
Theory and Application of
Extractable Functions

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Ramzi Ronny Dakdouk

Dissertation Director: Joan Feigenbaum

December 2009

c© 2010 by Ramzi Ronny Dakdouk
All rights reserved.

To my darling Silva

Abstract

Theory and Application of Extractable Functions
Ramzi Ronny Dakdouk

2009
We propose a new cryptographic primitive, called extractable functions. An ex-

tractable function guarantees any machine that manages to output a point in the range
of this function knows a corresponding preimage.

We capture �knowledge of preimage� by way of algorithmic extraction. We formulate
two main variants of extractability, namely noninteractive and interactive. The noninter-
active variant can be regarded as a generalization from speci�c knowledge assumptions
to a notion that is formulated in general computational terms. Indeed, we show how
to realize it under several di�erent assumptions. On the other hand, interactive ex-
traction can be realized from certain perfectly one-way (POW) functions or veri�able
secret-sharing (VSS) schemes.

We then initiate a more general study of extractable function aimed at understanding
the concept of extractability in of itself. In particular we demonstrate that a weak notion
of extraction implies a strong one, and make rigorous the intuition that extraction and
obfuscation are complementary notions.

We demonstrate the usefulness of the new primitive in two quite di�erent settings.
First, we show how extractable functions can be used to capture, in the standard model,
the �knowledge of queries� property that is so useful in the Random Oracle (RO) model.
Speci�cally, we show how to convert a class of CCA2-secure encryption schemes in the
RO model to concrete ones by simply replacing the Random Oracle with an extractable
function, without much change in the logic of the original proof. Second, we show
how extractable functions can be used to construct 3-round ZK arguments using weaker
knowledge assumptions than previous results due to Hada and Tanaka (Crypto 1998)
and Lepinski (M.S. Thesis, 2004). This also opens the door for constructing 3-round ZK
arguments based on other assumptions.

i

Finally, we exploit techniques used in constructing extractable functions to obfuscate
point functions with multibit output. A point function with multibit output returns a
�xed string on a single input point and zero everywhere else. Obfuscation of such func-
tions has a useful application as a strong form of symmetric encryption where security
holds without any assumption on the distribution of the secret key. We provide a con-
struction that obfuscates these functions. This construction is generic in the sense that
it can use any POW function or obfuscator for point functions.

ii

Acknowledgements

I would like to extend my heartfelt gratitude to many people without whom my graduate
career would not have been possible.

First and foremost, I would like to thank my advisor, Joan Feigenbaum. From the
very beginning, Joan encouraged me to explore di�erent problems that are interesting
to me, even though her broader perception of these problems may have at times been
di�erent. Joan was extremely helpful through her insightful perception of computer
science in general, and old and new sub�elds in particular. Throughout my graduate ca-
reer, Joan was constantly encouraging me, and introducing me to researchers, scientists,
and to new academic events and programs. Her care transcends my graduate research
to include future goals and opportunities. In short, I feel lucky for having Joan as a
mentor.

My thanks are due to Ran Canetti who was like a second advisor to me. Ran was
always available even when he was busy with deadlines and other commitments. He
encouraged me even when my views were less than optimistic. His optimism, great
ideas, and enlightening discussions made this work a reality. He was instrumental in
helping me abstract away from speci�c results and understanding them in a broader
context.

I am also grateful to Richard Yang and the network group at Yale (speci�cally,
Haiyong Xie and Hao Wang) whom I had the privilege to work with in Summer 2005.
Their daily meetings, enthusiasm, and dedication was a precious source of knowledge
and motivation for me.

This thesis is the result of joint work with Ran. His contributions are instrumental
in shaping this dissertation.

Faculty members of the computer science department were always there with their
support, suggestions, and motivation. Notably, I would like to thank Dana Angluin,

iii

James Aspnes, and Michael Fischer.
I also would like to thank the sta� of the department, especially, Linda Dobb, Judi

Paige, and Judi Smith, for their continuous help in resolving administrative matters even
the most formidable ones.

I am also thankful to my colleagues and friends in the department, for making my
stay at Yale so pleasant and enjoyable. Speci�cally, I wish to thank (in no particular
order) Alex Vaynberg, Aaron Johnson, Leonor Becerra-Bonache, Nikhil Srivastava, Lev
Reyzin, Eli Kim, Edo Liberty, Felipe Saint-Jean, Fred Shic, Pradipta Mitra, Kevin
Chang, Aleksandr Yampolskiy, Yinghua Wu, Yitong Yin, Jianye Lu, Nick Ruozzi, Bing
Wang and Haluk Tunali for the many pleasant moments going to the gym, lunch, dinner,
or even co�ee.

Finally, I would like to thank my parents, Ghazi and Randa, my lovely �ancée Silva,
and the rest of my family. They gave meaning and life to this work.

This dissertation is funded by NSF grant 0331548.

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Our Work . 3

1.1.1 Informal Notion . 3
1.1.2 Formalization . 5
1.1.3 Constructions . 6
1.1.4 Characterization . 7
1.1.5 Applications . 7

1.1.5.1 Zero-knowledge . 8
1.1.5.2 Random Oracle Instantiation 8
1.1.5.3 Obfuscating Multibit Point Functions 9

1.2 Organization . 9

2 Technical Preliminaries 10
2.1 Notations and Basic De�nitions . 10
2.2 One-way Functions and Uninvertible Functions 11
2.3 Assumptions . 12

2.3.1 The Discrete-Logarithm (DL) Assumptions 12
2.3.2 The Decisional Di�e-Hellman (DDH) Assumption 12

2.4 Pseudorandom Generators . 13
2.5 Perfectly One-way Probabilistic Functions 13

2.5.1 Perfect One-wayness. 14
2.6 Obfuscation . 17

v

2.7 Encryption Schemes . 18
2.8 Zero-knowledge Arguments . 18
2.9 Zero-knowledge Proofs of Knowledge . 19
2.10 Non-interactive Zero-knowledge Arguments 20
2.11 Non-interactive Witness Indistinguishable Arguments 20
2.12 Σ-Protocols . 21

3 Extractable Functions 23
3.1 Introduction . 24

3.1.1 Our Work . 25
3.1.1.1 Formulating Extraction 26
3.1.1.2 Constructions . 26

3.1.2 On the Strength of the Assumptions 28
3.1.3 Organization . 28

3.2 De�nitions . 29
3.2.1 Preimage Knowledge without Auxiliary Information 30
3.2.2 Preimage Knowledge with Independent Auxiliary Information . . . 30
3.2.3 Preimage Knowledge with Dependent Auxiliary Information 31

3.3 Constructions . 33
3.3.1 Constructions from the KE Assumption 33

3.3.1.1 Extractable One-way Function 34
3.3.1.2 Extractable Pseudorandom Generator 35
3.3.1.3 Extractable Perfectly One-way Function 35

3.3.2 Constructions from the Di�e-Hellman Knowledge of Exponent As-
sumption . 40

3.3.3 Constructions from the Proof of Knowledge Assumption 40
3.3.3.1 The POK assumption . 41
3.3.3.2 Extractable One-way Function 42
3.3.3.3 Extractable Perfectly One-way Function 43

3.4 The Relationship Between Extractable Functions and NIZK proofs of
knowledge . 47

vi

4 Interactively Extractable Functions 56
4.1 Introduction . 57

4.1.1 Our Work . 59
4.1.1.1 Formulating Extraction 59
4.1.1.2 Constructions . 60

4.1.2 Organization . 61
4.2 De�nitions . 62

4.2.1 Preimage Knowledge without Auxiliary Information 63
4.2.2 Preimage Knowledge with Independent Auxiliary Information . . . 64
4.2.3 Preimage Knowledge with Dependent Auxiliary Information 64

4.3 Constructions . 66
4.3.1 Extractable One-way Functions . 66
4.3.2 Extractable POW Functions . 73

4.3.2.1 Extractable POW Functions without Auxiliary Information 73
4.3.2.2 Extractable POW Functions with Auxiliary Information . 81
4.3.2.3 Injective POW Functions from Strong Perfect One-wayness 87

4.4 On the Connection to Σ−Protocols . 91
4.4.1 Di�erences Among Constructions 4.3.2, 4.3.3, and 4.4.1 96

5 Characterization of Extraction 97
5.1 Introduction . 97

5.1.1 Our work . 97
5.1.1.1 Interactive Extraction . 98
5.1.1.2 Noninteractive Extraction 101

5.1.2 Organization . 101
5.2 Interactive Extraction versus Obfuscation 101

5.2.1 Weak Extraction . 102
5.2.1.1 In the Uniform Setting 108

5.2.2 Amplifying Extraction . 110
5.2.2.1 In the Uniform Model . 120

5.2.3 Towards Extraction with Negligible Error 122
5.3 Noninteractive Extraction versus Obfuscation 128

vii

5.3.1 Weak Extraction . 129
5.3.2 Amplifying Extraction . 130

6 3-round Zero Knowledge 134
6.1 Introduction . 134

6.1.1 Our Work . 135
6.1.2 Related Work . 136

6.2 Constructions . 137
6.2.1 Arguments of Membership . 137
6.2.2 Proofs of Knowledge . 141

7 Random Oracle Instantiation 143
7.1 Introduction . 143

7.1.1 Our Work . 145
7.1.1.1 Using Extractable Functions to Instantiate a Speci�c En-

cryption Scheme . 145
7.1.1.2 Towards a General Instantiation of Encryption Schemes . 146
7.1.1.3 Instantiating OAEP . 147
7.1.1.4 On the Connection to Other Approaches and CCA2 Schemes147

7.1.2 Organization . 148
7.2 Instantiation of a Speci�c Encryption Scheme 148

7.2.1 The Original Scheme . 148
7.2.2 Noninteractive Instantiation . 150
7.2.3 Interactive Instantiation . 152

7.2.3.1 Interactive Encryption . 153
7.2.3.2 The Construction . 154

7.3 Towards Instantiation of General Encryption Schemes 160
7.3.1 Interactive Instantiation . 161
7.3.2 Noninteractive Instantiation . 169

7.3.2.1 IND-CPA Instantiation 169
7.3.2.2 IND-CCA2 Instantiation 170

7.3.3 Realizing Unrealizable Schemes . 175
7.4 OAEP . 176

viii

8 Digital Lockers 179
8.1 Introduction . 180

8.1.1 Our Work . 180
8.1.2 Related Work . 183
8.1.3 Organization . 185

8.2 Obfuscating Point Functions with Multibit Output 185
8.2.1 Analysis . 186

8.2.1.1 Analysis based on composable obfuscation 187
8.2.1.2 Analysis based on statistical indistinguishability 188
8.2.1.3 Analysis based on computational indistinguishability . . . 190

8.2.2 Obfuscating Set-membership Predicates and Functions 193
8.2.3 A More E�cient Obfuscation of Multibit Point Functions 193

8.3 On Composable Obfuscation of Point Functions 194
8.3.1 Weak POW Functions are not Self-composable 196
8.3.2 Point Function Obfuscation and POW Functions Are Not Self-

composable . 199
8.4 On the Relationship Between Obfuscation of Multibit Point Functions and

Symmetric Encryption . 201
8.4.1 Weakness of De�nition 8.4.1 . 203

Bibliography 205

A General De�nitions of Interactively-extractable Functions 212
A.1 Preimage Knowledge without Auxiliary Information 212
A.2 Preimage Knowledge with Independent Auxiliary Information 214
A.3 Preimage Knowledge with Dependent Auxiliary Information 214

ix

List of Figures

4.1 The 3-round interaction . 63
4.2 3-round Interaction of Σ-extraction . 93
6.1 A 3-round ZK Argument of Membership 138
6.2 A 3-round ZK Proof of Knowledge . 141
7.1 Interactive Instantiation of the Second Encryption Scheme in [BR93] . . . 155
7.2 Interactive Instantiation of First-query Hiding Encryption Schemes 164

x

List of Tables

3.1 Constructions based on the KE Assumption. KE= Knowledge of Expo-
nent, POK= Proof of Knowledge, DH-KEA=Di�e-Hellman Knowledge of Ex-
ponent, DL=Discrete Log, DDH= Decisional Di�e-Hellman, OW= One-way,
PRG=Pseudorandom Generator, POW=Perfectly One-way. 27

xi

Chapter 1

Introduction

�Knowledge is recollection�

-Socrates

Even the tripartite theory [Plab], the most common de�nition of knowledge in episte-
mology, lends itself to refutation. The tripartite de�nition of knowledge requires three
elements for possession of knowledge. The �rst element is belief. For one can not know
something unless s/he believes in it even if it is true and justi�able. For instance, this
thesis may be wholly true and convincing. Yet, if the reader does not believe it, the
reader can not claim, according to this de�nition, knowledge of it. The second element
is truth. That is, it is not possible to claim knowledge of something that is not true even
if we believe that it is true. For example, in spite of the strong belief of most medieval
Europe in the �atness of the earth, we must concede that this belief is in fact unknown.
The �nal element for knowledge is proper justi�cation, i.e., one must provide a convinc-
ing argument for the knowledge of something. For instance, guessing the outcome of an
experiment is not su�cient for a claim of knowledge, even if we truly believe in our luck
and the guess turns out to be correct.

One of the main refutations of the tripartite theory is the Gettier case [Get63]. Two
students, Mark and Sam, took an exam. Mark is a straight-A student. He is smart,
hard working, and attends all of his classes. Mark wrote throughout the duration of the
exam. On the other hand, Sam is lazy, consistently fails, and misses his classes due to
illness. Also, Sam scribbled a few lines during the test and then left. Mark said that

1

he did well on the exam while Sam said that he did not even understand the question.
Re�ecting on the exam and on a book he read recently, Sam believes that the student
with the highest grade shares the same �rst name with the author of �The Adventures of
Huckleberry Finn�. Obviously, Sam has proper justi�cation for his belief. Furthermore,
this belief is true: the student with the highest grade does in fact have the same �rst
name as the author of this book. However, Sam did not know this. It turns out that
Mark did not understand the question and missed its point entirely. On the other hand,
Sam understood the question and managed, in writing a few lines, to get a passing
grade. Therefore, Sam got the higher grade. Moreover, the name of the author of �The
Adventures of Huckleberry Finn� is Samuel Clemens, even though he writes under the
pseudonyme of Mark Twain. However, Sam does not know this. So, even though Sam
has a justi�ed true belief, he does not have knowledge. The problem, pointed out by
Socrates [Plab], seems to be in identifying what constitutes proper justi�cation. For
instance, is the evidence that Sam has su�cient for a convincing argument?

Even though the question of de�ning knowledge itself remains, as argued above, open
and debatable, we do not attempt to address this question. Instead, we address the ques-
tion of communicating knowledge. In this context, Socrates' de�nition of knowledge as
recollection [Plaa, Pha] is more relevant. Knowledge can be transferred via several means
but symbolic representation, i.e., writing, is more relevant computationally. An initial
attempt to computational knowledge is to ask a machine to communicate knowledge of
something by writing a representation of this thing. However, a machine (or algorithm)
is designed to do a speci�c task and may not be capable of answering even �easy� ques-
tions such as �write the square-root of your output�. Thus, computational knowledge is
taken to mean a machine knows something if there is another machine, similar to the
�rst one, that can communicate, via symbolic representation, knowledge of the thing
in question. More succinctly, a machine knows x if there is another machine that has
the same environment as the �rst machine and outputs x. Such a machine is called an
extractor and computational knowledge is referred to in this thesis as extractability
or extraction.

Extractability plays a central role in cryptographic protocol design and analysis. In
its basic form, it relates to two-party protocols where one of the parties (a �prover�) has
secret input, and tries to convince the other party (a �veri�er�) that it holds the secret.

2

The idea is to argue that if the veri�er accepts the interaction, then the prover indeed
knows the secret. More concretely, extractability makes the following requirement: Given
access to the internals of any (potentially malicious) prover, it is possible to explicitly
and e�ciently compute the secret value as long as the veri�er accepts an interaction.
(Many variants of this notion exist, of course. See e.g. [Gol01].)

In this thesis, we extend the concept of extractability to the more basic setting of
computing a function. Here the task of �convincing a veri�er� is replaced by �outputting
a value in the range of the function�. More speci�cally, any machine that generates
a point in the range knows a corresponding preimage in the sense that a preimage is
e�ciently recoverable given the internal state of the machine. Such functions are called
extractable functions.

1.1 Our Work

In a single sentence, the goal of this thesis is to introduce, formalize, construct, charac-
terize, and apply extractable functions.

1.1.1 Informal Notion

An e�ciently-computable function has an e�cient algorithm with the same input/output
behavior. In other words, this algorithm takes an input x and returns f(x), where f(x)

is the output of the function, f , on point x. One (obvious) statement one can make
about this algorithm is that it knows x: clearly, there is a straightforward extractor
that outputs its input. However, there may be other algorithms that return points in
the range of f . For instance, consider a permutation, π. The standard algorithm for
computing π, takes an input x, applies π to x, and returns π(x). Di�erent algorithms
can also return a point in the range, e.g., by sampling uniformly from this range. Can
the same claim be made about such algorithms? In other words, do these machines know
a preimage of their output? It turns out that the answer to this question is positive for
some functions (extractable functions) and negative for others. The most straightforward
function that yields a positive answer to this question is the identity function. On the
other hand, one-way permutations do not admit such a property because the algorithm
that outputs a random point (as mentioned above) does not know a preimage. This lack

3

of knowledge is implied by one-wayness: one-wayness prohibits inverting a random point
in the range of the permutation.

Crucially, extractable functions require every machine that outputs an image to know
a preimage. Compare this statement with the fact that every computable function has
at least some machines which know a preimage of their output. As an analogy, consider
two types of houses. Both types have impenetrable doors except with appropriate keys.
However, the �rst type has breakable windows while the second type has no windows at
all. We assign a group of people a rewarding task. The task is to search for a key to
the door, then open the door and enter the house. The reward is kept in the house. So,
the �rst person to enter the house gets the reward. If the house is of the �rst type, it is
conceivable that some people avoid the search process, break through the window, and
grab the reward. So, it is not possible to claim that whoever has the reward has the key.
On the other hand, if the house is of the second type, this claim is true. Extractable
functions correspond to the second type of houses.

A cryptographic interpretation of this notion is due. One classi�cation of crypto-
graphic players divides them into honest, honest-but-curious, and malicious. The second
type follows the prescribed protocol but may compute something extra on the side, while
the last type can deviate from the protocol in an arbitrary way. In the context of comput-
ing a function, the honest protocol is the standard algorithm for computing the function,
i.e., take an input x, apply f on x, and return f(x). E�ectively, an extractable func-
tion means any malicious adversary is �equivalent� to some honest-but-curious one. An
honest-but-curious adversary can simulate the malicious adversary on the side, then run
the extractor to recover a preimage, x, and �nally compute and output f(x) according
to the prescribed protocol. Therefore, extractable functions collapse the classi�cation
hierarchy into two: honest and honest-but-curious parties. This fact reduces the task of
cryptographers to proving security against honest-but-curious adversaries only.

Useful cryptographic applications require extractable functions to satisfy compu-
tational hardness properties. By itself, an extractable function, such as the identity
function, has little cryptographic value. Augment it with a hardness property, such as
one-wayness [DH76], and an extractable function lends itself to cryptographic applica-
tions, as exempli�ed in this thesis. This duality is crucial and worth highlighting. The
output of some machines (typically, honest machines) is hard to invert from the outside.

4

On the other hand, the output of all machines is easy to recover from the inside. This
asymmetry of knowledge between di�erent perspectives is exactly what makes extractable
functions succeed where other primitives have failed, such as in 3-round zero-knowledge
(see Chapter 6).

1.1.2 Formalization

De�ning extractable functions turns out to be a signi�cantly tricky task. A common
approach to de�ning primitives is to examine properties needed by an application and
then manifest these properties in a realizable de�nition. One problem with this approach
in this context is that the straightforward manifestation is not realizable. Extraction
with arbitrary dependent auxiliary information [GK05] contradicts hardness properties,
even one-wayness (see Section 3.2). Therefore, we present a series of carefully-crafted
de�nitions that take into account di�erent parameters.

The �rst parameter is whether extraction is required for a single �xed function or
a function chosen randomly from a family. The second parameter, mentioned in the
previous paragraph, is the absence or presence of auxiliary information. Auxiliary in-
formation can be dependent or independent of the function. The distinction between
dependent and independent auxiliary information is relevant only when a function is
chosen randomly from a family. A �xed function does not permit distinction between
these two types of auxiliary information because it is not possible to prevent independent
auxiliary information from depending on this function. Consequently, it is not possible
for a single one-way function to be extractable with arbitrary auxiliary information (de-
pendent or independent). Jumping ahead, the best constructions satisfy extraction with
independent auxiliary information against a function chosen randomly from a family.

So far, we have discussed extractability in the noninteractive model. In this model,
extraction means every machine that outputs a single image knows a corresponding
preimage. One of the main issues with this notion is that known constructions are based
on nonstandard assumptions that embody some knowledge ��avor�. While realizing this
notion from weaker assumptions remains open, we investigate a weaker notion, namely
interactive extraction.

In the interactive model, we relax extraction to mean every machine that returns
�many� images knows a preimage common to all of them if one exists. For this notion

5

to be di�erent from noninteractive extraction, there have to be many di�erent images
of a single input. We can realize this requirement through probabilistic functions, i.e.,
functions that take two strings x and r as input, where x is labeled the input, and r is
labeled the random coins. In this model, f(x, r) is di�erent from f(x, r′) if r 6= r′. How
many images should a machine return? Roughly a polynomial fraction of all images of
a single input! Ofcourse, it is impossible to write down in polynomial time these many
images if there is an exponential number of them (e.g., if r has length n). To resolve
this issue, we introduce an interactive model. In this model, a machine engages in a
3-round Arthur-Merlin protocol with an external agent [Bab85]. This machine sends
a single image in the �rst round. Then, it receives a challenge from the agent. This
challenge is in the form of random coins for f . Finally, it responds with new images of
the same input using the challenge as random coins for f . Jumping ahead, we use weaker
assumptions to realize the strongest notion of interactive extraction, i.e., extraction for
a single function with auxiliary information.

1.1.3 Constructions

Constructions with noninteractive extraction. These constructions satisfy a knowl-
edge property and a computational hardness property. The knowledge property is extrac-
tion with independent auxiliary information for a randomly-chosen function. The hard-
ness property can be one-wayness, pseudorandomness [Yao82], or perfect one-wayness
[Can97]. With the exception of the last one, these constructions are based on nonstan-
dard assumptions with a knowledge ��avor�, e.g., the knowledge of exponent assumption
[Dam92, HT98] (see also Assumption 3.3.1). The �nal construction is based on a strong
notion of noninteractive zero-knowledge (NIZK) proofs of knowledge [SCP00]. These
constructions are presented in more detail in Chapter 3.
Constructions with interactive extraction. These constructions also satisfy a
knowledge property and a hardness property. However, the knowledge property is
stronger, speci�cally, extraction with auxiliary information for any function. Moreover,
these constructions are based on weaker assumptions of computational hardness nature
such as perfect one-wayness or veri�able secret-sharing schemes [CGMA85, Fel87].

The main construction is a transformation from a perfectly one-way (POW) function
(with auxiliary information) to extractable POW function. At a high level, this trans-

6

formation introduces some structure to the output of the function, so that it is easy to
recover a preimage from two �related� images. Ofcourse, the issue is to insure that these
two related images rarely appear in the 3-round game described above. On the other
hand, an extractor can rewind the machine multiple times so that the two images appear
on separate runs of the game.

1.1.4 Characterization

We initiate a more general study of extractable functions aimed at understanding ex-
traction in of itself. In particular, we address questions such as: What makes a functions
extractable? Is a function that is extractable in a weak sense extractable in a strong
sense? Towards answering these questions, we give a set of three characterization theo-
rems for interactive extraction with similar results for noninteractive extraction. These
theorems relate notions of extraction with notions of obfuscation [BGI+01]. These the-
orems can be stated informally as follows.

1. Any function is either �weakly� extractable or �weakly� obfuscatable.
2. Any �weakly-veri�able� function is either �strongly� extractable or weakly obfuscat-

able. Moreover, any injective and strongly-extractable function is weakly veri�able.
3. Any �weakly-veri�able� function is either �very-strongly� extractable against a spe-

ci�c class, C, of adversaries or weakly obfuscatable . Moreover, if an e�ciently
computable and veri�able function is very-strongly extractable, then every adver-
sary for this function is in C.

One of the main corollaries to the second theorem is that every POW function with auxil-
iary input is interactively extractable. This result supersedes the construction described
in the previous section.

1.1.5 Applications

The �nal part of this thesis presents three applications of extractable function in very
di�erent settings.

7

1.1.5.1 Zero-knowledge

A zero-knowledge (ZK) protocol between a prover and a veri�er [GMR85], allows the
prover to convince the veri�er of the validity of a statement without revealing anything
else. One of the major e�ciency criteria for such protocols is round complexity, i.e.,
number of messages sent in either direction. A main open problem in this area is con-
struction of 3-round ZK protocols for any language in NP based on general computational
assumptions [Bar01].

We use a variant of noninteractive extraction to construct 3-round ZK arguments for
any language in NP. This construction uses the FLS technique [FLS99] on the extractable
function and noninteractive witness-indistinguishable proofs [BOV03, GOS06]. The key
point lies in the ability of a zero-knowledge simulator to recover information crucial for
simulation by using an extractor on the private state of the veri�er.

All previously known 3-round ZK constructions [HT98, HT99, BP04b, Lep02] require
speci�c and nonstandard knowledge assumptions. On the other hand, our protocols are
the �rst to be based on general (yet strong) computational assumptions without resorting
to speci�c algebraic constructs.

1.1.5.2 Random Oracle Instantiation

The Random Oracle methodology [FS86, BR93] consists of designing a protocol in an
idealized model (the random oracle model) and then moving this protocol to the standard
model. The random oracle model allows each party oracle access to a random function.
Whereas, the �rst step in this methodology is sound, the second step (called, instan-
tiation) remains a heuristic for the most part, without proper justi�cation for security
in the standard model. In this context, we use extractable functions to replace random
oracles, while maintaining security, in speci�c encryption schemes such as OAEP [BR94]
and the encryption scheme of [BR93] as well as in a more general class of encryption
schemes.

We emphasize that the contribution of this work is not in giving more e�cient con-
structions than existing ones [Sah99, DDN00], but rather in making the Random Oracle
methodology more rigorous for these schemes. For instance, our results yield the �rst
full instantiation of OAEP. A di�erent contribution is in designing new instantiation
techniques that permit instantiating schemes that are provably unrealizable otherwise

8

[CGH98].

1.1.5.3 Obfuscating Multibit Point Functions

Obfuscation [BGI+01] refers to the ability of a code to compute a functionality without
revealing anything about this functionality beyond the input/output behavior. Obfusca-
tion remains a �eld dominated by the impossibility results of [BGI+01] with few positive
constructions. Speci�cally, all previous constructions are for point functions and other
related functions. A point function outputs 1 on a single input and 0 everywhere else.

In our �nal application, we exploit techniques used in constructing interactively-
extractable functions to obfuscate multibit point functions and other related functions.
A multibit point functions returns a long string on a single point and 0 everywhere else.
This obfuscation can be applied to designing digital lockers, that is symmetric encryption
with �weak� keys or passwords.

Previous obfuscation of multibit point functions either restrict the output to loga-
rithmic length [Wee05] or the input distribution to uniform [FKSW05]. On the other
hand, we give the �rst general obfuscation of multibit point functions.

1.2 Organization

This thesis is logically divided into two parts, theory and applications, with an additional
chapter (Chapter 2) that gives common de�nitions and notations.

The theory is developed in Chapters 3, 4, and 5. Chapter 3 introduces, de�nes, and
constructs noninteractive extraction. Chapter 4 does the same for interactive extraction.
Characterization is presented in Chapter 5. Chapters 3 and 4 can be read independently.
However, it is recommended that Chapter 5 is read after Chapters 3 and 4.

Chapters 6 and 7 presents the applications to zero-knowledge and random oracle
instantiation, respectively. Each one of these chapters depends only on de�nitions of
extraction in Chapters 3 and 4. Obfuscation of multibit point functions appears in
Chapter 8. Chapter 8 is self-contained but uses some de�nitions from Chapter 2.

9

Chapter 2

Technical Preliminaries

We recall from the literature basic notation and common de�nitions that are used
throughout this thesis.

2.1 Notations and Basic De�nitions

A function, µ, is called negligible if it decreases faster than any inverse polynomial.
Formally, for any polynomial p, there exists an integer Np such that, for all n ≥ Np:
µ(n) < 1

p(n) . We reserve µ to denote negligible functions.
If A is a set, then a ← A means a is chosen uniformly at random from A. If D

is a distribution, then a ← D means a is sampled according to D. We denote by
Un the uniform distribution on {0, 1}n. A distribution is called well-spread if it has
superlogarithmic min-entropy, i.e., maxkPr[Xn = k] is a negligible function in n.

A probabilistic function family is a set of e�cient probabilistic functions having
common input and output domains. Formally, Hn = {Hk}k∈Kn is a function family
with key space Kn and randomness domain Rn if, for all k ∈ Kn,Hk : In×Rn → On. A
probabilistic function family has public randomness if for all k, Hk(x, r) = (r, H ′k(x, r))

for some deterministic function H ′k. A family ensemble is a collection of function families,
i.e., H = {Hn}n∈N.

Let PPT denote any probabilistic polynomial-time Turing machine and nonuniform
PPT any probabilistic polynomial-size circuit family. A PPT (respectively nonuniform
PPT) A with oracle access to O is denoted by AO.

10

2.2 One-way Functions and Uninvertible Functions

A one-way function, F , with respect to a well-spread distribution, X, is an e�ciently-
computable function that is hard to invert approximately on X [DH76]. In other words,
it is hard to �nd any preimage for a given value in the range. Formally,
De�nition 2.2.1 (one-way function, [DH76]). A function, F , is called one-way with

respect to a well-spread distribution, X, if for any PPT, A:

Pr[x← Xn, F (A(F (x))) = F (x)] < µ(n).

F is called one-way if it is one-way with respect to the uniform distribution.

Note that for a deterministic function, f , one can decide whether y is an image
of x under f by computing f(x) and comparing y to f(x). However, this method
does not apply for probabilistic functions. Consequently, probabilistic functions are
usually coupled with e�cient veri�ers to decide this relationship. The next de�nition of
probabilistic one-way functions use such veri�ers.
De�nition 2.2.2 (probabilistic one-way function). A probabilistic function, F (with

randomness domain Rn), with a corresponding deterministic veri�er, VF , is called one-

way with respect to a well-spread distribution, X, if for any PPT, A:

Pr[x← Xn, r ← Rn, VF (A(F (x, r)), F (x, r)) = 1] < µ(n).

F is called one-way if it is one-way with respect to the uniform distribution.

An uninvertible function, F , with respect to a well-spread distribution, X, is an
e�ciently computable function that is hard to invert exactly on X. That is, it is hard
to �nd the same preimage used in computing an image. Formally, for any PPT, A,
Pr[x← Xn, A(F (x)) = x] < µ(n). If F is uninvertible with respect to any well-spread
distribution, then it is called uninvertible.

Moreover, a function in t inputs is called uninvertible if its output does not reveal
any of its input. Formally, F is called uninvertible with respect to a vector of well-spread
distributions, X = {X1, ..., Xt}, if for every PPT A:

Pr[(x1, ..., xt)← (X1
n, ..., Xt

n), y ← F (x1, ..., xt), x′ ← A(y) : ∃i, x′ = xi] ≤ µ(n).

11

F is called uninvertible if it is uninvertible with respect to any vector of well-spread
distributions (with the same arity).

Note that uninvertible functions di�er from one-way functions in that it is hard to
retrieve the exact input used to compute an image but not necessarily a point in the
pre-image set, e.g., f(x) = 0 is uninvertible but not one-way.

2.3 Assumptions

2.3.1 The Discrete-Logarithm (DL) Assumptions

Assumption 2.3.1 (DL Assumption). Let PQG denote the distribution on (p, q, g),

where p and q are uniform primes such that p = 2q +1 and |p| = n, and g is a generator

for the quadratic residue group (modulo p). Then, for any nonuniform PPT, A:

Pr[(p, q, g)← PQGn, a← Zq, a′ ← A(p, q, g, ga) : a = a′] ≤ µ(n).

A stronger version of this assumption requires the last inequality to hold for any

p,q,g. This assumption is used in [HT98] as well as this thesis for constructing 3-round
zero-knowledge protocols.
Assumption 2.3.2 (Strong DL Assumption, [HT98]). For every n, there is a tuple

(p, q, g), where p and q are primes such that p = 2q +1 and |p| = n, and g is a generator

for the quadratic residue group (modulo p), such that for any nonuniform PPT, A:

Pr[a← Zq, a′ ← A(p, q, g, ga) : a = a′] ≤ µ(n).

2.3.2 The Decisional Di�e-Hellman (DDH) Assumption

Assumption 2.3.3 (DDH). Let PQG denote the distribution on (p, q, g), where p and

q are uniform primes such that p = 2q + 1 and |p| = n, and g is a generator for the

quadratic residue group modulo p. Then for any PPT, A:

|Pr[(p, q, g)← PQGn, x, y ← Z∗q , Z∗q , b← A(p, q, g, gx, gy, gxy) : b = 1]−

(p, q, g)← PQGn, x, y, z ← Z∗q , Z∗q , Z∗q , b← A(p, q, g, gx, gy, gz) : b = 1]| ≤ µ(n).

12

2.4 Pseudorandom Generators

A pseudorandom generators stretches a uniform seed into a longer string that is compu-
tationally indistinguishable from uniform. Formally,
De�nition 2.4.1 (Pseudorandom Generator, [BM84]). A function, G, is a pseu-

dorandom generator if:

1. G is e�ciently computable.

2. |G(x)| > |x| for all x.

3. For any nonuniform PPT, A:

|Pr[x← Un, b← A(G(x)) : b = 1]− Pr[b← A(U|G(x)|) : b = 1]| ≤ µ(n).

