a bounded budget deficit, it has a

potentially fatal flaw: it may output an empty receiver set in situations in which the SH

mechanism would give a large receiver set. As a result, it may incur a very large welfare

loss with respect to the SH mechanism. In this section, we present a simple modification

of mechanism SF, called SSF (for “scaled SF”), and prove bounds on its budget deficit and

loss of net worth with respect to the SH mechanism. The goal of the modification is to

ensure that, for every utility profile, the mechanism has a receiver set at least as large as

the SH receiver set. We do this by discounting the cost of each link by a bounded fraction;

this converts the budget surplus of mechanism SF to a budget deficit, but improves the

worst-case welfare loss.

Mechanism SSF:

Let hl be the height of link l in the tree. (If one of the endpoints of link l is a leaf, then

hl = 1.) Then, define the scaled cost cκ(l) of the link l to be c(l)/(κhl). Run mechanism SF

assuming link costs cκ(l) instead of c(l), to compute a receiver set Rκ(u) and cost shares

xκ
i (u).

Lemma 3.14 Mechanism SSF is GSP.
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Proof: The player’s utility does not affect the scaled costs, and mechanism SF is GSP for

any tree costs. 2

Let R(u) be the receiver set in the (exact) Shapley-value mechanism. We now show

that Rκ(u) ⊇ R(u).

Lemma 3.15 For any link l, let ñκ
l (x,u) be the approximation computed by mechanism

SSF. Let nl(x,u) and xl be defined as in the one-pass exact Shapley-value algorithm given

in Section 2.2. Then,

∀l ñκ
l (xl,u) ≥ nl(xl,u)

κhl

Proof: We prove the statement by induction on hl. For hl = 1, it is true because of our

approximation method. Suppose the statement is true for all links of height no more than

αs, and hl = r + 1. Let {l1, l2, . . . , lk} be the child links of l. By the inductive assumption,

ñκ
li
(x,u) ≥ (nli(xli ,u))/κr . It follows that

m̂κ
l (xli ,u) =

k
∑

i=1

ñκ
li(xli ,u) (3.10)

≥ nl(xl,u)

κr
(3.11)

From the computation of the ask prices xl and xli in the exact Shapley value mechanism,

we know

xl = xli −
c(l)

nl(xl,u)
.

Let

x′ = xli −
cκ(l)

m̂κ
l (xli ,u)

. (3.12)

Then, x′ ≥ xl follows from Equation (3.11).

Now, in Step 2’ of mechanism SSF, the function m̂κ
l (·) is adjusted for the scaled cost

cκ(l) to compute the function n̂κ
l (·). Equation (3.12) guarantees that m̂κ

l (xli ,u) players in

the subtree below l can share the additional cost cκ(l) and still be willing to pay x′ each for
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links above l. Thus, we have

n̂κ
l (x′,u) ≥ m̂κ

l (xli ,u) ,

and, because x′ ≥ xl, n̂κ
l (xl,u) ≥ n̂κ

l (x′,u). Finally, in passing from n̂κ(·) to ñκ(·), we get

ñκ
l (xl,u) ≥ n̂κ

l (xl,u)

κ

ñκ
l (xl,u) ≥ nl(xl,u)

κr+1

And thus the statement is proved by induction. 2

Lemma 3.16 Rκ(u) ⊇ R(u).

Proof: Using Lemma 3.15,

cκ(l)

ñκ
l (xl,u)

≤ c(l)

nl(xl,u)
,

and we can show inductively that xκ
l ≤ xl for all links l. Because this is true at the leaves,

it follows that Rκ(u) ⊇ R(u). 2

Bounding the budget deficit: Unlike mechanism SF, which is balanced or runs a surplus,

mechanism SSF may generate a budget deficit (but never a surplus). However, the deficit

(as a fraction of the cost) can be bounded in terms of κ and the height h of the tree:

Theorem 3.9

c(T (Rκ(u)))

κh
≤

∑

i∈Rκ(u)

xκ
i (u) ≤ c(T (Rκ(u)))

Proof: Let X =
∑

i∈Rκ(u) xκ
i (u). Because mechanism SF never runs a deficit,

X ≥ cκ(T (Rκ(u))) ≥ c(T (Rκ(u)))

κh
.

We now show that mechanism SSF never runs a budget surplus. For each link l, let xl

denote the offer price computed by mechanism SSF. Consider a link l, and let l1, l2, · · · , lk

be its child links. Note that the cost of link l is factored into xli by assuming that there are

n̂κ
l (xl,u) receivers downstream of l. It is sufficient to prove that, for any link l, the number
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of receivers downstream of l (in Rk) is at most κhl · n̂κ
l (xl,u); as the cost of link l has been

scaled down by κhl , it follows that we never collect a surplus with respect to the true cost.

We prove this by induction on the height hl of l. When hl = 1, this is clearly true: there

are exactly n̂κ
l (xl,u) receivers downstream of l. Assume it is true for all links of height at

most r, and consider a link l of height r + 1. By the inductive assumption, for each child

link li, we have

n̂κ
li
(xli ,u) ≥ 1

κr
× number of receivers downstream of li in Rk .

Thus, we have

ñκ
li(xli ,u) ≥ 1

κr+1
× number of receivers downstream of li in Rk ,

and so

m̂κ
l (xli ,u) ≥ 1

κr+1
× number of receivers downstream of l in Rk .

Finally, the computation of the price xli from xl satisfies n̂κ
l (xl,u) = m̂κ

l (xli ,u), which gives

us

n̂κ
l (xli ,u) ≥ 1

κr+1
× number of receivers downstream of l in Rk .

Thus, by induction this is true for every link l. The total payment collected for any link

l is at most κhlcκ(l) ≤ c(l), and so mechanism SSF never runs a budget surplus. 2

Bounding the worst-case welfare loss: Let T κ and T be the multicast trees correspond-

ing to the receiver sets Rκ(u) and R(u) respectively. Then, T κ can be written as a disjoint

union of trees, T κ = T ∪ T1 ∪ T2 ∪ . . . ∪ Tr. The corresponding relation for the receiver set

is Rκ(u) = R(u) ∪ R1 ∪ R2 ∪ . . . ∪ Rr, where Ri is the subset of players in Rκ(u) who are

attached to some node in Ti. Some of these subtrees may have negative welfare, and so the

overall welfare of the SSF mechanism may be less than the welfare of the Shapley value.

However, we can bound the worst-case welfare loss (with respect to the exact Shapley value)

in terms of the total utility U =
∑

i∈P ui:
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Theorem 3.10

NW (Rκ(u)) ≥ NW (R(u)) − (κh − 1)U

Proof: The welfare of the receiver set Rκ(u) is

NW (Rκ(u)) =
∑

i∈Rκ(u)

ui − c(T (Rκ(u)))

= NW (R(u)) +

r
∑

j=1

NW (Rj)

Now, for any subtree Tj of T κ,

U(Tj) =
∑

i∈Tj

ui ≥ cκ(Tj) ≥
c(Tj)

κh
=⇒ NW (Tj) ≥ −(κh − 1)U(Tj)

and hence

NW (Rκ(u)) ≥ NW (R(u)) − (κh − 1)

r
∑

j=1

U(Tj)

≥ NW (R(u)) − (κh − 1)
∑

i∈Rκ(u)

ui

≥ NW (R(u)) − (κh − 1)U

2

To summarize, Mechanism SSF sends O(logκ n) points (pi, ni) over each link, incurs a

cost of at most κh times the revenue collected, and has an welfare loss of at most (κh − 1)U

with respect to the SH mechanism.

For example, when |P | = 100, 000 and h = 5, the natural algorithm for the SH mecha-

nism given in [FPS01] would require about 100, 000 messages to be sent across a link in the

worst case. Our algorithm for SSF requires one bottom-up pass and one top-down pass, i.e.,

exactly two messages over each link. The maximum size of each point (pi, ni) in a message

in the bottom-up pass is always bounded by O(log |P | + maxi∈P log ui) bits, and the maxi-

mum size of a message sent in the top-down pass is always bounded by O(log(
∑

l∈L c(l)))

bits. For |P | = 100, 000, h = 5, and κ = 1.03, SSF has a budget deficit of at most 14% of
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the tree cost and a worst-case welfare loss with respect to SH of at most 16% of the total

utility, and the largest message sent in the bottom-up pass contains at most 400 points

(pi, ni). As another example, when |P | = 106 and h = 10, we can use κ = 1.02 to achieve

a worst-case deficit of 18% and worst-case welfare loss of 22% of the total utility, with

maximum bottom-up message size of 700 points, or use κ = 1.04 to achieve corresponding

bounds 33%, 48%, and 350 points.
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Chapter 4

Interdomain Routing†

4.1 Introduction

The Internet is comprised of many separate administrative domains or Autonomous Systems

(ASes). Routing occurs on two levels, intradomain and interdomain, implemented by two

different sets of protocols. Intradomain-routing protocols, such as OSPF, route packets

within a single AS. Interdomain routing, currently handled by the Border Gateway Protocol

(BGP), routes packets between ASes. Although routing is a very well-studied problem, it

has been approached by computer scientists primarily from an engineering or “protocol-

design” perspective. In this chapter, we continue the study of routing from a mechanism-

design perspective, concentrating specifically on interdomain routing, for reasons explained

below. We study two different formulations of the routing problem. In Section 4.2 we

introduce our first formulation, the lowest-cost routing problem. In Section 4.3, we provide

a formal statement of the problem and in Section 4.4 we derive a strategyproof pricing

scheme. In Section 4.5, we describe the BGP-based computational model that we use

for the distributed price-calculation algorithm given in Section 4.6. In Section 4.8, we

turn to our second formulation, the policy routing mechanism-design problem, in which

†Sections 4.2 to 4.7 describe joint work with Joan Feigenbaum, Christos Papadimitriou, and Scott
Shenker, and was reported in [FPSS02]. Ramesh Govindan provided us with a recent AS graph, and taught
us about some of the intricacies of BGP. We also thank Kunal Talwar for helpful discussions on the role
of incentives in AS-graph formation, and Gauri Shah for suggesting improvements to the convergence time
analysis. Sections 4.8 to 4.10 describe joint work with Joan Feigenbaum, Tim Griffin, Vijay Ramachandran,
and Scott Shenker.
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source ASes have valuations over alternative routes to a destination. Here, the mechanism

design problem appears to be more difficult: In Section 4.9 we show that in the most

general case (in which ASes have arbitrary valuations) it is NP-hard to find the routing

tree that maximizes overall welfare; it is NP-hard even to find a tree that is approximately

optimal, for any reasonable approximation factor. In Section 4.10, we consider an interesting

class of restricted valuations, next-hop preferences, in which an AS’s valuation for a route

depends only on which of its neighbors the route passes through. In this case, we find the

problem reduces to finding a maximum-weight directed spanning tree, and is thus solvable

in polynomial time. We derive a strategyproof mechanism, and show that the payments

are also polynomial-time computable, and hence the mechanism appears to be tractable

for a centralized computation. However, in Section 4.10.2, we argue that this mechanism

is incompatible with BGP, and hence the mechanism appears to be hard in a BGP-based

computational model.