De�nition 2.4.2 (Family of Pseudorandom Generators). A family of functions,

G = {{Gk}k∈Kn}n∈N, is a family of pseudorandom generator if:

1. Gk is e�ciently computable for any k ∈ Kn, n ∈ N.

2. |Gk(x)| > |x| for all k and x.

3. For any PPT A:

|Pr[k ← Kn, x← Un, b← A(Gk(x)) : b = 1]−

Pr[k ← Kn, b← A(U|Gk(x)|) : b = 1]| ≤ µ(n).

2.5 Perfectly One-way Probabilistic Functions

A perfectly one-way (POW) function is a probabilistic function that hides all information
about its input. Due to its probabilistic nature, such a function is coupled with an
e�cient veri�cation scheme that determines whether a given string is a valid image of
some given input. Moreover, we require that it satis�es collision resistance, i.e., it is hard
to �nd two distinct input strings and an output string that is a valid image of each one
of them. E�cient veri�cation and collision resistance are formalized as follows.

13

De�nition 2.5.1 (E�cient Veri�cation, [Can97]). A family ensemble, H = {Hn}n∈N,

where for some polynomial l(n), for any n ∈ N, and any k ∈ Kn, Hk : {0, 1}n × Rn →

{0, 1}l(n), satis�es e�cient veri�cation if there exists a deterministic polynomial time

algorithm, VH
1, such that:

∀k ∈ Kn, x ∈ {0, 1}n, r ∈ Rn, VH(x,Hk(x, r)) = 1.

A family ensemble that satis�es e�cient veri�cation is called veri�able for short.
De�nition 2.5.2 (Collision Resistance, [Can97]). A veri�able family ensemble, H =

{Hn}n∈N, where for some polynomial l(n), for any n ∈ N, and any k ∈ Kn, Hk :

{0, 1}n ×Rn → {0, 1}l(n), satis�es collision resistance if for any nonuniform PPT A:

Pr[k ← Kn, (x1, x2, y)← A(k) : x1 6= x2 and VH(x1, y) = VH(x2, y) = 1] ≤ µ(n).

2.5.1 Perfect One-wayness.

Hiding all information about the input has its roots in semantic security of probabilistic
encryption [GM84] which requires that every function that can be computed given the
ciphertext can also be computed without it. However, the notion of secrecy in this set-
ting is slightly weaker than semantic security because an image can be used to verify the
correctness of a guess. This notion is captured by a simulation-based de�nition. Infor-
mally, every predicate computable given an image can also be computed by a simulator
with access to an oracle, Ix, where Ix accepts a query if and only if it matches x. The
formal de�nition appears in [Can97].

There is another notion of perfect one-wayness that is easier to work with in the
context of this thesis. This notion requires indistinguishability between images of the
same input and some distribution.

Both notions can be formulated against unbounded adversaries (information-theoretic
setting) or against PPT adversaries (computational setting). In the information-theoretic
setting, these two notion are equivalent [DS05]. In the computational setting, the equiv-
alence hold for a simpler notion of indistinguishability [Can97]. In the rest of the thesis
we use the second notion.

1Even though, we don't explicitly include k in the input for V , we implicitly assume that it receives
it.

14

We also consider the presence of auxiliary information in the computational setting.
This auxiliary information is represented as an uninvertible function of the input.
Statistical Perfect One-wayness.

Statistical information hiding is captured by requiring statistical closeness between
images of the same input and those of uniform inputs. Formally,
De�nition 2.5.3 (Statistical t-Indistinguishability, [DS05]). A veri�able family

ensemble H = {Hn}n∈N, where Hk : {0, 1}n × Rn → {0, 1}l(n) for some polynomial

l, is called statistically t-indistinguishable if for any well-spread distribution X =

{Xn}n∈N and any k ∈ Kn,

∆(Hk(Xn, R1
n), ...,Hk(Xn, Rt(n)

n)︸ ︷︷ ︸
t(n)

,Hk(U1
n, R1

n), ...,Hk(U t(n)
n , Rt(n)

n)︸ ︷︷ ︸
t(n)

≤ µ(n),

where each distribution Ri
n (respectively, U i

n) is the same as Rn (respectively, Un).

Moreover, if H is statistically t-indistinguishable for any polynomial t then it is called

statistically indistinguishable.

A special case of statistical indistinguishability is statistical pseudorandomness, where
the images are indistinguishable from uniform. This notion is similar to the notion of
extractors [DS05]. An extractor is a randomized function that takes inputs of high en-
tropy and outputs strings statistically close to uniform. In other words, it "extracts" the
randomness from the input to compress it into an almost uniform string.
De�nition 2.5.4 (Statistical t-Pseudorandomness, [DS05]). A veri�able family

ensemble H = {Hn}n∈N, where Hk : {0, 1}n × Rn → {0, 1}l(n) for some polynomial l, is

called statistically t-pseudorandom if for any well-spread distribution X = {Xn}n∈N

and any k ∈ Kn, ∆(Hk(Xn, R1
n), ...,Hk(Xn, Rt(n)

n)︸ ︷︷ ︸
t(n)

, U1
n, ..., U t(n)

n)︸ ︷︷ ︸
t(n)

≤ µ(n), where each

distribution Ri
n (respectively, U i

n) is the same as Rn (respectively, Un).

Moreover, if H is statistically t-pseudorandom for any polynomial t then it is called

statistically pseudorandom.

Computational Perfect One-wayness. Computational perfect one-wayness di�ers
from statistical perfect one-wayness in two main ways. The �rst and obvious di�erence
is that indistinguishability holds for polynomially-bounded adversaries only. Second,

15

computational perfect one-wayness may take the presence of auxiliary information into
account. In this context, we restrict the notion of auxiliary information to uninvertible
functions about the input. This restriction is necessary because otherwise auxiliary
information reveals the input violating indistinguishability.

Instead of explicitly writing two de�nitions, one with auxiliary information and an-
other without it, we present here one de�nition only. To take both cases into account, we
use the convention that auxiliary information is surrounded by boxes. So, by removing
the words in boxes from De�nition 2.5.5, we get the �rst de�nition while keeping the
boxes yields the second one.
De�nition 2.5.5 (t-Indistinguishability, [CMR98]). Let F be any (possibly prob-

abilistic) uninvertible function. A veri�able family ensemble H = {Hn}n∈N, where

Hk : {0, 1}n × Rn → {0, 1}l(n) for some polynomial l, is called t-indistinguishable

with auxiliary input F if for any well-spread distribution, X = {Xn}n∈N, any k ∈ Kn

and any PPT A:

|Pr[x← Xn, z ← F (x) , (r1, ..., rt)← (Rn, ..., Rn) :

A(k, z ,Hk(x, r1), ...,Hk(x, rt)) = 1] −

Pr[x← Xn, (u1, ..., ut)← (Un, ..., Un), z ← F (x) , (r1, ..., rt)← (Rn, ..., Rn) :

A(k, z ,Hk(u1, r1), ...,Hk(ut, rt)) = 1]| ≤ µ(n).

If H is t-indistinguishable with any auxiliary input F , then it is called

t-indistinguishable with auxiliary input . Moreover, if it is t-indistinguishable

with auxiliary input for any polynomial t, then it is called indistinguishable

with auxiliary input .

A special case of computational indistinguishability is computational pseudorandom-
ness, i.e., images of the same input are indistinguishable from uniform. Formally,
De�nition 2.5.6 (t-Pseudorandomness, [CMR98]). Let F be any (possibly prob-

abilistic) uninvertible function. A veri�able family ensemble H = {Hn}n∈N, where

Hk : {0, 1}n × Rn → {0, 1}l(n) for some polynomial l, is called t-pseudorandom

with auxiliary input F if for any well-spread distribution, X = {Xn}n∈N, any k ∈ Kn,

16

any PPT A:

|Pr[x← Xn, z ← F (x) , (r1, ..., rt)← (Rn, ..., Rn) :

A(k, z ,Hk(x, r1), ...,Hk(x, rt)) = 1] −

Pr[x← Xn, z ← F (x) : A(k, z , Ult) = 1]| ≤ µ(n).

If H is t-pseudorandom with any auxiliary input F , then it is called t-pseudorandom

with auxiliary input . Moreover, if it is t-pseudorandom with auxiliary input for any

polynomial t, then it is called pseudorandom with auxiliary input .

2.6 Obfuscation

We adopt the de�nition of obfuscation used in [Can97, Wee05] because obfuscation of
point functions is known for this notion only (if the distribution on this class of functions
is not restricted). This de�nition is weaker than the one in [BGI+01] because the size
of the simulator is allowed to depend on the quality of the simulation. We note that
the impossibility results of [BGI+01] applies for this notion also. The formal de�nition
follows.
De�nition 2.6.1 (Obfuscation, [BGI+01, Can97, Wee05]). Let F be any family of

functions. A PPT, O, is called an obfuscator of F, if:

1. Approximate Functionality: For any F ∈ F: Pr[∃x, O(F)(x) 6= F (x)] is

negligible. Here, the probability is taken over the coin tosses of O.

2. Polynomial Slowdown: There is a polynomial p such that, for any F ∈ F, O(F)

runs in time at most p(TF), where TF is the worst-case running time of F .

3. Virtual Black-box Property: For any nonuniform PPT A and any polynomial

p, there exists a nonuniform PPT S such that for any F ∈ F and su�ciently large

n:

|Pr[b← A(O(F)) : b = 1]− Pr[b← SF (1|F |) : b = 1]| ≤ 1
p(n)

.

17

2.7 Encryption Schemes

We recall the de�nitions of indistinguishability under chosen plaintext (IND-CPA) (which
is equivalent to semantic security [GM84]) and chosen ciphertext attack (IND-CCA2).
These de�nitions remain the same in the Random Oracle model except that every PPT
has oracle access to a random function, denoted by O.
De�nition 2.7.1 (IND-CPA, [GM84]). A public key encryption scheme, (G, E,D),

is called IND-CPA if for any PPT pair (A1, A2):

|Pr[(pk, sk)← G(1n), (m0,m1, s)← A1(pk), c← E(m0, pk), b← A2(s, c) : b = 1] −

Pr[(pk, sk)← G(1n), (m0,m1, s)← A1(pk), c← E(m1, pk), b← A2(s, c) : b = 1]| ≤ µ(n).

De�nition 2.7.2 (IND-CCA2, [NY90]). A public key encryption scheme, (G, E,D),

is called IND-CCA2 if for any PPT pair (AD(.,sk)
1 , A

D(.,sk)
2):

|Pr[(pk, sk)← G(1n), (m0,m1, s)← A
D(.,sk)
1 (pk), c← E(m0, pk), b← A

D(.,sk)
2 (s, c) :

b = 1] −

Pr[(pk, sk)← G(1n), (m0,m1, s)← A
D(.,sk)
1 (pk), c← E(m1, pk), b← A

D(.,sk)
2 (s, c) :

b = 1]| ≤ µ(n),

where it is assumed that A
D(.,sk)
2 does not query D(., sk) on c.

2.8 Zero-knowledge Arguments

A zero-knowledge (ZK) argument system [GMR85] consists of a polynomial-time prover,
P interacting with a polynomial-time veri�er, V . The prover is given a theorem, x, and
a witness for its correctness, w while V receives only x. The prover has to convince V of
the validity of x without revealing anything beyond the validity of x (see also introduction
of Chapter 6). Formally,
De�nition 2.8.1 (Zero-knowledge Argument System, [GMR85]). Let L be an NP

language (with relation RL). Then P = (P, V) is called a zero-knowledge argument

18

system (ZK for short) for L if both P and V are PPT, and the following three conditions

hold:

1. Completeness. For every (x, w) ∈ RL,

Pr[b←< P (x,w), V (x) >: b = 1] ≥ 1− µ(n).

2. Soundness. For every PPT, P̂ , and any x 6∈ L:

Pr[b←< P̂ (x), V (x) >: b = 1] ≤ µ(n).

3. Zero-knowledge. For any PPT, V̂ , there exists a PPT machine, S, such that for

any PPT distinguisher, D, any (x,w) ∈ RL, and any distribution, Z = {Zn}n∈N:

|Pr[z ← Zn, b← D(< P (x,w), V̂ (x, z) >) : b = 1]−

Pr[z ← Zn, b← D(S(x, z)) : b = 1]| ≤ µ(n).

2.9 Zero-knowledge Proofs of Knowledge

Zero-knowledge proofs of knowledge [GMR85, BG92] require in addition to De�nition
2.8.1 that the prover knows a witness. In other words, if the veri�er is convinced, then
there is an extractor that recovers a witness from the prover. Formally,
De�nition 2.9.1 (Zero-knowledge proofs of knowledge, [GMR85, BG92]). Let
L be an NP language (with relation RL). Then P = (P, V) is called a zero-knowledge

proof of knowledge for L if P is a zero-knowledge argument for L and the following

holds:

Proof of knowledge: For any PPT, P̂ (with random coins rP̂ and randomness domain

RP̂), there exists an extractor KP̂ such that for any x:

Pr[rP̂ ← RP̂ , b←< P̂ (x, rP̂), V (x) >, w ← KP̂ (x, rP̂) : b = 1 and (x, w) 6∈ RL] ≤ µ(n).

19

2.10 Non-interactive Zero-knowledge Arguments

In a noninteractive argument system, the prover has to convince the veri�er of the validity
of a statement by sending a single message only, called the proof. Such protocols need
a setup assumption, namely, a randomly-generated, public string called the Common
Reference String (CRS for short). Formally,
De�nition 2.10.1 (Noninteractive Zero-knowledge Argument System, [BFM88]).
Let L be an NP language (with relation RL). Then P = (P, V) is called a noninterac-

tive zero-knowledge argument system (NIZK for short) for L if both P and V are

PPT, and the following three conditions hold:

1. Completeness. For every (x, w) ∈ RL,

Pr[σ ← Un, π ← P (x,w, σ), b← V (x, π, σ) : b = 1] ≥ 1− µ(n).

2. Soundness. For every PPT, P̂ :

Pr[σ ← Un, (x, π)← P̂ (σ), b← V (x, π, σ) : b = 1 and x 6∈ L] ≤ µ(n).

3. Zero-knowledge. There exists a PPT pair, S = (S1, S2), such that for any poly-

nomial, t, any PPT, A, any (x1, w1), ..., (xt(n), wt(n)) ∈ RL (that may depend on

σ), and any distribution, Z = {Zn}n∈N:

|Pr[σ ← Un, z ← Zn,

b← A(z, (x1, P (x1, w1, σ)), ..., (xt(n), P (xt(n), wt(n), σ)), σ) : b = 1]−

Pr[(σ, aux(σ))← S1(1n), z ← Zn,

b← A(z, (x1, S(x1, σ, aux(σ))), ..., (xt(n), S(xt(n), σ, aux(σ))), σ) : b = 1]| ≤ µ(n).

2.11 Non-interactive Witness Indistinguishable Arguments

Although NIZK arguments for all languages in NP require a CRS [BFM88], if we relax
the zero knowledge property to witness indistinguishability, we can realize it without a

20

setup assumption [BOV03, GOS06]. Witness indistinguishability means that it is hard
to tell which witness is used in generating a proof. Formally,
De�nition 2.11.1 (Noninteractive Witness Indistinguishable Argument Sys-
tem, [FS90, BOV03, GOS06]). Let L be an NP language (with relation RL). Then

P = (P, V) is called a noninteractive witness-indistinguishable (WI) argument

system for L if both P and V are PPT, and the following three conditions hold:

1. Completeness. For every (x, w) ∈ RL,

Pr[π ← P (x,w), b← V (x, π) : b = 1] ≥ 1− µ(n).

2. Soundness. For every PPT, P̂ :

Pr[(x, π)← P̂ (1n), b← V (x, π) : b = 1 and x 6∈ L] ≤ µ(n).

3. Witness Indistinguishability. For any PPT, A, any polynomial t, and any

(x1, w
1
1), (x1, w

2
1), ..., (xt(n), w

1
t(n)), (xt(n), w

2
t(n)) ∈ RL, and any distribution Z =

{Zn}n∈N:

|Pr[z ← Zn, π1, ..., πt(n) ← P (x1, w
1
1), ..., P (xt(n), w

1
t(n)),

b← A(z, (x1, w
1
1, w

2
1, π1), ..., (xt(n), w

1
t(n), w

2
t(n), πt(n))) : b = 1]−

Pr[z ← Zn, π1, ..., πt(n) ← P (x1, w
2
1), ..., P (xt(n), w

2
t(n)),

b← A(z, (x1, w
1
1, w

2
1, π1), ..., (xt(n), w

1
t(n), w

2
t(n), πt(n))) : b = 1]| ≤ µ(n).

2.12 Σ-Protocols

A Σ-protocol is a 3-round honest-veri�er Arthur-Merlin proof of knowledge. The prover
starts the protocol by sending a message a, the veri�er responds with a random string
e, and the prover sends z in the last round. A Σ-protocol has a special soundness
properties that allows for witness extraction. Speci�cally, for any x and any two accepting
conversations (a, e, z) and (a, e′, z′) for e 6= e′, it is easy to compute a witness for x. The

21

honest-veri�er zero-knowledge property says that whatever an honest veri�er computes
from a conversation can be computed without it. Formally:
De�nition 2.12.1 (Σ-Protocol, [Blu86]). A 3-round Arthur-Merlin game, P = (P, V),

is called a Σ-protocol for a language L (with NP relation RL) if:

1. Completeness. For any (x,w) ∈ RL, Pr[b ←< P (x,w), V (x) >: b = 1] = 1,

where < V (x), P (x) > denotes the output of V at the end of the protocol.

2. Special Soundness. There is a PPT, K, such that for any x and any two accept-

ing conversations, (a, e, z) and (a, e′, z′) for e 6= e′, K(x, (a, e, z), (a, e′, z′)) = w

where (x,w) ∈ RL.

3. Honest-veri�er Zero-Knowledge. Let viewV (x, e) denote the view of V on

input x and public randomness e (the second message). Then, there exists a PPT,

S, such that for any x ∈ L, viewV (x, e) and S(x, e) have the same distribution.

We remark that every NP language has a Σ-protocol if one-way functions exist
[Blu86]. Moreover, the prover is e�cient if it is supplied with a witness.

22

Chapter 3

Extractable Functions

Summary: We introduce and formalize a notion of computational knowl-
edge, called extractable functions, and give several constructions.
Informally, an extractable function guarantees that any machine that pro-
duces a point in the range, knows a corresponding preimage. This knowledge
is captured by the existence of an e�cient machine, called the extractor,
that recovers the preimage in question. We formalize this notion in several
models. We consider extraction for a single function and extraction for a
family of functions. In the latter case, a function is chosen randomly from
the family and given to the adversary. We also consider models with and
without auxiliary information. There are three cases:
1. There is no auxiliary information.
2. There is independent auxiliary information. Here the dependency is

on the function itself and is relevant when extraction is for a family of
functions.

3. There is dependent auxiliary information.
After formalizing this notion, we present several constructions. The con-
structions satisfy two properties. The �rst one is a knowledge property and
is usually extraction for a family of functions in the presence of indepen-
dent auxiliary information. The second property is a computational-hardness
property and can be one-wayness, pseudorandomness, or perfect one-wayness.

This chapter is based on the paper [CD08a], which is a joint work with Ran Canetti. Note that
[CD08a] contains some additional results that do not appear in this chapter.

23

All but the last construction, utilize, in addition to a hardness assumption,
a knowledge assumption such as the Knowledge of Exponent (KE) assump-
tion (see Assumption 3.3.1). The �nal construction is based on a variant of
noninteractive zero-knowledge (NIZK) arguments of knowledge. In fact, we
show the equivalence between these two primitives.

3.1 Introduction

An extractable function is one for which any machine that computes a point in the range
knows a corresponding preimage. In other words, there is a family of functions and the
adversary gets a description of a speci�c function from the family, and tries to output
a point in the range. This function family is considered noninteractively extractable if
whenever the adversary generates a value in the range, it knows a preimage. That is, for
every such adversary there is a corresponding extractor that computes a preimage from
the private input of the adversary. One extreme example of extractable functions is the
identity function where the output itself reveals the input. Obviously, such functions
are of lesser interest to cryptographic applications than functions with computational
hardness properties. On another extreme, if the function is a one-way permutation, then
it is easy to output a valid image without knowing a preimage; speci�cally, output a
random string in the range. In this thesis, we concentrate on functions that enjoy both
properties, namely, extractability and computational hardness.

From a di�erent angle, extractability can be interpreted as: the only way to produce a
value in the range of a function is by taking a point in the input domain and then applying
the algorithm that computes this function to the input. In other words, extractability
reduces adversarial strategies to honest-but-curious strategies (strategies that follow a
prescribed protocol but compute something extra on the side).
On e�cient veri�cation. Unlike proofs of knowledge [GMR85, BG92], this notion of
extraction does not require e�cient veri�cation. In other words, the range of the function
is not necessarily e�ciently veri�able. Therefore, it may not be possible to decide if the
adversary generates a point in the range (and consequently, knows a preimage). However,
this notion guarantees the implication: If the adversary generates an image, it knows a
preimage. We mention that Construction 3.3.2 has a range that is e�ciently veri�able

24

in the presence of some auxiliary information about the function itself.
On the relation between extractable functions and knowledge assumptions.
We view extractable functions as an abstraction away from speci�c knowledge assump-

tions such as the knowledge of exponent (KE) assumption [Dam92, HT98] and the proof

of knowledge (POK) assumption [Lep02], much like a one-way function is an abstraction

of speci�c one-way assumptions, such as the discrete logarithm (DL) assumption. In
other words, the DL assumption gives us a one-way function but it may even give us
more, e.g., a one-way permutation in certain groups or with certain algebraic properties.
However, we abstract away from these particularities and identify the essential property
needed. Likewise, we use extractable functions as a step towards capturing the abstract
knowledge assumption - it provides a relatively simple primitive that is de�ned only in
terms of its general computational properties, that is useful in a number of places, and
that can be realized by a number of di�erent assumptions.
On the relation between extractable functions and NIZK. Super�cially, ex-
tractable functions resemble noninteractive zero-knowledge (NIZK) proofs of knowledge
[SP92, SCO+01] in that an image can be viewed as a proof of preimage knowledge.
However, proofs of knowledge are weaker. This is so because NIZK proofs of knowledge
require a universal blackbox extractor to recover a witness with the help of auxiliary

information about the common reference string (CRS). On the other hand, extractable
functions require a nonblackbox extractor for every adversary. However, this extractor
has to recover a preimage from the view of the adversary without any extra informa-

tion that is not given to the adversary. The latter formulation may better capture our
intuition about knowledge because it clearly demonstrates that an adversary knows a
preimage by recovering it from its view alone. In fact, we show in Section 3.4 that a
stronger notion of NIZK proofs of knowledge, where extraction occurs in a nonblackbox
way and without auxiliary information about the CRS, is equivalent to an extractable
function that satis�es some form of perfect one-wayness.

3.1.1 Our Work

This chapter is devoted solely to formalizing and constructing noninteractively-extractable
functions.

25

3.1.1.1 Formulating Extraction

The general format of a de�nition of extraction is as follows: for any e�cient adversary,
A, there is an e�cient extractor, KA, that depends on A and has access to the private
input of A, including its random coins. Moreover, KA has negligible failure error; that is
the probability that the output of A is valid but the output of KA is not a valid preimage
is negligibly close to 0.

There are �ve variants of this general de�nition depending on two major criteria.
First, extraction can be required for any function in the family or for a uniformly chosen
function. In the latter case, the probability of extraction is taken over the choice of the
function. The constructions that we give in this thesis satisfy the latter notion. For
completeness, we present the former notion as well.

Second, extraction can be formalized with or without auxiliary information. We
consider extraction in the presence of auxiliary information as this is a more useful
and meaningful notion. Auxiliary information can be either dependent or independent
[GK05] (here, the dependence is on the speci�c function under study). We remark that
dependent auxiliary information is inseparable from independent auxiliary information
when extraction is required for a single function, f . This is so because it is not possible
to prevent an adversary with access to auxiliary information from receiving dependent
auxiliary information, e.g., f(x). Moreover, the notion of a single extractable function
with auxiliary information is not realizable for one-way functions. Speci�cally, by the
one-wayness assumption, there is no extractor for the adversary that receives f(x), for a
uniform x, and simply outputs it. Consequently, the notion of extraction with auxiliary
information is meaningful only for a function family. Indeed, the KE assumption is
formulated in terms of function families.

3.1.1.2 Constructions

We build extractable functions from four di�erent sources of knowledge, speci�cally, the
KE assumption (Assumption 3.3.1), the POK assumption (Assumption 3.3.4), the Di�e-
Hellman proof of knowledge (DH-KEA) assumption (see [PX09] and Assumption 3.3.3),
and NIZK proofs of knowledge. We also combine knowledge properties with hardness
assumptions to yield extractable functions with computational properties such as one-
wayness, pseudorandomness, and perfect one-wayness. Refer to Table 3.1 for a list of

26

DL DDH strong DDH
KE Extractable OW Extractable PRG Extractable POW
POK Extractable OW - Extractable POW (1-indist.)
DH-KEA Extractable OW Extractable PRG Extractable POW

Table 3.1: Constructions based on the KE Assumption. KE= Knowledge of Exponent,
POK= Proof of Knowledge, DH-KEA=Di�e-Hellman Knowledge of Exponent, DL=Discrete
Log, DDH= Decisional Di�e-Hellman, OW= One-way, PRG=Pseudorandom Generator,
POW=Perfectly One-way.

the results and needed assumptions.
From the KE assumption. The KE assumption can be combined with:
• DL assumption to give an extractable one-way function.
• DDH assumption to give an extractable pseudorandom generator.
• strong version of DDH (see De�nition 3.3.2) to give an extractable POW function.

Informally, the key construction utilizes the quadratic residue group modulo a safe
prime.1 Let g be a generator for this group and ga be a uniform element for this group.
Then, Hp,g,ga(x, r) = gr, gar, grx, garx. At a high level, the KE assumption allows us to
recover r and rx (and consequently, x). Moreover, the strong DDH assumption gives us
perfect one-wayness.

We mention that the DH-KEA assumption is stronger than the KE assumption
[PX09], and consequently, it implies the results described here.
From the POK assumption. In a similar fashion, the POK assumption can be
combined with the DL assumption to give an extractable one-way function and with
the strong DDH assumption to give an extractable POW function. However, it does
not seem to imply extractable pseudorandom generators because the output needed for
extraction is easily distinguishable from uniform.
From NIZK proofs of knowledge. As we mentioned previously, if we strengthen
NIZK proofs of knowledge, they become equivalent to extractable functions that satisfy
some form of perfect one-wayness. In other words, the existence of either one of them
implies the existence of the other (modulo the existence of other standard primitives
such as encryption and witness-indistinguishable (WI) proofs [BOV03, GOS06]).

1A prime, p, is safe if it can be written as 2q + 1, where q is another prime.

27

In more detail, both the knowledge and secrecy (zero-knowledge) properties of NIZK
are weaker than extractable POW functions. As previously discussed, proofs of knowl-
edge require an extractor to work with access to some private auxiliary information
about the CRS, which is not available to the prover. On the other hand, extractable
functions require the views of the adversary and the extractor to be the same. Moreover,
zero-knowledge in the noninteractive setting requires secrecy over a randomly chosen

CRS, whereas POW functions require secrecy for any function. In Section 3.4, we show
that if we strengthen NIZK proofs of knowledge so that the extractor has the same view
as the prover, we can construct extractable functions that are perfectly one-way for a
randomly-chosen function (weak POW functions). (The last property is inherited di-
rectly from the zero-knowledge property described above.) In the reverse direction, we
construct such NIZK proofs of knowledge for any language in NP given any extractable
weak POW function.

3.1.2 On the Strength of the Assumptions

With the exception of the construction from NIZK proofs of knowledge, all known con-
structions of nontrivial extractable functions require a knowledge assumption. These
assumptions are usually described in the literature as strong. This is so because they
are not e�ciently falsi�able [Nao03]. That is, in order to refute such an assumption,
one needs to �nd an adversary and prove that no machine can recover a preimage of the

output of this adversary. The last task is regarded as ine�cient because of the quanti�-
cation over all machines. Contrast this with a standard one-way assumption. A one-way
assumption on a candidate function seems easier to refute by exhibiting a speci�c ad-
versarial strategy to invert the function. In spite of this classi�cation of assumptions,
Bellare and Palacio [BP04a] show how to refute a speci�c knowledge assumption.

In Chapter 4, we study a weaker notion of extraction (speci�cally, interactive extrac-
tion) that can be realized from e�ciently-falsi�able assumptions.

3.1.3 Organization

We formalize extractable functions in Section 3.2, construct them in Section 3.3, and
�nally discuss the connection to NIZK proofs of knowledge in Section 3.4.

28

3.2 De�nitions

As we mentioned in the introduction, an extractable function is one for which any ma-
chine that computes a point in the range, knows a corresponding preimage. As a starting
point, we can formulate this notion by requiring any e�cient machine that computes an
image without auxiliary input to know a preimage. Although, this requirement seems
reasonable, it is not su�cient for applications where auxiliary information is present. On
the other hand, formulating this notion in the presence of auxiliary information is tricky.
As a toy example, A can be a machine that receives an image as an input and copies it
to its output. In another scenario, A may receive an image hidden in its auxiliary input
in a subtle way but can be e�ciently extracted from it. Yet, we do not think that this
captures our intuition because A does not really compute the function, rather it decodes
the image syntactically from its input. Thus, we need a meaningful way of telling apart
�copying" an image from �computing" an image.

Following [GK05], we consider two types of auxiliary information. The �rst one,
called independent auxiliary information, consists of auxiliary information inde-
pendent of the particular function currently used. This prevents hiding images in this
type of input. The second type, called dependent auxiliary information, may depend
on the function. Here, the issue of distinguishing �copying" an image from �computing"
an image arises due to possible encoding of images in this input. We solve this problem
by restricting this dependency to include only images under the function being used.
Even though this dependency is very restricted, it is su�cient for our applications.

Given these two types of inputs, we require that no adversary can come up with a
new image without knowing a corresponding preimage. In other words, for every A,
that computes a new image, there is a corresponding extractor, KA, that computes a
preimage, given access to the private input of A. We emphasize that KA has to compute
the preimage from the view of A without any additional information.

For clarity, we �rst formalize this notion without auxiliary information, then in the
presence of independent auxiliary information and �nally we present the general case.
Also, we give de�nitions of extraction for a �xed function and for a function chosen
randomly from a family.

29

3.2.1 Preimage Knowledge without Auxiliary Information

The strongest de�nition of preimage knowledge requires extraction to work for any func-
tion from a family. Speci�cally,
De�nition 3.2.1 (Noninteractive extraction without auxiliary information). A
veri�able family ensemble, H = {Hn}n∈N (with veri�er VH), is called noninteractively

extractable without auxiliary information if for any PPT, A (with private random

coins denoted by rA), there exists a PPT, KA such that for any k ∈ Kn:

Pr[y = A(k, rA), x← KA(k, rA) : VH(x, y) = 1 or (∀x′, VH(x′, y) 6= 1)] > 1− µ(n).

Here and in the rest of the thesis, all probabilistic experiments that contain rA are
taken over the random coins rA unless speci�ed otherwise.

We currently do not know of any nontrivial (e.g., one-way) family that satis�es this
de�nition. However, we have constructions that satisfy a weaker notion where extraction
holds if k is chosen randomly. Formally,
De�nition 3.2.2 (Noninteractive extraction without auxiliary information).
A veri�able family ensemble, H = {Hn}n∈N, is called noninteractively extractable

without auxiliary information if for any PPT, A (with private random coins denoted

by rA), there exists a PPT, KA such that:

Pr[k ← Kn, y = A(k, rA), x← KA(k, rA) : VH(x, y) = 1 or (∀x′, VH(x′, y) 6= 1)]

> 1− µ(n).

3.2.2 Preimage Knowledge with Independent Auxiliary Information

Adding auxiliary information to De�nition 3.2.1 results in a de�nition for dependent
auxiliary information because k is �xed in advance. So, we present this case in the next
section.

The corresponding version of De�nition 3.2.2 adds only a distribution of independent
auxiliary information, Z = {Zn}n∈N.

30

De�nition 3.2.3 (Noninteractive extraction with independent auxiliary in-
formation). A veri�able family ensemble, H = {Hn}n∈N, is called noninteractively

extractable with independent auxiliary information if for any PPT, A (with pri-

vate random coins denoted by rA), there exists a PPT, KA, such that for any distribution,

Z = {Zn}n∈N:

Pr[k ← Kn, z ← Zn, y = A(k, z, rA), x← KA(k, z, rA) :

VH(x, y) = 1 or (∀x′, VH(x′, y) 6= 1)] > 1− µ(n).

3.2.3 Preimage Knowledge with Dependent Auxiliary Information

Recall from previous discussions that introducing auxiliary information into De�nition
3.2.1 yields a de�nition with dependent auxiliary information, where the dependency is
unrestricted. Such a de�nition is equivalent to De�nition 3.2.3 except that the inequality
holds for any k.

There are two possible ways to introduce dependent auxiliary information (in the
restricted form described above) into De�nition 3.2.3. One can allow this auxiliary
information to be images of any input while the more restrictive way forces the images
to correspond to inputs chosen from well-spread distributions. Even though the former
is stronger, the latter is su�cient for our applications. We give both versions starting
with the stronger.
De�nition 3.2.4 (Noninteractive extraction with dependent auxiliary infor-
mation). A veri�able family ensemble, H, is called noninteractively t- extractable

(t-extractable, for short) with dependent auxiliary information if for any PPT, A (with

private random input, rA), there exists a PPT, KA, such that for any x1, ..., xt(n), and

any distribution, Z = {Zn}n∈N:

Pr[k ← Kn, z ← Zn, r1, ..., rt(n) ← Rn, ..., Rn,

y = A(k, z,Hk(x1, r1), ...,Hk(xt(n), rt(n)), rA),

x← KA(k, z,Hk(x1, r1), ...,Hk(xt(n), rt(n)), rA) :

31

VH(x, y) = 1 or (∃i, y = Hk(xi, ri)) or (∀x′, VH(x′, y) 6= 1)] > 1− µ(n).