4.2 Lowest-Cost Routing

In our first formulation of the routing-mechanism design problem, each AS incurs a per-

packet cost for carrying traffic, where the cost represents the additional load imposed on the

internal AS network by this traffic. To compensate for these incurred costs, each AS is paid

a price for carrying transit traffic, which is traffic neither originating from nor destined for

that AS. It is through these costs and prices that consideration of “incentive compatibility”

is introduced to the interdomain-routing framework, which, as currently implemented, does

not consider incentives. We are following previous work on mechanism design for rout-

ing [NR01, HS01] by introducing incentives in this way. Our goal is to maximize network

efficiency by routing packets along the lowest-cost paths (LCPs). Standard routing pro-

tocols (such as BGP) can compute LCPs given a set of AS costs. However, under many

pricing schemes, an AS could be better off lying about its costs;1 such lying would cause

traffic to take non-optimal routes and thereby interfere with overall network efficiency.

1There are two ways in which lying might increase the AS’s total welfare: Announcing a lower-than-
truthful cost might attract more than enough additional traffic to offset the lower price, or announcing a
higher-than-truthful cost might produce an increase in the price that is more than sufficient to offset any
resulting decrease in traffic.
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To prevent this, we first ask how one can set the prices so that ASes have no incentive

to lie about their costs; as we discuss in Chapter 2, such pricing schemes are called “strat-

egyproof.” We also require that ASes that carry no transit traffic receive no payment. We

prove that there is only one strategyproof pricing scheme with this property; it is a member

of the Vickrey-Clarke-Groves (VCG) class of mechanisms [Vic61, Cla71, Gro73]. We next

ask how the VCG prices should be computed, and we provide a “BGP-based” distributed

algorithm that accomplishes this.

Our results contribute in several ways to the understanding of how incentives and com-

putation affect each other in routing-protocol design. Nisan and Ronen [NR01] and Hersh-

berger and Suri [HS01] considered the LCP mechanism-design problem, motivated in part

by the desire to include incentive issues in Internet-route selection. The LCP mechanism

studied in [NR01, HS01] takes as input a biconnected graph, a single source, a single des-

tination, and a (claimed) transmission cost for each link; the strategic agents are the links,

and the mechanism computes, in a strategyproof manner, both an LCP for this single rout-

ing instance and a set of payments to the links on the LCP. This mechanism is a member of

the VCG family and forms the point of departure for our work. However, our formulation of

the problem differs in three respects, each of which makes the problem more representative

of real-world routing:

• First, in our formulation, it is the nodes that are the strategic agents, not the links as

in [NR01, HS01]. We make this choice, because we are trying to model interdomain

routing. ASes actually are independent economic actors who could strategize for fi-

nancial advantage in interdomain-routing decisions; in the BGP computational model

into which we seek to incorporate incentive issues, it is the nodes that represent ASes

and that are called upon to “advertise” their inputs to the protocol. Formulations in

which the links are the strategic agents might be more appropriate for intradomain

routing, but it is not clear that incentive issues are relevant in that context; because

all links and routers within a domain are owned and managed by a single entity, they

are unlikely to display strategic behavior.

• Second, instead of taking as input a single source-destination pair and giving as output
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a single LCP, our mechanism takes in n AS numbers and constructs LCPs for all

source-destination pairs. Once again, we make this choice in order to model more

accurately what BGP actually does. This complicates the problem, because there are

now n2 LCP instances to solve.

• Third, we compute the routes and the payments not with a centralized algorithm,

as is done in [NR01, HS01], but with a distributed protocol based on BGP. This

is necessary if the motivation for the mechanism-design problem is Internet routing,

because interdomain-route computation is in fact done in a distributed fashion, with

the input data (AS-graph topology) and the outputs (interdomain routes) stored in a

distributed fashion as well. The various domains are administratively separate and in

some cases competitors, and there is no obvious candidate for a centralized, trusted

party that could maintain an authoritative AS graph and tell each of the ASes which

routes to use. Real-world BGP implementations could be extended easily to include

our pricing mechanism, and we prove that such an extension would cause only modest

increases in routing-table size and convergence time.

Our approach of using an existing network protocol as a substrate for realistic distributed

computations may prove useful generally in Internet-algorithm design, not only in routing

or pricing problems. Algorithm design for the Internet has the extra subtlety that adoption

is not a decision by a systems manager, concerned only with performance and efficiency, but

rather a careful compromise by a web of autonomous entities, each with its own interests and

legacies. Backward compatibility with an established protocol is a constraint and criterion

that is likely to become increasingly important and prevalent.

Despite these efforts to formulate the problem realistically, there are several aspects of

reality that we deliberately ignore. First, per-packet costs are undoubtedly not the best

cost model, e.g., in some cases transit costs are more administrative than traffic-induced.

Second, BGP allows an AS to choose routes according to any one of a wide variety of local

policies; LCP routing is just one example of a valid policy, and, in practice, many ASes

do not use it [TGS01]. Furthermore, most ASes do not allow non-customer transit traffic
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on their network.2 In the lowest-cost routing formulation, we ignore general policy routing

and transit restrictions; we only use LCPs. Lastly, BGP does not currently consider general

path costs; in the cases in which AS policy seeks LCPs, the current BGP simply computes

shortest AS paths in terms of number of AS hops. This last aspect is minor, because it

would be trivial to modify BGP so that it computes LCPs; in what follows, we assume that

this modification has been made.

Because of these limitations, our results on lowest-cost routing clearly do not constitute

a definitive solution to the incentive problem in interdomain routing. Nonetheless, they

represent measurable progress on two fronts. First, although it does not capture all of the

important features of interdomain routing, our problem formulation is an improvement over

the previous ones in the algorithmic mechanism-design literature [NR01, HS01], as explained

above. Second, we have expanded the scope of distributed algorithmic mechanism design,

which has heretofore been focused mainly on multicast cost sharing [FPS01, AFK+03,

FKSS03].

4.3 Statement of Lowest-Cost Routing Problem

The network has a set of nodes N , n = |N |, where each node is an AS. There is a set L

of (bidirectional) links between nodes in N . We assume that this network, called the AS

graph, is biconnected; this is not a severe restriction, because the route-selection problem

only arises when a node has multiple potential routes to a destination. For any two nodes

i, j ∈ N , Tij is the intensity of traffic (number of packets) originating from i destined for j.

We assume that a node k incurs a transit cost ck for each transit packet it carries. In

the terminology of Chapter 2, ck is the private type of agent k.

For simplicity, we assume that this cost is independent of which neighbor k received the

packet from and which neighbor k sends the packet to, but our approach could be extended

to handle a more general case. We write c for the vector (c1, . . . , cn) of all transit costs and

c−k for the vector (c1, . . . , ck−1, ck+1, . . . cn) of all costs except ck.

2We say that two ASes are “interconnected” if there is a traffic-carrying link between them. Intercon-
nected ASes can be peers, or one can be a customer of the other. Most ASes do not accept transit traffic
from peers, only from customers.
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We also assume that each node k is given a payment pk to compensate it for carrying

transit traffic. In general, this payment can depend on the costs c, the traffic matrix [Tij],

and the network topology. Our only assumption, which we invoke in Section 4.4, is that

nodes that carry no transit traffic whatsoever receive no payment.

Our goal is to send each packet along the LCP, according to the true cost vector c.

We assume the presence of a routing protocol like BGP that, given a set of node costs c,

routes packets along LCPs. Furthermore, we assume that, if there are two LCPs between

a particular source and destination, the routing protocol has an appropriate way to break

ties. Let Ik(c; i, j) be the indicator function for the LCP from i to j; i.e., Ik(c; i, j) = 1,

if node k is an intermediate node on the LCP from i to j, and Ik(c; i, j) = 0 otherwise.

Note that Ii(c; i, j) = Ij(c; i, j) = 0; only the transit node costs are counted. The objective

function we want to minimize is the total cost V (c) of routing all packets:

V (c) =
∑

i,j∈N

Tij

∑

k∈N

Ik(c; i, j)ck

Minimizing V is equivalent to minimizing, for every i, j ∈ N , the cost of the path between

i and j.

We treat the routing problem as a mechanism-design problem in which the ASes are the

strategic agents. Each node plays the game by reporting a transit cost. A node’s transit

cost is private information not known to any other node, and thus no other agent can assess

the correctness of an agent’s claimed transit cost. Moreover, V (·) is defined in terms of

the true costs, whereas the routing algorithm operates on the declared costs; the only way

we can be assured of minimizing V (·) is for agents to input their true costs. Therefore, we

must rely on the pricing scheme to incentivize agents to do so.

To do so, we design an algorithmic mechanism as described in Chapter 2. The mech-

anism takes as input the AS graph and the vector c of declared costs3 and produces as

output the set of LCPs and prices.4 The pricing mechanism must be strategyproof so that

3We will often use c to denote the declared costs and the true costs; usually, the context will make clear
which we mean.