If H is t-extractable with dependent auxiliary information for every polynomial t, then it

is called extractable with dependent auxiliary information.

De�nition 3.2.5 (Noninteractive extraction with dependent auxiliary informa-
tion). A veri�able family ensemble, H, is called noninteractively t- extractable (t-

extractable, for short) with dependent auxiliary information if for any PPT, A (with pri-

vate random input, rA), there exists a PPT, KA, such that for any vector of polynomially-

many well-spread distributions X = {X1, ..., Xt}, any polynomial, t2, and any uninvert-

ible function, F :

Pr[k ← Kn, (x1, ..., xt(n))← X1
n, ..., Xt(n)

n , z ← F (x1, ..., xt(n)),

rx1
1 , ..., rx1

t2(n), ..., r
xt(n)

t2(n) ← Rn, ..., Rn, y = A(k, z,Hk(x1, r
x1
1), ...,Hk(xt(n), r

xt(n)

t2(n)), rA),

x← KA(k, z,Hk(x1, r
x1
1), ...,Hk(xt(n), r

xt(n)

t2(n)), rA) :

VH(x, y) = 1 or (∃i, j, y = Hk(xi, r
i
j)) or (∀x′, VH(x′, y) 6= 1)] > 1− µ(n).

If H is t-extractable for every polynomial t, then it is called extractable.

Note that the independent auxiliary information, z, is allowed to depend on the
preimages, x1, ..., xt(n).

De�nition 3.2.5 has another formulation where A has access to an oracle that provides
images of the same inputs but with new random coins (for the function) every time it
is queried. That is, Ox1,...,xt1

(i) = Hk(xi, r) for new random coins r. Let hist denote
the history of interaction between A and Ox1,...,xt1

. Then, the following de�nition is
equivalent to De�nition 3.2.5.
De�nition 3.2.6 (Noninteractive extraction with dependent auxiliary infor-
mation (alternative version)). A veri�able family ensemble, H, is called noninter-

actively t- extractable (t-extractable, for short) with dependent auxiliary information

if for any PPT, A (with private random input, rA), there exists a PPT, KA, such that

for any vector of polynomially-many well-spread distributions X = {X1, ..., Xt1}, any

32

polynomial, t2, and any uninvertible function, F :

Pr[k ← Kn, (x1, ..., xt1(n))← X1
n, ..., Xt1(n)

n , z ← F (x1, ..., xt1(n)),

y ← A
Ox1,...,xt1 (k, z, rA), x← K

Ox1,...,xt1
A (k, z, hist, rA) :

VH(x, y) = 1 or (y ∈ hist) or (∀x′, VH(x′, y) 6= 1)] > 1− µ(n).

If H is t-extractable for every polynomial t, then it is called extractable.

3.3 Constructions

We give constructions of extractable functions based on the KE assumption in Section
3.3.1, on the DH-KEA assumption in Section 3.3.2, and on the POK assumption in
Section 3.3.3.

3.3.1 Constructions from the KE Assumption

We give three constructions from the KE assumption. All constructions satisfy ex-
tractability. However, each one satis�es a di�erent computational hardness property.
The �rst construction is one-way, the second is pseudorandom, while the last one is
perfectly one-way. Table 3.1 lists these results with the needed assumptions.

Before we present the constructions, we recall the KE assumption [Dam92, HT98].
Informally, the KE assumption says that one can not compute, on input p, q, g, ga, a pair
of elements (gr, gra) without knowing r. Essentially, this assumption claims that the only
viable way of computing such a pair is by raising g and ga to power r. This assumption
can be formulated with or without independent auxiliary information. However, it does
not hold with respect to dependent auxiliary information. For instance, a machine
may receive gr1 , gr1a as dependent auxiliary information and can output (gr1)r2 , (gr1a)r2

without knowing r1∗r2. The formal de�nition follows, with the convention that auxiliary
information can be disregarded by removing all boxed text.
Assumption 3.3.1 (KE Assumption, [?]). Let PQGA denote the distribution on

(p, q, g, ga), where p and q are uniform primes such that p = 2q + 1 and |p| = n, g is a

generator for the quadratic residue group (modulo p), and a is a uniform element in Z∗q.

33

Then, for any nonuniform PPT, A (with random coins rA), there is another nonuniform

PPT, K, such that for any distribution Z :

Pr[(p, q, g, ga)← PQGAn, z ← Zn , (y1, y2) = A(z , p, q, g, ga, rA),

x← KA(z , p, q, g, ga, rA) : y1 = gx or y2 6= ya
1] ≤ µ(n).

3.3.1.1 Extractable One-way Function

The KE and discrete-log (DL) assumptions imply that the following construction is an
extractable one-way (EOW) family ensemble.
Construction 3.3.1. Let F = {{fp,q,g,ga}(p,q,g,ga)∈PQGAn

}n∈N be a family ensemble,

where

fp,q,g,ga(x) = gx, (ga)x

Speci�cally, the KE assumption yields extractability in a straightforward way. More-
over, by the DL assumption, F is one-way, where the probability is taken over the choices
of the function and the input. Formally:
De�nition 3.3.1 (One-way families, [DH76]). A family ensemble, F, where F =

{{fk}k∈Kn}n∈N is one-way if for any PPT, A:

Pr[k ← Kn, x← Un, fk(A(fk(x))) = fk(x)] ≤ µ(n).

Theorem 3.3.1. If Assumptions 3.3.1 (respectively with auxiliary information) is sat-

is�ed, then Construction 3.3.1 is extractable as in De�nition 3.2.2 (respectively, with

independent auxiliary information, as in De�nition 3.2.3).

Moreover, if Assumption 2.3.1 (respectively, Assumption 2.3.2) holds then Construc-

tion 3.3.1 is one-way (as in De�nition 3.3.1) (respectively, as in De�nition 2.2.1).

Proof. Extraction: Extraction follows immediately if we de�ne VF(x, y = (y1, y2)) = 1

if and only if gx, (ga)x = y1, y2.
One-wayness (as in De�nition 3.3.1): For every adversary, A, that attacks this

construction, let B be another adversary that contradicts the underlying assumption
(Assumption 2.3.1). B receives p, q, g and y and outputs A(p, q, g, ga, y, ya), where a is
chosen uniformly by B.

34

One-wayness (as in De�nition 2.2.1): For every adversary, A, that attacks this con-
struction, for some p, q, g, ga, let B be another adversary that contradicts the underlying
assumption (Assumption 2.3.2). B receives p, q, g and y and outputs A(p, q, g, ga, y, ya),
where a is in the advice string of B.

3.3.1.2 Extractable Pseudorandom Generator

Construction 3.3.1 is pseudorandom if the DDH assumption is satis�ed. This is so
because the DDH assumption implies that ga, gx, gax is indistinguishable from ga, gx, gw.
Formally,
Theorem 3.3.2. If Assumption 2.3.3 holds, then Construction 3.3.1 is a pseudorandom

generator (as in De�nition 2.4.2).

Proof. Suppose for the purpose of contradiction that Construction 3.3.1 is not a family
of pseudorandom generators. Then there exists a nonuniform PPT, A, such that the
following is nonnegligible:

|Pr[(p, q, g, ga)← PQGAn, x← Un, b← A(fp,q,g,ga(x)) : b = 1]−

Pr[(p, q, g, ga)← PQGAn, x← Un, b← A(U|fp,q,g,ga (x)|) : b = 1]|.

This implies that A breaks the DDH assumption:p, q, g, ga, fp,q,g,ga(y) = p, q, g, ga, gx, gax

and p, q, ga, U|fp,q,g,ga (x)| ≡ p, q, ga, gb, gc, where c is uniform. This contradicts the DDH
assumption.

3.3.1.3 Extractable Perfectly One-way Function

The �nal construction from the KE assumption is that of an extractable POW function.
Recall from Chapter 2 that a POW function satis�es a strong notion of one-wayness,
where the function hides all partial information about the input.

A starting point is the previous construction. However, it is not perfectly one-way
since it reveals gx. To �x this, we use the construction of [Can97] in which x is hidden
by masking it with a uniform element r. So, the new candidate is grx, grxa. However,
using the KE assumption on this construction allows us to extract rx but not x. Thus,

35

we add gr, gra to the output. Formally,
Construction 3.3.2. Let H = {{Hp,q,g,ga}(p,q,g,ga)∈PGGAn

}n∈N be a family ensemble,

where Hp,q,g,ga : Z∗q ×Rn = Z∗q → (QRp)4 and :

Hp,q,g,ga(x, r) = gr, gar, grx, garx.

In the remainder of this section, we show that Construction 3.3.2 is an EPOW func-
tion. However, to prove that it is a POW function, we need a strong version of the DDH
assumption as in [HT98, BP04b], where it holds for any group in some set, PQG. This
is so because we require secrecy to hold for any function in the family. On the other
hand, the standard DDH assumption (Assumption 2.3.3) is su�cient to prove secrecy
for a random function.

The DDH assumption, both the standard and the strong version, can be formalized
with or without auxiliary information. Whether the assumption holds with or without
auxiliary information translates directly to whether the construction is perfectly one-way
with or without auxiliary information. The nonstandard version of the DDH assump-
tion follows with auxiliary information surrounded by boxes. So, the de�nition without
auxiliary information can be obtained by removing the boxes and their content.
Assumption 3.3.2 (Strong DDH). Let PQG be a space of tuples (p, q, g), where p

and q are primes, p = 2q + 1, and g is a generator for the quadratic residue group

modulo p. Then, for any (p, q, g) ∈ PQGn, any well-spread distribution, Xq, over Z∗q,

any uninvertible function, F , and any nonuniform PPT, A:

|Pr[x← Xq
n, r ← Z∗q , z ← F (x) , b← A(p, q, g, z , gx, gr, grx) : b = 1]−

Pr[x← Xq
n, r1, r2 ← Z∗q , Z∗q , z ← F (x) , b← A(p, q, g, z , gx, gr1 , gr2) : b = 1]| ≤ µ(n).

Theorem 3.3.3. If Assumption 3.3.1 holds (respectively with independent auxiliary in-

formation), then Construction 3.3.2 is extractable, as in De�nition 3.2.2(respectively,

with independent auxiliary information, as in De�nition 3.2.3).

Moreover, if Assumption 3.3.2 holds (respectively, with auxiliary information), then

construction 3.3.2 is computationally indistinguishable (respectively, with auxiliary infor-

mation) as in De�nition 2.5.5.

36

Proof.

Preimage extraction: If the KE assumption holds (respectively, with auxiliary infor-
mation) then for any PPT, A, that outputs a valid image (gr, gar, grx, garx), there are
two PPT, K1 and K2, such that K1 extracts r and K1 extracts rx. Consequently, x is
extractable (respectively with independent auxiliary information).
Information hiding: H is t-indistinguishable (respectively, with auxiliary information)
if and only if H′, where H ′p,q,g(x, r) = gr, grx is (respectively, with auxiliary information).
For any p, q, g, ga and any well-spread distribution, Xq, and any PPT, A, that tries to
distinguish t images of H, there is another PPT, B, that tries to distinguish t images of
H′ with the same success rate as A. B simply raises the appropriate input to the ath

power and simulates A. Speci�cally, on input p, q, g, z, y1
1, y

2
1, ..., y

1
t(n), y

2
t(n) and auxiliary

input a, B runs A on p, q, g, ga, z, y1
1, (y

1
1)

a, y2
1, (y

2
1)

a, ..., y1
t(n), (y

1
t(n))

a, y2
t(n), (y

2
t(n))

a and
outputs whatever A does.

So, for simplicity, we prove H′ is t-indistinguishable instead. We do so by �rst
showing that H′ satis�es 2-indistinguishability and that 2-indistinguishability and t-
indistinguishability are equivalent for this construction (where t is any polynomial).

H′ is computationally 2-indistinguishable. At a high level, the DDH assump-
tion implies that H ′(x),H ′(x) is computationally indistinguishable from H ′(x),H ′(Un).
Using the DDH assumption again, the latter distribution is computationally indistin-
guishable from H ′(Un),H ′(Un). Formally, for any well-spread distribution, X,
any uninvertible function, F , and any nonuniform PPT, A:

|Pr[x← Xq
n, r1, r2 ← Z∗q , Z∗q , z ← F (x) , b← A(p, q, g, z , gr1 , gr2 , gr1x, gr2x) : b = 1]−

Pr[x← Xq
n, u1, r1, r2 ← Z∗q , Z∗q , Z∗q , z ← F (x) ,

b← A(p, q, g, z , gr1 , gr2 , gr1x, gr2u1) : b = 1]| ≤ µ(n). (3.1)

Otherwise, there is a distinguisher B for the DDH assumption: on input (gx, gr1 , gz), B

chooses r2 uniformly and runs A on p, q, g, gr2 , gr1 , gr2x, gz. Using the same argument,
we have for the same parameters as before:

|Pr[x← Xq
n, u1, r1, r2 ← Z∗q , Z∗q , z ← F (x) ,

37

b← A(p, q, g, z , gr1 , gr2 , gr1x, gr2u1) : b = 1]−

Pr[x← Xq
n, u1, u2, r1, r2 ← Z∗q , Z∗q , Z∗q , z ← F (x) ,

b← A(p, q, g, z , gr1 , gr2 , gr1u1 , gr2u2) : b = 1]| ≤ µ(n). (3.2)

Eq. 3.1 and 3.2 imply that H′ is 2-indistinguishable.
H′ is computationally t-indistinguishable. If H′ is 2-indistinguishable, it is t-

indistinguishable for any polynomial t (respectively, with auxiliary information). We
claim that given any two images, H ′p,q,g(x1, r1),H ′p,q,g(x2, r2), it is possible to generate a
new image, H ′p,q,g(x3, r3) satisfying two conditions. First, r3 is uniform and independent
of x1, x2, r1, r2. Second, x3 = x1 if x1 = x2 and otherwise x3 is uniform and independent
of x1, x2, r1, r2, r3. Consequently, any distinguisher, A, for t copies can be turned into a
distinguisher for 2 copies that generates t− 2 new copies and runs A.

Let G be a PPT, where on input H ′p,q,g(x1, r1) = gr1 , gr1x1 ,H ′p,q,g(x2, r2) = gr2 , gr2x2 ,
G samples uniformly and independently u1, u2 from Zq, such that u1, u2 are not both
0, and outputs H ′p,q,g(x3, r3) = gr1u1+r2u2 , gr1u1x1+r2u2x2 . We show that the output of
G satis�es the two conditions mentioned above if neither r1 nor r2 is 0 (the probability
of either one of them being zero is negligible). If x1 = x2, then x3 = x1 and r3 is
uniform and independent of H ′p,q,g(x1, r1),H ′p,q,g(x2, r2). Consequently, H ′p,q,g(x3, r3) is
a new image of x1 with independent random coins. On the other hand, if x1 6= x2,
then H ′p,q,g(x3, r3) is an image of independent and uniform element using independent
random coins. Speci�cally, for any x1, x2, r1, r2, where x1 6= x2 and r1 6= 0 and r2 6= 0,
and any x3, r3, there is a unique pair, u1, u2 such that r3 = r1u1 + r2u2 and x3 =

(r1u1x1 +r2u2x2)r−1
3 . Solving these two equations for u1, u2, we have u1 = (r3−r3(x3−

x1)(x2 − x1)−1)r−1
1 and u2 = r−1

2 r3(x3 − x1)(x2 − x1)−1.
Alternative proof (hybrid argument):H′ is computationally t-indistinguishable.
Suppose there exists a polynomial t and a PPT, A such that H′ is not t-indistinguishable
with respect to A. Then, by a hybrid argument, there exists an 1 ≤ i ≤ t, such that the
following di�erence is nonnegligible:

Advantage(A) ≡

|Pr[x← Xq
n, r1, ..., rt(n), u1, ..., ut(n) ← Z∗q , z ← F (x) ,

38

b← A(p, q, g, z ,H ′p,q,g(x, r1), ...,H ′p,q,g(x, ri+1),H ′p,q,g(ui+2, ri+2), ...,H ′p,q,g(ut(n), rt(n))) :

b = 1]−

Pr[x← Xq
n, r1, ..., rt(n), u1, ..., ut(n) ← Z∗q , z ← F (x) ,

b← A(p, q, g, z ,H ′p,q,g(x, r1), ...,H ′p,q,g(x, ri),H ′p,q,g(ui+1, ri+1), ...,H ′p,q,g(ut(n), rt(n))) :

b = 1]|

Let B be a PPT that uses A to contradict the strong DDH assumption. B re-
ceives p, q, g, z ga, gb, gab. It chooses a uniform i between 1 and t(n), uniformly samples
r1, ..., rt(n) and ui+2, ..., ut(n) and outputs

A(p, q, g, z , (gr1 , (ga)r1), ..., (gri , (ga)ri), (gb, gab), (gri+2 , gri+2ui+2), ..., (grt(n) , grt(n)ut(n)).

By a standard hybrid argument:

|Pr[a← Xq
n, b, c← Z∗q , z ← F (a) , b← B(p, q, g, z , ga, gb, gab) : b = 1]−

Pr[a← Xq
n, b, c← Z∗q , z ← F (a) , b← B(p, q, g, z , ga, gb, gc) : b = 1]|

>
1

t(n)
Advantage(A),

which is nonnegligible, contradicting the strong DDH assumption.

3.3.1.3.1 Veri�cation. The veri�cation that we have for Construction 3.3.2 is dif-
ferent from the usual notion. Speci�cally, VH is assumed to get a as input, which is not
part of the public description of H. Speci�cally, VH(x, (y1, y2, y3, y4), a) = 1 if and only
if y2 = (y1)a,y4 = (y3)a, y3 = (y1)x and y4 = (y2)x.

Moreover, note that this construction satis�es a form of range veri�cation where,
given a, it is easy to verify that a string is a valid image. Speci�cally, for any string,
(y1, y2, y3, y4), if y2 = (y1)a and y4 = (y3)a, then the image must be a valid one for
some x. This is an interesting property that we use in the 3-round ZK construction. We
emphasize that this property is nontrivial because an extractable function has a sparse
range. Formally,

39

De�nition 3.3.2 (Range Veri�cation). A family ensemble, H = {Hn}n∈N, where for

some polynomial l(n), for any n ∈ N, and any k, zk ∈ Kn (zk is auxiliary information

about k), Hk : {0, 1}n × Rn → {0, 1}l(n), has an e�cient range veri�cation if there

exists a deterministic polynomial time algorithm, Vrange(H) such that:

∀k ∈ Kn, Vrange(H)(y, zk) = 1 i� ∃, x, r, Hk(x, r) = y.

3.3.1.3.2 Collision resistance. It can be shown that Construction 3.3.2 is collision-
free by using the fact that gr is a permutation.

3.3.2 Constructions from the Di�e-Hellman Knowledge of Exponent

Assumption

The Di�e-Hellman Knowledge of Exponent (DH-KEA) assumption is stronger than the
KE assumption and implies the latter assumption [PX09]. Thus, it implies all the results
in Section 3.3.1.

Informally, the DH-KEA assumption says that it is hard for any e�cient adversary
to compute a DDH tuple, ga, gb, gab, without knowing either a or b. Formally, let Gen

be a group generator that takes a security parameter, k, and outputs group description,
G, and an element g ∈ G.2

Assumption 3.3.3 (Di�e-Hellman Knowledge of Exponent Assumption, [PX09]).
There exists a PPT, Gen where for any PPT, A (with random coins rA), there is a PPT

extractor, KA, such that:

Pr[(G, g)← Gen(1k), (A,B, C) = A(G, g, rA), x← KA(G, g, rA) :

(∃a, b : A = ga, B = gb, C = gab) and C 6= Ax and C 6= Bx] < µ(n).

3.3.3 Constructions from the Proof of Knowledge Assumption

Lepinski [Lep02] constructs 3-round zero-knowledge proofs using a strong knowledge
assumption, called the proof of knowledge (POK) assumption. In the context of this

2In [PX09], Gen generates, in addition, an upper bound on the order of g and a trapdoor for G.
However, these are not needed for this assumption. For instance, the order of G is an upper bound on
the order of g.

40

chapter, we use this assumption to construct extractable one-way and extractable per-
fectly one-way functions. Table 3.1 lists the results with the required assumptions.

3.3.3.1 The POK assumption

Informally, this assumption attempts to replace a Random Oracle with a hash function
(or a family of such functions) in a speci�c 2-round proof of knowledge protocol without
compromising it.3 This is then used to construct 3-round ZK proofs for any language in
NP. One of the primary usages of random oracles in this protocol is to check that the
potentially-malicious prover generates a uniform string in an honest way, as speci�ed
by the protocol. So, this uniform string is designated to be the output of the Random
Oracle on an input chosen by the prover (and sent to the veri�er). This forces the
prover to �know" something, speci�cally the discrete log of one of two elements. Then,
this assumption comes in to replace the Random Oracle with a hash function without
loosing the existence of a (non-blackbox) knowledge extractor.

The POK assumption is particular to the proof of knowledge mentioned above and
may look peculiar at a �rst reading. Informally, the adversary is given a prime, p, a
generator for Z∗p, an element, C, of Z∗p, and a hash function, h. Its task is to �nd pairs,
(X, Y), (W1, Z1), ..., (Wn, Zn) such that every pair multiplies to C. Also, it has to �nd
B1, ..., Bn where b1...bn = h(X, W1, ...,Wn) and gBi ∈ {Wi, Zi} if bi = 0, otherwise,
gBi ∈ {XW−1

i , X−1Wi, XZ−1
i , X−1Zi}. The assumption then goes on to say that for

some family of hash functions, every adversary should know a discrete log of X or Y if
its output is valid. For clarity, we use Test to denote a deterministic PPT that outputs
1 if the above conditions are satis�ed and 0 otherwise. Formally,

Test(p, q, g, C, h, (X, Y), (W1, Z1), ..., (Wn, Zn), B1, ..., Bn) = 1

if and only if all the above conditions, using the input to Test as parameters, are met.
Even though the original assumption considers all primes, we restrict primes to safe ones
(i.e., primes of the form p = 2q + 1, where q is prime) as in the previous section.
Assumption 3.3.4 (Proof of Knowledge (POK) Assumption, [Lep02]). Let

PQGC denote the uniform distribution on (p, q, g, C), where p and q are primes, p =
3This proof of knowledge is for the case where the prover chooses (X, Y), sends them to the veri�er,

and proves knowledge of the discrete log of one of them.

41

2q + 1, g is a generator for the quadratic residue group, QRp, and C is an element of

QRp. There exists a family of hash functions, H, where for any PPT, A (with random

coins rA), there exists a PPT, KA, such that for any distribution Z :

Pr[(p, q, g, C)← PQGCn, h← Hn, z ← Zn ,

(X, Y), ((W1, Z1), ..., (Wn, Zn), B1, ..., Bn)← A(z , p, q, g, C, h, rA),

x← KA(z , p, q, g, C, h, rA) :

Test(p, q, g, C, (X, Y), (W1, Z1), ..., (Wn, Zn), B1, ..., Bn) = 1 and gx 6∈ {X, Y }] ≤ µ(n).

3.3.3.2 Extractable One-way Function

The POK and DL assumptions imply the existence of an extractable one-way function
in a straightforward way. The function description is (p, q, g, C, h). Fp,q,g,C,h on input x,
computes gx and Cg−x and uniformly assigns X to one of the two strings and Y to the
other one. Then, F chooses uniform w1, ..., wn, computes the pairs (gw1 , Cg−w1), ...,

(gwn , Cg−wn), and assigns (Wi, Zi) to be a random permutation on each pair. Also, F

computes b1, ..., bn = h(X, W1, ...,Wn) and Bi = wi if bi = 0, otherwise Bi is uniformly
selected from the set {x− wi,−x + wi}. Finally, F outputs
(X, Y), (W1, Z1), ..., (Wn, Zn), B1, ..., Bn. The POK assumption implies that this func-
tion is extractable. On the other hand, this function is one-way by the DL assumption.
However, this function is not perfectly one-way because it reveals gx. Formally,
Construction 3.3.3. Let F = {{Fp,q,g,C,h}(p,q,g,C,h)∈PQGCHn

}n∈N be a randomized fam-

ily ensemble, where

Fp,q,g,C,h(x) = (X, Y), (W1, Z1), ..., (Wn, Zn), B1, ..., Bn,

where (X, Y) is a random permutation of gx, Cg−x, Wi, Zi is a random permutation of

(gwi , Cgwi), gwi is a random element of ZR∗p, and Bi = wi if hi(X, W1, ...,Wn) = 0 and

Bi is a random element from {x− wi,−x + wi} otherwise.

We specify an e�cient veri�er to decide whether y is an image of x under F .
VF(y, x) = 1, if and only if Test(p, q, g, C1, h, y) = 1 and gx ∈ {X, Y }, where y is

42

parsed as (X, Y), (W1, Z1), ..., (Wn, Zn), B1, ..., Bn. Note that under this de�nition, there
are at most two (possibly distinct) preimages for each point in the range: the discrete
logarithms of X and Y .
Theorem 3.3.4. If Assumption 3.3.4 is satis�ed (respectively with auxiliary informa-

tion), then Construction 3.3.3 is extractable as in De�nition 3.2.2 (respectively, with

independent auxiliary information, as in De�nition 3.2.3).

Moreover, if the DL assumption (Assumption 2.3.1) holds, then Construction 3.3.3

is one-way (as in De�nition 2.2.2).

Proof. Extraction. Let A be any PPT that outputs a valid image, y. By de�nition
of VF, Test(p, q, g, C, h, y) = 1. By Assumption 3.3.4, there is an extractor, KA that
outputs x such that gx ∈ {X, Y }, where y = (X, Y), (W1, Z1), ..., (Wn, Zn), B1, ..., Bn.
By de�nition, VF(x, y) = 1. Consequently, x is a preimage of y.

One-wayness. Let A be any PPT that given

y = (X, Y), (W1, Z1), ..., (Wn, Zn), B1, ..., Bn

, outputs x such that VF(x, y) = 1 with nonnegligible probability. We use A to contradict
the DL assumption as follows. Let B be a PPT that receives p, q, g, D, chooses h and
a,w1, ..., wn uniformly, and computes ga and C = Dga. Then, B simulates A on y =

(X, Y), (W1, Z1), ..., (Wn, Zn), B1, ..., Bn and outputs whatever A does. Here, (X, Y) is
a random permutation of (D, ga), (Wi, Zi) is a random permutation of (gwi , Cgwi), and
Bi = wi if hi(X, W1, ...,Wn) = 0 (hi is the ith bit of h(.)), otherwise Bi is uniformly
chosen from {a− wi,−a + wi}. Since B knows the discrete log of a uniform element in
{X, Y } and A does not know which, the probability that B recovers the discrete log of D

is half the probability that A recovers a preimage of y. Therefore, the latter probability
should be negligible. A contradiction.

We remark that Construction 3.3.3 is not pseudorandom because XY = W1Z1 =

... = WnZn = C.

3.3.3.3 Extractable Perfectly One-way Function

To achieve perfect one-wayness, we use a construction similar to the one in [Can97].
Consider the following construction. Gp,q,g,C1,C2,h on input x, chooses a random r, and

43

simply outputs Fp,q,g,C1,h(r, .), Fp,q,g,C2,h(rx, .), where �." stands for the random coins of
F . Formally,
Construction 3.3.4. Let F = {{fp,q,g,C,h}(p,q,g,C,h)∈PQGCHn

}n∈N be the randomized

family ensemble from Construction 3.3.3.

Then, let G = {{Gp,q,g,C1,C2,h}(p,q,g,C1,C2,h)∈PQGCCHn
}n∈N be family ensemble de�ned

as follows:

Gp,q,g,C1,C2,h(x, r′ = (r, rF
1 , rF

2)) = Fp,q,g,C1,h(r, rF
1), Fp,q,g,C2,h(rx, rF

2),

where rF
1 and rF

2 are the random coins for F .

To verify if y = (y1, y2) is a valid image of x under G, the veri�er, VG, accepts if
Test(p, q, g, C1, y1) = Test(p, q, g, C2, y2) = 1 and either Xx

1 or Y x
1 is in the set {X2, Y2}

(where y1 = (X1, Y1), ... and y2 = (X2, Y2), ...).
We claim that G is extractable based on the POK assumption. Using the POK

assumption on the output of the �rst F gives us the discrete log of either X1 or Y1,
which we denote by r′. Likewise, the same assumption on the output of the second F ,
gives us the discrete log of either X2 or Y2, denoted by r′x′. Thus, x′, a valid preimage,
can be recovered.

Using the strong DDH assumption, we show that this construction is perfect one-way.
Speci�cally, we show that it is 1-indistinguishable (see De�nition 2.5.5). However, we
don't know if this construction satis�es the more general notion of t-indistinguishability.
Theorem 3.3.5. If Assumption 3.3.4 holds with auxiliary information, then Construc-

tion 3.3.4 is extractable with independent auxiliary information (as in De�nition 3.2.3).

Moreover, if Assumption 3.3.2 holds (respectively, with auxiliary information), then G is

computationally 1-indistinguishable (respectively, with auxiliary information) as in Def-

inition 2.5.5.

Proof. Extraction. Let A be any PPT which on input (z, p, q, g, C1, C2, h) outputs a
valid image, y = (y1, y2). De�ne two new PPT, A1 and A2, where Ai(z, p, q, g, Ci, h),
receives C3−i as auxiliary information, computes A(z, p, q, g, C1, C2, h) = y1, y2, and
outputs yi. By the POK assumption, there exists two PPT machines, KA1 and KA2

that compute the discrete log of either X or Y returned by the corresponding machine.
44

Consequently, KA runs KA1 and KA2 to recover discrete logs, r′ and r′x′, from the �rst
and second message, and returns x′.

Perfect one-wayness. Computational 1-indistinguishability for G follows directly
from the strong DDH assumption. For simplicity, we give the proof for indistinguisha-
bility without auxiliary information.

Suppose a PPT, A, breaks the perfect one-wayness of G. Then, let B be a PPT
that contradicts the strong DDH assumption. B receives p, q, g, ga, gb, gab as input. It
uniformly samples y1, y2, sets C1 = gbY1 and C2 = gabY2, where Y1 = gy1 and Y2 = gy2 .
Also, it uniformly selects w1

1, ..., w
1
n, w2

1, ..., w
2
n, sets W j

i = gwj
i and Zj

i = Cj(W
j
i)−1. It

randomly permutes the pairs (Xj , Yj) and (W j
i , Zj

i). It also samples a hash function h,
computes bj

1, ..., b
j
n = h(Xj ,W

j
1 , ...,W j

n) and Bj
i = wj

i if bj
i = 0, otherwise Bj

i is randomly
chosen from {yj − wj

i ,−yj + wj
i }. Finally, B runs A and outputs whatever A does.

|Pr[a← Xq
n, b, c← Z∗q , b← B(p, q, g, ga, gb, gab : b = 1]−

Pr[a← Xq
n, b, c← Z∗q , b← B(p, q, g, ga, gb, gc : b = 1]| ≥

Pr[x← Xq
n, r ← RG, b← A(Gp,q,g,C1,C2,h(x, r)) : b = 1]−

Pr[x← Z∗q , r ← RG, b← A(Gp,q,g,C1,C2,h(x, r)) : b = 1]| > µ(n).

This contradicts the DDH assumption.
Range veri�cation. Observe that G satis�es range veri�cation (as in De�nition

3.3.2) because Test(p, q, g, C1, y1) = Test(p, q, g, C2, y2) = 1 if and only if y = (y1, y2)

belongs to the range of Gp,q,g,C1,C2,h. Moreover, this range veri�cation does not require
any private information about the function Gp,q,g,C1,C2,h.

Collision Resistance. We show that G satis�es collision resistance if both the POK
and DDH assumptions hold against nonuniform adversaries. Nonuniformity is needed
because collision resistance is de�ned against nonuniform machines. Formally,
Theorem 3.3.6. If Assumptions 3.3.4 and 2.3.3 hold against nonuniform PPT adver-

saries, then Construction 3.3.4 is collision resistant (as in De�nition 2.5.2).

Proof. Suppose a nonuniform PPT, A, on input p, q, g, C1, C2, h, outputs a collision, that
is, (y, a, b) where VG(y, a) = VG(y, b) = 1, with nonnegligible probability. We do a case

45

by case analysis to obtain a contradiction. For clarity, we focus on the (X1, Y1) and
(X2, Y2) part of y and denote by xi (respectively, yi) the discrete log of Xi (respectively,
Yi). Since both a and b are valid preimages of y, there are three possible cases:

1. Xa
1 = X2 and Xb

1 = Y2 (the same analysis holds for the symmetric cases, Xb
1 =

X2 and Xa
1 = Y2, etc). By the POK assumption, we can recover either x2 or

y2. Suppose we recover x2, then given the output of A, we can compute y2 =

x1b = x2a
−1b. However, we can now recover the discrete log of C2, which is

x2 + y2, contradicting the DL assumption.4 Speci�cally, a PPT, B, on input
p, q, g, C2, generates C1 and h, runs A on p, q, g, C1, C2, h and computes x2 + y2

with nonnegligible probability as described above.
2. Xa

1 = X2 and Y b
1 = X2 (the same analysis holds for the symmetric cases and is

omitted here). By the POK assumption, we can recover either x1 or y1. Suppose
we recover x1. So, we can compute y1 = x2b

−1 = x1ab−1. Thus, we recover the
discrete log of C1, contradicting the DL assumption.

3. Xa
1 = X2 and Y b

1 = Y2 (the same analysis holds for the symmetric cases and is
omitted here).
(a) If, by the POK assumption, we recover (x1, y2) or (y1, x2), then we can recover

(x2, y2), to contradict the DL assumption on C2.
(b) Suppose we recover (x1, x2) by the POK assumption (the symmetric case of

y1, y2 has the same analysis). Denote by ci the discrete log of Ci. Then, we
obtain the following relationship between c1 and c2: c2 = bc1 + x1(a − b).
We use the DDH assumption to show that this case is also not possible.
On input, gu, gv, gw, where u and v are uniform but w can be either uv or
uniform, compute A(p, q, g, gu, gv, h) and A(p, q, g, gu, gw, h). If w is uniform,
then A outputs a collision on both runs (with nonnegligible probability). By
the DDH assumption, the same can be said when w = uv. In the latter
case, A outputs, among other things, (X1, Y1), (X2, Y2), a, b on the �rst run
and (X ′1, Y

′
1), (X

′
2, Y

′
2), a

′, b′ on the second. We then have two relations in two
unknowns:

4The DL assumption is implied by the DDH assumption.

46

v = bu + x1(a− b) and w = uv = b′u + x′1(a
′ − b′).

Solving for u contradicts the DL assumption on gu.

3.4 The Relationship Between Extractable Functions and

NIZK proofs of knowledge

Super�cially, extractable POW functions and NIZK proofs of knowledge seem to satisfy
very similar knowledge requirements. However, NIZK proofs of knowledge are weaker in
two aspects. First, they require the extractor to work with the help of auxiliary infor-
mation about the common reference string (CRS). On the other hand, EPOW functions
require extractors to work given the view of the adversary without any auxiliary infor-

mation. Second, secrecy of NIZK (zero-knowledge) holds over the choices of the CRS
while the secrecy of EPOW functions holds for any function in the family. We show
that if we weaken the secrecy requirement of EPOW functions to hold for a uniformly
sampled function and strengthen the knowledge requirement of NIZK, we get an equiv-
alence. Speci�cally, we show that the existence of �strong� NIZK proofs of knowledge
is equivalent to the existence of extractable (�weak� POW) functions, where extraction
is with independent auxiliary information. Moreover, the existence of �stronger� NIZK
proofs of knowledge implies extractable weak POW functions, where extraction is with
dependent auxiliary information. However, we do not know if the implication in the
reverse direction is true.

Traditionally, NIZK arguments ask for a universal blackbox extractor that can recover
a witness from the proof and some auxiliary information about the CRS. However, we
strengthen this notion in one respect and relax it in another. Speci�cally, we require
that the extractor succeed without additional information about the CRS. On the other
hand, we allow the extractor to depend on the prover, and we also give it access to the
prover's private input. According to this notion, the extractor has to be nonblackbox
and consequently non-universal. Such a de�nition captures the computational notion
of knowledge more accurately than the original one as it clearly demonstrates that the
prover knows a witness by e�ciently extracting it from the view of the prover. Formally,

47

De�nition 3.4.1 (Strong t−proofs of knowledge). Let P = (P, V) be a noninterac-

tive zero-knowledge argument system in the CRS model (as in De�nition 2.10.1) for an

NP relation RL. Then, it is called a strong t-proof of knowledge if for every PPT, A

(with randomness rA), there exists a PPT, KA, such that for any (x1, w1), ..., (xt(n), wt(n)) ∈

RL (where n = |x1| = ... = |xt(n)|), and any auxiliary information z:

Pr[σ ← Un, π1, ..., πt(n) ← P (x1, w1, σ), ..., P (xt(n), wt(n), σ),

(x, π) = A(z, x1, ..., xt(n), π1, ..., πt(n), σ, rA), w ← KA(z, x1, ..., xt(n), π1, ..., πt(n), σ, rA) :

(x,w) ∈ RL or (∃i, (x, π) = (xi, πi)) or V (x, π, σ)] 6= 1 > 1− µ(n).

P is called a strong proof of knowledge if it is a t-proof of knowledge for every polynomial

t.

Observe that De�nition 3.4.1 requires not only that it is hard to generate an accept-
able proof without knowing a witness but also that it is hard to �nd a new theorem for
which one of the given proofs applies.

For the results in this section, we relax the secrecy requirement on POW functions
so that it holds over the choice of the function, i.e., weak POW functions as de�ned in
[CMR98]. Formally,
De�nition 3.4.2 (weak t-Indistinguishability). Let F be any (possibly probabilis-

tic) uninvertible function. A veri�able family ensemble H = {Hn}n∈N, where Hk :

{0, 1}n × Rn → {0, 1}l(n) for some polynomial l, is called weakly t-indistinguishable

with auxiliary input F if for any well-spread distribution, X = {Xn}n∈N and any PPT

A:

|Pr[k ← Kn, x← Xn, z ← F (x) , (r1, ..., rt)← (Rn, ..., Rn) :

A(k, z ,Hk(x, r1), ...,Hk(x, rt)) = 1] −

Pr[k ← Kn, x← Xn, (u1, ..., ut)← (Un, ..., Un), z ← F (x) , (r1, ..., rt)← (Rn, ..., Rn) :

A(k, z ,Hk(u1, r1), ...,Hk(ut, rt)) = 1]| ≤ µ(n).

If H is weak t-indistinguishable with any auxiliary input F then it is called weak

t-indistinguishable with auxiliary input . Moreover, if it is weak t-indistinguishable

48

with auxiliary input for any polynomial t, then it is called weak indistinguishable

with auxiliary input .

We show that the existence of NIZK strong 0-proofs of knowledge is equivalent to that
of EPOW functions if we consider independent auxiliary information only. Moreover, if
we consider dependent auxiliary information, then we show that NIZK strong t-proofs
of knowledge are su�cient for constructing extractable weakly-indistinguishable POW
functions. However, we do not know if the implication holds in the reverse direction.
Formally, we have the following theorem.
Theorem 3.4.1. If weak t-indistinguishable POW functions exist (as in De�nition 3.4.2)

and NIZK strong 0-proofs of knowledge (respectively, NIZK strong proofs of knowledge)

exist (as in De�nition 3.4.1), then extractable weak t-indistinguishable POW functions

exist as well, as in De�nitions 3.4.2 and 3.2.3 (respectively, as in De�nitions 3.4.2 and

3.2.5).

Moreover, if extractable weakly indistinguishable POW functions exist (as in De�ni-

tions 3.4.2 and 3.2.3) and semantically secure encryption and noninteractive witness-

indistinguishable proofs exist (as in De�nitions 2.7.1 and 2.11.1), then NIZK strong

0-proofs of knowledge exist (as in De�nition 3.4.1).

Proof. We prove each direction by presenting a construction and then analyzing its
security.

From NIZK to EPOW functions. We convert any weak POW function to a weak
EPOW function by appending a proof of preimage knowledge to the output of the original
function. Formally, let H be any weak POW. Let Lk = {y : ∃x, r, y = Hk(x, r)} and
P =< P (y, x, r, σ), V (y, ., σ) > be a NIZK strong proof of knowledge for Lk, where σ is
the CRS. Let rP be the random coins for P . Then, the following is an EPOW family
ensemble:

H ′k′=(k,σ)(x, r′ = (r, rP)) = Hk(x, r), P (Hk(x, r), x, r, σ, rP).

Veri�cation. To verify that y = (y1, y2) is a valid image of x, check that y1 is a
valid image of x under H and y2 is an acceptable proof of preimage knowledge for y1.
Formally, VH′(x, (y1, y2)) = 1 if and only if VH(x, y1) = 1 and V (y1, y2, σ) = 1 (the last
V is the veri�er for the NIZK proof).

49

Range veri�cation. Observe that H′ has a range veri�er if H has one (with
auxiliary information zk). Speci�cally, Vrange(H′)(y = (y1, y2), zk) = 1 if and only if
Vrange(H)(y1, zk) = 1 and V (y1, y2, σ) = 1.

Collision resistance. Collision resistance follows directly from collision resistance
on H.

Preimage extraction. It is possible due to witness extraction of the NIZK argu-
ment. In more detail, let A be an adversary that receives the following as input

k′ = (k, σ), z, H ′k′(x1, r
x1
1), ...,H ′k′(xt1(n), r

xt1(n)

t2(n))

and outputs a new image y (for any polynomials t1 and t2, any x1, ..., xt1(n), any auxiliary
information z about x1, ..., xt1(n)). By construction, y = (y1, y2) is a new theorem/proof
pair for (Lk,P) (where y1 is the theorem and y2 is the proof). Thus, by witness extraction
(De�nition 3.4.1), there exists a KA that computes a witness w = (x, r) for y1, i.e.,
Hk(x, r) = y1. By completeness of both the NIZK proof of knowledge and veri�cation of
H, VH′(x, y) = 1. Let K′A be same as KA except that it outputs x instead of w = (x, r).
Then, K′A is preimage extractor for A and H′. (To get the proof for the special case of
extraction with independent auxiliary information, set t1 and t2 to 0.)

Information hiding. We claim that a t-sequence of images under H′ is indistin-
guishable from images of uniform strings. Suppose, for the purpose of contradiction,
that this is not the case. We then show that H is not weakly t-indistinguishable. For-
mally, suppose, for the purpose of contradiction, there exists a well-spread distribution,
X, auxiliary information, F , polynomials, p and t, and a PPT, A′, such that for in�nitely
many n:

|Pr[k′ ← K ′n, x← Xn, z ← F (x), (r1, ..., rt)← (R′n, ..., R′n) :

A′(k′, z, H ′k′(x, r1), ...,H ′k′(x, rt)) = 1] −

Pr[k′ ← K ′n, x← Xn, (u1, ..., ut)← (Un, ..., Un), z ← F (x), (r1, ..., rt)← (R′n, ..., R′n) :

A′(k′, z, H ′k′(u1, r1), ...,H ′k′(ut, rt)) = 1]| ≥ 1
p(n)

. (3.3)

We de�ne A to be a PPT that uses A′ to break the indistinguishability property of
H. A receives a sequence of images under H, it runs the ZK simulator, S = (S1, S2), to

50

convert images under H to images under H′, and then runs A′ on them. Formally,

A(k, z, y1, ..., yt) = A′(k′, z, (y1, S2(σ, aux(σ), y1)), ..., (yt, S2(σ, aux(σ), yt))),

where S1(k) = (σ, aux(σ)) and k′ = (k, σ).
By the zero-knowledge property, we have

|Pr[k′ ← K ′n, x← Xn, z ← F (x), (r1, ..., rt)← (R′n, ..., R′n) :

A′(k′, z, H ′k′(x, r1), ...,H ′k′(x, rt)) = 1]−

Pr[k ← Kn, x← Xn, z ← F (x), (r1, ..., rt)← (Rn, ..., Rn) :

A(k, z,Hk(x, r1), ...,Hk(x, rt)) = 1]| ≤ µ(n). (3.4)

|Pr[k′ ← K ′n, x← Xn, (u1, ..., ut)← (Un, ..., Un), z ← F (x), (r1, ..., rt)← (R′n, ..., R′n) :

A′(k′, z, H ′k′(u1, r1), ...,H ′k′(ut, rt)) = 1]−

Pr[k ← Kn, x← Xn, (u1, ..., ut)← (Un, ..., Un), z ← F (x), (r1, ..., rt)← (Rn, ..., Rn) :

A(k, z ,Hk(u1, r1), ...,Hk(ut, rt)) = 1]| ≤ µ(n). (3.5)

Combining Eq. 3.3, 3.4, and 3.5 contradicts the assumption that H satis�es weak
t-indistinguishability.

From EPOW functions to NIZK.
Let H be an extractable (with independent auxiliary information) weak POW func-

tion and (G, E, D) be any public-key encryption scheme. Also, let L′ be any NP-language
with relation RL′ and P ′ = (P ′, V ′) be a noninteractive witness indistinguishable proof
for the language:

Lk,pk1,pk2 = {((x, y1, y2), (y3, y4)) :

∃w, v, r2 : (x,w) ∈ RL′ and VH((w, v), y1) = 1 and Epk1((w, v), r2) = y2

51

or ∃u, r3, r4 : Epk1(u, r3) = y3 and Epk2(u, r4) = y4}

Then, the NIZK strong proof of knowledge is de�ned as follows:
1. CRS. σ = (k, pk1, pk2, y3 = Epk1(u, r3)), where k is a randomly generated key for

H, pk1 and pk2 are two randomly generated public keys for (G, E,D), and u and
r3 are uniformly generated strings.

2. The Prover.
input: x,w, σ = (k, pk1, pk2, y3)

v, u′, r1, r2, r4 are sampled uniformly;1

y1 = Hk((w, v), r1);2

y2 = Epk1((w, v), r2);3

y4 = Epk2(u
′, r4);4

return y1, y2, y4, P
′((x, y1, y2, y3, y4), (w, v, r2));5

Algorithm 3.4.1: P

3. The Veri�er.
input: x, π = (y1, y2, y4, π

′), σ = (k, pk1, pk2, y3)

return V ′((x, y1, y2, y3, y4), π′);1

Algorithm 3.4.2: V

Completeness. For any (x,w) ∈ RL′ , σ = (k, pk1, pk2, y3), and any v, u′, r1, r2, r4

(chosen by P), we have (x, y1, y2, y3, y4), (w, v, r2) ∈ RLk,pk1,pk2
. Thus, completeness

follows directly from completeness on the WI proof, P ′.
Soundness. If x is not in L′ then the �rst tuple of a Lk,pk1,pk2 statement, i.e.,

the tuple (x, y1, y2), can not be true. Moreover, without auxiliary information about the
CRS, we show that no adversary can generate a true second tuple, (y3, y4). Consequently,
soundness follows by the soundness property of P ′.

Formally, let P̂ be any PPT. Then,

Pr[σ ← Σn, (x, π = (y1, y2, y4, π
′)← P̂ (σ) : V (x, π, σ) = 1 and x 6∈ L′] ≤

Pr[σ ← Σn, (x, π = (y1, y2, y4, π
′))← P̂ (σ) :

∃u, r3, r4 : Epk1(u, r3) = y3 and Epk2(u, r4) = y4] + (3.6)

Pr[σ ← Σn, (x, π)← P̂ (σ) :

52

V (x, π, σ) = 1 and x 6∈ L′|∀u, r3, r4 : Epk1(u, r3) 6= y3 or Epk2(u, r4) 6= y4] (3.7)

≤ µ(n).

We need to show that both Eq. 3.6 and 3.7 are negligible.
Eq. 3.6 is negligible due to semantic security of (G, E,D). Formally, suppose that

Eq. 3.6 is not negligible. Let A be the following PPT that receives auxiliary information
x.

input: x, pk1, Epk1(u, r3)

k ← Kn;1

(pk2, sk2)← G(1n);2

σ = k, pk1, pk2, Epk1(u, r3);3

y1, y2, y4, π
′ ← P̂ (x, σ);4

return Dsk2(y4);5

Algorithm 3.4.3: A

We have:

Pr[(pk, sk)← G(1n), u← Un, c← Epk(u), u′ ← A(pk, x, c) : u′ = u]

is nonnegligible. This contradicts the secrecy of the encryption scheme.
The event in Eq. 3.7 implies that (x, y1, y2, y3, y4) 6∈ Lk,pk1,pk2 . The �rst statement,

i.e., the tuple (x, y1, y2), is not true because x 6∈ L′. Moreover, by the condition in
Eq. 3.7, (y3, y4) is also not true. Thus, Eq. 3.7 is negligible by the soundness property
of P ′.

Witness Extraction. As we show in proving soundness, if a prover does not have
auxiliary information about the CRS, the proof is not accepted unless the �rst statement
is true. Consequently, the prover computes a valid image of the witness (concatenated
with a uniform string). By preimage extraction, this witness can be extracted.

Formally, let P̂ be any PPT that receives some auxiliary information, z, and σ, and
produces a new theorem/proof pair x, π. We construct a PPT, A that produces a new

53

image for H as follows:
input: k, z′ = (z, pk1, pk2, Epk1(u, r3))

(x, y1, y2, y4, π
′)← P̂ (z, σ = (k, pk1, pk2, Epk1(u, r3)));1

return y1;2

Algorithm 3.4.4: A

By preimage extraction (De�nition 3.2.3), we have a PPT, KA that extracts a preim-
age, (w′, v′), of y2. Now, we use collision resistance to show that w′ is a witness for
x. Observe that if V accepts a theorem/proof, (x, π = (x, y1, y2, π

′)), and taking into
account that Eq 3.6 is negligible, then the exists a w, v, r2 such that (x,w) ∈ RL′ ,
VH((w, v), y1) = 1, and Epk1((w, v), r2) = y2. Thus, by collision resistance, w′ = w

(otherwise, an adversary can compute a collision, (w, v) and (w′, v′) for y1 by selecting
(pk1, sk1), simulating the whole experiment, and then using Dsk1 to recover (w, v) and
KA to recover (w′, v′)).

Zero Knowledge. The simulator, S, simply receives the plaintext and randomness
used in computing y3, as auxiliary information about the CRS. Thus, S can fake a proof
for any statement x by running the witness indistinguishable prover using a witness
for the second statement. By the secrecy of H, the encryption scheme, and witness
indistinguishability, this simulation is indistinguishable from a real proof. Formally,

input: x, σ, aux(σ) = (u, r3)

(w′, v′)← Un;1

r4 ← Rn;2

y1 ← Hk((w′, v′));3

y2 ← Epk1((w
′, v′));4

y4 = Epk2(u, r4);5

return y1, y2, y3, P
′((x, y1, y2, y3, y4), (u, r3, r4));6

Algorithm 3.4.5: S

For clarity, we prove the special case where one simulated proof is indistinguishable
from a real proof. Proof of the general case is similar.

By semantic security on (G, E,D), and then by 1-indistinguishability on H, we have
for any (x,w) ∈ RL′ (that may depend on σ) and PPT, A:

|Pr[(pk1, sk1)← G(1n), k ← Kn, v ← Un, y1 ← Hk(w, v), y2 ← Epk1(w, v),

54

b← A(k, pk1, x, y1, y2) : b = 1]−

Pr[(pk1, sk1)← G(1n), k ← Kn, u← Un, y1 ← Hk(u), y2 ← Epk1(u),

b← A(k, pk1, x, y1, y2) : b = 1]| ≤ µ(n).

Consequently, we have for any (x,w) ∈ RL′ (that may depend on σ) and any PPT, A:

|Pr[b← A(x, S(x, σ, aux(σ)), σ) : b = 1]−

Pr[(pk1, sk1), (pk2, sk2)← G(1n), G(1n), k ← Kn, v, u← Un, Un,

y1 ← Hk(w, v), y2 ← Epk1(w, v), r3, r4 ← Un, Un, y3 = Epk1(u, r3), y4 = Epk2(u, r4),

b← A(x, (y1, y2, y4, P
′((x, y1, y2, y3, y4), (u, r3, r4)), σ)) : b = 1]| ≤ µ(n) (3.8)

From Eq. 3.8 and witness indistinguishability, we have for any (x,w) ∈ RL′ and any
PPT, A:

|Pr[b← A(x, S(x, σ, aux(σ)), σ) : b = 1]−

Pr[(pk1, sk1), (pk2, sk2)← G(1n), G(1n), k ← Kn, v, u← Un, Un,

y1 ← Hk(w, v), r2 ← Un, y2 = Epk1((w, v), r2), y3, y4 ← Epk1(u), Epk2(u),

b← A(x, (y1, y2, y4, P
′((x, y1, y2, y3, y4), (w, v, r2)), σ)) : b = 1]| ≤ µ(n) (3.9)

From Eq. 3.9 and semantic security on (G, E,D), we get for any (x, w) ∈ RL′ (that may
depend on σ) and any PPT, A:

|Pr[b← A(x, S(x, σ, aux(σ)), σ) : b = 1]− Pr[b← A(x, P (x,w, σ), σ) : b = 1]| ≤ µ(n).

55

Chapter 4

Interactively Extractable Functions

Summary: We introduce and formalize another notion of computational
knowledge, called interactively-extractable functions, and give several
constructions.
Informally, an interactively-extractable function is a probabilistic function
which guarantees that any machine that produces �many� points with the
same preimage, knows this preimage. The �many images� requirement is
captured via a 3-round Arthur-Merlin game with a challenger. That is, this
game provides evidence that a machine is capable of producing many points
with the same preimage. Following the similar notion of noninteractively-
extractable functions (Chapter 3), knowledge is captured via the existence of
an e�cient extractor that can play the role of the challenger in the 3-round
game to recover a preimage.
As in Chapter 3, we formalize this notion in several models. We consider
extraction for a single function and extraction for a family of functions. We
also consider models with and without auxiliary information. Moreover, we
study blackbox extraction, i.e., the extractor has only blackbox access to the
adversary.
After formulating this notion, we present several constructions. The con-
structions satisfy two properties. The �rst one is knowledge extraction,
speci�cally, interactive extraction for a single function in the presence of

This chapter is based on the paper [CD08a], which is a joint work with Ran Canetti. Note that
[CD08a] contains some additional results that do not appear in this chapter.

56

(dependent) auxiliary information. The second property is a computational-
hardness property and can be one-wayness or perfect one-wayness. All of
these constructions are based on hardness assumptions, without any knowl-

edge assumptions. Finally, we present a construction of a related notion from
Σ-protocols (see [Blu86, CDN01] and De�nition 2.12.1).

4.1 Introduction

Chapter 3 introduces the notion of noninteractively-extractable functions. These are
functions for which any machine that computes a single point in the range, knows a
corresponding image. As we discussed in Chapter 3, a major disadvantage of this notion
is that all known constructions are based on strong knowledge assumptions that are not
e�ciently-falsi�able [Nao03].

We relax the notion of extraction so that nontrivial constructions can be realized
from computational hardness assumptions. The relaxed notion requires the adversary
to output more than a single image. Naturally, when we require an adversary to output
many distinct images with a common preimage, we are referring to probabilistic functions.
Recall, a probabilistic function takes two inputs x and r, where x is referred to as the
actual input and r as the random coins of the function. Demanding the adversary to
produce two, three, or a polynomial number of distinct images with a common preimage
does not weaken the notion substantially. In fact, one can de�ne a new function that
is the concatenation of two, three, or a polynomial number of distinct images under
the original function. The new function is noninteractively extractable if and only if
the original function is extractable against adversaries producing the required number
of images. Consequently, the relaxed notion requires output of many more images. In
fact, it requires adversaries to produce a polynomial fraction of all possible images. As
each input can have an exponential number of images, one for each distinct r, it can be
immediately realized that such a requirement can not be met by e�cient machines.
The interactive model. The workaround for this problem is to formulate this notion
in a di�erent model, namely, the interactive model. In this model, the adversary receives
a challenge, which is a uniformly sampled r, and has to produce a new image of the
same input but with r as the random coins of the function. Now, it is possible to

57

realize a requirement similar to the one mentioned at the end of the previous paragraph.
The adversary has to send an initial image in the �rst stage. This image serves as a
�commitment� to the preimage x (more on this later). In the second stage, the adversary
receives a uniformly sampled r. The adversary then responds with a new image of x

using r as random coins for the function. Note that if the adversary produces values
with a common preimage with a noticeable probability (where probability is taken over
r as well), then it e�ectively produces a polynomial fraction of all images of x. In other
words, even though an e�cient machine can not write down a polynomial fraction of an
exponential numbers of images, it can output any image that belongs to this fraction if
asked to.

In more detail, interactive extraction requires the adversary to engage in a 3-round
game with a challenger. The adversary, A, sends, in the �rst round, a point, y0 = f(x, r0),
where x and r0 are chosen by A. The challenger responds with random coins, r1, in the
second round, and A has to send back y1 = f(x, r1) (see Figure 4.1). In this setting,
consistency means that y0 and y1 have a common preimage x. Interactive extraction
means if the adversary is able to answer consistently, then it knows a common preimage.
As in the noninteractive case, this form of knowledge is captured computationally by
the existence of an extractor that recovers a preimage from the private input of the
adversary.

In this chapter, extraction refers to the notion described above, while we refer to the
corresponding notion of Chapter 3 as noninteractive extraction.
On e�cient veri�cation. As in the case of noninteractive extraction, we emphasize
that no e�cient veri�cation of consistency is assumed to occur. The knowledge require-
ment states that if the adversary is consistent, it must know a preimage. In fact, in
some cases such as perfect one-wayness, assuming e�cient veri�cation contradicts the
very hardness property we seek.
The signi�cance of the �rst message. The �rst image, y0, that the adversary sends,
plays an important role as a binding message. In other words, consistency forces any
subsequent image to share a preimage of y0. If we remove the �rst message, the new game
fails to capture the requirement on the adversary to produce a polynomial fraction of all
images of a particular point. For instance, suppose without loss of generality that the
input and randomness domain are identical. Then, it is conceivable that an adversary

58

matches each r with a di�erent input x. E�ectively, this adversary produces only a single
image per input.

4.1.1 Our Work

This chapter is devoted to formulating and constructing interactively-extractable func-
tions.

4.1.1.1 Formulating Extraction

The general format of a de�nition of extraction is similar to the one in Chapter 3:
for any e�cient adversary, A, that plays the 3-round game described above, there is a
corresponding extractor that recovers a preimage from the private input of A.

There are six variants of this de�nition depending on three major criteria. First,
extraction can be required for any function in the family or for a uniformly chosen
one. Second, extraction may be in the absence or presence of independent or dependent
auxiliary information. Third, extraction can be blackbox or nonblackbox.
Blackbox extraction. A noninteractive, nontrivial extractor has to depend on the
machine generating the output and has to have access to its private input. Otherwise,
the function can not be one-way. On the other hand, interactive extraction permit
blackbox extractors. A blackbox extractor can take the role of the challenger in the 3-
round game and rewind the game to any stage. However, it does not know the particular
adversarial strategy it is communicating with nor can it read the private tape of the
adversary. Consequently, this blackbox extractor is universal in the sense that there is
a �xed extractor capable of computing a preimage for any e�cient adversarial strategy.
Jumping ahead, the constructions described below satisfy the best of all three criteria,
that is blackbox extraction with auxiliary information for any single function from a
family.
Extraction error. Noninteractive extraction requires the extractor to succeed with
overwhelming probability. That is, the failure error is negligible. For interactive extrac-
tion, this notion is not known to be realizable. Instead, current constructions guarantee
the extraction error to be arbitrary small but noticeable. In other words, for every poly-
nomial, p, there is an extractor, that depends on p, and fails with probability at most 1

p .
In Chapter 5, we study extraction with negligible error.

59

On the number of challenges. The actual set of de�nitions require the adversary to
answer n challenges instead of one. It is possible to keep the requirement to one challenge.
In this case, we can easily transform any construction that satis�es the former into a
construction that satis�es the latter notion by concatenating n images from the �rst
construction. However, for e�ciency, we keep the former construction as is and relax the
notion to allow for n challenges. In Chapter 5, we study and realize extraction against
a single challenge.
Towards more general de�nitions. One can directly generalize the notion of 3-round
interactive extraction into a parameterized de�nition for t-rounds. From a di�erent angle,
general t-round games have a sequential �avor in that a challenger sends a challenge r

and the adversary responds with the corresponding image. This process is repeated
sequentially an appropriate number of times. On the other hand, the 3-round game
as described in this chapter is parallel in nature in that the challenger sends all of
its challenges once and for all. Further work and constructions that satisfy the general
de�nitions remain the topic for future work. Consequently, we relegated these de�nitions
to Appendix A.

4.1.1.2 Constructions

We present three constructions of extractable functions. All three of them are blackbox
extractable with auxiliary information for any function taken from a family. However,
the �rst one is one-way, the second one is perfectly one-way and the last one is perfectly
one-way with auxiliary information.
Extractable one-way functions. The one-way construction utilizes a special form of
veri�able secret sharing (VSS) schemes [CGMA85, Fel87]. Informally, a secret-sharing
(SS) scheme [Bla79, Sha79] allows a dealer to split a secret into a number of shares
such that it is not possible to recover the secret unless a su�cient quorum of shares
is present. VSS requires, in addition, e�cient veri�cation of the share to guarantee
validity and uniqueness of the secret (see Section 4.3.1 for more detail). At a high level,
the one-way construction treats the input as a secret and produces a single share. The
random coins of the function determine which share the function outputs. Intuitively,
this construction is extractable because an extractor can query the adversary to get
a share, rewind it and query it again until a su�cient number of shares are availabe.

60

Moreover, it is one-way because of the secrecy of the underlying SS scheme.
Extractable POW functions. We show how to transform any POW function (with
additional properties) to extractable POW function and extractable POW functions with
auxiliary information (here, auxiliary information is for perfect one-wayness). Informally,
our transformation imposes a structure on the new function so that a preimage can be
recovered from any two �related� images. Speci�cally, if H is the old POW function and
x is the input, then an image under the new function, O, consists of some images of (x, 1)

and (x, xi) (xi is the ith bit of x) under H for i = 1, ..., |x|. Observe that it is easy to
recover the i-bit of x from Hk((x, 1), r) and Hk((x, xi), r). Therefore, an extractor uses
rewinding and recovers x by asking the adversary to compute images of (x, 1) and (x, xi)

using the same random coins in two di�erent executions of the game. Depending on the
assumptions used, this construction (or a similar one) is perfectly one-way or perfectly
one-way with auxiliary information (see Section 4.3.2).
On the relation between extractable functions and Σ-protocols. We remark that
a slightly di�erent notion of extractable POW functions can be constructed from any
POW function, H, and a Σ-protocol [Blu86, CDN01] for proving preimage knowledge of
H. This notion is weaker than the previous one because the construction imposes more
restrictions on the adversary. For more information, we refer the reader to Section 4.4.
Noninteractive extraction as interactive extraction. It is worth mentioning that
noninteractive extraction can be viewed as a two-round interactive extraction analogous
to the three-round extraction discussed above. Speci�cally, in the �rst round the chal-
lenger sends a random function from the family and the adversary responds with a point
in the range of this function. That is, there is a �xed function, g, the challenger sends a
random r, and the adversary responds with g(x, r) = fr(x).

4.1.2 Organization

We give formal de�nitions of extractable functions in Section 4.2, construct them in
Section 4.3, and discuss the connection to Σ-protocols in Section 4.4.

61

4.2 De�nitions

As we discussed in the introduction, interactive extraction of a probabilistic function
forces an adversary, A, to compute the function with random coins chosen by an external
challenger. This can be rephrased as: A has to be able to compute not only one image
but many images of x, e.g., A may be able to compute Hk(x, r) for any r. If A can do
so, then x is extractable.

Interactive extraction utilizes a 3-round game between the adversary, A, and a chal-
lenger. The latter is a role that an extractor, KA may play. The 3-round game (see
Figure 4.1) starts with A sending an image, y0. The challenger sends uniform strings,
r1, ..., rn, and A has to answer with y1, ..., yn, using r1, ..., rn as random coins for H.
Preimage extraction means that if there is a common preimage for y0, ..., yn, then A

knows this preimage. As previously discussed, this form of knowledge is captured by the
existence of an e�cient extractor, KA, that computes x from the input of A.
Auxiliary information. As we discussed in Section 3.2, we can study extraction in
the absence or presence of auxiliary information. Moreover, auxiliary information may
be dependent or independent of the speci�c function under study. Recall that for the
case of a single function, the distinction between dependent and independent auxiliary
information becomes moot. Moreover, unlike the noninteractive case, where we were
not able to realize the de�nition for a single function, we can do so for interactively-
extractable functions. Thus, we are able to realize the strongest notion of interactive
extraction: extraction for a single function in the presence of auxiliary information. In
fact, we realize an even stronger notion. The extractor is universal in the sense that
it is independent of the speci�c adversary (see end of Section 4.2.3 for more detail).
However, for completeness, we present the full set of de�nitions, that is de�nitions for
a single function and for a randomly chosen function, and with and without auxiliary
information.
Extraction error. As we discussed in the introduction, unlike the case of noninteractive
extraction, we are able to realize interactive extraction only with arbitrary small but

noticeable error. In other words, for every adversary and every polynomial, p, there is an
extractor that fails with probability at most 1

p . Consequently, the following de�nitions
take into account this noticeable error. De�nitions for negligible error can be easily

62

A Challenger (e.g., K)
y0 = Hk(x, r0)

y0−→
r1, ..., rn ← Un, ..., Un

r1, ..., rn←−−−−−
y1 = Hk(x, r1), ..., yn = Hk(x, rn)

y1, ..., yn−−−−−→
Figure 4.1: The 3-round interaction

obtained from the ones that appear here by removing all occurrences of the polynomial
p. We study interactive extraction with negligible error in Chapter 5.

4.2.1 Preimage Knowledge without Auxiliary Information

In the absence of auxiliary information, there are two possible de�nitions. The �rst and
stronger version requires extraction for any function while the second one applies for a
uniformly-chosen function.
De�nition 4.2.1 (Interactive extraction without auxiliary information). A ver-

i�able and probabilistic family ensemble, H = {Hn}n∈N is called interactively ex-

tractable without auxiliary information if for any PPT, A (with private random coins

denoted by rA), and polynomial, p, there exists a PPT, KA,p, such that for any k ∈ Kn:

Pr[(r1, ..., rn)← Rn, ..., Rn, (y0, s) = A(k, rA), (y1, ..., yn) = A(s, r1, ..., rn, rA),

x← KA,p(k, r1, ..., rn, rA) :

(VH(x, y0) = 1 and ∀i ≥ 1, yi = Hk(x, ri)) or (∀x′, VH(x′, y0) 6= 1 or ∃i, yi 6= Hk(x′, ri))]

> 1− 1
p(n)

− µ(n).

De�nition 4.2.2 (Interactive extraction without auxiliary information). A ver-

i�able and probabilistic family ensemble, H = {Hn}n∈N is called interactively ex-

tractable without auxiliary information if for any PPT, A (with private random coins

denoted by rA), and polynomial, p, there exists a PPT, KA,p, such that:

Pr[k ← Kn, (r1, ..., rn)← Rn, ..., Rn, (y0, s) = A(k, rA), (y1, ..., yn) = A(s, r1, ..., rn, rA),

63

x← KA,p(k, r1, ..., rn, rA) :

(VH(x, y0) = 1 and ∀i ≥ 1, yi = Hk(x, ri)) or (∀x′, VH(x′, y0) 6= 1 or ∃i, yi 6= Hk(x′, ri))]

> 1− 1
p(n)

− µ(n).