4BGP can take the AS graph and c as input and produce the set of LCPs. We use this output of BGP
in our mechanism and do not alter this aspect of BGP in our algorithm.
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agents have no incentive to lie about their costs.

The utility each AS derives from the set of routes chosen by the mechanism is the

negative of the total cost it incurs in transiting traffic along those routes, i.e., “cost” is a

synonym for “disutility” here. For a given cost vector c, the payment pk minus the total

costs incurred by a node k is wk(c) = pk − ∑

i,j Ti,jIk(c; i, j)ck . In the terminology of

Chapter 2, wk(·) is the welfare of agent k. In this context, the mechanism is strategyproof

if for all x, wk(c) ≥ wk(c|kx), where the expression c|kx means that (c|kx)i = ci, for all

i 6= k, and (c|kx)k = x.

4.4 The Pricing Mechanism

Recall that we assume we have a biconnected graph with a routing algorithm that, when

given a vector of declared costs c, will produce a set of LCPs, breaking ties in an appropriate

manner; these paths are represented by the indicator functions {Ik(c; i, j)}k∈N . Further-

more, both the inputs and the outputs are distributed, i.e., neither ever resides at a single

node in the network. In this section, we derive the pricing scheme, and, in Sections 4.5 and

4.6, we describe the distributed computation.

We require that the pricing mechanism be strategyproof and that nodes that carry

no transit traffic receive no payment. We now show that these two conditions uniquely

determine the mechanism we must use. Moreover, we show that they require that the

payments take the form of a per-packet price that depends on the source and destination;

that is, the payments pk must be expressible as

pk =
∑

i,j∈N

Tijp
ij
k ,

where pij
k is the per-packet price paid to node k for each transit packet it carries that is sent

from node i destined for node j.

Theorem 4.1 When routing picks lowest-cost paths, and the network is biconnected, there

is a unique strategyproof pricing mechanism that gives no payment to nodes that carry no
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transit traffic. The payments to transit nodes are of the form pk =
∑

i,j∈N Tijp
ij
k , where

pij
k = ckIk(c; i, j) +

[

∑

r∈N

Ir(c|k∞; i, j)cr −
∑

r∈N

Ir(c; i, j)cr

]

.

Proof: Consider a vector of costs c. Let uk(c) denote the total utility derived by a node

for this cost vector:

uk(c) = −ck

∑

i,j∈N

TijIk(c; i, j).

We can rewrite our objective function as

V (c) =
∑

i,j∈N

Tij

∑

k∈N

Ik(c; i, j)ck = −
∑

k∈N

uk(c).

Thus, the objective function V (·) is simply the negative of the overall welfare (efficiency)

defined in Chapter 2. Note that the routing function {Ik(c; i, j)}k∈N minimizes this quantity,

i.e., the mechanism is efficient. A classic result due to Green and Laffont [GL79] states that

any strategyproof, efficient pricing mechanism must be a VCG mechanism, with payments

expressible as

pk = −uk(c) − V (c) + hk(c
−k),

where hk(·) is an arbitrary function of c−k. When ck = ∞, we have Ik(c|k∞; i, j) = 0,

for all i, j (because the graph is biconnected, and all other costs are finite); so (1) pk = 0,

because we require that payments be 0, and (2) uk(c) = 0. Thus,

hk(c
−k) = V (c|k∞).
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This, in turn, implies that

pk = V (c|k∞) + uk(c) − V (c)

=
∑

i,j∈N

Tij

{

ckIk(c; i, j) +
∑

r∈N

Ir(c|k∞; i, j)cr −
∑

r∈N

Ir(c; i, j)cr

}

=
∑

i,j∈N

Tijp
ij
k ,

where

pij
k = ckIk(c; i, j) +

[

∑

r∈N

Ir(c|k∞; i, j)cr −
∑

r∈N

Ir(c; i, j)cr

]

.

2

This mechanism belongs to the Vickrey-Clarke-Groves (VCG) family [Vic61, Cla71,

Gro73]. It is in essence a node-centric, all-pairs extension of the LCP mechanism studied

by Nisan and Ronen [NR01] and Hershberger and Suri [HS01]. There are several aspects

of this result that are worth noting. First, although the payments could have taken any

form and could have depended arbitrarily on the traffic matrix, it turns out the payments

are a sum of per-packet payments that do not depend on the traffic matrix. Second, the

price pij
k is zero if the LCP between i and j does not traverse k. Thus, these payments can

be computed, once one knows the prices, merely by counting the packets as they enter the

node. Third, although the costs did not depend on the source and destination of the packet,

the prices do. Lastly, the payment to a node k for a packet from i to j is determined by

the cost of the LCP and the cost of the lowest-cost path that does not path through k. We

use the term k-avoiding path to refer to a path that does not pass through node k.

For example, consider the AS graph in Figure 4.1, and suppose the traffic consists of a

single packet from X to Z. The LCP is XBDZ, which has transit cost 3. How much should

AS D be paid? The lowest-cost D-avoiding path from X to Z is XAZ, which has transit

cost 5. Hence, Theorem 4.1 says that D should be paid cD + [5 − 3] = 3. Similarly, AS B

is paid cB + [5 − 3] = 4. Note that the total payments to nodes on the path is greater than

the actual cost of the path. A more extreme example of overcharging occurs in sending a

packet from Y to Z. The LCP is Y DZ, which has transit cost 1. However, the next best
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Figure 4.1: Example AS graph from Section 4.4

path is Y BXAZ which has cost 9, and hence D’s payment for this packet is 1+ [9− 1] = 9,

even though D’s cost is still 1. We return to this issue of overcharging in Section 4.7. These

examples also show why the network must be biconnected; if it weren’t, the payment would

be undefined.

4.5 BGP-based Computational Model

We now seek to compute these prices pij
k , using the current BGP algorithm, which is the

repository of interdomain routing information, as the computational substrate. We adopt

the abstract model of the BGP protocol described by Griffin and Wilfong [GW99], which

involves several simplifying assumptions. Specifically, we assume that there is at most one

link between any two ASes, that the links are bidirectional, and that each AS can be treated

as an atomic entity without regard to intradomain routing issues. The network can then

be modeled as a graph in which every node represents an AS, and every edge represents a

bidirectional interconnection between the corresponding ASes.

BGP is a path-vector protocol in which every node i stores, for each AS j, the lowest-cost

AS Path (the sequence of ASes traversed) from i to j; in this vector, ASes are identified

by their AS numbers. In addition, in our treatment, the LCP is also described by its total

cost (the sum of the declared AS costs). If d is the diameter of the network (the maximum
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number of ASes in an LCP), a router stores O(nd) AS numbers and O(n) path costs.

BGP’s route computation is similar to all path-vector routing protocols. Each router sends

its routing table and, in our treatment, its declared cost, to its neighbors, and each node

can then, based on this information, compute its own LCPs. When there is more than

one LCP, our model of BGP selects one of them in a loop-free manner (to be defined more

precisely below). As mentioned earlier, we are making the oversimplifying assumption that

every node is using lowest cost as its routing policy.

These routing-table exchanges only occur when a change is detected; that is, a router

only sends its routing table to its neighbors when that table is different from what was sent

previously. Routing tables can change either because a link was inserted or deleted (which

would be detected by the nodes on either end) or when updated routing-table information is

received from some other router that changes the paths and/or costs in the current table.5

The computation of a single router can be viewed as consisting of an infinite sequence of

stages, where each stage consists of receiving routing tables from its neighbors, followed by

local computation, followed (perhaps) by sending its own routing table to its neighbors (if

its own routing table changed). The communication frequency is limited by the need to keep

network traffic low, and hence the local computation is unlikely to be a bottleneck. Thus,

we adopt as our measures of complexity the number of stages required for convergence and

the total communication (in terms of the number of routing tables exchanged and the size

of those tables).

If we assume that all the nodes run synchronously (exchange routing tables at the same

time), BGP converges, i.e., computes all LCPs, within d stages of computation (where,

again, d is the maximum number of AS hops in an LCP). Each stage involves O(nd)

communication on any link.6 The computation time required by node i in a single stage is

O(nd × degree(i)).

Because this level of complexity is already deemed feasible in the current Internet, we

5In practice, BGP only sends the portion of the routing table that has changed. Nodes keep the routing
tables received from each of their neighbors so that they can reconstruct the new routing table from the
incremental update. Because the worst-case behavior is to send the entire routing table, and we care about
worst-case complexity, we ignore this incremental aspect of BGP in the statements of our bounds.

6Because of the incremental nature of updates, where nodes need only process and forward routing entries
that have changed, the communication and computational load is likely to be much lower in practice.
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seek to compute the prices with a similar (or better) complexity and state requirements.

We describe such an algorithm in the next section.

4.6 Distributed Price Computation

We want to compute the pij
k using the BGP computational model described in Section

4.5. The input to the calculation is the cost vector c, with each ci known only to node i.

The output is the set of prices, with node i knowing all the pij
k values.7 In describing our

algorithm we assume a static environment (no route changes). The effect of removing this

assumption is that the process of “converging” begins again each time a route is changed.

Our algorithm introduces additional state to the nodes and to the message exchanges

between nodes, but it does not introduce any new messages to the protocol. In particular,

all messages are between neighbors in the AS graph. The added state at each node consists

of the reported cost of each transit node and the set of prices. This is O(nd) additional

state, resulting in a small constant-factor increase in the state requirements of BGP. The

costs and prices will be included in the routing message exchanges, and so there will be a

corresponding constant-factor increase in the communication requirements of BGP.

We first investigate how the prices pij
k at node i are related to the prices at i’s neighbors.