4.2.2 Preimage Knowledge with Independent Auxiliary Information

As we discussed before, independent auxiliary information applies only when the function
is sampled uniformly. In the following de�nition, Z refers to any distribution on auxiliary
information.
De�nition 4.2.3 (Interactive extraction with independent auxiliary informa-
tion). A veri�able and probabilistic family ensemble, H = {Hn}n∈N is called inter-

actively extractable with independent auxiliary information if for any PPT, A (with

private random coins denoted by rA), and polynomial, p, there exists a PPT, KA,p, such

that for any distribution Z = {Zn}n∈N:

Pr[k ← Kn, z ← Zn, (r1, ..., rn)← Rn, ..., Rn, (y0, s) = A(k, z, rA),

(y1, ..., yn) = A(s, r1, ..., rn, rA), x← KA,p(k, z, r1, ..., rn, rA) :

(VH(x, y0) = 1 and ∀i ≥ 1, yi = Hk(x, ri)) or (∀x′, VH(x′, y0) 6= 1 or ∃i, yi 6= Hk(x′, ri))]

> 1− 1
p(n)

− µ(n).

4.2.3 Preimage Knowledge with Dependent Auxiliary Information

Recall from Chapter 3 that dependent auxiliary information for noninteractive extraction
is restricted to images under the function. However, as we mentioned in the introduc-
tion of the current chapter, interactive extraction allows for auxiliary information with
arbitrary dependency on the function. The next two de�nitions capture the notion of
interactive extraction with dependent auxiliary information for any function and for a
uniformly-chosen function, respectively.
De�nition 4.2.4 (Interactive extraction with dependent auxiliary informa-
tion). A veri�able and probabilistic family ensemble, H = {Hn}n∈N is called interac-

tively extractable with dependent auxiliary information if for any PPT, A (with private

64

random coins denoted by rA), and polynomial, p, there exists a PPT, KA,p, such that for

any distribution Z = {Zn}n∈N and any k ∈ Kn:

Pr[z ← Zn, (r1, ..., rn)← Rn, ..., Rn, (y0, s) = A(k, z, rA),

(y1, ..., yn) = A(s, r1, ..., rn, rA), x← KA(k, z, r1, ..., rn, rA) :

(VH(x, y0) = 1 and ∀i ≥ 1, yi = Hk(x, ri)) or (∀x′, VH(x′, y0) 6= 1 or ∃i, yi 6= Hk(x′, ri))]

> 1− 1
p(n)

− µ(n).

De�nition 4.2.5 (Interactive extraction with dependent auxiliary informa-
tion). A veri�able and probabilistic family ensemble, H = {Hn}n∈N is called interac-

tively extractable with dependent auxiliary information if for any PPT, A (with private

random coins denoted by rA), and polynomial, p, there exists a PPT, KA,p, such that for

any distribution Z = {Zn}n∈N (that may depend on the function):

Pr[k ← Kn, z ← Zn(k), (r1, ..., rn)← Rn, ..., Rn, (y0, s) = A(k, z, rA),

(y1, ..., yn) = A(s, r1, ..., rn, rA), x← KA(k, z, r1, ..., rn, rA) :

(VH(x, y0) = 1 and ∀i ≥ 1, yi = Hk(x, ri)) or (∀x′, VH(x′, y0) 6= 1 or ∃i, yi 6= Hk(x′, ri))]

> 1− 1
p(n)

− µ(n).

Finally, we point out that our constructions in Section 4.3 allow for a special type
of knowledge extraction, namely, universal (blackbox) extraction. That is, there is a
universal extractor, K, that can recover a preimage given blackbox access (with rewind-
ing) to any adversary A. Moreover, K takes a polynomial, p, as input. It runs in time
polynomial in p and n, and fails with probability at most 1

p + µ. The blackbox version
of De�nition 4.2.4 follows.
De�nition 4.2.6 (Blackbox interactive extraction). A veri�able and probabilistic

family ensemble, H = {Hn}n∈N is called blackbox interactively extractable (inter-

actively extractable, for short) if there exists a PPT, K, such that for any distribution

65

Z = {Zn}n∈N, any PPT A, any polynomial, p, and any k ∈ Kn:

Pr[z ← Zn, (r1, ..., rn)← Rn, ..., Rn, (y0, s)← A(k, z), (y1, ..., yn)← A(s, r1, ..., rn),

x← KA(k, p) :

(VH(x, y0) = 1 and ∀i ≥ 1, yi = Hk(x, ri)) or (∀x′, VH(x′, y0) 6= 1 or ∃i, yi 6= Hk(x′, ri))]

> 1− 1
p(n)

− µ(n).

In this chapter, we use De�nition 4.2.6 to refer to interactive extraction.

4.3 Constructions

We give one construction of extractable one-way function and two constructions of ex-
tractable POW functions. The one-way construction is based on veri�able secret sharing
(VSS) schemes [CGMA85, Fel87]. The �rst extractable POW construction is based on
standard perfectly one-way assumptions and achieves both extraction and perfect one-
wayness. However, it does not achieve perfect one-wayness with auxiliary information.
The last construction is based on a stronger perfectly one-way assumption but it achieves
perfect one-wayness with auxiliary information. All constructions achieve blackbox ex-
traction with auxiliary information as in De�nition 4.2.6.

4.3.1 Extractable One-way Functions

We give a construction of an interactively-extractable one-way function from VSS schemes
[CGMA85, Fel87] (with an additional property). For clarity, we start with a construction
from SS schemes [Bla79, Sha79] that does not achieve all that we want.

Recall that interactive extraction is relevant to probabilistic functions only. There-
fore, this construction is randomized in nature. Informally, a probabilistic one-way func-
tion takes two input x and r, where r is the random coins used by the function, and
is one-way in x. The one-wayness property is taken over the random choice of r (see
De�nition 2.2.2).

An initial attempt at constructing extractable one-way functions is to use an SS
scheme. Recall from the introduction, that a secret sharing scheme allows a designated

66

machine, S, to split a secret into n shares such that it is possible to recover the secret if
and only if a su�cient number (speci�cally, u) of shares are present. Formally,
De�nition 4.3.1 (Secret sharing). A pair of polynomial-time machines, (S,R), is

called a (n, t, u)-SS scheme if:

• Correctness: For any secret, s, any n shares d1, ..., dn ← S(s), and any u subset

of the shares {a1, ..., an} ⊂ {1, ..., n}, R((a1, d1), ..., (au, du)) = s

• Secrecy: For any PPT, A and any t shares that may be chosen adaptively, a1, ..., at:

Pr[s← Un ; (d1, ..., dn)← S(s), s′ ← A((a1, d1), ..., (at, dt)) : s = s′] ≤ µ(n).

Lets examine the following candidate construction from a (n, t, u)-SS scheme, (S,R).
Given an input x, use S to split x into n shares and output t shares. Formally, the
candidate function F receives (x, rS) as input and a1, ..., at as random coins, where
rS denotes the random coins needed to run S, and outputs (a1, d1), ..., (at, dt), where
d1, ..., dn = S(x, rS). We associate with F the veri�er, VF , which on input (x, rS) and
y = (a1, d1), ..., (at, dt) accepts if and only if S(x, rS) = d′1, ..., d

′
n and d1 = d′a1

, ..., dt =

d′at
.
The one-wayness of this construction follows directly from the secrecy of the SS-

scheme. Moreover, it seems there is a universal extractor that can recover x. In more
detail, this extractor, K, has oracle access to the adversary A (with rewinding). K sends
1, ..., t in the second round of the interactive game, to receive a1, ..., at, rewinds A back
to step 2, sends t + 1, ..., 2t to get at+1, ..., a2t and so on until K has u shares and then it
simulates R to recover x. However, this reasoning is not entirely correct! The problem
with this construction is that the �rst message in the game is not binding. In other
words, there may be two executions of the game with the same �rst message in both of
them but the preimages of these two executions are not the same. For instance, suppose
we have a (n, t, t+1)-SS scheme. Then, A may send d1, ..., dt in one run of the game and
dt+1, ..., d2t in another but d1, ..., dt+1 and d2, ..., dt+2 may yield two distinct preimages.
Even worse, it is conceivable that A sends d1, ..., dt in one run and dt+1, ..., d2t in the
second run but there is no common preimage for any t+1 elements from d1, ..., d2t. This
binding problem can be solved using VSS schemes which guarantee commitment through

67

veri�cation of share validity.
Recall that a VSS scheme is an SS scheme that permits checking the validity of each

share and ensures uniqueness of the secret that R recovers on any u shares. Formally,
De�nition 4.3.2 (Veri�able secret sharing). A triple of polynomial-time machines,

(S,R,V), is called a (n, t, u)-VSS scheme if:

• SS: (S,R) is (n, t, u)-SS scheme as in De�nition 4.3.1.

• Veri�cation correctness: For any secret, s, any n shares d1, ..., dn ← S(s), and

any index i, V(i, di) = 1.

• Veri�cation soundness: For any i, di where V(i, di) = 1, there exists an x

such that for any (a1, da1), ..., (au−1, dau−1), where V(ai, dai) = 1 ∀1 ≤ i ≤ u − 1,

R((i, di), (a1, da1), ..., (au−1, dau−1)) = x.

The actual construction is more e�cient than the one described above in that it
outputs a single share. Formally,
Construction 4.3.1. Let (S,R,V) be a VSS scheme. Then, let F = {Fn}n∈N be the

following randomized family ensemble:

Fn(x = (s, rS), i) = i, di,

where i ∈ {1, ..., n} and d1, ..., dn = S(s, rS).

We associate with Construction 4.3.1, the veri�er, VF, where VF(x, y) = 1 if and only
if V(y) = 1 and x can be written as s, rS and y as i, di and S(s, rS) = d′1, ..., d

′
n and

d′i = di.
Another issue with this construction is that De�nition 4.3.1 implies that an extractor

can recover x but may not recover rS , which is part of the input to F . To recover
rS , we assume that R does so on u shares. Note that this is true for Shamir secret-
sharing [Sha79], where rS constitutes the coe�cients (minus the zero term) for the
polynomial used in sharing the secret. Formally, we assume the following strong version
of correctness:

68

De�nition 4.3.3 (Strong correctness). A (n, t, u)-SS scheme, (S,R), is strongly

correct if for any secret, s, any n shares d1, ..., dn = S(s, rS), and any u subset of the

shares {a1, ..., an} ⊂ {1, ..., n}, R((a1, d1), ..., (au, du)) = s, rS .1

We show that this construction is an extractable one-way function based on the
assumption that (S,R,V) is a (n2, n + 1, n + 2)-VSS scheme with strong correctness.
Theorem 4.3.1. Let (S,R,V) be a strongly-correct (n2, n+1, n+2)-VSS scheme (as in

De�nitions 4.3.2 and 4.3.3) then Construction 4.3.1 is an extractable one-way function

(as in De�nitions 2.2.2 and 4.2.6).

Proof. One-wayness. One-wayness follows directly from secrecy of the SS scheme and
uniqueness of the secret. Moreover, by the same de�nition, this function remains one-way
after one run of the interactive game.
Extraction. This is a proof by construction. We present a black-box extractor that
works with probability polynomially close to 1. In more detail, we present a PPT ex-
tractor having black-box access (with rewinding) to any PPT machine that plays the
interactive game of De�nition 4.2.6. This extractor also receives a polynomial bound,
which represents the allowed margin of error, and halts in time polynomially related to
this bound. Let k = (S,R,V), then K receives also k. Wlog, assume that rS has domain
{0, 1}n.

Formally, the extractor, K, works as de�ned in Algorithm 4.3.1.
Analysis

The rest of the proof shows that K satis�es De�nition 4.2.6. Informally, we show
that for any PPT, A, if for some input (z, rA), A succeeds with some inverse polynomial
probability, say 1

p , in answering the challenges, then KA(k, p) almost always extracts a
preimage. In other words, this extractor fails in extracting a preimage only on input
that causes A to succeed with probability less than 1

p . Thus, its failure probability is at
most 1

p .
In more detail, we prove our claim by showing the existence of a big set of random

challenges that A can answer consistently. The extractor then needs to sample uniform
challenges multiple times in order to ensure sampling from this favorable set. Once it
samples n + 1 elements from this set, it can use R to extract a point x. We then use

1Strong correctness changes veri�cation soundness of VSS schemes to force a unique x, rS (instead
of x) for any valid pair i, di.

69

input : (S,R,V), p
interaction: with an external PPT, A

receive y0 = (a0, da0);1

B = {a0};2

C = {y0};3

for m = 1 to n + 1 do4

for j = 1 to n do5

b← {1, ..., n2} \B;6

for i = 1 to 2n2p(n) do7

(a1, ..., an)← {1, ..., n2};8

l← {0, ..., n− 1};9

send a1, ..., al, b, al+2, ..., an;10

receive y1, ..., yn;11

rewind A;12

if yl+1 = (b, y′) and V(yl+1) = 1 then13

B = B ∪ {b};14

C = C ∪ {(b, yl+1)};15

break innermost two loops;16

end17

end18

end19

if |C| = n + 2 then20

return R(C);21

s, rS ← Un;22

return s, rS ;23

Algorithm 4.3.1: K

70

veri�cation soundness of the VSS scheme to argue that x is a preimage of y0. Using
veri�cation soundness again, we show that x is also a preimage of y1, ..., yn.

Formally, denote by RF the domain of random coins for F. Suppose that for some
k, z, rA and some polynomial, p, we have:

Pr[(rF
1 , ..., rF

n)← (RF
n , ..., RF

n), A(k, z, rA) = (y0, s), A(s, rF
1 , ..., rF

n) = (y1, ..., yn) :

∃x′, VF(x′, y0) = 1 and ∀i ≥ 1, yi = Fk(x′, rF
i)] ≥ 1

p(n)
. (4.1)

Then, we show that for the same k, z, rA:

Pr[(rF
1 , ..., rF

n)← (RF
n , ..., RF

n), A(k, z, rA) = (y0, s), A(s, rF
1 , ..., rF

n) = (y1, ..., yn),

x← KA(k, p) : VF(x, y0) = 1] > 1− µ(n). (4.2)

Recall that each rF
i is taken from RF = {1, ..., n2}. Eq. 4.1 can be rephrased as:

there exists a subset S ⊆ (RF
n , ..., RF

n)︸ ︷︷ ︸
n

, |S| ≥ n2n

p(n) such that for all (rF
1 , ..., rF

n) ∈ S,
A(k, z, rA) = (y0, s), A(s, rF

1 , ..., rF
n) = (y1, ..., yn), and ∃x′, ∀i, yi = Fk(x′, rF

i).
Now, recall that each rF

i = j. For each such j, let tj denote the number of times
that j appears in any vector in S. Furthermore, let S′ be a new set that contains all the
vectors in S except those that contain a j with tj ≤ n2n

n22p(n)
. Since for each j at most

n2n

n22p(n)
vectors are deleted from S and there are at most n2 such j, |S′| ≥ n2n

2p(n) . Now,
let T be the set of j that appear in any vector in S′. We should have:

|T |n ≥ |S′| ≥ n2n

2p(n)

=⇒ |T | ≥ n2

(2p(n))
1
n

≥ n2

2
,

where the last inequality holds for su�ciently large n.
Therefore, the probability that K does not �nd, in line 6 of its code and for all n

repetitions, some b that belongs to T is less than 1
2n . Now, suppose that b happens to

be in T . The probability that a uniformly chosen vector r = rF
1 , ..., rF

n , conditioned on

71

containing b, falls in S is:

Pr[(rF
1 , ..., rF

n)← rF
n × ...× rF

n : (rF
1 , ..., rF

n) ∈ S|∃i : rF
i = b]

≥
n2n

n22p(n)

n2n+1

n2

=
1

2np(n)

So that, if K �nds, in line 6 of the code and in some iteration, some b that belongs to
T , the probability that vector rF

1 , ..., rF
n sent to A in line 10 is in S is 1

2np(n) . Repeated
sampling for 2n2p(n) times ensures that the probability of failure in all 2n2p(n) iterations
is negligible. Thus, for any iteration of the outermost loop, the probability of failing to
�nd a vector rF

1 , ..., rF
n in S remains negligible.

Now, if rF
1 , ..., rF

n ∈ S then by de�nition of S, V(b, yl) = 1 (l is the position of b in
this vector, see line 9). Consequently, b, yl ∈ C. So, after the outermost loop ends, T

contains n + 2 vectors that are valid under V. Let s, rS = R(T). We argue that s, rS is
a valid preimage of y0. Wlog, let y0 = 1, y′0. Since y0 is a valid preimage under F , there
exists s′, uS such that VF ((s′, uS), y0) = 1. Suppose for the purpose of contradiction that
s, rS 6= s′, uS . Compute d1, ..., dn2 = S(s, rS) and d′1, ..., d

′
n2 = S(s′, uS). By de�nition

of veri�able secret sharing, we have V(1, d1) = ... = V(n2, dn2) = V(1, d′1) = ... =

V(n2, d′n2) = 1. Moreover, by strong correctness of secret sharing, R(y0, d
′
2, ..., d

′
n+2) =

s′, uS . Recall that s, rS = R(T) and y0 ∈ T . This contradicts veri�cation soundness.
Consequently, s, rS = s′, uS and s, rS is a preimage of y0. This proves Eq. 4.2.

To prove that K satis�es De�nition 4.2.6, we utilize veri�cation soundness again to
show that s, rS is a preimage of y1, .., yn. We know that K computes a preimage, s, rS ,
of y0. Moreover, if A can compute some other yi for which s, rS is not a preimage but
there is another common preimage for y0 and yi, then this violates veri�cation soundness.
Formally, for any k, z, rA:

Pr[(rF
1 , ..., rF

n)← (rF
n , ..., rF

n), (y0, s) = A(k, z, rA), (y1, ..., yn) = A(s, rF
1 , ..., rF

n),

x← KA(k, p) :

VF (x, y0) = 1 and (∃i, yi 6= Fk(x, rF
i)) and (∃x′, VF (x′, y0) = 1 and ∀i, yi = Fk(x′, rF

i))]

72

≤ µ(n) (4.3)

Suppose, for the purpose of contradiction, Eq. 4.3 is not true. Let d1, ..., dn2 = S(x)

and d′1, ..., d
′
n2 = S(x′). Let D ⊂ {d1, ..., dn2} \ {y0} and D′ ⊂ {d′1, ..., d′n2} \ {y0}. By

strong correctness, we have for any d1, ..., dn+2 ∈ D, R(d1, ..., dn+2) = x and for any
d′1, ..., d

′
n+2 ∈ D′, R(d′1, ..., d

′
n+2) = x′. Since V(y0) = 1 then by veri�cation soundness

R(y0, d1, ..., dn+1) = x andR(y0, d
′
1, ..., d

′
n+1) = x′. However, this contradicts veri�cation

soundness unless x = x′. Combining Eq. 4.1, 4.2, and Eq. 4.3 �nishes the proof.

4.3.2 Extractable POW Functions

We give two constructions of extractable POW functions. The �rst one is perfectly
one-way while the second one is perfectly one-way with auxiliary information.

The idea behind both constructions is to have pairs of related images with the prop-
erty that it is easy to compute a preimage if both of them are available. In more
detail, we de�ne for every r, an r̂, such that O(x, r), O(x, r̂) reveals x. So, the extrac-
tor can recover a preimage by sending r in the second round of the game in De�nition
4.2.6, to get O(x, r), rewinding A, and then sending r̂ in the second round of the game
to get O(x, r̂). On the other hand, for r1, ..., rn chosen uniformly and independently,
O(x, r1), ..., O(x, rn) do not reveal x because it is unlikely that some ri, rj satisfy the
relation rj = r̂i. We go into more details after we present the �rst construction.

4.3.2.1 Extractable POW Functions without Auxiliary Information

Construction 4.3.2. Let H = {Hn}n∈N and G = {Gn}n∈N be two veri�able family

ensembles, where Hk : {0, 1}n × Rn → {0, 1}l(n) and Gk : {0, 1}n × Rn → {0, 1}l(n) for

some polynomial l. Denote by O = {On}n∈N, where Ok : {0, 1}n×RO
n = (R(4)

n ×R
(n)
l(n))→

{0, 1}2|r1
0 |+2l(n)+nl(l(n)), the family ensemble de�ned as:

Ok(x, (r1
0, r

2
0, r

3
0, r1..., rn, rG)) = r2

0, r
3
0,Hk(x, r1

0),Hk(t1, r1), ...,Hk(tn, rn), Gk(x, rG),

where for all i, ti = Hk(x, r2
0) if xi = 1, and ti = H(x, r3

0) otherwise.

73

4.3.2.1.1 Extraction. For simplicity, and to see why Construction 4.3.2 is extractable
assume that A receives only a single challenge (instead of n), rO, in the second round
of the extraction game. Informally, K tries to make A output two �related" images that
allow it to recover x. To this end, K sends rO as a challenge to A, rewinds A, and then
sends r̂O. So, if both interactions are consistent, x can be recovered. In more detail, K
sends r1

0 , r2
0, r

3
0, r1, ..., rn to A in the �rst interaction, where all strings are uniform. In

the second interaction, K sends u1
0, r1

0 , u3
0, u1, ..., un, where u1

0, u
3
0, u1, ..., un are chosen

uniformly but r1
0 appears in the box in the �rst interaction. If A answers both challenges

consistently, then K can recover x. This is so because the third-round message of the
�rst interaction contains t = Hk(x, r1

0), while the third-round message of the second
interaction contains Hk(t, ui) if and only if the ith bit of x is 1.

We remark that the technical proof requires H to satisfy a strong form of collision
resistance. Speci�cally, we assume that it is hard to compute three images, y0, y1, y2,
the last two using randomness sampled by the challenger, such that there is a common
preimage for y0 and y1, another common preimage for y0, y2 but no common preimage
for all three images. It can be shown that strong collision resistance implies collision
resistance. Moreover, we show in Section 4.3.2.3 that collision resistance (and a strong
perfect one-way assumption) implies strong collision resistance (and injection). The
formal de�nition follows.
De�nition 4.3.4 (Strong Collision Resistance). A veri�able family ensemble, H =

{Hn}n∈N, where for some polynomial l(n), for any n ∈ N, and any k ∈ Kn, Hk :

{0, 1}n ×Rn → {0, 1}l(n), satis�es strong collision resistance if for any PPT A, and

k ∈ Kn:

Pr[(r1, r2)← (Rn, Rn), (y0, s)← A(k), (y1, y2)← A(s, r1, r2) :

∃x1, x2, x1 6= x2, VH(x1, y0) = VH(x2, y0) = 1

and y1 = Hk(x1, r1) and y2 = Hk(x2, r2) and y2 6= Hk(x1, r2)] ≤ µ(n)

Before we present the extraction theorem, we specify the veri�er for O, denoted by
VO. VO(x, y = (r1, r2, y0, ..., yn+1)) = 1 if and only if VG(x, yn+1) = 1 and VH(x, y0) = 1

and VH(ti, yi) = 1 for all 1 ≤ i ≤ n, where ti = H(x, rxi+1) and xi is the ith bit of x.

74

Theorem 4.3.2. If H and G are two veri�able (as in De�nition 2.5.1) family ensembles

with public randomness and one of them is strongly collision resistant (as in De�nition

4.3.4), then O, the result of applying Construction 4.3.2 on H and G, is extractable with

auxiliary information (as in De�nition 4.2.6).

Proof. This is a proof by construction and is very similar to the proof of Theorem 4.3.1.
We present a black-box extractor that works with probability polynomially close to 1.
In more detail, we present a PPT extractor having black-box access (with rewinding) to
any e�cient adversary that plays the interactive game of De�nition 4.2.6. This extractor
also receives a polynomial bound, which represents the allowed margin of error, and halts
in time polynomially related to this bound.

The extractor, K, is formally de�ned in Algorithm 4.3.2.
input : k, p
interaction: with an external PPT, A

receive y0;1

for j = 1 to n do2

r1
0 ← Rn;3

for i = 1 to 16n3p2(n) do4

(r2
0, r

3
0, r1, ..., rn, rG)← Rn, ..., Rn;5

(u1
0, u

3
0, u1, ..., un, uG)← Rn, ..., Rn;6

rO
1 = (r1

0, r
2
0, r

3
0, r1, ..., rn, rG);7

uO
1 = (u1

0, r
1
0, u

3
0, u1, ..., un, uG);8

rO
2 , ..., rO

n ← RO
n , ..., RO

n ;9

uO
2 , ..., uO

n ← RO
n , ..., RO

n ;10

d1, d2 ← {1, ..., n}, {1, ..., n};11

send rO
2 , ..., rO

d1
, rO

1 , rO
d1+1, ..., r

O
n ;12

receive y1, ..., yn;13

rewind A;14

send uO
2 , ..., uO

d2
, uO

1 , uO
d2+1, ..., u

O
n ;15

receive v1, ..., vn;16

rewind A;17

parse yd1 as r2
0, r

3
0, y

0
d1

, y1
d1

, ..., yn
d1

, yG
d1
;18

α = y0
d1
;19

parse vd2 as r1
0, u

3
0, v

0
d2

, v1
d2

, ..., vn
d2

, vG
d2
;20

x = VH(α, v1
d2

), ..., VH(α, vn
d2

);21

if VO(x, y0) = 1 and ∀i ≥ 1, yi = Ok(x, rO
i) and ∀i ≥ 1, vi = Ok(x, uO

i)22

then
return x;23

end24

end25

x← Un;26

return x;27

Algorithm 4.3.2: K

75

Analysis

The rest of the proof shows that K satis�es De�nition 4.2.6. Informally, we show that
if for some input (z, rA), A succeeds with some inverse polynomial probability, say 1

p ,
in answering the challenges, then KA(k, p) almost always extracts a preimage. In other
words, this extractor fails in extracting a preimage only on an input that causes A to
succeed with probability less than 1

p . Thus, its failure probability is at most 1
p .

In more detail, we prove our claim by showing the existence of a big set of random
challenges that A can answer consistently. The extractor then needs to sample uniform
challenges multiple times in order to ensure sampling from this favorable set. Once it
samples two related elements from this set, it can use them to extract a preimage of
y0. Finally, we use strong collision resistance to conclude that such a preimage is also a
preimage of y1, ..., yn.

Formally, suppose that for some k, z, rA and some polynomial, p, we have:

Pr[(rO
1 , ..., rO

n)← (RO
n , ..., RO

n), A(k, z, rA) = (rO
0 , y0, s), A(s, rO

1 , ..., rO
n) = (y1, ..., yn) :

∃x′, ∀i, yi = Ok(x′, rO
i)] ≥ 1

p(n)
.2 (4.4)

Then, we show that for the same k, z, rA:

Pr[A(k, z, rA) = (rO
0 , y0, s), x← KA(k, p) : y0 = Ok(x, rO

0)] > 1− µ(n). (4.5)

Recall that each rO
i is taken from RO

n = (R(4)
n × R

(n)
l(n)). Without loss of generality,

assume that Rn = {0, 1}n and Rl(n) = {0, 1}l(n).
Eq. 4.4 can be rephrased as: there exists a subset S ⊆ (RO

n , ..., RO
n)︸ ︷︷ ︸

n

, |S| ≥ 2n2(l(n)+4)

p(n)

such that for all (rO
1 , ..., rO

n) ∈ S,A(k, z, rA) = (rO
0 , y0, s), A(s, rO

1 , ..., rO
n) = (y1, ..., yn),

and ∃x′, ∀i, yi = Ok(x′, rO
i).

Now, recall that each rO
i = r1

0, r
2
0, r

3
0, r1, ..., rn, rG. So, for each r ∈ {0, 1}n, let t1r

(respectively, t2r) denote the number of times that r appears as r1
0 (respectively, r2

0) in
any rO

i in any vector in S. Furthermore, let S′ be a new set that contains all the vectors in
S except those that contain an r as r1

0 with t1r ≤ 2n2(l(n)+4)

2n4p(n) or r as r2
0 with t2r ≤ 2n2(l(n)+4)

2n4p(n) .
2rO

0 is in the clear because H and G (and consequently, O) have public randomness.

76

Since for each r at most 2n2(l(n)+4)

2n2p(n) vectors are deleted from S and there are at most 2n

such r, |S′| ≥ 2n2(l(n)+4)

2p(n) . Now, let T1 (respectively, T2) be the set of elements that occur
as r1

0 (respectively, r2
0) in any rO

i in any vector in S′. Let T = T1 ∩ T2. We should have:

|T1|n|T2|n2n2(l(n)+2) ≥ |S′| ≥ 2n2(l(n)+4)

2p(n)

=⇒ |T1||T2| ≥
22n

(2p(n))
1
n

≥ 22n− clogn
n

=⇒ |T1| ≥ 2n− clogn
n and |T2| ≥ 2n− clogn

n

=⇒ |T | > 2n

2
,

where c is some constant that depends on p, and the last inequality holds for su�ciently
large n.

Therefore, the probability that K does not �nd, in line 3 of its code and for all n

repetitions, r1
0 that belongs to T is less than 1

2n . Now, suppose that r1
0 happens to be

in T . The probability that a uniformly chosen vector r = rO
1 , ..., rO

n , conditioned on
containing r1

0 as a �rst entry in some rO
i , falls in S is:

Pr[(rO
1 , ..., rO

n)← RO
n × ...×RO

n : (rO
1 , ..., rO

n) ∈ S|∃i : rO
i = (r1

0, r
2
0, r

3
0, r1, ..., rn, rG)]

≥
2n2(l(n)+4)

2n4p(n)

n2n2(l(n)+4)

2n

=
1

4np(n)

The same inequality holds when considering r1
0 as the second entry in some rO

i .
So that, if K �nds, in line 3 of the code and in some iteration, an r1

0 that belongs to
T , the probability that both vectors rO

1 , ..., rO
n and uO

1 , ..., uO
n , computed in lines 5− 10,

are in S is 1
(4np(n))2

. Repeated sampling for 16n3p2(n) times ensures that the probability
of failure in all 16n3p2(n) iterations is negligible.

Now, if both vectors rO
1 , ..., rO

n and uO
1 , ..., uO

n are in S, then by de�nition of S,
A will compute consistent y1, ..., yn and v1, ..., vn in lines 13 − 16. In other words,
∃x1, VO(x1, y0) = 1, and ∀i, yi = Ok(x1, r

O
i), and ∃x2, VO(x2, y0) = 1, and ∀i, vi =

Ok(x2, u
O
i). However, by strong collision resistance (O is strongly collision resistance be-

cause either H or G is), there is a common preimage for y1, ..., yn and v1, ..., vn. Formally,
∃x′, VO(x′, y0) = 1, and ∀i, yi = Ok(x′, rO

i) and vi = Ok(x′, uO
i). Therefore, α as com-

77

puted in line 19 is equal to Hk(x′, r1
0). Moreover, vd2 = Ok(x′, (u1

0, r
1
0, u

3
0, u1, ..., un, uG)).

Now, we need to show that x as computed in line 21 is equal to x′. Observe that if
the ith bit of x′ is 1 then xi = VH(α, vi

d2
) = 1. On other hand, if the ith bit of x′

is 0, we show that the corresponding bit of x is also 0. We know that if x′i = 0 then
VH(Hk(x′, u3

0), v
i
d2

) = 1. Since r1
0 and u3

0 are chosen uniformly and H has public random-
ness, the probability that α = Hk(x′, r1

0) is equal to Hk(x′, u3
0) is negligible. Therefore,

by collision resistance, VH(α, vi
d2

) and hence xi are almost always equal to 0. Line 22

veri�es that x is a valid preimage.
This proves Eq. 4.5. To prove that K satis�es De�nition 4.2.6, we utilize strong

collision resistance. We know that K can compute a preimage, x, of y0. Moreover, if A

can compute some other yi for which x is not a preimage but there is another common
preimage for y0 and yi, then this violates strong collision resistance. Formally,

Pr[z ← Zn, (rO
1 , ..., rO

n)← (RO
n , ..., RO

n), (rO
0 , y0, s)← A(k, z),

(y1, ..., yn)← A(s, rO
1 , ..., rO

n), x← KA(k, p) :

y0 = Ok(x, rO
0) and (∃i, yi 6= Ok(x, rO

i)) and (∃x′, ∀i, yi = Ok(x′, rO
i))] ≤ µ(n) (4.6)

Suppose, for the purpose of contradiction, Eq. 4.6 does not hold. Then, there is a PPT,
B, that violates strong collision resistance. B �rst runs A to compute y0 in the �rst
phase. Note that y0 has two distinct preimages, x as computed by K and x′, the common
preimage of y0, ..., yn. In the second phase, B receives as input two random challenges.
It computes, on its own, an image, y1, of x under the �rst random challenge (it uses K
to �nd x), and asks A to compute an image, y2, of x′ under the second challenge. By
the negation of Eq. 4.6, with a nonnegligible probability, y2 is not a valid image of x,
contradicting strong collision resistance.

Combining Eq. 4.4, 4.5, and Eq. 4.6 �nishes the proof.

Perfect one-wayness. Construction 4.3.2 uses two functions, H and G, instead of one
due to the properties needed to prove perfect one-wayness and extraction. Speci�cally,
our proof of perfect one-wayness uses the assumption that the function, H, is statistically
perfectly one-way. On the other hand, extraction uses a strong collision resistance as-

78

sumption on the underlying function. Currently, we know of only one class of functions
satisfying strong collision resistance, namely statistically binding functions. However, no
single function can be both statistically hiding and statistically binding. Therefore, we
use two functions. We assume that G (and consequently O) is strongly collision resistant,
e.g., statistically binding, so that O is extractable. On the other hand, H is assumed to
be a statistical POW function. So, if we exclude the image under G from the output
of O, we get a statistical POW function. Therefore, if G is computationally perfectly
one-way with auxiliary information (it is su�cient for the auxiliary information to be
only a statistically hiding function), then O is a computational POW function.
Theorem 4.3.3. Suppose H satis�es statistical (2n+1)t-pseudorandomness (as in De�-

nition 2.5.4) and has public randomness and G satis�es computational t-pseudorandomness

with respect to auxiliary information (as in De�nition 2.5.6), then Construction 4.3.2

satis�es computational t-pseudorandomness (as in De�nition 2.5.6).