Let P (c; i, j) denote the LCP from i to j for the vector of declared costs c, and let c(i, j)

denote the cost of this path. Define P−k(c; i, j) to be the lowest-cost k-avoiding path from

i to j. Recall that, if there are multiple LCPs between two nodes, the routing mechanism

selects one of them in a loop-free manner. Loop-free means that the routes are chosen so

that the overall set of LCPs from every other node to j forms a tree. In other words, for

each destination j, we assume that the LCPs selected form a tree rooted at j; call this tree

T (j). For example, the tree T (Z) corresponding to the graph in Figure 4.1 is shown in

Figure 4.2. We say that D is the parent of B in T (Z) or, equivalently, that B is a child of

D in T (Z).

We treat each destination j separately. Consider the computation of pij
k at some node i

for another node k on the path from i to j. Let a be a neighbor of i. There are four cases:

7More precisely, these are the parts of the input and output that we introduce; BGP, with its standard
distributed input (AS graph and costs) and distributed output (LCPs) is used as a substrate.
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Figure 4.2: Tree T(Z) for the example in Figure 4.1

• Case (i): a is i’s parent in T (j)

In this case, provided that a is not k, we can extend any k-avoiding path from a to j

to a k-avoiding path from i to j, and so the following inequality holds:

pij
k ≤ paj

k (4.1)

• Case (ii): a is i’s child in T (j)

Here, note that k must be on the LCP from a to j. Further, given any k-avoiding

path from a to j, we can add or remove the link ia to get a k-avoiding path from i to

j, and so we have:

pij
k ≤ paj

k + ci + ca (4.2)

• Case (iii): a is not adjacent to i in T (j), and k is on P (c; a, j).

pij
k ≤ paj

k + ca + c(a, j) − c(i, j) (4.3)

Consider P−k(c; a, j), the lowest-cost k-avoiding path from a to j. We can always add

the edge ia to this path to get a k-avoiding path from i to j. The inequality is then

apparent by substituting the costs of the paths.
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• Case (iv): a is not adjacent to i in T (j), and k is not on P (c; a, j). In this case, we

can add the edge ia to P (c; a, j) to construct a k-avoiding path from i to j. It is easy

to see that

pij
k ≤ ck + ca + c(a, j) − c(i, j) (4.4)

Note that these four cases are not exhaustive. In particular, the case in which a = k is

the parent of i are excluded. In this case, the link ia will not be used in P −k(c; i, j); thus,

we can ignore neighbors in this category.

Let b be the neighbor of i on P−k(c; i, j); i.e., the link ib is the first link on this path.

We claim that, for this neighbor, the upper bounds in the previous inequalities are tight:

Lemma 4.1 Let ib be the first link on P−k(c; i, j). Then, the corresponding inequal-

ity (4.1)-(4.4) attains equality for b.

Proof: We can consider each of the four cases separately.

• Case (i): Given that P−k(c; i, j) goes through its parent, it follows that b is not k,

and so pij
k = pbj

k .

• Case(ii): If P−k(c; i, j) passes through a child b, it is easy to see that pij
k = pbj

k +ci+cb.

• Case(iii): In this case, if P−k(c; i, j) passes through b, it must contain P −k(c; b, j),

and so Inequality 4.3 is an exact equality.

• Case(iv): In this case, the lowest-cost k-avoiding path through b must contain

P (c; b, j), and so Inequality 4.4 is exact.

2

Inequalities (4.1)-(4.4) and Lemma 4.1 together mean that pij
k is exactly equal to the

minimum, over all neighbors a of i, of the right-hand side of the corresponding inequality.

Thus, we have the following distributed algorithm to compute the payment values:

4.6.1 The Algorithm

Consider each destination j separately. The BGP table at i contains the LCP to j:

P (c; i, j) ≡ vs, vs−1, · · · , v0 = j,
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and the cost of this path, c(i, j), where vs, vs−1, · · · , v0 are the nodes on the LCP to j and

c(i, j) =
∑s

r=1 cvr .

Note that each node can infer from the routing tables it receives from its neighbors

whether a is its parent, child, or neither in the tree T (j), for each neighbor a.

At the beginning of the computation, all the entries of pij
vr are set to ∞. Whenever

any entry of this price array changes, the array and the path P (c; i, j) are sent to all

neighbors of i. As long as the network is static, the entries decrease monotonically as the

computation progresses. If the network is dynamic, price computation (and, as explained

above, convergence) must start over whenever there is a route change.

When node i receives an updated price from a neighbor a, it performs the following

updates to its internal state.

• If a is i’s parent in T (j), then i scans the incoming array and updates its own values

if necessary:

pij
vr

= min(pij
vr

, paj
vr

) ∀r ≤ s − 1

• If a is a child of i in T (j), i updates its payment values using

pij
vr

= min(pij
vr

, paj
vr

+ ci + ca) ∀r ≤ s

• If a is neither a parent nor a child, i first scans a’s updated path to find the nearest

common ancestor vt. Then i performs the following updates:

∀r ≤ t pij
vr

= min(pij
vr , p

aj
vr + ca + c(a, j) − c(i, j))

∀r > t pij
vr

= min(pij
vr , ck + ca + c(a, j) − c(i, j))

The algorithm is summarized in Figure 4.3.

4.6.2 Correctness of the algorithm

Inequalities (4.1)-(4.4) can be used to show that the algorithm never computes a value pij
k

that is too low. In order to show that the pij
k values will ultimately converge to their true
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Initialize ()

{
/* Compute routes, initialize payments */

for each destination j
Compute P (c; i, j) and c(i, j)
[vs, vs−1, · · · , v1] = P (c; i, j)
for each node k on P (c; i, j)

pij
k := ∞

}

Update
(

a, j, c(a, j), P (c; a, j), [paj
u1

, paj
u2

, · · · , paj
ul

]
)

{
/* Called when an UPDATE message */

/* for destination j is received */

/* from neighbor a. */

/* u1, u2, · · ·ul are the transit nodes */

/* on the route P (c; a, j) from a to j */

modified := FALSE

if a is on P (c; i, j) /* parent */

/* ur = vr, for r = 1, 2, · · · l */

for each k in {v1, v2, · · · vl}
if pij

k > paj
k

pij
k := paj

k

modified := TRUE

else if i on P (c; a, j) /* child */

/* ur = vr, for r = 1, 2, · · · (l − 1) */

for each k in {v1, v2, · · · vl−1}
if pij

k > paj
k + ca + ci

pij
k := paj

k + ca + ci

modified := TRUE

else /*neither parent nor child*/

t := largest index such that ut = vt

for each k in {v1, v2, · · · vt}
if pij

k > paj
k + ca + c(a, j) − c(i, j)

pij
k := paj

k + ca + c(a, j) − c(i, j)
modified := TRUE

for each k in {vt+1 · · · vs}
if pij

k > ck + ca + c(a, j) − c(i, j)

pij
k := ck + ca + c(a, j) − c(i, j)
modified := TRUE

if modified = TRUE

/* Send UPDATE message to neighbors*/

for each neighbor b of i
send UPDATE

(

i, j, c(i, j), P (c; i, j),
[pij

v1
, pij

v2
, · · · , pij

vs
]
)

to b
}

Figure 4.3: Price-computation algorithm run by AS i
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values, we observe that, for every node s on P −k(c; i, j), the suffix of P−k(c; i, j) from s to j

is either P (c; s, j) or P−k(c; s, j). It follows that, in general, the path P −k(c; i, j) consists

of a sequence of nodes [vl, vl−1, ··, v1, um, um−1, ··, u1] such that, for each ux, P (c;ux, j) is the

suffix [ux, ux−1, ··, u1], and, for each vy, P−k(c; vy , j) is the suffix [vy, vy−1, ··, v1, um, um−1,

··, u1]. Note that, once the LCPs are computed, um will know the correct P (c;um, j) and

cost c(a, j). This information will be sent to v1 in the next update message from um to

v1; thus, v1 will then be able to compute the correct P −k(c; v1, j) and pv1j
k . Proceeding by

induction on y, we can show that i will ultimately have all the correct pij
k values.

In fact, the preceding inductive argument shows that all prices will be stable after d ′

stages, where d′ is the maximum over all i, j, k, of the number of nodes on P −k(c; i, j). In

general, d′ can be much higher than the lowest-cost diameter d of a graph. However, we

don’t find that to be the case for the current AS graph, as we explain in Section 4.7.

4.6.3 Convergence time

Up to this point, we have assumed for simplicity that the prices computation begins only

after the LCPs have been found. In reality, however, the algorithm can start to compute

prices even before the routes have stabilized. This leads to the following bound:

Lemma 4.2 Let di = max{|P (c; i, j)|, |P−k(c; i, j)|}, where |P | denotes the number of hops

in path P . Then, after the first di stages, i knows the correct path P (c; i, j), and the correct

price pij
k .

Proof: The intuition behind this proof is as follows: The critical information that i needs

to compute the correct price pij
k is the cost of P (c; i, j) and the cost of P −k(c; i, j). (The

cost ck can be distributed with LCPs to k, and so it will be known to i before or at the

same time as the cost of P (c; i, j).) After these costs have been discovered, the price pij
k

will not change. The key observation is that, for both P (c; i, j) and P −k(c; i, j), all suffixes

of the path are also LCPs or minimum-cost k-avoiding paths; moreover, this is true even at

intermediate stages of the computation. Using this, we can show that the costs along these

paths will be propagated further in each stage and hence will reach i in di stages.
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We now formalize this argument into an inductive proof. First, observe that both the

LCP costs and the prices never increase as the computation proceeds. Now, if there is an

r-hop path from i to j with cost α, then, after r stages, we must have c(i, j) <= α. It

follows that i discovers the LCP in |P (c; i, j)| ≤ di stages from the beginning.

Now, suppose |P−k(c; i, j)| = r. We can write P−k(c; i, j) as vr, vr−1, · · · , v1, j, where

vr = i. Let c′(vm, j) denote the total cost along this path from vm to j. We show by

induction on m that, after m stages, node vm satisfies one of the following two conditions:

1. c(vm, j) = c′(vm, j), and the current LCP from vm to j does not pass through k.