Proof. For simplicity, we prove the special case of 1-pseudorandomness (when H satis�es
statistical (2n+1)-pseudorandomness and G satis�es computational 1-pseudorandomness
with auxiliary information). The general case of t-pseudorandomness is similar.

The proof consists of two steps. First, we prove that the �rst part of O, speci�cally,

O′k(x, (r1
0, r

2
0, r

3
0, r1..., rn)) , r2

0, r
3
0,Hk(x, r1

0),Hk(t1, r1), ...,Hk(tn, rn)

is statistically close to uniform. Then, we combine this claim with the fact that G is
computational pseudorandom with auxiliary information to conclude that O is compu-
tationally perfectly one-way.
O′k(x, .) is Statistically Close to Uniform. Let O0

k(x, rO = (r1
0, r

2
0, r

3
0, r1, ..., r2n)) ,

r2
0, r

3
0,Hk(x, r1

0),Hk(Hk(x, r2
0), r1), ...,Hk(Hk(x, r2

0), rn),

Hk(Hk(x, r3
0), r2), ...,Hk(Hk(x, r3

0), r2n).

and

On
k (x, rO = (r1

0, r
2
0, r

3
0, r1, ..., r2n)) , r2

0, r
3
0,Hk(x, r1

0),Hk(t1, r1), ...,Hk(t2n, r2n)),

79

where ti = Hk(x, r2
0) and tn+i = Hk(x, r3

0) if xi = 1 and vice versa if xi = 0.
Note that O′ is a substring (in particular, the �rst n + 3 strings) of On.
We have for any well-spread distribution, X:

∆((Hk(Xn, R1
n),Hk(Xn, R2

n),Hk(Xn, R3
n)), (U1

n, U2
n, U3

n)) < µ(n) (4.7)

=⇒ ∆(O0
k(Xn, RO0

n),

(Ul(n)+2|r1
0 |,Hk(U2

n, R1
l(n)), ...,Hk(U2

n, Rn
l(n)),Hk(U3

n, Rn+1
l(n)), ...,Hk(U3

n, R2n
l(n))) < µ(n)

(4.8)

=⇒ ∆(O0
k(Xn, RO0

n), U2|r1
0 |+l(n)+2nl(l(n))) < µ(n) (4.9)

=⇒ ∆(O0
k(Xn, RO0

n),

(U2|r1
0 | + l(n),Hk(Hk(Xn, Rn), R1

l(n)), ...,Hk(Hk(Xn, Rn), R2n
l(n)))) < µ(n) (4.10)

=⇒ ∆(O′k(Xn, RO1
n), U2|r1

0 |+l(n)+nl(l(n))) < µ(n) (4.11)

Eq. 4.7 follows from statistical pseudorandomness of H. Using again statistical pseu-
dorandomness and the fact that for any function φ and any two distributions X and
Y , ∆(φ(Xn), φ(Yn)) ≤ ∆(Xn, Yn), we get Eq. 4.8 (here, the function φ1 takes three
strings, (r1

0, y1), (r2
0, y2), (r3

0, y3), as input and outputs r2
0, r

3
0, (r

1
0, y1), n images of the

second string and then n images of the third one). Eq. 4.9 and 4.10 are true be-
cause H is statistically perfectly one-way. To prove Eq. 4.11, we use the previous fact
(∆(φ(Xn), φ(Yn)) ≤ ∆(Xn, Yn)) by having a function, φ2, that takes O0

k(x, .), converts
it to On

k (x, .), and then truncates it to O′k(x, .). Note that if φ2 is applied to the second
distribution in Eq. 4.10, then it yields the same distribution. Since this distribution is
statistically close to uniform (H is statistically pseudorandom), then triangle inequality
implies that O′k(x, .) is statistically close to uniform.

To �nish the proof of the theorem, we use the assumption that G is computational
pseudorandom with auxiliary information to conclude that Ok(Xn, RO

n) =

O′k(Xn, RO′
n), Gk(Xn, RG

n) is computationally indistinguishable from O′k(Xn, RO′
n), Ul(n),

and therefore, Ok(Xn, RO
n) is, by the pseudorandom property of O′k, computationally

80

indistinguishable from uniform.
Collision resistance and public randomness. If both H and G have public ran-
domness then O inherits this property. Also, O is collision resistant if either H or G

is.

4.3.2.2 Extractable POW Functions with Auxiliary Information

Theorem 4.3.3 claims that Construction 4.3.2 is a POW function. However, it is not
known whether this construction is perfectly one-way with auxiliary information. To
obtain this property, it seems we need to assume, in addition, that H is computationally
perfectly one-way with auxiliary information. Alternatively, we use a simpler assumption
to prove perfect one-wayness with auxiliary information of the following construction.
Construction 4.3.3. Let H = {Hn}n∈N be a veri�able family ensemble, where Hk :

{0, 1}n × Rn → {0, 1}l(n) for some polynomial l. Denote by O = {On}n∈N, where

Ok : {0, 1}n ×RO
n = (R(2n)

n+1)→ {0, 1}2nl(n+1), the family ensemble de�ned as:

Ok(x, (r1..., r2n)) =

Hk((x, 1), r1), ...,Hk((x, 1), rn), Hk((x, x1), rn+1), ...,Hk((x, xn), r2n),

where xi is the ith bit of x.

The veri�er, VO, for this construction accepts its input, x, y = (y1, ..., y2n), if and only
if VH((x, 1), y1) = ... = VH((x, 1), yn) = VH((x, x1), yn+1) = ... = VH((x, xn), y2n) = 1.
Perfect one-wayness. To prove that Construction 4.3.3 is perfectly one-way with aux-
iliary input, we need to assume that an adversary can not distinguish images of input
strings ending in 1 from those ending in 0 even in the presence of auxiliary informa-
tion. We do not know whether this assumption is implied by conventional perfectly
one-way de�nitions. However, we present a generalization of known indistinguishabil-
ity de�nitions that satis�es the aforementioned assumption. Like this assumption, this
generalized de�nition is not known to be implied by conventional perfectly one-way de�-
nitions. However, it seems to be a natural generalization of indistinguishability. In more
detail, some of the existing perfectly one-way de�nitions require that images of a polyno-
mial number of input strings taken from well-spread distributions are indistinguishable

81

from uniform, even in the presence of auxiliary information. In this case, the well-spread
distributions are assumed to be independent of one another. Alternatively, other existing
de�nitions specify a �xed relation between these distributions, e.g., all input strings are
the same. The new de�nition combines these two notions to require indistinguishability
with respect to any vector of polynomially-many well-spread distributions. We highlight
that the di�erence between this de�nition and the existing ones is that even though each
distribution is individually well-spread, these distributions, taken together, may be arbi-
trarily correlated. For instance, for proving that Construction 4.3.3 is a POW function,
we require that H is a POW function with respect to a vector of 2n well-spread distri-
butions. This vector of distributions has a sampling algorithm that outputs 2n input
strings of the form x′1 = (x, 1), ..., x′n = (x, 1), x′n+1 = (x, x1), ..., x′2n = (x, xn), where x

is sampled from a well-spread distribution and xi is the ith bit of x. Formally,
De�nition 4.3.5 (Strong Pseudorandomness). A veri�able family ensemble, H =

{Hn}n∈N, where Hk : {0, 1}n×Rn → {0, 1}l(n) for some polynomial l, is called strongly

pseudorandom with auxiliary information if for any vector of polynomially-many

well-spread distributions, X = {X1, ..., Xt}, with sampling algorithm, G, any uninvertible

function in t variables, F , any PPT, A, and any k ∈ Kn:

|Pr[(x1, ..., xt(n))← G(1n), z ← F (x1, ..., xt(n)), r1, ..., rt(n) ← Rn, ..., Rn,

b← A(k, z,Hk(x1, r1), ...,Hk(xt(n), rt(n))) : b = 1]−

Pr[(x1, ..., xt(n))← G(1n), z ← F (x1, ..., xt(n)), b← A(k, z, Ul(|x1|)+...+l(|xt(n)|)) : b = 1]|

≤ µ(n)

We remark that this de�nition is of independent interest. In particular, it is also used
in Chapter 7 for instantiating Random Oracle in �rst-query-hiding encryption schemes.
Theorem 4.3.4. If a family ensemble, H, satis�es De�nition 4.3.5, then Construc-

tion 4.3.3 is computationally pseudorandom with auxiliary information (as in De�nition

2.5.6).

Proof. For simplicity, we prove that O is computationally 1-pseudorandom with auxiliary
information. Proof of the general case is similar. This proof is straightforward. The

82

output of O consists of 2n images under H. By the assumption on H, these 2n images are
indistinguishable from uniform even in the presence of auxiliary information. Formally,
let X be any well-spread distribution. We de�ne a vector of 2n well-spread distributions,
X′ = {X ′1, ..., X ′2n}. The sampling algorithm, G, for X′ outputs a 2n-tuple of the
form x′1 = (x, 1), ..., x′n = (x, 1), x′n+1 = (x, x1), ..., x′2n = (x, xn), where x is sampled
from X and xi is the ith bit of x. It is easy to see that any x′i is taken from a well-
spread distribution. Moreover, any uninvertible function, F , in x is also uninvertible in
x′1, ..., x

′
2n. Let F ′ be the function that takes x′1, ..., x

′
2n as input and computes F (x).

Thus, for any adversary, A:

Pr[x← Xn, z ← F (x), rO ← RO
n , b← A(k, z,Ok(x, rO)) : b = 1] =

Pr[(x′1, ..., x
′
2n)← G(1n), z ← F ′(x1, ..., x2n), r1, ..., r2n ← Rn, ..., Rn,

b← A(k, z,Hk(x1, r1), ...,Hk(x2n, r2n)) : b = 1]

Using the assumption that H satis�es De�nition 4.3.5, the theorem follows.

Extraction. Extraction is very similar to that of Construction 4.3.2. As before, the
extractor forces the adversary to output two related images from which it can recover a
preimage.

However, the disadvantage of this construction is that strong collision resistant may
not be su�cient. In particular, it may be the case that there is some x for which
Hk((x, 1), r) = Hk((x, 0), r) for any r. Moreover, there may be an adversary that suc-
cessfully computes Ok(x) for any r. This case does not contradict strong collision re-
sistance because every image of x, 1 is also an image of x, 0. Also, it may be hard to
�nd such an x (to contradict collision resistance). Consequently, we assume that H is
injective (as in De�nition 4.3.6). In Section 4.3.2.3, we show how to realize injection
from strong POW functions that have a �weak� collision resistance property.
De�nition 4.3.6 (Injective family ensembles). A veri�able family ensemble, H, is

called injective, if for any k and any y, there exists at most one x such that VH(x, y) = 1.

Theorem 4.3.5. If H is a veri�able and injective family ensembles (as in De�nition

83

4.3.6), then Construction 4.3.3 is blackbox extractable with auxiliary information (as in

De�nition 4.2.6).

Proof. This proof is very similar to that of Theorem 4.3.2. Again, we give a black-box
extractor, K, that works with probability polynomially close to 1. This extractor also
receives a polynomial bound, which represents the allowed margin of error, and halts in
time polynomially related to this bound.

Formally, K works as follows:
input : k, p
interaction: with an external PPT, A

receive y0;1

for j = 1 to n do2

r1, ..., rn ← Rn, ..., Rn;3

for i = 1 to 16n3p2(n) do4

rn+1, ..., r2n ← Rn, ..., Rn;5

u1, ..., un ← Rn, ..., Rn;6

rO
1 = r1, ..., r2n;7

uO
1 = u1, ..., un, r1, ..., rn;8

rO
2 , ..., rO

n ← RO
n , ..., RO

n ;9

uO
2 , ..., uO

n ← RO
n , ..., RO

n ;10

d1, d2 ← {1, ..., n}, {1, ..., n};11

send rO
2 , ..., rO

d1
, rO

1 , rO
d1+1, ..., r

O
n ;12

receive y1, ..., yn;13

rewind A;14

send uO
2 , ..., uO

d2
, uO

1 , uO
d2+1, ..., u

O
n ;15

receive v1, ..., vn;16

rewind A;17

parse yd1 as y1
d1

, ..., y2n
d1
;18

parse vd2 as v1
d2

, ..., v2n
d2
;19

for k = 1 to n do20

if yk
d1

= vn+k
d2

then21

xi = 1;22

else23

xi = 0;24

end25

x = x1, ..., xn;26

if VO(x, y0) = 1 and ∀i ≥ 1, yi = Ok(x, rO
i) and ∀i ≥ 1, vi = Ok(x, uO

i)27

then
return x;28

end29

end30

x← Un;31

return x;32

Algorithm 4.3.3: K

Analysis

84

As in the proof of Theorem 4.3.2, we show that if for some k, z, rA and some polynomial,
p, we have:

Pr[(rO
1 , ..., rO

n)← (RO
n , ..., RO

n), A(k, z, rA) = (y0, s), A(s, rO
1 , ..., rO

n) = (y1, ..., yn) :

∃x′, ∀i, yi = Ok(x′, rO
i)] ≥ 1

p(n)
. (4.12)

then, for the same k, z, rA:

Pr[A(k, z, rA) = (y0, s), x← KA(k, p) : VO(x, y0) = 1] > 1− µ(n). (4.13)

Recall that each rO
i is taken from RO

n = R2n
n+1. Without loss of generality, assume

that Rn+1 = {0, 1}n.
Eq. 4.12 can be rephrased as: there exists a subset S ⊆ (RO

n , ..., RO
n)︸ ︷︷ ︸

n

, |S| ≥ 22n3

p(n)

such that for all (rO
1 , ..., rO

n) ∈ S,A(k, z, rA) = (y0, s), A(s, rO
1 , ..., rO

n) = (y1, ..., yn), and
∃x′, ∀i, yi = Ok(x′, rO

i) and VO(x′, y0) = 1.
Denote by aO

i (respectively, bO
i) the �rst n (respectively, last n) strings of rO

i , i.e.,
rO
i = aO

i , bO
i . Now, for each r ∈ {0, 1}n2 , let t1r (respectively, t2r) denote the number of

times that r appears as aO (respectively, bO) in any rO
i in any vector in S. Furthermore,

let S′ be a new set that contains all the vectors in S except those that contain an r as
aO with t1r ≤ 22n3

2n24p(n)
or r as bO with t2r ≤ 22n3

2n24p(n)
. Since for each r at most 22n3

2n22p(n)

vectors are deleted from S and there are at most 2n2 such r, |S′| ≥ 22n3

2p(n) . Now, let T1

(respectively, T2) be the set of elements that occur as aO (respectively, bO) in any rO
i in

any vector in S′. Let T = T1 ∩ T2. We should have:

|T1|n|T2|n ≥ |S′| ≥
22n3

2p(n)

=⇒ |T1||T2| ≥
22n2

(2p(n))
1
n

≥ 22n2− clogn
n

=⇒ |T1| ≥ 2n2− clogn
n and |T2| ≥ 2n2− clogn

n

=⇒ |T | > 2n2

2
,

where c is some constant that depends on p, and the last inequality holds for su�ciently

85

large n.
Therefore, the probability that K does not �nd, in line 3 of its code and for all n

repetitions, r1, ..., rn that belongs to T is less than 1
2n . Now, suppose that r1, ..., rn hap-

pens to be in T . The probability that a uniformly chosen vector rO
1 , ..., rO

n , conditioned
on containing r1, ..., rn as aO in some rO

i , falls in S is:

Pr[(rO
1 , ..., rO

n)← RO
n × ...×RO

n : (rO
1 , ..., rO

n) ∈ S|∃i and bO : rO
i = (aO, bO)]

≥
22n3

2n24p(n)

n22n3

2n2

=
1

4np(n)

The same inequality holds for bO.
So that, if K �nds, in line 3 of the code and in some iteration, an r1, ..., rn that

belongs to T , the probability that both vectors rO
1 , ..., rO

n and uO
1 , ..., uO

n , computed in
lines 5 − 10, are in S is 1

(4np(n))2
. Repeated sampling for 16n3p2(n) times ensures that

the probability of failure in all 16n3p2(n) iterations is negligible.
Now, if both vectors rO

1 , ..., rO
n and uO

1 , ..., uO
n are in S, then by de�nition of S,

A will compute consistent y1, ..., yn and v1, ..., vn in lines 13 − 16. In other words,
∃x1, VO(x1, y0) = 1, and ∀i, yi = Ok(x1, r

O
i), and ∃x2, VO(x2, y0) = 1, and ∀i, vi =

Ok(x2, u
O
i). However, by injection, x1 = x2 = x′. Now, we need to show that x as

computed in line 26 is equal to x′. Observe that if the ith bit of x′ is 1 then xi = 1

because yi
d1

= Hk((x′, 1), r) = Hk((x′, x′i), r) = vn+i
d2

(line 21). On other hand, if x′i = 0,
then xi is also 0 because vn+i

d2
= Hk((x′, x′i), r) = Hk((x′, 0), r), which by injection and

e�cient veri�cation is not equal to Hk((x′, 1), r) = yi
d1
.

Using injection, x, as computed by K, is a common preimage of y1, ..., yn. Combining
Eq. 4.12 and 4.13 with the last claim �nishes the proof.

Collision resistance and public randomness. Construction 4.3.3 inherits public ran-
domness, collision resistance, and injection from the underlying primitive in a straight-
forward way.

86

4.3.2.3 Injective POW Functions from Strong Perfect One-wayness

Theorems 4.3.2 and 4.3.5 use stronger assumptions than conventional collision resistance,
namely strong collision resistance and injection. So, we study the feasibility of such
assumptions. In particular, we show that injection can be achieved from strong perfect
one-wayness and encryption schemes. In more detail, we use perfect completeness of
encryption schemes (i.e., for all pk, sk and all messages m, Dsk(Epk(m)) = m) as a way
of achieving injection while maintaining a certain level of secrecy via semantic security.
The formal construction follows.
Construction 4.3.4. Let H = {Hn}n∈N be a veri�able family ensemble, where for some

polynomial l(n), for any n ∈ N, and any k ∈ Kn, Hk : {0, 1}n × Rn → {0, 1}l(n)

and (G, E,D) be a public-key encryption scheme. Denote by O = {On}n∈N, the family

ensemble de�ned as:

Ok(x, (r1, ..., r|rE |, pk, rE)) =
x, if ∃i, Hk((x, 0), ri) = Hk((x, 1), ri)

pk, Hk((x, rE
1), r1), ...,Hk((x, rE

|rE |), r|rE |), Epk(x, rE) otherwise,

where rE
i is the ith bit of rE.

Construction 4.3.4 has the following veri�er. VO(x, y) = 1 if and only if y = x (case
1) or ∀i, either VH((x, 0), yi) = 1 or VH((x, 1), yi) = 1 and Epk(x, rE) = c (case 2), where
y = pk, y1, ..., y|rE |, c and rE = VH((x, 1), y1), ..., VH((x, 1), y|rE |).
Injection. Disregarding the �rst case for now, this construction achieves injection due
to perfect completeness of the encryption scheme. Informally, VO recovers rE from x and
the H images in the output of O. Once rE is found, it is easy to recompute Epk(x, rE)

and check the validity of the last string of in the output of O.
However, the second case by itself is not su�cient to guarantee both injection and

veri�cation. To see why, note that the constant function is a veri�able strongly POW
function. For such functions, we can not recover rE in the second case of Construction
4.3.4 because Hk((x, 1), r) = Hk((x, 0), r) for any x and r. So, either VO will not accept
x,H(x), compromising veri�cation, or it will accept any input, compromising injection.
To solve this problem, we introduce the �rst case to the construction. Now, if a collision,

87

of the form described above, occurs, case 1 will be used. Thus, the two cases combined
guarantee injection.
Theorem 4.3.6. If H is a veri�able family ensemble and (G, E,D) is an asymmetric

encryption scheme with perfect completeness (as in De�nition 2.7.1), then Construction

4.3.4 is both veri�able and injective (as in De�nition 4.3.6).

Proof. Veri�cation. For any k, x, and rO, VO(x,Ok(x, rO)) = 1: If Ok(x, rO) =

x, then VO accepts immediately. If Ok(x, rO) 6= x then we know that Ok(x, rO) =

pk, y1, ..., y|rE |, c and for any i, ∃! b such that VH((x, b), yi) = 1. Thus, VO recovers rE ,
computes Epk(x, rE), and accepts (because Epk(x, rE) = c and for any i, ∃! b such that
VH((x, b), yi) = 1) .
Injection. W.l.o.g. assume that the input domain of O is {0, 1}n and the range of
the second case of O is a subset of {0, 1}l(n), with l(n) > n. For any k and y, if
|y| = n (case 1) then there exists exactly one input x (namely, x = y), such that
VO(x, y) = 1. On the other hand, if y = pk, y1, ..., y|rE |, c and if there are two inputs
x1 and x2, such that VO(x1, y) = VO(x2, y) = 1, then there are rE and uE such that
Epk(x1, r

E) = Epk(x2, u
E) = c. By perfect completeness, x1 = x2.

Perfect One-wayness. As we mentioned in the previous paragraph, the class of strong
POW functions contains some trivial ones such that the constant functions. If such
functions are used in Construction 4.3.4, it does not provide secrecy (in fact, it outputs
x in the clear). For Construction 4.3.4 to be secure, the underlying function, H, should
be nontrivial. Speci�cally, H should �preserve" entropy of the input. In particular, we
require that Hk((x, 1), r) 6= Hk((x, 0), r) for input, x, with su�ciently high entropy, and
a uniformly chosen r. Note that this property is implied by collision resistance. In fact,
it is much weaker than collision resistance: pick any function with collision resistance
and modify it so that it has the same output on 0n and 1n. The formal de�nition of
entropy preservation follows.
De�nition 4.3.7 (Weak Entropy Preservation). A family ensemble, H = {Hn}n∈N,

where Hk : {0, 1}n×Rn → {0, 1}l(n) for some polynomial l, weakly preserves entropy

88

if for any well-spread distribution, X, and any k ∈ Kn:

|Pr[x← Xn, r ← Rn : Hk((x, 0), r) = Hk((x, 1), r))] ≤ µ(n)

A possible disadvantage of Construction 4.3.4 is that its secrecy depends on the se-
crecy of both H and the encryption scheme. Speci�cally, whether it is pseudorandom
or not depends on whether both H and the encryption scheme are pseudorandom or
not. By a pseudorandom encryption scheme, we mean that a ciphertext of a message
taken from a well-spread distribution is indistinguishable from a uniform string. Such
encryption schemes are known to exist, e.g., the encryption scheme in [Can97], (which
is an instantiation of an encryption scheme in the RO model that appeared in [BR93]).
However, if the encryption scheme is not pseudorandom, O still satis�es computational
indistinguishability. For completeness, we present here the de�nition of strong indistin-
guishability.
De�nition 4.3.8 (Strong Indistinguishability). A veri�able family ensemble, H =

{Hn}n∈N, where Hk : {0, 1}n×Rn → {0, 1}l(n) for some polynomial l, is called strongly

indistinguishability with auxiliary information if for any vector of polynomially-

many well-spread distributions, X = {X1, ..., Xt}, with sampling algorithm, G, any un-

invertible function in t variables, F , any PPT, A, and any k ∈ Kn:

|Pr[(x1, ..., xt(n))← G(1n), z ← F (x1, ..., xt(n)), r1, ..., rt(n) ← Rn, ..., Rn,

b← A(k, z,Hk(x1, r1), ...,Hk(xt(n), rt(n))) : b = 1]−

Pr[(x1, ..., xt(n))← G(1n), z ← F (x1, ..., xt(n)), r1, ..., rt(n) ← Rn, ..., Rn,

u1, ..., ut(n) ← Un, ..., Un, b← A(k, z,Hk(u1, r1), ...,Hk(ut(n), rt(n))) : b = 1]| ≤ µ(n)

Theorem 4.3.7. If H is strongly pseudorandom with auxiliary information (as in De�ni-

tion 4.3.5) and preserves entropy (as in De�nition 4.3.7) and (G, E,D) is a semantically-

secure encryption scheme (respectively, pseudorandom encryption scheme), then Con-

struction 4.3.4 is strongly indistinguishable as in De�nition 4.3.8 (respectively, pseudo-

random as in De�nition 4.3.5) with auxiliary information.

Proof. Let A be any PPT. Denote by |rE | the length of the randomness for E. For any
89

vector of t well-spread distributions, X, with sampling algorithm, S, let X′ be a vector
of |rE |t well-spread distributions with a sampler, S′. S′ runs S to sample x1, ..., xt. It
then outputs (x1, b

1
1), ..., (x1, b

|rE |
1), ..., (xt, b

1
t), ..., (xt, b

|rE |
t), where all the bj

i are random
bits. Moreover, for any uninvertible function, F in t parameters, x1, ..., xt, let F ′ be the
function in |rE |t parameters, (x1, b

1
1), ..., (x1, b

|rE |
1), ..., (xt, b

1
t), ..., (xt, b

|rE |
t), that samples

pk1, ..., pkt, and outputs

pk1, ..., pkt, F (x1, ..., xt), Epk1(x1, (b1
1, ..., b

|rE |
1)), ..., Epkt(xt, (b1

t , ..., b
|rE |
t)).

By semantic security and uninvertibility of F , F ′ is uninvertible.
By entropy preservation, we have for the same parameters:

|Pr[(x1, ..., xt(n))← S(1n), z ← F (x1, ..., xt(n)), r1, ..., rt(n) ← RO
n , ..., RO

n ,

b← A(k, z,Ok(x1, r1), ..., Ok(xt(n), rt(n))) : b = 1]−

Pr[(x1, ..., xt(n))← S(1n), z ← F (x1, ..., xt(n)), r1, ..., rt(n) ← RO
n , ..., RO

n ,

b← A(k, z,Ok(x1, r1), ..., Ok(xt(n), rt(n))) : b = 1|∀i, Ok(xi, ri) 6= xi]| ≤ µ(n).

Moreover, we have by de�nition:

Pr[(x1, ..., xt(n))← S(1n), z ← F (x1, ..., xt(n)), r1, ..., rt(n) ← RO
n , ..., RO

n ,

b← A(k, z,Ok(x1, r1), ..., Ok(xt(n), rt(n))) : b = 1|∀i, Ok(xi, ri) 6= xi]

= Pr[(x1, b
1
1), ..., (xt(n), b

|rE |
t(n))← S′(1n), z′ ← F ′((x1, b

1
1), ..., (xt(n), b

|rE |
t(n))),

r1, ..., rt(n)|rE | ← Rn, ..., Rn,

b← A(k, z′,Hk((x1, b
1
1), r1), ...,Hk((xt(n), b

|rE |
t(n)), rt(n)|rE |)) : b = 1]

Since H is strongly pseudorandom (or strongly indistinguishable, if we are considering
this case), we have:

|Pr[(x1, b
1
1), ..., (xt(n), b

|rE |
t(n))← S′(1n), z′ ← F ′((x1, b

1
1), ..., (xt(n), b

|rE |
t(n))),

90

r1, ..., rt(n)|rE | ← Rn, ..., Rn,

b← A(k, z′,Hk((x1, b
1
1), r1), ...,Hk((xt(n), b

|rE |
t(n)), rt(n)|rE |)) : b = 1]−

Pr[(x1, b
1
1), ..., (xt(n), b

|rE |
t(n))← S′(1n), z′ ← F ′((x1, b

1
1), ..., (xt(n), b

|rE |
t(n))),

b← A(k, z′, U|rE |t(n)l(n+1))) : b = 1]| ≤ µ(n)

Since (G, E,D) is pseudorandom (or semantic security, if we are considering this
case), we have:

|Pr[(x1, b
1
1), ..., (xt(n), b

|rE |
t(n))← S′(1n), z′ ← F ′((x1, b

1
1), ..., (xt(n), b

|rE |
t(n))),

b← A(k, z′, U|rE |t(n)l(n+1))) : b = 1]−

Pr[(x1, ..., xt(n))← S(1n), z ← F (x1, ..., xt(n)), b← A(k, z, Ut(n)|Epk(x1)|, U|rE |t(n)l(n+1))) :

b = 1]| ≤ µ(n)

Using the fact that entropy preservation is implied by collision resistance, we have
the following corollary.
Corollary 4.3.1. If there exists a strong pseudorandom POW function with collision

resistance and a pseudorandom encryption scheme, then there exists an injective, strong

pseudorandom POW function.

4.4 On the Connection to Σ−Protocols

We show how Σ-protocols (see De�nition 2.12.1) and POW functions can be used to
construct another variant of extractable POW functions. We discuss the di�erences
between this construction and the original de�nition after presenting the construction.
At a high level, we use a POW function, H, and a Σ-protocol for the language consisting
of the range of H. The new function, O incorporates the prover messages in its output.
To do so, O has an additional random coin that determines which one of the two prover
messages it outputs. Formally,

91

Construction 4.4.1. Let H = {Hn}n∈N be a veri�able family ensemble and LH be the

family of languages LHk
= {y : ∃x, r, Hk(x, r) = y}. Let P = (P, V) be a Σ-protocol

for LHk
. Recall that e is the random string V sends in the second round. Denote by

m0(y, (x, r), rP) and m1(y, (x, r), e, rP) the messages sent by P (with private coins rP)

in the �rst and third round. Then, let O be the following family ensemble:

Ok(x, r, rP , e, b) =

Hk(x, r), e, m0(Hk(x, r), (x, r), rP), if b = 0

Hk(x, r), e, m1(Hk(x, r), (x, r), e, rP), otherwise

(4.14)

We associate with O a veri�er, VO. VO simulates VH on (x,Hk(x, r)) that is VO(x, y =

(y1, e, mb)) = VH(x, y1).
Extraction. Construction 4.4.1 inherits a special form of extraction from the Σ-
protocol. Speci�cally, the challenger plays the role of V in P. A starts the game by
sending an image of x, the challenger responds with e, and A sends another image using
e as public coins for P. In more detail, A sends Ok(x, r, rP , e0, 0) = Hk(x, r), e0,m0

in the �rst round and Ok(x, r, rP , e1, 1) = Hk(x, r), e1,m1 in the third one (see Figure
4.2). We emphasize that r, rP is the same in the �rst and third round and e1 is cho-
sen by the challenger. The interaction is called consistent if V accepts the conversation
(k, Hk(x, r),m0, e1,m1). Then, extraction means A knows a preimage x if the interaction
is consistent. The formal notion of this extraction follows with V̂ de�ned in Algorithm
4.4.1.
De�nition 4.4.1 (Σ-Extraction). Let H = {Hn}n∈N be a veri�able family ensemble,

where Hk : {0, 1}n × Rn → {0, 1}l(n) for some polynomial l. Then, H is called Σ-

extractable if there exists a PPT, K, such that for any distribution Z = {Zn}n∈N, any

PPT A, any polynomial, p, and any k ∈ Kn:

Pr[z ← Zn, e← Un, (y0, s)← A(k, z), y1 ← A(s, e), x← KA(k, p) :

VH(x, y0) = VH(x, y1) = 1 or V̂ (k, y0, y1, e) 6= 1)] > 1− 1
p(n)

− µ(n).

We show that Construction 4.4.1 satis�es De�nition 4.4.1. Speci�cally, if V̂ (k, y0, y1, e) =

1, then the conversation is accepted by V . By the special soundness property on P, KA

can access A (with rewinding) to extract a preimage. Formally,
92

A Challenger
y0 = Ok(x, r0, rP , e0, 0)

y0−→
e1 ← Un

e1←−
y1 = Ok(x, r0, rP , e1, 1)

y1−→
Figure 4.2: 3-round Interaction of Σ-extraction

input: k, y0 = (u0, e0,m0), y1 = (u1, e1,m1), e

if u0 = u1 and e = e1 and V (u0,m0, e, m1) = 1 then1

return 1;2

else3

return 0;4

end5

Algorithm 4.4.1: V̂

Theorem 4.4.1. If H is a veri�able family ensemble and (P, V) is a family of Σ-protocols

for the family of languages LH, then Construction 4.4.1 is Σ-extractable (as in De�nition

4.4.1).

Proof. The proof follows similar lines as the proofs of the last two extraction theorems.
The universal extractor, K, is de�ned in Algorithm 4.4.2, where V is the veri�er from the
Σ-protocol and K(P,V) is the witness extractor given by the special soundness property.

input : k, p
interaction: with an external PPT, A

receive y0 = (u0, e0,m0);1

for j = 1 to np2(n) do2

e1 ← Un;3

e2 ← Un;4

send e1;5

receive y1 = (u1, e
′
1,m1);6

rewind A;7

send e2;8

receive y2 = (u2, e
′
2,m2);9

rewind A;10

if u0 = u1 = u2 and e′1 = e1 and e′2 = e2 and V (u0,m0, e1,m1) = 1 and11

V (u0,m0, e2,m2) = 1 then
(x, r) = K(P,V)(u0, (m0, e1,m1), (m0, e2,m2));12

return x;13

end14

x← Un;15

return x;16

Algorithm 4.4.2: K

93

Analysis

Suppose that for some k, z, rA and some polynomial, p, we have:

Pr[e← Un, (y0, s) = A(k, z, rA), y1 = A(s, e) :

V̂ (k, y0, y1, e) = 1] ≥ 1
p(n)

. (4.15)

Then, we show that for the same k, z, rA:

Pr[A(k, z, rA) = (y0, s), x← KA(k, p) : VO(x, y0)] > 1− µ(n). (4.16)

In any iteration of the loop, the probability of the event that K does not �nd e1, e2,
where e1 6= e2 and A answers consistently on both e1 and e2 is at most (1− 1

p2(n)
)+µ(n).

Thus, K does not �nd such a pair, e1, e2 in all np2(n) with probability at most µ(n), for
su�ciently large n. On the other hand, if K �nds such a good pair, it veri�es this on
line 11 and successfully extracts x using the witness extractor guaranteed by the special
soundness property.

Moreover, by de�nition, we have VO(x, y1 = (u1, e1,m1)) = VH(x, u1) and since
u0 = u1,VH(x, u1) = VH(x, u0) = VO(x, y0) = 1. Thus, x is also a valid preimage for y1.