2. The current LCP from vm to j passes through k, and the current pvmj
k = c′(vm, j) −

c(vm, j).

The base case for v1 is easy: After 1 stage of computation, condition 1 is clearly satisfied.

Suppose it is true for all r ≤ (m − 1). After (m − 1) stages, vm−1 satisfies one of the two

conditions; we consider the two cases separately:

• Case (i): vm−1 satisfies condition 1

In this case, in the mth stage vm will receive an advertised path from vm−1 that has

cost c′(vm, j) and does not pass through k. If this is the lowest-cost path to j that

vm has seen, then vm will satisfy condition 1 at the end of this stage. If not, then the

current LCP from vm to j must pass through k, or else P−k(c; i, j) would not pass

through vm−1. In this scenario, the path advertised by vm−1 must be the lowest-cost

k-avoiding path from vm to j; hence after this stage condition 2 will be satisfied.

• Case (ii): vm−1 satisfies condition 2

In this case, vm−1 advertises a path of cost less than c′(vm, j) to vm. Thus, the LCP

from vm to j after the mth stage must pass through k, or else it would be part of the

lowest-cost k-avoiding path from i to j. Now, the advertisement from vm−1 (which

includes the price p
vm−1j
k ) allows vm to infer that there is a candidate k-avoiding path

of cost c′(vm, j); this is the lowest-cost k-avoiding path, and so condition 2 will be

satisfied.
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Extending this inductive argument to vr = i, we see that, after r stages, i will know of the

existence of a k-avoiding path of cost c′(vr, j). Thus, after di stages, i will know the correct

LCP to j and its cost, as well as the cost of the lowest-cost k-avoiding path to j, and so it

will compute the correct price pij
k . 2

Corollary 4.1 After max(d, d′) stages, every node has the correct LCPs and prices.

2

4.6.4 Using the Prices

At the end of the above price computation, each node i has a full set of prices pij
k . The next

question is how we can use these prices actually to compute the revenue due each node.

The simplest approach is to have each node i keep running tallies of owed charges; that is,

every time a packet is sent from source i to a destination j, the counter for each node k 6= i, j

that lies on the LCP is incremented by pij
k . This would require O(n) additional storage at

each node. At various intervals, nodes can send these quantities in to whatever accounting

and charging mechanisms are used to enforce the pricing scheme. We assume that the

submission of these running totals is done infrequently enough that the communication

overhead can be easily absorbed.

In summary, we have:

Theorem 4.2 Our algorithm computes the VCG prices correctly, uses routing tables of

size O(nd) (i.e., imposes only a constant-factor penalty on the BGP routing-table size), and

converges in at most max(d, d′) stages.

4.7 Analysis of Overcharging

We now turn to the issue of overcharging. VCG mechanisms have been criticized in the

literature because there are graphs in which the total price along a path, i.e., the sum of the

per-packet payments along the path, is much more than the true cost of the path. Examples

of this phenomenon were given in Section 4.4. In the worst case, this total path price can

be arbitrarily higher than the total path cost [AT02]. Although this is undesirable, it may
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be unavoidable, because VCG mechanisms are the only strategyproof pricing mechanisms

for protocols that always route along LCPs. In addition, our distributed algorithm has a

convergence time (measured in number of stages) of d′, whereas BGP’s convergence time is

d; in the worst case, d′

d could be Ω(n). These are serious problems that could undermine

the viability of the pricing scheme we present here. Thus, we ask whether these problems

occur in practice.

To provide a partial answer to this question, we looked at the prices that would be

charged on the current AS graph if we assumed that all transit costs were the same. Out

of a 9107-node AS graph, reflecting a recent snapshot of the current Internet8, we selected

a 5773-node biconnected subset. We then computed d, d′, and the payments that would

result from our pricing scheme, assuming a transit cost of 1 for each node. We find that

d = 8 and d′ = 11, and so the convergence time of the pricing algorithm is not substantially

worse than that of BGP. The highest transit node price was 9, and, with uniform traffic

between all pairs, the mean node payment is 1.44. In fact, 64% of the node prices were

1, and 28% of them were 2. Thus, overcharging appears not to be a problem in this case,

reflecting the high connectivity of the current Internet. Of course, the values of d and d ′

and the overcharging margin would be different with non-uniform transit costs; however,

we expect them to exhibit similar trends towards low d, d′, and overcharging margin.

It would be interesting to ask whether this is because of the incentive issues in AS-

graph formation. In this chapter, we merely looked at the routing aspects of a given AS

graph. However, if one considers the incentives present when an AS decides whether or

not to connect to another AS, the resulting transit prices would be a serious consideration.

In particular, we conjecture that high node prices will not be sustainable in the Internet

precisely because, if present, they would give an incentive for another AS to establish a link

to capture part of that revenue, thereby driving down the transit prices.

8These data were taken from Route Views [Rou], which collates BGP tables from many sites across the
Internet.
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4.8 The Policy Routing Problem

The results in the preceding sections are based on a simple model in which ASes attempt

to minimize per-packet transit costs. In practice, ASes have more complex costs and route

preferences that are embodied in their routing policies. In this section, we introduce a

formulation of the policy-routing algorithmic mechanism design problem.

Our model of policy routing retains several features of the lowest-cost routing problem

described in Section 4.2: The network consists of n Autonomous Systems. For simplicity,

we treat each AS as an atomic entity; thus, the network can be modeled as a graph with

nodes corresponding to the autonomous systems. The edges in this graph correspond to

BGP peering relationships between ASes; we have a directed edge from node a to node b if b

advertises its routes to a. In practice, the edges in this graph may vary with the destination;

however, we assume that these edges are identical for routes to any destination.

A route from a node i to a node j is simply a directed path, with no cycles, from i to j

in this graph. The routing problem in this network is as follows: For each pair of nodes

i and j, we need to select a single route from i to j. Further, we insist that the sets of all

routes to destination j form a tree rooted at j. This is a natural restriction when packets

are routed one hop at a time (as opposed to being routed in an end-to-end manner, e.g.,

source-routed). A candidate solution to the routing problem is thus a set of directed trees,

one for each destination. The trees for different destinations are independent of each other,

and hence it is possible to analyze the model for a single destination.

The root difference between the lowest-cost routing problem and the policy-routing

problem lies in the source of preferences. In the former, the costs incurred by transit

carriers result in them preferring routes that do not pass through them; in the latter, ASes

have differing preferences over alternative routes, and the constraint that routes form a tree

leads to conflicts of interest. There are many reasons why ASes may have real economic

preferences for different routes: Two different routes from i to j may lead to differing

transit costs, customer satisfaction, or service payments. In this section, we assume that

AS i’s preferences among the candidate solutions are dictated entirely by the route from i

to j in each solution, independent of the routes from other nodes to j. In a sense, this is
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complementary to the lowest-cost routing model, in which AS i’s utility for a tree depends

only on the routes on which it was a transit node.

Further, we suppose that AS i’s preferences for paths can be expressed as a utility

function ui : Pij → R, where Pij is the union of all possible paths from i to j and the

empty path ⊥ (which corresponds to solutions in which there is no route from i to j). Only

the relative utilities are important, and so we can normalize this function by requiring that

ui(⊥) = 0. Further, we assume that for any route Pij from i to j, ui(Pij) ≥ 0; in other

words, having any route to j cannot be worse for i than having no route at all.

Abstractly, a mechanism for the routing problem for destination j uses the user utility

profile u and outputs a routing tree T and a vector of payments p = (p1, . . . , pn), where pi

is the amount of money paid to i. We use the notation ui(T ) to denote i’s utility for its

path to j in the tree T .

The overall economic goal of this routing mechanism is to maximize the overall welfare,

i.e., the sum of the users utilities. In other words, we want to maximize a function W (T )

where

W (T ) =
∑

i∈P

ui(T )

We call this the welfare-maximizing routing problem.

4.9 NP-hardness of the general problem

In this section, we show that it is not tractable to maximize the overall welfare when the

route valuations can be arbitrary. We will focus on computing routes to a single destination

only. BGP essentially computes routes to different destinations in parallel, so it is sufficient

to consider the single-destination case. Moreover, our results show that a policy routing

mechanism is hard to compute, even for a single destination. It follows a fortiori that

it is hard to compute the mechanism when all destinations are considered (although the

complexity may not grow by a factor of n).

An instance of the routing problem we are considering is as follows: We are given a

directed graph G, with a distinguished destination node j. Each node i is associated with
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a set Si of paths from i to j in G, representing the set of allowed paths, and a valuation

function ui : Si → R≥0.
9

We now show that if the valuation functions are arbitrary, it is NP-hard to compute

a tree that maximizes the overall welfare. We prove this result by a reduction from the

Independent Set problem: Given a graph G with vertices N , find a largest subset S of

N such that no two vertices in S have an edge between them. This problem is known

to be NP-hard [Kar72]; in fact, it is even NP-hard to approximate the size of the largest

independent set to within a factor of n
1
2
−ε [H̊as99].
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Figure 4.4: Reduction from Independent Set. The path Pa is shown in bold.

Given an instance G = (N,E) of the Independent Set problem, we construct an instance

H of the welfare-maximizing routing problem. The construction is illustrated in Figure 4.4.

For each vertex v in N , we have a terminal vertex tv in H. In addition, for each edge

9There may be an exponentially high number of paths from i to j in the graph (and, indeed, in the
Internet). Thus, it might seem that even describing the AS valuation functions completely is a hopeless task.
However, it is possible that an ASes valuation function can be described with polynomial amounts of space.
We include a set of allowed paths in the problem description simply to provide one such representation:
A path Pij implicitly has valuation 0 if it is not in the allowed set. The NP-hardness reduction in this
section shows that, even when all ASes have valuation functions that can be expressed concisely using this
representation, it is NP-hard to find a welfare-maximizing routing tree. Any other concise representation of
valuation functions with small support would suffice for the reduction described here.
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e = (v1, v2) in E, we add three vertices ev1 , ev2 , and e to H. We also add directed edges

from e to ev1 and ev2 . Finally, we add a special destination vertex j to H. We then choose an

arbitrary order for the edges in E. For a vertex v in N , let e1, e2, . . . , el be the edges incident

on v in G, in that order. We add the directed edges (tv, e1), (e
v
1, e2), . . . (e

v
l−1, el), (e

v
l , j) to

H.

In this manner, we construct a directed path

Pv = (tv, e1), (e1, e
v
1), (e

v
1, e2), . . . , (el, e

v
l ), (e

v
l , j)

for each terminal vertex tv. Now, we let Stv = {Pv}, and utv (Pv) = 1, for each such

vertex. For a nonterminal vertex e corresponding to an edge e = (v1, v2) in G, we let

Se = {P v1 , P v2}, where P v1 is the suffix of Pv1 from e to j, and P v2 is the suffix of Pv2 from

e to j. We let ue(P v1) = ue(P v2) = 0. Similarly, for a vertex of the form ev, we let Sev

contain only the suffix of Pv from ev to j, and let ev’s valuation for this path be 0.

Lemma 4.3 Given an instance G = (N,E) of the Independent Set problem, let (H, {Si},

{ui(·)}) be an instance of the welfare-maximizing routing problem constructed as described

above. Let T ∗ be an optimal routing tree for this problem. Then, the following conditions

hold:

(i). For any vertices v1, v2 ∈ N such that (v1, v2) is an edge in G, at most one of tv1 and

tv2 has a path to j in T ∗.

(ii). If S ⊆ N is an independent set, then W (T ∗) ≥ |S|.

Proof: (i) Let e be the edge (v1, v2). If tv1 has a path to j, it must be the path Pv1 . The

vertex e lies on this path, and hence the unique path from e to j in T ∗ must pass through

ev1 , not ev2 . It then follows that the path Pv2 is not contained in T ∗, and hence there is no

path from tv2 to j in T ∗.

(ii) No two vertices in S have any edge in common; hence, if v1, v2 ∈ S, the paths Pv1 and

Pv2 are disjoint. Thus, the union of paths Pv for all v ∈ S forms a tree T (S). Further, we

note that W (T (S)) = |S|. T ∗ is optimal, and hence W (T ∗) ≥ |S|. 2
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Corollary 4.2 If S is a maximum independent set in G, then T (S) is an optimal routing

tree. Conversely, if T ∗ is an optimal routing tree, then S = {v|tv has a path to j in T ∗} is

a maximum independent set in G.

2

Finally, we observe that this reduction implies that even an approximately optimal

routing tree is hard to find: If T̃ is an approximately optimal routing tree, then S̃ =

{v|tv has a path to j in T̃} is an approximately maximum independent set in G, with the

same approximation factor. Note that we reduce a graph with n vertices to a network with

O(n2) nodes and O(n2) allowed paths. Thus, an (n2)
1
4
−ε = n

1
2
− ε

4 approximation to the

welfare-maximizing routing problem would give us an n
1
2
− ε

4 approximation to the indepen-

dent set problem, and an (n2)
1
2
−ε = n1− ε

2 approximation to the welfare-maximizing routing

problem would give us an n1− ε
2 approximation to the independent set problem. Combin-

ing this with known results on the hardness of computing exactly maximum independent

sets and approximately maximum independent sets [Kar72, H̊as99], we have the following

theorem:

Theorem 4.3 Given a general network on n nodes, with a total of O(n) allowed paths and

arbitrary AS-path valuations,

• Unless NP = P , there is no polynomial-time algorithm to compute a welfare-maximizing

routing tree.

• For any ε > 0, unless NP = P , there is no polynomial-time algorithm to compute a

tree the total welfare of which approximates that of a welfare-maximizing routing tree

to within a factor of n
1
4
−ε.

• For any ε > 0, unless NP = ZPP , there is no polynomial-time algorithm to compute

a tree the total welfare of which approximates that of a welfare-maximizing routing

tree to within a factor of n
1
2
−ε.

2
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Theorem 4.3 probably rules out the possibility of exactly or approximately solving this

problem for the most general case. There are two possible approaches to restricting the

scope of the problem in order to make it more tractable. The first is to restrict the class

of networks, while still covering Internet-like situations. The second approach is to restrict

the class of allowable route valuations; we pursue the second approach in Section 4.10.

4.10 Next-hop preferences

In this section, we consider solutions to the welfare-maximizing routing problem with a

restricted class of AS preferences. Specifically, we assume that AS i’s valuation ui(Pij) for

route Pij depends only on the next hop from i on this route (i.e., the valuation depends

only on which of i’s neighbors this route passes through). The motivation for this is that

an AS is likely to have different economic relationships with different neighbors (customers,

providers, and peers), leading to different valuations for routes depending on which neighbor

is used for transit; however, it is reasonable to assume that two routes to j through the

same neighbor have a similar economic impact on i. Further, we assume that the set of

allowed routes from i is likewise determined solely by which neighbors of i may be used to

transit packets destined to j.

With this assumption, i’s valuation function can be written as a function ui(a) of the

neighboring AS a. Similarly, the set of i’s allowed routes can be expressed as a set Si of

i’s neighbors that can be used to carry transit traffic to j. (The set Si reflects agreements

between i and its neighbors: If a ∈ Si, it means that, in principle, i is willing to send packets

through a, and a is willing to accept packets from i for destination j.)

This leads to a convenient combinatorial form of the welfare-maximizing routing prob-

lem. We construct a graph Gj , with a vertex corresponding to each AS, and an identified

destination vertex j. If a ∈ Si, we include a directed edge e from i to a; we assign this edge

a weight ue = ui(a). A routing tree is then simply a directed tree (arborescence) T with

all edges directed towards the root j. Further, an AS i’s valuation for its route in T is the

weight ue of the edge outgoing from i in T if such an edge exists or 0 otherwise. Thus, the
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overall welfare with routing tree T is

W (T ) =
∑

e∈T

ue

It follows that the welfare-maximizing routing tree T ∗ is a maximum-weight directed tree

with root j in Gj .

We first show that we can restrict our attention to directed spanning trees.

Lemma 4.4 Suppose we are given a weighted graph Gj, with vertex set N . Define R ⊆ N

by

R
def
= {i ∈ N | There is a path from i to j in Gj} ∪ {j}

Then, there is a maximum-weight directed tree with root j that spans R.

Proof: Let T ∗ be a maximum-weight directed tree with root j. Suppose there is some

vertex v ∈ R such that v /∈ T ∗. There is a path from v to j in Gj ; we can add edges

from this path to T ∗ without decreasing its weight, because the valuations are always non-

negative. By adding edges along this path in order, we can eventually grow the tree to

include v, without reducing its weight. 2

Note that the ASes that cannot even reach j can be completely ignored for the purpose

of finding routes to j. Also, it is easy to compute, for each AS i, whether j is reachable from

i. This, combined with Lemma 4.4, means that without loss of generality, we can assume

that T ∗ spans the vertex set N .

Thus, we want to compute a maximum-weight directed spanning tree, with edges di-

rected towards j (a maximum-weight j-arborescence).10 This is a well-studied problem; one

distributed algorithm for this problem was given by Humblet [Hum83].

4.10.1 A VCG Mechanism

We now describe an efficient, strategyproof mechanism for the welfare-maximizing routing

problem with next-hop valuations. This is a direct application of the theory of Vickrey-

10This is essentially equivalent to the problem of computing a minimum-weight j-arborescence, with
weights adjusted appropriately.
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Clarke-Groves (VCG) mechanisms. It follows from the characterization of efficient, strate-

gyproof mechanisms [GL79] that the payment to AS i must have the form:

pi =
∑

a6=i

ua(T
∗) + hi(u

−i) (4.5)

Here, hi(·) is an arbitrary function of u−i, the vector of valuations of all agents other

than i. We normalize the payment by requiring that nodes that do not carry transit traffic

(leaf nodes in T ∗) are not paid. The rationale for this requirement here is that leaf nodes

are not contributing to other agents’ value.

Let T−i be the maximum weight j-arborescence in N\{i}.11 Then, W (T−i) is a function

of u−i alone. Recall that an AS can refuse to accept transit traffic, i.e., effectively cut off

all incoming edges. If AS i did this, it would force the optimal tree to have it as a leaf node.

We would then have T ∗ = T−i ∪ (i, a), where (i, a), an edge from AS i to some other AS a

in the network, is the heaviest outgoing edge from i. As i would be a leaf, the payment pi

must be 0 in this case; for this to occur, we must have hi(u
−i) = −W (T−i). Substituting

back into Equation 4.5, we get the following formula for the payment pi:

pi =
∑

a6=i

ua(T
∗) − W (T−i) (4.6)

= W (T ∗) − ui(T
∗) − W (T−i) (4.7)

We call this the MDST mechanism. In order to compute this mechanism, we will have

to compute the MDST, as well as the payment pi to be given to each AS i. The payments

can be computed by solving (n−1) minimum-weight j-arborescence instances (one for each

node except j).

4.10.2 Proving hardness in a BGP-based model

Up to this point, we have formulated the problem of finding the welfare-maximizing routing

tree with next-hop preferences as a maximum-weight directed-spanning-tree problem and

derived the natural strategyproof, efficient mechanism for this problem. This mechanism

11We assume the network is 2-connected, and hence such a tree exists.
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is polynomial-time computable in a centralized computational model; this leads us to hope

that, as in the case of lowest-cost routing, we can find a BGP-based distributed algorithm

for it. Unfortunately, this appears not to be the case. In this section, we argue that this

mechanism is incompatible with BGP.

“BGP-based computation” is not yet a precisely defined term. It is relatively easy to

argue that an algorithm, for example the LCP-mechanism price-computation algorithm de-

scribed in Section 4.6 above, does not cause large changes in the structure or performance of

BGP. In order to prove impossibility results, however, we need to identify specific properties

that we expect a BGP-based computation to have. We identify three such properties that

suffice for the negative result sought in this section. We do not claim that these properties

provide us with a full fleshed out “BGP computational model”; that is a goal for future

work.