Therefore, K fails with negligible probability except when Eq. 4.15 does not hold for
some k, z, rA. In the latter case, A is consistent no more than 1

p(n) of the time.

Perfect one-wayness. If H is an indistinguishable POW function, then, so is O.
However, the same statement does not hold for pseudorandomness unless the interaction
in the Σ-protocol is computationally indistinguishable from uniform, when x has high
min-entropy.

Informally, O is an indistinguishable POW function because given a sequence of
images under H, it is possible to convert them to a sequence of images of the same
inputs under O (using the Σ-protocol simulator). Formally,
Theorem 4.4.2. Let H be a veri�able t-indistinguishable POW function (respectively,

with auxiliary information) as in De�nition 2.5.5 and PH be a family of Σ-protocols

94

for the family of languages LH (as in De�nition 2.12.1). Then, Construction 4.4.1 is

t-indistinguishable (respectively, with auxiliary information) as in De�nition 2.5.5.

Proof. For simplicity, we start with the case where t = 2 with auxiliary information. For
any Ok with the language Lk, let (P, V) be the corresponding Σ-protocol with simulator
S. Modify S into S′ so that it outputs only one of the prover's messages, depend-
ing on an input b. Speci�cally, S′(k, y1, e, b) = y1, e, mb, where S(k, y1, e) = m1, e,m2.
Observe that Σ-protocols retain the honest-veri�er ZK property when proving two re-
lated theorem (speci�cally, Hk(x, r1),Hk(x, r2)) and in the presence of auxiliary infor-
mation. So, by honest-veri�er zero-knowledge, we have for any (x, r1, r2, e1, e2, b1, b2):
z,Ok(x, r1, ., e1, b1), Ok(x, r2, ., e2, b2) has the same distribution as
z, S′(k, Hk(x, r1), e1, b1), S′(k, Hk(x, r2), e2, b2). By 2-indistinguishability on H, we have
for any well-spread distribution, X, any k, and any uninvertible function, F :

|Pr[x← Xn, z ← F (x), r1, r2 ← Rn, Rn, e1, e2 ← {0, 1}n, {0, 1}n, b1, b2 ← {0, 1}2 :

A(k, z, S′(k, Hk(x, r1), e1, b1), S′(k, Hk(x, r2), e2, b2)) = 1] −

Pr[x← Xn, z ← F (x), r1, r2 ← Rn, Rn, u1, u2 ← Un, Un, e1, e2 ← {0, 1}n, {0, 1}n,

b1, b2 ← {0, 1}2 : A(k, z, S′(k,Hk(u1, r1), e1, b1), S′(k, Hk(u2, r2), e2, b2)) = 1]| ≤ µ(n).

Using the honest veri�er ZK property again, we have for any (u1, u2, r1, r2, e1, e2, b1, b2):
z, S′(k, Hk(u1, r1), e1, b1), S′(k, Hk(u2, r2), e2, b2) has the same distribution as
z,Ok(u1, r1, ., e1, b1), Ok(u2, r2, ., e2, b2).

To prove the general case (for any polynomial t), observe that Σ-protocols retain
the honest-veri�er ZK property when proving multiple related theorem (in this case, the
theorems are Hk(x, r1), ...,Hk(x, rt)). Then, the proof is similar to the previous one.

Collision resistance and public randomness. O inherits collision resistance from H

in a straightforward way. However, O does not have public randomness even if H does.

95

4.4.1 Di�erences Among Constructions 4.3.2, 4.3.3, and 4.4.1

De�nition 4.4.1 di�ers from De�nition 4.2.6 in that O is not used in the three-round
game as a function of x alone, rather as a function of x, rP and the state of the protocol.
Speci�cally, b is used to track the state of the protocol and the output of O depends on
b because it contains mb. On the other hand, we are able to achieve Σ-extraction using
weaker assumptions than that of Constructions 4.3.2 and 4.3.3, namely, strong collision
resistance and injection. So, it seems there is a tradeo� between the strength of the
assumption used and the strength of the consistency requirement.

Moreover, Construction 4.4.1 achieves computational indistinguishability while the
other constructions achieve the stronger pseudorandom property. Finally, unlike the
�rst two construction, the Σ-construction does not inherit public randomness from the
underlying function.

In conclusion, Σ-protocols allow extraction based on weaker assumptions for the price
of maintaining state and weakening the secrecy requirement.

96

Chapter 5

Characterization of Extraction

Summary: We initiate a more general study of extractable functions, both
interactive and noninteractive. This work is aimed at understanding the
concept of extractability in of itself. In particular we demonstrate that a weak
notion of extraction implies a strong one, and make rigorous the intuition that
extraction and obfuscation are complementary notions.

5.1 Introduction

This chapter initiates a more general study of extractable functions, both interactive and
noninteractive. Speci�cally, we address the following goal: understanding exactly what
extraction means and how di�erent notions of extraction (and lack of it) are related.

5.1.1 Our work

We attempt to address the question: What makes a function extractable? Moreover, if a
function is extractable in a weak sense, does this mean that it is extractable in a strong
sense? Towards answering these questions, we show that every function satis�es either
a �weak� form of obfuscation [BGI+01] or a �weak� form of extraction. In other words,
lack of extractability can be viewed as obfuscatability or resistance to �reverse engineer-
ing�. This is indeed what one might naïvely expect - a function is either extractable or
obfuscatable, and we show that this naïve thinking is correct to some extent. We then
address the second question posed at the beginning of this paragraph. We �nd out that

This chapter is based on the paper [CD09], which is a joint work with Ran Canetti. Note that
[CD09] contains some additional results that do not appear in this thesis.

97

for a large class of functions, notably, POW functions with auxiliary information, the
answer to this question is positive.

5.1.1.1 Interactive Extraction

We discuss interactive extraction before noninteractive extraction. In this chapter, in-
teractive extraction refers to the notion introduced in Chapter 4, except we require a
single challenge instead of n.
On interactive extraction versus obfuscation. This line of work starts with an
observation that extraction and obfuscation complement each other in a natural way. In
other words, if a function is not extractable, then this lack of extractability is some form
of obfuscation. Speci�cally, we call a function weakly (and interactively) extractable if
for any adversary that is consistent in the interactive game with noticeable probabil-
ity, there is a corresponding extractor that recovers a preimage with noticeable success.
Moreover, the obfuscation mentioned previously relates to inability to �reverse engineer�
an obfuscated program that produces images under the function. In other words, there
is an obfuscated code that receives r as input and computes f(x, r) for some x �hidden�
in the obfuscated code. In more detail, we call f weakly obfuscatable if the following
holds. There is an obfuscator that produces a program capable of correctly computing
the function fx(r) = f(x, r) with noticeable probability, where x is chosen according
to some well-spread distribution and then �hidden� in the program. Also, the program
is considered obfuscated in the sense that it is hard to recover x from the obfuscated
program, when x is drawn from the well-spread distribution mentioned above. The
corresponding theorem can be stated in words as:

Theorem 5.2.1: Every family of probabilistic functions is either weakly

extractable or weakly obfuscatable.

We emphasize that Theorem 5.2.1 is a general observation on any family of functions
and does not assume anything about the family, not even that it is e�ciently computable.
Informally, this theorem can be argued for as follows. Suppose a function, f , is not weakly
extractable. Then, there is an adversary A that answers consistently in the 3-round game
of interactive extraction, and yet there is no extractor that recovers a preimage x. We use
A to construct an obfuscation for the function fx. The obfuscation simply contains the
description of A and a corresponding private input that causes A to answer consistently.

98

To compute fx(r), simulate A, send r in the second round of the extraction game, and
output the response of A. Functionality of this obfuscation follows from consistency of
A while the hiding property follows directly from the assumption that no extractor is
able to recover x. We point out that �nding an obfuscation of fx may not be e�cient.
However, the obfuscation itself is e�cient because A is.
Amplifying knowledge extraction. Theorem 5.2.1 is not entirely satisfactory because
extraction is guaranteed to occur only noticeably often (contrast this with the notions of
Chapter 4 where extraction is required to succeed except with noticeable error). So, we
address the issue of amplifying extraction. We show how to do so under a necessary (for
the class of injective functions) and su�cient assumption on the function. Speci�cally, we
assume what we call �weak veri�cation�. Weak veri�cation is a notion introduced to show
that some form of veri�cation is necessary and su�cient for knowledge ampli�cation.
Moreover, it is implied by common veri�cation notions such as public veri�cation for
probabilistic functions [Can97]. Informally, weak veri�cation means for any adversary
A that outputs images in the range of f , there is a corresponding veri�er, V , which
given some x and the private input of A, decides whether the output of A is a valid
image of x under f . In other words, V has to decide whether there exists an r such that
f(x, r) = A(z, rA), where z and rA are the auxiliary information and random coins for A.
Moreover, V is allowed to fail with some arbitrary small, yet noticeable probability. We
use the terms �extraction (respectively, veri�cation) with vanishing but noticeable error�
and �extraction (respectively, veri�cation) with arbitrary small but noticeable error� to
mean that for every polynomial, p, there is an extractor (respectively, veri�er) that fails
no more than 1

p fraction of the time. The corresponding theorem can be stated in words
as follows.

Theorem 5.2.3: Every weakly-veri�able family of probabilistic functions is

either weakly obfuscatable or extractable with vanishing but noticeable error.

Moreover, if an injective family of functions is extractable with vanishing but

noticeable error, then it is weakly veri�able.

At a very high level, the proof of Theorem 5.2.3 uses a variant of Impagliazzo's
hard-core lemma [Imp95] to amplify weak extraction to extraction with vanishing but
noticeable error. Informally, we use the lemma to construct a family, U, of machines
that take the input of A and attempt to extract a preimage, x, from it. This family has

99

the property that when all its members fail, no machine can succeed noticeably. We then
construct a family of distributions on the input of A, one distribution for each input
length n, such that any member of U succeeds only negligibly often (as n increases).
Consequently, if U is not a family of extractors with vanishing but noticeable error, then
the distributions just mentioned have a noticeable weight in proportion to the original
one. Using Theorem 5.2.1 on A and the new distributions implies the existence of an
extractor with noticeable success. However, this contradicts the ampli�cation lemma.
Interactively-extractable POW functions. An important corollary to Theorem
5.2.3 is that every POW function with auxiliary information is interactively extractable
(see Corollary 5.2.3 for a more formal presentation). This supersedes the correspond-
ing transformation of Chapter 4 from POW functions with auxiliary information to
extractable POW functions. Moreover, this result is more e�cient in that the challenger
needs to send a single challenge instead of n.
Towards negligible error. We can obtain negligible failure probability if we relax
the notion of extraction so that it applies only to �reliably-consistent adversaries�. Intu-
itively, an adversary is reliably consistent if its consistency is noticeable. In other words,
disregarding input on which the adversary is consistent only negligibly often, there is a
�xed polynomial, p, such that 1

p is a lower bound on the probability of consistency (here,
the probability is taken over the random challenge). The corresponding theorem can be
stated as follows:

Theorem 5.2.5: Every weakly-veri�able family of probabilistic functions is

either weakly obfuscatable or extractable with negligible error for adversaries

that are reliably consistent.

Moreover, if an e�ciently computable and veri�able family of functions is

extractable with negligible error, then every corresponding adversary is reli-

ably consistent.

The proof this theorem is very similar to the previous proof but it uses a stronger
ampli�cation lemma in the uniform model. Informally, the lemma states that there is a
family, U, of polynomial-time machines such that no machine can succeed in inverting
a function where all members of U fail. (Contrast this lemma with the previous one,
where the guarantee is that no machine can succeed noticeably where U fails.)
Uniform versus nonuniform extractors. We highlight that Theorems 5.2.1 and

100

5.2.3 deal with nonuniform extractors while Theorem 5.2.5 uses uniform extractors. Ob-
viously, increasing the capabilities of extractors make them more powerful and more
likely to recover preimages. In this case, giving extractors nonuniform capabilities is
very bene�cial in at least one case. Speci�cally, a nonuniform extractor that overwhelm-
ingly fails in recovering a preimage implies that the distribution on the input domain
is well-spread. The same statement does not immediately follow for uniform extractors.
Consequently, functions are more likely to be extractable by nonuniform machines than
uniform machines because functions are less likely to be weakly obfuscatable against
some well-spread distribution than against some distribution. However, the nonuniform
results do not follow through all the way to negligible error because negligible error use,
in an essential way, properties of uniform machines. We refer the reader to Section 5.2.3
for a detailed presentation.

5.1.1.2 Noninteractive Extraction

Results similar to those for interactive extraction hold in this case. However, they are
weaker in the sense that functions seem to be more likely to satisfy a weaker notion
of obfuscation. Informally, the obfuscated program receives a function description, k,
as input and outputs fk(x) for some x hidden in the program that may depend on k.
Moreover, it is hard to recover x from the obfuscated code. The results and proofs are
similar. Two issues are worth highlighting. First, the function is not �xed in advance.
Rather, it is sampled from a well-spread distribution and given to the adversary. Sec-
ond, a corollary to these results states that injective functions that are extractable with
vanishing but noticeable error are extractable with negligible error.

5.1.2 Organization

We present the results for interactive extraction in Section 5.2 and for noninteractive
extraction in Section 5.3.

5.2 Interactive Extraction versus Obfuscation

We present the three theorems mentioned in the introduction concerning the connection
between obfuscation and interactive extraction with di�erent extraction rates. Recall, the

101

�rst theorem says that every function is either weakly extractable or weakly obfuscatable.
The second theorem builds on the �rst one to imply that every weakly veri�able function
is either weakly obfuscatable or extractable with vanishing but noticeable error. The
�nal theorem states that negligible-error extraction can be achieved if and only if certain
conditions on the adversary are met. These conditions, termed �reliable consistency" in
the introduction, are discussed and formalized in Section 5.2.3.

5.2.1 Weak Extraction

The statement that any function is either extractable or obfuscatable is to some degree
intuitive. After all, these two notions are complementary in some way. For instance,
suppose there is an obfuscated program that hides a license key inside it and is able to
compute a new hash of the key. If we look at such a program from an extractability point
of view, this means that there is a machine that simulates this program and computes
the functionality mentioned above. Moreover, no extractor can recover the license key by
the assumption that the obfuscated program hides it. Going in the reverse direction, it
seems intuitive that the existence of an extractor for every adversary implies the absence
of an obfuscation of such a functionality.

In the next theorem, we formalize and show that the intuition mentioned in the
previous paragraph is sound. In more detail, statement 1 of this theorem (the obfuscation
clause) states that there is a well-spread distribution, X, on the input (think of this as the
license key of the previous example) and an obfuscator, Gn, that takes a license key, x,
and produces an obfuscated program, g(x). In turn, g(x) takes an input r and produces
a new image of x using r as random coins for the function, i.e., g(x)(r) = f(x, r).
Moreover, g(x) is required to be one-way in x but not required to succeed in computing
this functionality more than noticeably often. In the theorem, we use the terminology
g(x)(⊥) to refer to a �xed hash of x available in the clear in the obfuscated program.
On the other hand, statement 2 (the extraction clause) states that for any adversary, A,
with any distribution on its input, z, rA (z is auxiliary information and rA is the random
coins for A), that is consistent in the 3-round game discussed in Chapter 4, there is
a corresponding extractor that recovers a preimage. In more detail, A is supposed to
produce, with noticeable success, an image, y0 in the �rst round and then again y1 in
the third round, such that there is a preimage common to both y0 and y1. Moreover,

102

the extractor is supposed to succeed only noticeably often.
Theorem 5.2.1. Let F = {fn}n∈N be any probabilistic family of functions and R =

{Rn}n∈N be any distribution on the randomness domain of F. Then, exactly one of the

following two statements should hold:

1. There is a well-spread distribution X on the input domain of F, a probabilistic

function, G = {Gn} such that for any nonuniform polynomial-time machine, A:

(Obfuscation)

Pr[x← Xn, g(x)← Gn(x), x′ = A(g(x)) : ∃r′, g(x)(⊥) = fn(x′, r′)] ≤ µ(n).

(Functionality)

Pr[x← Xn, g(x)← Gn(x), r ← Rn : ∃r′, g(x)(r) = fn(x, r) and

g(x)(⊥) = fn(x, r′)],

is nonnegligible in n. Moreover, g(x)(r) is e�ciently computable, for any r.

2. For any probabilistic polynomial-time machine, A, any in�nite subset of security

parameters, N′, any distribution, ZR = {ZRn}n∈N′, on auxiliary information and

the private input of A, if:

(Consistency)

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃x′, r0, y0 = fn(x′, r0)) and y1 = fn(x′, r1))], (5.1)

is nonnegligible in n, then there exists a nonuniform polynomial-time machine, K,

such that:

(Extraction)

Pr[(z, rA)← ZRn, (y0, s) = A(z, rA), x = K(z, rA) : ∃r0, y0 = fn(x, r0)], (5.2)

is nonnegligible in n.

103

We emphasize that the previous theorem holds for any function. That is, it does
not assume anything about the function, not even that it is e�ciently computable. At
a high level, the proof proceeds as follows. If f is not extractable, we take an adversary
that violates this property and construct from it a distribution on the input of f (for
clarity, refer to this as the license distribution) and an obfuscation on this distribution
such that the obfuscation hides the license but is able to compute new images of it.
In more detail, the license distribution is the distribution induced by A on preimages
of its consistent output. For instance, if A always outputs fn(0, r0) in the �rst round
and fn(0, r1) in the third round (in this case there is a straightforward extractor), then
the induced distribution always samples 0. Moreover, the corresponding obfuscation is
simply the input of A that causes A to output valid images of the license. Observe
that the license distribution is well-spread because otherwise a nonuniform extractor can
invert with noticeable probability. Therefore, using this license distribution with the
corresponding obfuscation, statement 1 follows from the negation of statement 2. The
other direction is easier to see and has been referred to in the �rst paragraph of this
section. The formal proof follows.
Proof. (=⇒)
First, we show that if statement 2 does not hold, statement 1 should be true. Speci�cally,
we construct, given that statement 2 does not hold, a well-spread distribution, X, on the
input domain and a corresponding function, G, that is �uninvertible� (as in the �rst
requirement of statement 1) with respect to X. Moreover, G helps in computing points
in the range of F (as in the second requirement of statement 1). Putting these pieces
together implies that statement 1 is true.

Formally, suppose that statement 2 does not hold. Then, there exists a PPT, A,
an in�nite set of security parameters, N′, a distribution over auxiliary information and
A's private input, ZR, a polynomial, pA, and an in�nite subset of security parameters,
N′′ ⊆ N′ such that for all n ∈ N′′:

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃x′, r0, y0 = fn(x′, r0) and y1 = fn(x′, r1)] ≥
1

pA(n)
, (5.3)

104

and for any nonuniform polynomial-time machine, K, and su�ciently large n ∈ N′:

Pr[(z, rA)← ZRn, x = K(z, rA) : ∃r0, y0 = fn(x, r0)] ≤ µ(n). (5.4)

Eq. 5.4 has two major consequences. First, since all machines essentially fail in
inverting y0, then the distribution on the input induced by y0 must be well-spread;
otherwise the machine that receives the most frequent input as an advice string and
outputs it yields a nonnegligible probability. Denote by X this distribution. Second,
if we consider z, rA as a function of x, then this function is univertible. Denote this
function by G. In the next two paragraphs, we present X and G in more detail.
Construction of X.

De�ne the distribution X = {Xn}n∈N′′ as follows. For any a:

Pr[x← Xn : x = a] =

1
TXn

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃r0, y0 = fn(a, r0) and y1 = fn(a, r1)],

where TXn is a normalizing factor, i.e.,

TXn = Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃x, r0, y0 = fn(x, r0) and y1 = fn(x, r1)]

By Eq. 5.3, TXn > 0 for all n ∈ N′′. Dividing by TXn ensures that X is a well-de�ned
distribution.

Now, we show that X is well-spread. Suppose, for the purpose of contradiction,
that it is not. Then, there is an element in the input domain that is sampled with a
nonnegligible probability. Formally, for in�nitely many n, there exists a polynomial pX

such that:
Pr[x← Xn : x = argmax

a
Pr[x′ ← Xn : x′ = a]] ≥ 1

pX(n)

LetK be a nonuniform machine that receives as an advice string amax = argmax
a

Pr[x′ ←

105

Xn : x′ = a] and simply outputs it. We have for in�nitely many n:

Pr[(z, rA)← ZRn, x = K(z, rA) : ∃r0, y0 = fn(x, r0)] ≥
1
pX

.

A contradiction with Eq. 5.4. So, X must be well-spread.
Note that it is not clear how to e�ciently sample an element from X. However, if it

is easy to sample from ZRn, we can sample an image (under F) of an element from Xn

by choosing (z, rA) from ZRn and running A on z, rA to get y0.
Construction of G. Let G = {Gn}n∈N′′ be a probabilistic function de�ned as follows.
For any x and any b:

Pr[g(x)← Gn(x) : g(x) = b] =

1 if Tx = 0 and b =⊥

0 if Tx = 0 and b 6=⊥

1
Tx

Pr[(z, rA)← ZRn r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) : otherwise
(z, rA) = b and ∃r0, y0 = fn(x, r0) and y1 = fn(x, r1)]

(5.5)
Here again, Tx is a normalizing factor. It is the probability that A outputs valid im-

ages of x under F. Formally, Tx = Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 =

A(s, r1) : ∃r0, y0 = fn(x, r0) and y1 = fn(x, r1)].
We append to g(x) some processing code that takes an input, r, and outputs an

image of (x, r) under fn, as computed by A on input z, rA, r. Speci�cally,

g(x)(r) =

⊥ if g(x) = (z, rA) =⊥

A(z, rA) if r =⊥

A(z, rA, r) otherwise
(5.6)

It is not clear how to e�ciently compute Gn(x) in general. However, g(x)(r) is
e�ciently computable for any r.

We show that G is hard to invert by nonuniform polynomial-time machines. Observe
that the distribution induced by X and G on (z, rA) is the same as that of ZR restricted

to those (z, rA) which when we run A on them, A outputs valid images, y0 and y1.
Formally,

106

Remark 5.2.1. For any n ∈ N′′ and any (z, rA) 6=⊥:

Pr[x← Xn, g(x)← Gn : g(x) = (z, rA)]

= Pr[(z′, r′A)← ZRn, r1 ← Rn, (y0, s)← A(z′, r′A), y1 = A(s, r1) :

∃x, r0, y0 = fn(x, r0) and y1 = fn(x, r1) and (z′, r′A) = (z, rA)]. (5.7)

Eq. 5.7 follows from the constructions of X and G, and from the observation that for any

point, x, in the support of X, g(x) is never equal to ⊥.

Thus, for any nonuniform polynomial-time machine, K and su�ciently large n ∈ N′′:

Pr[x← Xn, g(x)← Gn(x), x′ = K(g(x)) : ∃r0, g(x)(⊥) = fn(x′, r0)]

= Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s)← A(z′, r′A), y1 = A(s, r1), x = K(z, rA) :

∃r0, y0 = fn(x, r0) and ∃x′, r′0, y0 = fn(x′, r′0) and y1 = fn(x′, r1)]

≤ µ(n), (5.8)

where Eq. 5.8 follows from Eq. 5.3 and 5.4 and Remark 5.2.1.
Moreover, for any n ∈ N′′:

Pr[x← Xn, g(x)← Gn(x), r ← Rn : ∃r′, g(x)(r) = fn(x, r) and g(x)(⊥) = fn(x, r′)]

= Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

(∃x′, r0, y0 = fn(x′, r0) and y1 = fn(x′, r1))] (5.9)

≥ 1
pA(n)

(5.10)

Eq. 5.9 and Eq. 5.10 hold by Remark 5.2.1 and Eq. 5.3, respectively. Eq. 5.8 and
5.10 imply statement 1. (⇐=)
Proving the reverse direction (if statement 1 holds, statement 2 should not) is easier.
Let X and G be a pair of a well-spread distribution and probabilistic function satisfying
the conditions of statement 1. Let ZR be the distribution induced by X on the range of

107

G. Speci�cally, for any a:

Pr[z ← ZRn : z = a] = Pr[x← Xn, g(x)← Gn(x) : g(x) = a].

Moreover, let A be an adversary that on input g(x), outputs g(x)(⊥), and on input
(g(x), r), outputs g(x)(r). By the e�ciency of g(x), A is a PPT machine. From statement
1, it follows that ZR and A violate statement 2.
Corollary 5.2.1. Any deterministic one-way function is not even weakly extractable.

That is, any deterministic one-way function satis�es statement 1 of Theorem 5.2.1.

Moreover, this remains true if the function is not e�ciently computable.

Proof. Let f be any deterministic one-way function. Convert it into a probabilistic
function that ignores the random coins, i.e. F (x, r) = f(x).

Let A be a deterministic machine that receives f(Un) as auxiliary information and
outputs it (as y0 and then as a response for any challenge). Thus, A answers consistently
with probability 1. On the other hand, the one-wayness property rules out the existence
of a nonuniform polynomial-time machine that computes, with noticeable success, a
preimage of the output of A. Consequently, f does not satisfy statement 2 of Theorem
5.2.1.

5.2.1.1 In the Uniform Setting

Theorem 5.2.1 was stated with respect to nonuniform extractors. In particular, the
adversary, A, of statement 1 as well as the extractor, K, of Statement 2 are nonuniform.
Essentially, K is nonuniform to show that the distribution, X, induced by A(ZRn) on the
input domain is well-spread. And then this nonuniformity is passed on to statement 1

by negating statement 2.
If we consider a uniform extractor, K, then statement 1 asserts the existence of a (not

necessarily well-spread) distribution on which G is uninvertible by uniform polynomial-
time machine. This version seems weaker than the �rst one. Thus, the negation of
this statement (and consequently, the existence of statement 2) seems harder to achieve.
We adopt the nonuniform version because statement 2 is one of the primary objectives
of Theorem 5.2.1. On the other hand, we show in Section 5.2.3, how to extract with

108

negligible error in the uniform setting only. That result depends on the uniform version
of Theorem 5.2.1, which we present here.
Theorem 5.2.2. Let F = {fn}n∈N be any probabilistic family of functions and R =

{Rn}n∈N be any distribution on the randomness domain of F. Then, exactly one of the

following two statements should hold:

1. There is a distribution X on the input domain of F, a probabilistic function, G =

{Gn} such that for any deterministic polynomial-time machine, A:

(Obfuscation)

Pr[x← Xn, g(x)← Gn(x), x′ = A(g(x)) : ∃r′, g(x)(⊥) = fn(x′, r′)] ≤ µ(n).

(Functionality)

Pr[x← Xn, g(x)← Gn(x), r ← Rn : ∃r′, g(x)(r) = fn(x, r) and

g(x)(⊥) = fn(x, r′)],

is nonnegligible in n. Moreover, g(x)(r) is e�ciently computable, for any r.

2. For any probabilistic polynomial-time machine, A, any in�nite subset of security

parameters, N′, any distribution, ZR = {ZRn}n∈N′, on auxiliary information and

the private input of A, if:

(Consistency)

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃x′, r0, y0 = fn(x′, r0)) and y1 = fn(x′, r1))], (5.11)

is nonnegligible in n, then there exists a deterministic polynomial-time machine,

K, such that:

(Extraction)

Pr[(z, rA)← ZRn, (y0, s) = A(z, rA), x = K(z, rA) : ∃r0, y0 = fn(x, r0)], (5.12)

is nonnegligible in n.

109

The proof of this theorem is very similar to that of Theorem 5.2.1 and is not presented
here.

5.2.2 Amplifying Extraction

Theorem 5.2.1 states that each function has a weakly extractable or weakly obfuscatable
property. Next, we investigate conditions that allow for amplifying knowledge extraction.
In particular, the goal in this section is to reach a vanishing but noticeable extraction
error. Recall from the introduction, this term means that for every polynomial, p, there
is an extractor that may depend on p and fails at most 1

p of the time. In Section 5.2.3,
we address extraction with negligible error.

Not surprisingly, functions that admit such a property require more than the negation
of statement 1 of Theorem 5.2.1. Recall that Theorem 5.2.1 holds for any function, in
particular, not e�ciently-computable functions. However, to reduce extraction error,
e�cient veri�cation is needed. For the purpose of amplifying extraction, common notions
of veri�cation (e.g., De�nition 2.5.1) are su�cient. However, a weaker but contrived form
of veri�cation is also su�cient, and, in the case of injective functions (i.e., for all y, there
is no more than one x such that y = fn(x, r) for some r), is also necessary. Thus, we
use this notion in the following theorem for the purpose of achieving a characterization
instead of an implication. Informally, weak veri�cation means there is a veri�er tailored
for every adversary, A. It receives x and the input of A and determines whether the
output of A is a valid image of x. Moreover, the veri�er is allowed to fail, when A is
consistent, with noticeable probability.
De�nition 5.2.1 (Weak Veri�cation). A function family , F = {fn}n∈N, satis-

�es weak veri�cation if for every PPT, A (with input z, rA), any distribution, ZR =

{ZRn}n∈N′, on auxiliary information and the private input of A, and any polynomial p,

there exists a nonuniform polynomial-time machine, VA,ZR,p, such that for su�ciently

large n ∈ N′:

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

(∃x, r0, VA,ZR,p(x, z, rA) 6= 1 and fn(x, r0) = y0

or ∃x, VA,ZR,p(x, z, rA) = 1 and ∀r0, fn(x, r0) 6= y0)

110

and (∃x, r0, fn(x, r0) = y0 and fn(x, r1) = y1)] <
1

p(n)
.

Theorem 5.2.3. Let F = {fn}n∈N be any probabilistic function family that is weakly

extractable (satis�es statement 2 of Theorem 5.2.1). If F is weakly veri�able (as in

De�nition 5.2.1), then for any PPT A, any distribution, ZR = {ZRn}n∈N′, on auxiliary

information and the private input of A, there exists a family of nonuniform polynomial-

time machines, U = {Ui}i∈N such that for any polynomial p, there is an index ip where

for all i ≥ ip and su�ciently large n ∈ N′:

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = Ui(z, rA) :

(∃r0, fn(x, r0) = y0 or (∀x′, (∀r0, y0 6= fn(x′, r0)) or y1 6= fn(x′, r1))] > 1− 1
p(n)

.

(5.13)
Moreover, this implication is an equivalence for injective functions.

The proof uses, in an essential way, an ampli�cation lemma similar to Impagliazzo's
hard-core lemma [Imp95]. At a very high level, this lemma asserts the existence of a
family of machines, U, such that �no machine can succeed noticeably where all of these
machines fail�. Using this lemma, we then claim that for every polynomial, p, there is
a member Uip ∈ U that fails in extracting a preimage with a probability at most 1

p . If
this were not to be the case, then this means there is some polynomial p, where every
machine in U fails with probability at least 1

p . This implies that there is a noticeable
fraction of the domain where A is consistent yet all members of U fail. Lets restrict the
distribution on the input of A to those on which such an event occurs. We then apply
Theorem 5.2.1, in particular, statement 2, to obtain an extractor with noticeable success
contradicting the lemma.
Proof. (=⇒)

The proof proceeds as follows. First, we present Lemma 5.2.1 that shows how to
construct �strong� extractors from �weak� ones. Then, combining Lemma 5.2.1 with
statement 2 of Theorem 5.2.1 yields Eq. 5.13.

In more detail, Lemma 5.2.1 says that there is a family of strong extractors with the
property that if all members of this family fail in extracting preimages then so would all
polynomial-time machines. We show that this family must indeed has arbitrary small

111

error because otherwise statement 2 implies the existence of an extractor that succeeds
noticeably where this family fails contradicting the lemma.

Before we present the lemma formally, we clarify that it addresses function inversion
in general and as such can be viewed as a version of Impagliazzo's hard-core lemma
[Imp95]. In more detail, the function family, F, mentioned in this lemma can be any
function family and thus does not have to be associated with the function in the theo-
rem. Later on, we prove the theorem by using this lemma on a function family related to
the one in the statement of the theorem. Moreover, the lemma requires a distribution,
Y, on the output domain of F with a corresponding family of nonuniform deterministic
polynomial-time weak veri�ers, VY = {VY,ni}i∈N, for the support of Y. Formally, for su�-
ciently large n: Pr[y ← Yn : ∃x, r, VY,ni(x, y) 6= 1 and fn(x, r) = y or ∃x, VY,ni(x, y) =

1 and ∀r, fn(x, r) 6= y] < 1
ni .

Lemma 5.2.1. Let F = {fn}n∈N be any probabilistic function family . Let Y = {Yn}n∈N

be any distribution on the output domain of F with a corresponding family of nonuni-

form polynomial-time weak veri�ers, VY = {VY,ni}i∈N. Then there exists a family of

nonuniform polynomial-time machines, U = {U j
i }i∈N,j∈N, satisfying three conditions:

1. For any nonuniform polynomial-time machine K with running time bounded by nj,

any index i, and su�ciently large n:

Pr[y ← Yn, x1 = U j
i (y), x2 = K(y) : ∃r, fn(x1, r) = y or fn(x2, r) = y]−

Pr[y ← Yn, x = U j
i (y) : ∃r, fn(x, r) = y] <

1
ni

. (5.14)

2. If there is an in�nite set of security parameters N′, another distribution Y′ =

{Y ′n}n∈N′ , and a polynomial nt, such that for all n ∈ N′ and any a:

Pr[y ← Yn : y = a] ≥ 1
nt

Pr[y ← Y ′n : y = a], (5.15)

and for all i > 1:

Pr[y ← Y ′n : ∃rfn(U i
i (y), r) = y] < µ(n), (5.16)

112

then for any nonuniform polynomial-time machine K:

Pr[y ← Y ′n : ∃rfn(K(y), r) = y] < µ(n). (5.17)

3. For any index i > 1 and any image y, if U i
i succeeds in inverting y then so does

U i+1
i+1 .