Consider routing to some destination j. The properties we require of any BGP-based

computation of the routes to j are:

P1 The routing table should have roughly the same form and size of BGP routing tables,

i.e., there should be O(l) space used for a route of length l.

P2 Routes should be computable in time proportional to the diameter of the network rather

than the total size of the network.

P3 When a node fails, or there is a change in the information (such as costs or preferences)

associated with the node, the change should not always have to propagate to the whole

network; instead, it should usually be propagated only to a small subset of nodes. In

a link-state routing protocol, any change has to be broadcast to all the nodes in the

network. BGP is a path-vector protocol, partly to avoid this dynamic communication

burden; thus, a BGP-based algorithm should preserve this property.

As the set of routes to j forms a tree, we cannot prevent changes in a few nodes near

the root from affecting many other nodes. Similarly, it seems acceptable that a large

change in the cost or preference of node i can put it near the root and hence affect many

nodes. However, we don’t want every change to result in this much communication.

Formally, we require that there are o(n) nodes that trigger Ω(n) UPDATE messages when
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one of them fails and comes back up or changes its cost or valuation by an infinitesimal

amount.

It may be argued that requirements P2 and P3 capture desirable properties of distributed

algorithms generally and not BGP-based algorithms in particular. This is not an obstacle

for our purposes in this section. Because we are trying to show that the MDST mechanism

is not BGP-compatible, it suffices to show that it does not have properties required for a

larger class of algorithms that contain those that are BGP-based.

Another important point is that we do not necessarily require these conditions to hold

for all possible networks and all possible cost or preference values. The only networks that

we care about are “Internet-like” networks, those that can plausibly represent an AS graph,

or some subgraph of an AS graph. For this reason, we restrict ourselves to networks that

satisfy three properties: They must be sparse, with average node degree O(1); they must

have small diameter O(log n); and, when any one node is removed from the network, the

diameter must remain O(log n).

It is more difficult to identify what “reasonable” cost or preference values might be. We

definitely want them to be polynomial in n and preferably polylogarithmic in n. Further, we

are not as concerned with hardness that may arise because of some strange coincidence of

specific numerical values that happen to produce a very unstable state. At the same time,

there is no single natural distribution with respect to which we can analyze the average-

case complexity of an algorithm. Instead, we insist that any hardness result hold over an

open set of cost or preference values; this means that the hardness holds over a region of

preference space with non-zero volume, instead of at isolated points. This is similar in spirit

to the smoothed analysis of Spielman and Teng [ST01].

First, we observe that the LCP-mechanism satisfies these properties, provided the costs

are similar to each other, not very skewed. We follow the notation in Section 4.6.3, using

d to denote the length (in hops) of the longest chosen route and d′ to denote the length of

the longest relevant minimum-cost k-avoiding path, for some k.

(P1) We have shown in Theorem 4.2 that the routing table is only a constant factor larger

than the BGP routing table.
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(P2) By Theorem 4.2, the mechanism converges in max(d, d′) stages. For unweighted

Internet-like graphs, both d and d′ are O(log n). If the weights are very skewed, the conver-

gence may take Ω(n) stages; however, if all the weights are in the range [1, r], for small r,

then d and d′ are at most a factor of r greater than their respective values in the underlying

graph. (Any path with more hops would have a cost higher than that of the corresponding

LCP or minimum-cost k-avoiding path in the underlying graph.) In this case, the LCP

mechanism converges in O(r log n) stages.

(P3) The failure of a node i only affects the nodes for which i lies on the LCP or on the

minimum-cost k-avoiding path (for some k). Thus, each node is affected by at most dd ′

other node failures; this argument also holds for cost increases. Similarly, when the node

comes back up, only those nodes that end up having it on their LCP or minimum-cost

k-avoiding path are affected. Finally, we note that a small change in the cost of one node

does not change the routing tree (except in the rare case that multiple paths have the same

length). Thus, a node near the root of the tree may impact Ω(n) nodes, but as most nodes

are near the leaf of the tree, most changes only affect O(dd′) nodes. In Internet-like graphs

with weights in a small range, we expect d and d′ to be polylog(n), and so most changes

trigger UPDATE messages among only a small subset of the n ASes.

By contrast, we show that the welfare-maximizing routing problem does not satisfy these

properties, even for networks and preference values that fit our definition of “reasonable.”

4.10.3 Long convergence time

Figure 4.5 shows an example of a network with 2n−1 nodes for which a BGP-based algorithm

for the welfare-maximizing routing mechanism takes Ω(n) stages to converge. The network

consists of a balanced j-arborescence. The leaf nodes are a1, a2, . . . , an. The network can

be extended to have diameter 2 log n by adding reverse edges with lower preference values;

these reverse edges do not affect our argument, and so we omitted them from Figure 4.5.

Similarly, by adding one more low-preference edge from each internal node, we can arrange

for the diameter to remain small even when any one node is removed. Each node is adjacent

to at most 4 other nodes, and so the network satisfies the sparseness requirement as well.

The preference values are shown as numbers (weights) on the edges in Figure 4.5. Each
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Figure 4.5: Network with low diameter and a long path in MDST.

ai in {a1, a2, . . . , an−1} prefers to route through its neighbor ai+1 (value 2) rather than take

the path up the tree (value 1). Thus, the welfare-maximizing routing solution, given by the

maximum-weight directed spanning tree in this network, consists of the path a1a2 · · · an,

attached to the remainder of the tree at an. Note that the values are in a small range [1, 2].

We also remark that this remains the optimal solution even if any subset of the next-hop

values are perturbed by a small amount (less than 0.5 each).

Thus, the optimal solution has a route of length Ω(n), for any preference values in an

open set around the specified values. BGP builds routes on a hop-by-hop basis. An AS

can use a route only when its next hop on the route has advertised it, and it can itself

extend and advertise the route only in the next stage. Thus, we have proved that any such

algorithm does not satisfy property P2:

Theorem 4.4 Any BGP-based algorithm for computing the next-hop welfare-maximizing

mechanism in the network of Figure 4.5, over an open set of preference values in a small

range, takes Ω(n) stages to converge.

2

Given the hop-by-hop route construction in BGP, it may seem that a more reasonable

requirement than P2 is that the number of stages required for convergence is proportional

to the length of the longest route. However, the length of the longest selected route is

also a function of the mechanism under consideration (in this case, the MDST mechanism);
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for this reason, we prefer the more stringent requirement P2, which is independent of the

mechanism. One of the reasons that the MDST mechanism is incompatible with BGP is

precisely that it may select very long routes even in networks with small diameter and hence

will cause BGP (or any hop-by-hop protocol substrate) to converge very slowly.

4.10.4 Extensive dynamic communication

It may be argued that the long route in Figure 4.5 is unlikely to arise, because long routes

are inherently undesirable, and hence ASes will lower their preference values for neighbors

with long routes to the destination. In other words, even though next-hop valuations may

adequately capture an AS’s preferences at any given time, these valuations will themselves

evolve (over a longer time period, perhaps) to rule out value profiles that lead to long routes.

In this section, we show that, even if there are no long routes, any algorithm to compute the

next-hop welfare-maximizing mechanism will not satisfy condition P3: There are situations

in which every change in a single node’s valuation will trigger update messages to at least

half of the other nodes.

We show this by constructing a network as depicted in Figure 4.6. The network has

n = 2m + 1 nodes. We construct it with by recursively constructing clusters of nodes.

At the bottom, we construct a 1-cluster that consists of two nodes, B and R. The

1-cluster has two edges, a “blue” edge from R to B and a “red” edge from B to R. Here,

“blue” and “red” are simply labels that we attach to the edges to clarify the analysis; they

have no particular semantics. Each of these two edges has weight L− 1, where L = 2m+4.

In each cluster in our construction, we identify two special nodes: One is the “blue port”

and one is the “red port.” For a 1-cluster, B is the blue port and R is the red port. We

recursively construct (k + 1)-clusters from two k-clusters, for k = 1, 2, . . . ,m − 1, using the

construction in Figure 4.6(b): We add a blue edge from the blue port of the right k-cluster

to the blue port of the left k-cluster; the latter then serves as the blue port of the (k + 1)-

cluster. Similarly, we add a red edge from the red port of the left k-cluster to the red port

of the right k-cluster, which serves as the red port of the (k + 1)-cluster. These edges both

have weight L − 2k − 1.

Once we have built up the m-cluster in this manner, we complete the network construc-

105



tion as shown in Figure 4.6(c): We add one more node, the destination j. We also add a

blue edge from the blue port of the m-cluster to j, with weight L − 2m − 1 = 3, and a red

edge from the red port of the m-cluster to j, with weight L − 2m − 2 = 2. The complete

network, for m = 3, is shown in Figure 4.6(d).

This network is sparse (each node has only two outgoing edges) and has low diameter,

as required. All the valuations are in the range [1, L], where L = O(log n). The network we

have just built has two distinguished directed spanning trees to destination j: one consisting

of all the blue edges and one consisting of all the red edges. In each of these trees, the longest

path (route) has m+1 = O(log n) hops. We will now show that these two directed spanning

trees have greater weight than any other directed spanning tree with destination j.

Lemma 4.5 If T is a j-arborescence in a network of the form shown in Figure 4.6, and

T has both blue and red edges, then there is another j-arborescence T̃ such that W (T̃ ) ≥

W (T ) + 2.

Proof: Consider a minimum-sized cluster that has both red and blue outgoing edges in

T . Suppose this is a (k+1)−cluster, as shown in Figure 4.7(a). Consider the two k-clusters

it is composed of, and label the ports B1, R1, B2, R2 as shown.

Now, the (k +1)-cluster has a blue outgoing edge; it must be from the blue port B1. All

smaller clusters have only one color of outgoing edge in T . It follows that the left k-cluster

must have only blue edges. Similarly, the red outgoing edge must be from the port R2, and

so the right k-cluster must have all red edges. Thus, the spanning tree T must include the

blue spanning tree of the left k-cluster, the red spanning tree of the right k-cluster, and the

two outgoing edges with weight L − 2k − 3 (or less if k = m − 1).

We now construct the tree T̃ as shown in Figure 4.7(b): we replace the red spanning

tree by a blue spanning tree, and replace the red outgoing edge by the blue edge within

the (k + 1)-cluster, with weight L − 2k − 1. Because of the symmetric construction of the

k-clusters, the red and blue spanning trees have the same weight. Thus, the overall weight

of T̃ is at least 2 higher than the weight of T . 2

Lemma 4.6 For the network and weights u as constructed in Figure 4.6, the maximum-

weight j-arborescence T ∗(u) is the blue spanning tree. Further, for any node Bx that is the
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blue node of its 1-cluster, T−Bx(u) (the maximum-weight j-arborescence on N\{Bx}) is the

red spanning tree restricted to N\{Bx}.

Proof: From Lemma 4.5, we know that the maximum weight j-arborescence must be

either entirely blue or entirely red. At the top level, the blue edge has a higher weight than

the red edge; at all other levels of the construction, the weights are the same. Thus, the

blue spanning tree must be the maximum-weight j-arborescence T ∗(u).

The red spanning tree has Bx as a leaf and has weight only 1 less than optimal. Any other

j-arborescence with Bx as a leaf must have both red and blue edges and hence have weight

at least 2 less than optimal, by Lemma 4.5. Finally, we observe that any j-arborescence on

N\{Bx} can be extended to a j-arborescence that has Bx as a leaf, by adding the red edge

(Bx, Rx) with weight L − 1. Thus, the restriction of the red subtree to N\{Bx} must be

optimal. 2

Now, consider perturbing the weights u by adding an amount δe to the weight of each

edge e, for any δe with absolute value less than 1
n . Then, the weight of any spanning tree

cannot change by 1 or more, and so Lemma 4.6 still holds.

This leads us to the hardness result for this section:

Theorem 4.5 For the network constructed in Figure 4.6 and an open set of valuations in

a small range, any infinitesimal change in valuation must cause UPDATE messages to be sent

to at least (n − 3)/2 nodes.

Proof: We start with the weight vector u. A perturbed weight vector ũ can be constructed

from u as follows: For each node i, we add δblue
i to the weight of the blue outgoing edge

from i and δredi to the weight of the red outgoing edge from i, where |δblue
i |, |δredi | < 1

n .

This corresponds to picking a weight vector from an open set around u.

Consider the payment pBx due to some node Bx. Let k be such that Bx is the blue port

of a k-cluster, but not the blue port of a (k +1)-cluster. Then, the blue outgoing edge from

Bx has weight (L− 2k − 1). The red outgoing edge from Bx must have weight (L− 1), and
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so using Lemma 4.6 and Equation 4.7, we get

pBx = W (T ∗) − uBx(T ∗) − W (T−Bx)

= W (blue spanning tree) − (L − 2k − 1) − [W (red spanning tree) − (L − 1)]

=

[

W (blue spanning tree) − W (red spanning tree)

]

+ 2k

=

[

1 +
∑

i∈N

(δblue
i − δredi )

]

+ 2k (4.8)

Note that pBx satisfies Equation (4.8) for any perturbed weight vector ũ in the given

range. Now, suppose we start from some weight vector ũ, and then there is an infinitesimal

change in δblue
a (or δreda ) for some node a. It follows from Equation (4.8) that pBx changes

when this happens, and hence node Bx must receive an update message (or else, it cannot

update its value of pBx). This is true for every blue node, and thus an infinitesimal change

in any node’s preference must cause price updates at every blue node (a total of n−1
2 nodes).

Apart from the node a that originated the change (which may be a blue node), every other

blue node must receive an update message, thus proving the theorem statement.12 2

Theorem 4.5 shows the essence of why the MDST mechanism appears difficult for a

BGP-based computational model: A small change at any one node can cause changes that

are global, not confined to the routes the node lies on. This appears to be an inherent

problem of the maximum-weight directed spanning tree structure: Even if we neglected the

payment computation, the failure of any blue node would force the red spanning tree to be

used, effectively changing the routes of all other nodes.

12We assume here that the payment pBx
must be stored at Bx. Even if this is not true, we could get a result

that is nearly as strong, as follows: pBx
must be stored at some node. By property P1, each node can store

O(m) values only; thus, the payments for all the blue nodes must be distributed across Ω(n/m) = Ω( n
log n

)
nodes, which must all receive UPDATEs every time the preferences change.
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109



k-cluster

(k + 1)-cluster

k-cluster

R1
R2B1 B2

L − (2k + 3)

L − (2k + 1)

(b) Tree T̃

(a) Tree T

k-cluster

(k + 1)-cluster

k-cluster

R1
R2B1 B2

L − (2k + 3) L − (2k + 3)

Figure 4.7: Construction to increase the weight of a tree T with both red and blue edges.

110



Chapter 5

Conclusion

In this dissertation, we have explored aspects of distributed algorithmic mechanism design

through the study of two problems, multicast cost sharing and interdomain routing. The

thesis of this dissertation is that the distributed-computational environment of a mechanism

can significantly influence its feasibility. Our results support this thesis: In both problem

domains, we find mechanisms that appear to be feasible in a centralized computational

model, yet are provably hard in a distributed computational model. We also present mech-

anisms, for both multicast cost-sharing and routing problems, that do appear to be practical

for distributed computation.

Our research also touches upon several important aspects of distributed algorithmic

mechanism design in general: We consider approximate mechanisms and present upper and

lower bounds for the multicast cost-sharing problem. We incorporate the current stan-

dard protocol (BGP) into our computational model for interdomain-routing mechanisms;

this is potentially important for other network services. Finally, we introduce the concept

of canonically hard problems, i.e., mechanism-design problems in which hardness arises

from a combination of the strategic requirements and the distributed-computational model.

Finding and analyzing such problems may lead to a clearer picture of tractability and in-

tractability in Internet computation.
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5.1 Open Questions

Distributed algorithmic mechanism design is a new field, and much work remains to be done

before we fully understand the interaction between incentives and distributed computation

on the Internet.

We first mention some specific open questions that are suggested by the results in this

thesis.

The results in Chapter 3 lead naturally to the following question about the SH mech-

anism: Is there an approximation to the SH mechanism with the same worst-case network

complexity as mechanism SSF? That is, is there a mechanism with the same worst-case net-

work complexity that also achieves constant-factor bounds on the budget deficit (or surplus)

and on the worst-case welfare loss?

In Chapter 4, we considered two formulations of incentive issues that arise in interdo-

main routing. It would be interesting to study a formulation that includes both transit costs

and source preferences. Another interesting direction is to augment the network model with

link or node capacities in order to tackle the problem of routing in congested networks. This

is particularly natural, because it seems plausible that transit traffic imposes costs only in

the presence of congestion.

One important issue that is not yet completely resolved is the possibility of nodes strate-

gizing in the computation of the mechanism. This issue does not arise in [NR01, HS01],

where the mechanism is a centralized computational device that is distinct from the strate-

gic agents who supply the inputs or in the distributed multicast cost-sharing mechanisms,

where the mechanism is a distributed computational device (i.e., a multicast tree) that is

distinct from the strategic agents (who are users resident at various nodes of the tree but not

in control of those nodes). However, it is of great relevance in the interdomain-routing prob-

lem. On the one hand, we acknowledge that ASes may have incentives to lie about costs in

order to gain financial advantage, and we provide a strategyproof mechanism that removes

these incentives. On the other hand, it is these very ASes that implement the distributed

algorithm we have designed to compute this mechanism; even if the ASes input their true

costs, what is to stop them from running a different algorithm that computes prices more
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favorable to them? If ASes are required to sign all of the messages that they send and to

verify all of the messages that they receive from their neighbors, then the protocol we gave in

Section 4.6 can be modified so that all forms of cheating are detectable [MSTT01]. Achiev-

ing this goal without having to add public-key infrastructure (or any other substantial new

infrastructure or computational capability) to the BGP-based computational model is the

subject of ongoing further work.

We now turn to some exciting directions for future work on distributed algorithmic

mechanism design, apart from the two problems we have studied in this dissertation. Per-

haps the most important direction is simply to study more problem domains. There are

many systems that appear to involve incentives as well as distributed computation, includ-

ing peer-to-peer file sharing, wireless ad-hoc networks, and grid computing. We believe that

understanding more problems in detail will enable the development of a richer theory of

such systems. In particular, it would be interesting to find other problems that are “canon-

ically hard” as defined in Chapter 3, i.e., where the difficulty of the problem arises from

the interplay of incentives and distributed computation; hardness results of this form may

ultimately be part of a “complexity theory of Internet computation.”

Another important direction is to broaden the scope of distributed algorithmic mecha-

nism design by introducing other solution concepts. Strategyproofness is a very strong (and

hence restrictive) solution concept. Many real-world economic mechanisms are not strat-

egyproof, but they appear to perform adequately in practice for well-understood reasons

(e.g., sufficient competition in markets). It would be interesting to identify problem settings

in which a weaker solution concept is justified and then to study the impact of weakening

the solution concept on the network complexity of the mechanism.

113



Bibliography

[ACK+02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. Seti@home: An experiment in public-resource computing. Com-
munications of the ACM, 45(11):56–61, November 2002.

[AFK+03] Aaron Archer, Joan Feigenbaum, Arvind Krishnamurthy, Rahul Sami, and
Scott Shenker. Approximation and collusion in multicast cost sharing. To
appear in Games and Economic Behavior, 2003.

[AR02] Micah Adler and Dan Rubenstein. Pricing multicasting in more practical
network models. In Proceedings of the 13th Annual ACM-SIAM Symposium
On Discrete Mathematics (SODA ’02), pages 981–990. ACM Press/SIAM,
New York, January 2002.

[Arr63] Kenneth J. Arrow. Social Choice and Individual Values. Wiley, New York,
1963.
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