Proof. This is a proof by construction. For any polynomial nj and any i, we will de�ne
a nonuniform polynomial-time machine, U j

i , that satis�es this lemma. Informally, U j
i

is given a set of nonuniform polynomial-time machines (with their corresponding advice
strings) as an advice string. It simply simulates all of them on its input, y. If anyone
succeeds in �nding a preimage, it outputs that. Otherwise, it outputs ⊥. The machines
given in the advice string are chosen carefully to satisfy speci�c criterion. Speci�cally,
each machine has a considerable success in �nding a preimage, where all others fail. In
more detail, the advice string contains all machines (running in time bounded by nj)
such that each one has exclusively at least a probability of 1

ni in inverting F. Due to their
exclusive success probability, we can have, for any n, at most ni such machines in the
advice string. Therefore, the length of the advice string and consequently the running
time of U j

i is polynomially bounded. If any machine does not satisfy Eq. 5.14 then it
should, by construction, be included in the advice string. Moreover, if it is in the advice
string, then Eq. 5.14 must hold. The second property follows directly from Eq. 5.14; if
there is any polynomial-time machine that succeeds with nonnegligible probability, then
it contradicts Eq. 5.14 with respect to some good U j

i . The third property is a technicality
needed in the latter part of proof. It basically says if a good inverter fails then so do
weaker ones.
Construction of U j

i . Formally, denote by aj
i (n) = (bj

i (n), cj
i (n), aV

i (n)) the advice
string of machine U j

i for security parameter n, where bj
i (n) is an encoding of a set of

nonuniform machines running in nj time, and cj
i (n) consists of the advice strings for the

corresponding machines in bj
i (n), and aV

i (n) is the advice string for the weak veri�er,
VY,ni that fails with probability at most 1

ni . Initially, bj
i (n) (respectively, cj

i (n)) is set
to bj−1

i−1 (n) (respectively, cj−1
i−1 (n)) with aj

1(n) and a1
i (n) set initially to ε. Then, any

113

nonuniform machine K with running time bounded by nj is added to bj
i (n) if:

Pr[y ← Yn, x = K(y) : ∃r, fn(x, r) = y and ∀K′ ∈ bj
i (n), x′ = K′(y) : ∀r′, fn(x′, r′) 6= y]

≥ 1
ni

. (5.18)

Finally, for every newly added machine, add its corresponding advice string for length
n to cj

i (n). Since each machine in bj
i (n) exclusively contributes at least 1

ni to the success
probability, there can be at most ni machines in bj

i (n) for any n. Moreover, since each
machine has a running time bounded by nj , it can be encoded as a string of length
bounded by a polynomial q′. Likewise, the length of the advice string of each machine
in bj

i (n) is bounded by nj since no such machine can read more than nj many symbols.
Putting it all together, we have |aj

i (n)| = ni(q′(n) + nj) + |aV
i (n)|.

Now, U j
i receives y as input and aj

i (n) as an advice string. It simulates all machines
in bj

i (n) on y with their corresponding advice strings in cj
i (n). If any machine returns an

x satisfying the condition VY,ni(x, y) = 1, it returns x. Otherwise, it outputs ⊥. Note
that the running time of U j

i is bounded by some �xed polynomial in ninj .
Observe if for some i > 1, U i

i succeeds in inverting any y then there is a machine in
bi
i(n) that succeeds as well. By construction bi

i(n) is in bi+1
i+1(n). So, U i+1

i+1 also succeeds
in inverting y (assuming VY,ni+1 does no worse than VY,ni), and property 3 holds.
Proof of Eq. 5.14. Suppose, for the purpose of contradiction, that there is a nonuniform
machine, K, running in time at most nj , an index i, and some arbitrary large n such
that:

Pr[y ← Yn, x1 = U j
i (y), x2 = K(y) : ∃r, fn(x1, r) = y or fn(x2, r) = y]−

Pr[y ← Yn, x = U j
i (y) : ∃r, fn(x, r) = y] ≥ 1

ni
.

There are two cases. First, K is in bj
i (n). Then by construction, the di�erence above

is at most the error of VY,ni which is less than 1
ni . Second, K is not in bj

i (n). In this case,
K satis�es Eq. 5.18. So, it should be in bj

i (n). In either case, there is a contradiction.
Proof of Property 2. We show that property 2 is true based on Eq. 5.14. Suppose,

114

for the purpose of contradiction, that Eq. 5.15 and Eq. 5.16 hold but Eq. 5.17 does
not. Then, there exists a nonuniform machine, K, with running time bounded by some
polynomial, nj , another polynomial ni, such that for in�nitely many n ∈ N′:

Pr[y ← Y ′n : ∃rfn(K(y), r) = y] >
1
ni

, (5.19)

Let t′ = 2(max(i, j) + t). Then, we have for in�nitely many n ∈ N′:

Pr[y ← Yn, x1 = U t′
t′ (y), x2 = K(y) : ∃rfn(x1, r) = y or fn(x2, r) = y]−

Pr[y ← Yn, x = U t′
t′ (y) : ∃rfn(x, r) = y]

= Pr[y ← Yn, x1 = U t′
t′ (y), x2 = K(y) : ∀r, fn(x1, r) 6= y and ∃r, fn(x2, r) = y]

≥ 1
nt

Pr[y ← Y ′n, x1 = U t′
t′ (y), x2 = K(y) : ∀r, fn(x1, r) 6= y and ∃r, fn(x2, r) = y]

(5.20)
≥ 1

nt
(1− µ(n))(

1
ni
− µ(n)) (5.21)

≥ 1
nt′

,

where Eq. 5.20 follows from Eq. 5.15, and Eq. 5.21 follows from Eq. 5.19 and Eq. 5.16.
A contradiction with Eq. 5.14.
Lemma 5.2.1 + statement 2 of Theorem 5.2.1 =⇒ Eq. 5.13 of Theorem 5.2.3.

If statement 2 of Theorem 5.2.1 holds, then Lemma 5.2.1 implies Eq. 5.13. Again,
this is a proof by contradiction. Suppose the inequality of Theorem 5.2.3 does not
hold. Then, there is a weakly-extractable and weakly-veri�able probabilistic function,
F, a PPT A, an in�nite set of security parameters, N′, a distribution on the auxiliary
information and A's private input, ZR1, and a polynomial p such that for any nonuniform
polynomial-time machine, K, there is an in�nite subset of security parameters NK ⊆ N′

such that:

Pr[(z, rA)← ZR1
n, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = K(z, rA) :

115

(∀r, fn(x, r) 6= y0 and (∃x′, r0, y0 = fn(x′, r0) and y1 = fn(x′, r1))] ≥
1

p(n)
. (5.22)

Let ZR2 = {ZR2
n}n∈N′ be the restriction of ZR1 to those elements that cause A to

output a consistent pair of images, y0 and y1. Formally, for any n ∈ N′ and any (a, b):

Pr[(z, rA)← ZR2
n : (z, rA) = (a, b)] =

1
TZR2

n

Pr[(z, rA)← ZR1
n, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

(z, rA) = (a, b) and ∃x′, r0, y0 = fn(x′, r0) and y1 = fn(x′, r1)],

where TZR2
n

= Pr[(z, rA) ← ZR1
n : r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃x′, r0, y0 = fn(x′, r0) and y1 = fn(x′, r1)]. W.l.o.g., N′ is restricted to security param-
eters for which A succeeds in answering consistently with nonzero probability. Conse-
quently, the denominator of the previous fraction is nonzero for all n ∈ N′.

Let G = {Gn}n∈N′ be a probabilistic function de�ned as follows. For any n ∈ N′ and
(z, rA):

Pr[g(x)← Gn(x) : g(x) = z, rA] =

1 if Tx = 0 and (z, rA) =⊥

0 if Tx = 0 and (z, rA) 6=⊥

0 if ∀r0, y0 6= fn(x, r0), where (y0, s) = A(z, rA)

Pr[(z′,r′
A)←ZR1

n:(z′,r′
A)=(z,rA)]

Pr[(z,rA)←ZR1
n, (y0,s)=A(z,rA):∃r0, y0=fn(x,r0)]

if ∃r0, y0 = fn(x, r0), where (y0, s) = A(z, rA)

(5.23)

Here, Tx = Pr[(z, rA) ← ZR1
n, (y0, s) = A(z, rA) : ∃r0, y0 = fn(x, r0)]. Note that

ZR2 is a distribution on the range of G because no element, (z, rA), can be in the
support of ZR2 unless y0 has a valid preimage under fn. That is, (y0, s) = A(z, rA) and
∃x, r, fn(x, r) = y0. This makes (z, rA) one of the possible images of x under Gn.

Associate with the distribution, ZR2, the family of weaker veri�ers, VZR2 = {VZR2,ni}n∈N′ ,
where VZR2,ni = VA,ZR2,ni .
VZR2 is a weak veri�er for ZR2.

By construction, we have for su�ciently large n:

Pr[(z, rA)← ZR2
n : ∃x, r, VZR2,ni(x, z, rA) 6= 1 and gn(x, r) = (z, rA)

or ∃x, VZR2,ni(x, z, rA) = 1 and ∀r, gn(x, r) 6= (z, rA)]

116

= Pr[(z, rA)← ZR1
n, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

(∃x′, r0, y0 = fn(x′, r0) and y1 = fn(x′, r1)) and

(∃x, r, VA,ni(x, z, rA) 6= 1 and y0 = fn(x, r0) or

∃x, VA,ni(x, z, rA) = 1 and ∀r, y0 6= fn(x, r0)] <
1
ni

,

where the last inequality follows from De�nition 5.2.1.
Now, we use Lemma 5.2.1 with the parameters: G (as the weakly-veri�able function),

ZR2 (as the distribution on the output domain of G), and VZR2 (as a weak veri�er) to
obtain the family, U, as described in that lemma.

By the de�nition of ZR2 and then by Eq. 5.22, we have for any U i
i , there is an in�nite

subset of security parameters NU i
i
⊆ N′ such that:

Pr[(z, rA)← ZR2
n, (y0, s) = A(z, rA), x = U i

i (z, rA) : ∀r, fn(x, r) 6= y0]

= Pr[(z, rA)← ZR1
n, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = U i

i (z, rA) :

(∀r, fn(x, r) 6= y0 and (∃x′, r0, y0 = fn(x′, r0) and y1 = fn(x′, r1))] ≥
1

p(n)
. (5.24)

We will use Eq. 5.24 to derive a special distribution on auxiliary information and
private input of A. This distribution allows A to answer challenges consistently with
nonnegligible probability while all U i

i fail in �nding a preimage with overwhelming prob-
ability. Given such a distribution, Lemma 5.2.1 implies that all polynomial-time ma-
chines succeed with negligible probability while statement 2 of Theorem 5.2.1 tells us
that some machine succeeds with nonnegligible probability.

By property 3 of Lemma 5.2.1, we have NU i+1
i+1
⊆ NU i

i
for all i. Let N∞ = ∪∞i=1{ai},

where ai = inf NU i
i
− {a1, ..., ai−1}.

Remark 5.2.2. Note that |N∞| =∞ and Eq. 5.24 holds for all U i
i and all n ≥ ai, where

n ∈ N∞.

Let ZR3 = {ZR3
n}n∈N∞ be the restriction of ZR2 to those elements on which the

family U fails. Formally, for any n = ai ∈ N∞, ZR3
n is de�ned as follows:

Pr[(z, rA)← ZR3
n : (z, rA) = (a, b)]

117

=
1

TZR3
n

Pr[(z, rA)← ZR2
n, x = U i

i (z, rA), (y0, s) = A(z, rA) :

∀r, fn(x, r) 6= y0 and (z, rA) = (a, b)],

where TZR3
n

= Pr[(z, rA)← ZR2
n, x = U i

i (k, z, rA), (y0, s) = A(z, rA) : ∀r, fn(x, r) 6=

y0]. By Remark 5.2.2 and Eq. 5.24, TZR3
n
≥ 1

p(n) , for all n ∈ N∞. Therefore, for any
n = ai ∈ N∞ and any (a, b):

Pr[(z, rA)← ZR2
n : (z, rA) = (a, b)]

≥

1
p(n)Pr[(z, rA)← ZR3

n : (z, rA) = (a, b)] = 0 if ∃r, fn(x, r) = y0, where:
x = U i

i (a, b) and (y0, s) = A(a, b)

1
p(n)Pr[(z, rA)← ZR3

n : (z, rA) = (a, b)] otherwise
(5.25)

Moreover, by property 3 of Lemma 5.2.1 and by de�nition of ZR3, we have for any i

and all n ∈ N∞, n ≥ ai:

Pr[(z, rA)← ZR3
n, x = U i

i (z, rA), (y0, s) = A(z, rA) : ∃r, fn(x, r) = y0] = 0. (5.26)

Eq. 5.25, 5.26, and Lemma 5.2.1 (in particular, the second property) imply that
Eq. 5.17 should hold with respect to any nonuniform polynomial-time machine. Plugging
in the correct parameters, we have for any nonuniform polynomial-time machine, K, and
n ∈ N∞:

Pr[(z, rA)← ZR3
n, (y0, s) = A(z, rA), x = K(z, rA) : ∃y0, fn(x, r0) = y0] < µ(n).

(5.27)
On the other hand, for any n = ai ∈ N∞:

Pr[(z, rA)← ZR3
n, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃x′, r0, y0 = fn(x′, r0) and y1 = fn(x′, r1)]

= Pr[(z, rA)← ZR1
n, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = U i

i (z, rA) :

∃x′, r0, y0 = fn(x′, r0) and y1 = fn(x′, r1) and ∀r, fn((x, r) 6= y0]

118

≥ 1
p(n)

. (5.28)

The last inequality follows from Eq. 5.24.
Eq. 5.28 and statement 2 of Theorem 5.2.1 imply that there exists a nonuniform

polynomial-time machine satisfying Eq. 5.12. This contradicts Eq. 5.27. Therefore,
Eq. 5.13 holds.

(⇐=)
The converse of the above result is true for injective functions. Speci�cally, any injective
function that satis�es Eq. 5.13 is weakly veri�able. This is so because for such functions,
an extractor can be easily transformed into a veri�er. Formally, for any A (with input
z, rA), any distribution, ZR, and any polynomial p, let K be the corresponding extractor
satisfying Eq. 5.13. Let VA,ZR,p(x, z, rA) = 1 if and only if x = K(z, rA). Note that if K
succeeds in computing a preimage, then VA,ZR,p behaves correctly on z, rA and for any
x. Thus, VA,ZR,p fails no more than 1

p(n) of the time, for su�ciently large n.
Corollary 5.2.2. If F = {fn}n∈N is a probabilistic function family that is e�ciently

computable, has public randomness, and satis�es statement 2 of Theorem 5.2.1, then F

is extractable with arbitrary small, yet noticeable error (as in Eq. 5.13).

Proof. Associate with F the following veri�able: VF(x, y = (r, y′)) = 1 if and only if
fn(x, r) = y. It follows then that F is weakly veri�able (let VA,ZR,p(x, z, rA) = VF(x, y0),
where A(z, rA) = y0, s). Apply Theorem 5.2.3 to get the result.

The following corollary is one of the main applications of this result.
Corollary 5.2.3. Every POW function with auxiliary information that is collision resis-

tant and has public randomness is interactively-extractable with vanishing but noticeable

error (as in Theorem 5.2.3).

Proof. Let H = {{Hk}k∈Kn}n∈N be a family ensemble of POW functions with auxiliary
information. Pick any sequence of functions, H = {Hkn}n∈N, where Hkn ∈ Kn. We
argue that H does not satisfy statement 1 of Theorem 5.2.1 because H is perfectly one-
way with auxiliary information. Suppose, for the purpose of contradiction, that there is
a well-spread distribution, X and a function G, satisfying statement 1 of Theorem 5.2.1.
By assumption, G is one-way and consequently can be used as auxiliary information to
H. Let A be an adversary that receives g(x), y as input, where y can be either Hkn(x, r)

119

or Hkn(u, r) and u and r are uniform. By public randomness, r is in the input to A as
part of Hk(., r). Now, A computes g(x)(r) and outputs 1 if y = g(x)(r). Otherwise,
it outputs 1 with probability 1

2 . In the case where y = Hkn(x, r), A outputs 1 with
probability noticeable better than 1

2 . However, if y = Hkn(u, r), then A outputs 1 with
probability negligibly close to 1

2 because of collision resistance. This contradicts perfect
one-wayness. Thus, H satis�es statement 2 of Theorem 5.2.1. Using, in addition, the
fact that H is e�ciently computable and has public randomness, Corollary 5.2.2 implies
that H satis�es Eq. 5.13.

5.2.2.1 In the Uniform Model

The uniform version of Theorem 5.2.3 is very similar. The only di�erence is that both
the veri�er and extractor are deterministic polynomial-time machines. Moreover, the
proof follows the same lines as that of Theorem 5.2.3. However, the ampli�cation lemma
is quite stronger in this setting. In fact, this is one of the reason that makes negligible
extraction error possible in Section 5.2.3. In words, this lemma provides a family of
extractors such that no machine can succeed even negligibly often where this family
fails.
De�nition 5.2.2 (Weak Veri�cation (uniform)). A function family , F = {fn}n∈N,

satis�es weak veri�cation if for every PPT, A (with input z, rA), any distribution, ZR =

{ZRn}n∈N′, on auxiliary information and the private input of A, and any polynomial p,

there exists a deterministic polynomial-time machine, VA,ZR,p, such that for su�ciently

large n ∈ N′:

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

(∃x, r0, VA,ZR,p(x, z, rA) 6= 1 and fn(x, r0) = y0

or ∃x, VA,ZR,p(x, z, rA) = 1 and ∀r0, fn(x, r0) 6= y0)

and (∃x, r0, fn(x, r0) = y0 and fn(x, r1) = y1)] <
1

p(n)
.

Theorem 5.2.4. Let F = {fn}n∈N be any probabilistic function family that is weakly

extractable (satis�es statement 2 of Theorem 5.2.2). If F is weakly veri�able (as in

De�nition 5.2.2), then for any PPT A, any distribution, ZR = {ZRn}n∈N′, on auxiliary

120

information and the private input of A, there exists a family of deterministic polynomial-

time machines, U = {Ui}i∈N such that for any polynomial p, there is an index ip where

for all i ≥ ip and su�ciently large n ∈ N′:

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = Ui(z, rA) :

(∃r0, fn(x, r0) = y0 or (∀x′, (∀r0, y0 6= fn(x′, r0)) or y1 6= fn(x′, r1))] > 1− 1
p(n)

.

(5.29)
Moreover, this implication is an equivalence for injective functions.

The proof is very similar to that of Theorem 5.2.3 except that it uses the following
ampli�cation lemma instead of Lemma 5.2.1. Informally, this lemma provides a family
of machines, U, such that any machine can not succeed even negligibly where this family
fails. At a high level, each Ui ∈ U contains the �rst i machines in an enumeration of
uniform polynomial-time machines. This ensures that every polynomial-time machine is
eventually included in this family.
Lemma 5.2.2. Let F = {fn}n∈N be any probabilistic function family . Let Y = {Yn}n∈N

be any distribution on the output domain of F with a corresponding family of weak veri-

�ers, VY = {VY,ni}i∈N. Then there exists a family of uniform PT machines, U = {Ui}i∈N,

satisfying the following two conditions:

1. for any i, j, i < j and all n:

Pr[y ← Yn, x = Ui(y) : ∃r, fn(x, r) = y] ≤ Pr[y ← Yn, x = Uj(y) : ∃r, fn(x, r) = y].

2. For any distribution Y′ with a corresponding family of weaker veri�ers, any PT

machine, K, ∃i such that for all j ≥ i and su�ciently large n:

Pr[y ← Y ′n, x = K(y) : ∃r, fn(x, r) = y] ≤

Pr[y ← Y ′n, x = Uj(y) : ∃r, fn(x, r) = y] +
1
nj

.

Proof. Let S = {M1
1 ,M2

1 ,M2
2 , ...} be an enumeration of deterministic polynomial-time

machines. For instance, if S′ = {M1,M2, ...} is an enumeration of Turing machines, then

121

M j
i ∈ S corresponds to the ith machine in S′ with a timer that stops Mi after nj steps.

Let Ui be the machine that simulates every member of Si = {M1
1 ,M2

1 , ...,M i
i } on its

input, y. Then, it runs VA,ni on the output of each machine and returns the one that
VA,ni accepts (or ⊥ if VA,ni does not accept any).
First condition. The �rst condition of the lemma follows immediately from the fact
that for any i, j, i < j, Uj simulates all the machines that Ui does and also uses a more
accurate veri�er (assuming VA,ni does no better than VA,nj).
Second condition. Let K be any machine with polynomial running time. Then, by
construction, there exists an i such that for all j ≥ i, Uj simulates K. Thus, when K
succeeds then Uj succeeds as well, except when the veri�er fails. By de�nition, the latter
event happens with probability 1

nj .

5.2.3 Towards Extraction with Negligible Error

The previous section underscores conditions that are necessary (at least for injective
functions) and su�cient for extraction with vanishing but noticeable error. Here, we
address the question of obtaining extraction with negligible error. As before, we show
necessary and su�cient conditions to achieve this objective. However, unlike the pre-
vious results, the conditions are not on the function but rather on the adversary itself.
Moreover, as we discuss later on, this result is in the uniform setting only.
Conditions for extraction with negligible error. As we mentioned in the intro-
duction, extraction with negligible error requires �reliable consistency� on the behalf of
the adversary. Informally, we show that negligible extraction error is possible for a par-
ticular adversary, A, if it can answer challenges consistently with probability bounded
from below by the inverse of some �xed polynomial. Informally, it may be the case
that A answers consistently with noticeable probability. Yet, depending on its input,
the probability of its consistency (taken over the random coins of the challenger) can be
arbitrary small though still noticeable. In such a scenario, extraction can not achieve
negligible error because as answers are less likely to be consistent, extraction requires
more e�ort and time to �nd a preimage. On the other hand, if for almost all of its input,
A answers consistently with a probability bounded from below by an inverse polynomial,
this bound can be translated into an upper bound on the running time of the extractor.

We elaborate on these conditions through a toy example. Suppose there is a function,

122

f and an adversary A with the following properties. A outputs a consistent pair (y0, y1)

with probability 1
ni for every element in the ith 2n

n fraction of the input domain of A.
Here, the probability is taken over random coins sent by the challenger in round 2.
Formally, we have for every n, and every (z, rA) ∈ [i2n

n , (i+1)2n

n]:

Pr[r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) : ∃x, r0, fn(x, r0) = y0

and fn(x, r1) = y1] =
1
ni

.

Now, it may be the case that extraction depends on how successful A is in answering
challenges. If this is so, then extraction is proportional to consistency. In other words,
the more consistent A is, the less time extraction takes. In such a scenario, it turns out
that overwhelming success requires super-polynomial time. In other words, noticeable
extraction error is unavoidable.

In the previous example, we assume that A has a noticeable success in every fraction
of the input domain. Also, we assume that A can not do any better. In other words, A

can not amplify its success rate. However, there are cases where A can indeed amplify
its success, e.g., A may provide wrong answers intentionally even though it can easily
compute the correct ones. In such a scenario, extraction with negligible error is possible.
As an example, consider an adversary, A, that provides wrong answers intentionally.
A receives x as input, computes i such that x ∈ [i2n

n , (i+1)2n

n], and gives the correct
answer only if r1 ∈ [0, 2n

ni]. Even though A satis�es the previous condition, an extractor
can easily recover x by reading it from the input. So, we need a meaningful way to
separate the notion of �truthful� failure from �intentional� failure. In the next theorem,
we capture the notion of intentional failure through the existence of another machine A′

that behaves similarly to A, yet it ampli�es its consistency.
Uniform Setting. The proof of Theorem 5.2.3 uses a diagonalization technique to show
that no machine can succeed �substantially� where the family U fails. The diagonalization
is over machines that succeeds noticeably over inputs of some length n. This technique
works because this set of machines is enumerable. (Speci�cally, there are at most n

machines that each succeeds exclusively with probability 1
n and so on.) However, this

technique fails when we try to use it to achieve negligible error in polynomial time.
Two factors seem to prevent this technique from working. First, the set of nonuniform

123

polynomial-time machines is not enumerable and so we can not diagonalize over this set
(as we discuss later on, we use enumeration of uniform machines to prove this result in
the uniform setting). Second, if we instead consider machines that succeed exclusively, as
in the previous theorem, we need to take into account those that succeed with negligible
probability, yet the probability is not �very negligible�, say, 1

nlogn . However, this causes U

to be slightly super-polynomial. Consequently, the next theorem applies to the uniform
setting only. It is based on Theorem 5.2.2 instead of Theorem 5.2.1.

Before we present the theorem we describe reliable consistency in more detail. Re-
liable consistency refers to a new machine, A′, that replaces an adversary, A, with the
purpose of undoing any intentional failure on behalf of A. The conditions on A′ are as
follows:

1. The output of A′ is equivalent to A in the �rst round.
2. The consistency of A′ is not any worse than that of A.
3. There is a �xed polynomial, pA′ , such that almost all inputs to A′ cause it to be

either consistent negligibly or with probability at least 1
pA′

.
If there is such an A′ then extraction with negligible extraction error is possible. More-
over, the converse is also true for e�ciently computable and veri�able functions.
Theorem 5.2.5. Let F = {fn}n∈N be any probabilistic function family that satis�es

statement 2 of Theorem 5.2.2 and is weakly veri�able (as in De�nition 5.2.2).

Let A be any PPT and ZR = {ZRn}n∈N′ be any distribution on auxiliary information

and the private input of A. If there is another PPT, A′, satisfying the following three

conditions of reliable consistency:

1. A′(z, rA) = A(z, rA) for all z, rA.

2.

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A′(z, rA), y1 = A′(s, r1) :

∃x′, r0, y0 = fn(x′, r0)) and y1 = fn(x′, r1))]

≥ Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1) :

∃x′, r0, y0 = fn(x′, r0)) and y1 = fn(x′, r1))]− µ(n)

124

3. There exists a polynomial pA′, such that for any polynomial q > pA′:

Pr[(z,rA)←ZRn:

1
q(n)
≤Pr[r1←Rn, (y0,s)=A′(z,rA), y1=A′(s,r1,aA′): ∃x′, r0, y0=fn(x′,r0) and y1=fn(x′,r1)]

≤ 1
pA′ (n)

]≤µ(n)

then there is a deterministic polynomial-time machine, K such that for n ∈ N′:

Pr[(z, rA)← ZRn, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = K(z, rA) :

∃r0, fn(x, r0) = y0 or (∀x′(∀r0, y0 6= fn(x′, r0)) or y1 6= fn(x′, r1))] > 1− µ(n). (5.30)

Moreover, if F is e�ciently computable and veri�able (as in De�nition 2.5.1), then

the converse is also true.

The proof is similar to that of Theorem 5.2.4. We use Lemma 5.2.2 to get a family
U of machines. We claim that there is a member of this family that achieves negligible
extraction error. If this were not to be the case, then for every member Ui there is a
polynomial pi such that Ui fails with probability at least 1

pi
. Note that pi may increase

as i increases. However, by the third condition on A′, consistency of A′ is bounded from
below by the inverse of a �xed polynomial independent of pi. This is important because
when we restrict the input distribution to where A′ is consistent and U fails, A′ remains
consistent with noticeable probability. Consequently, we can apply Theorem 5.2.2 to get
an extractor with noticeable success contradicting the lemma.
Proof. (=⇒)

The proof is almost the same as that of Theorem 5.2.4. The main di�erence is that
each Ui is now assumed to fail with probability 1

pi(n) , where pi depends on Ui (as opposed
to some �xed polynomial). If we restrict the distribution to those elements on which
the family, U, fails collectively, then Lemma 5.2.2 states that all machines should fail on
this distribution. However, given no other conditions, there is no guarantee that A will
succeed noticeably on this restriction. On the other hand, reliable consistency gives us
the guarantee that we need.

125

Formally, suppose for the purpose of contradiction that Eq. 5.30 does not hold. Then,
there is a weakly-veri�able probabilistic function, F, a PPT A, an in�nite set of security
parameters, N′, a distribution on the auxiliary information and A's private input, ZR1,
such that for any deterministic polynomial-time machine, K, there is a polynomial, pK

and an in�nite subset of security parameters NK ∈ N′ such that:

Pr[(z, rA)← ZR1
n, r1 ← Rn, (y0, s) = A(z, rA), y1 = A(s, r1), x = K(z, rA) :

(∀r, fn(x, r) 6= y0 and (∃x′, r0, y0 = fn(x′, r0) and y1 = fn(x′, r1))] ≥
1

pK(n)
. (5.31)

Let A′ be the PPT satisfying the three conditions described in this theorem and ZRA′ =

{ZRA′
n }n∈N′′ be the restriction of ZR1 to those elements on which A′ succeeds with

probability 1
pA′

, Formally,

N′′ = {n ∈ N′ : Pr[(z, rA)← ZR1
n : Pr[r1 ← Rn, (y0, s) = A′(z, rA), y1 = A(s, r1) :

(∃x, r0, y0 = fn(x, r0) and y1 = fn(x, r1))] ≥
1

pA′(n)
] > 0}.

Also, for any n ∈ N′′ and any (a, b):

Pr[(z, rA)← ZRA′
n : (z, rA) = (a, b)] =

1
TZRA′

n

Pr[(z, rA)← ZR1
n : (z, rA) = (a, b) and

Pr[r1 ← Rn, (y0, s) = A′(z, rA), y1 = A′(s, r1, aA′) :

∃x, r0, y0 = fn(x, r0) and y1 = fn(x, r1)] ≥
1

pA′(n)
],

where

TZRA′
n

= Pr[(z, rA)← ZR1
n : Pr[r1 ← Rn, (y0, s) = A′(z, rA), y1 = A(s, r1) :

(∃x, r0, y0 = fn(x, r0) and y1 = fn(x, r1))] ≥
1

pA′(n)
].

Using conditions 1 and 2 of the theorem, Eq. 5.31 still holds if A is replaced with A′.
Moreover, the same equation still holds if we replace ZR1 with ZRA′ because by condition

126

3, A′ fails almost always on every element outside the support of ZRA′ . Formally, for
any deterministic polynomial-time machine, K, there is a polynomial, pK and an in�nite
subset of security parameters NK ∈ N′′ such that:

Pr[(z, rA)← ZRA′
n , r1 ← Rn, (y0, s) = A′(z, rA), y1 = A′(s, r1), x = K(z, rA) :

(∀r, fn(x, r) 6= y0 and (∃x′, r0, y0 = fn(x′, r0) and y1 = fn(x′, r1))] ≥
1

pK(n)
. (5.32)

Let G and VZRA′ be as de�ned in the proof of Theorem 5.2.3 on distribution ZRA′ .
Apply Lemma 5.2.2 on the parameters G, ZRA′ , and VZRA′ to get the family U = {Ui}i∈N

as described in that lemma.
By Eq. 5.32, for any Ui, there is a polynomial, pi, and an in�nite subset of security

parameters NU i
i
⊆ N′′ such that:

Pr[(z, rA)← ZRA′
n , (y0, s) = A′(z, rA), x = U i

i (z, rA) :

(∀r, fn(x, r) 6= y0 and (∃x′, r0, y0 = fn(x′, r0) and y1 = fn(x′, r1))] ≥
1

pi(n)
(5.33)

Let ZR3 = {ZR3
n}n∈N∞ be the restriction of ZRA′ to those elements on which the family

U fails (see proof of Theorem 5.2.3 for formal de�nitions of ZR3 and N∞).
By construction, A′ is consistent with probability 1

pA′
for any (z, rA) in the support

of ZRA′ (and consequently ZR3). Formally, for any n ∈ N∞:

Pr[(z, rA)← ZR3
n, r1 ← Rn, (y0, s) = A′(z, rA), y1 = A′(s, r1), :

∃x, r0, y0 = fn(x, r0) and y1 = fn(x, r1)] ≥
1

pA′
. (5.34)

Moreover, by construction we have for any i and su�ciently large n ∈ N∞:

Pr[(z, rA)← ZR3
n, (y0, s) = A′(z, rA), x = U i

i (z, rA) : ∃r, fn(x, r) = y0] = 0. (5.35)

Eq. 5.34 with statement 2 of Theorem 5.2.2 imply the existence of a deterministic
polynomial-time machine that extracts with nonnegligible probability over the distribu-
tion ZR3

n. On the other hand, Eq. 5.35 with Lemma 5.2.2 (in particular, condition 2 of

127

this lemma with ZR3 as the distribution and VA′,ZR3 as a weak veri�er) imply that every
polynomial-time machine fails to extract on the same distribution, except with negligible
probability. Consequently, a contradiction is reached and the forward direction of this
theorem holds.

(⇐=)
If F is e�ciently computable and veri�able then the converse of the theorem is true.
That is, if there is an extractor with negligible error then there is a PPT, A′ satisfying
the three conditions in this theorem. Speci�cally, let A′ be the following machine. It
computes (y0, s) = A(z, rA) and outputs y0, s. When it receives the challenge, r1, it
computes x = K(z, rA) and checks whether V (x, y0) = 1 (V is the deterministic veri�er
that always works, as in De�nition 2.5.1). If so, it outputs fn(x, r1). Otherwise, it returns
⊥. A′ satis�es condition 1 in a straightforward way. Moreover, A′ satis�es condition 2

because A′ is inconsistent only when K fails in inverting y0. The latter event happens
at most negligibly often when A is consistent. Finally, A′ is consistent exactly when K
recovers a correct preimage of y0. Consequently, the consistency of A′ is independent of
the random coins r1. Thus, if pA′ = 2, then the outer probability in condition 3 is 0.
Formally, for any polynomial q > 2:

Pr[(z, rA)← ZRn :

1

q(n)
≤

Pr[r1 ← Rn, (y0, s) = A′(z, rA), y1 = A′(s, r1, aA′) : ∃x′, r0, y0 = fn(x′, r0) and y1 = fn(x′, r1)]

≤ 1

2
] = 0.

5.3 Noninteractive Extraction versus Obfuscation

A natural question that arises from the work of Section 5.2 on characterizing knowledge
extraction in the interactive setting is, how does this translate to the noninteractive set-
ting? We present similar results in this setting. However, the results are less informative
and the implications seem weaker in the sense that functions seem to be more likely
to satisfy statement 1 than statement 2 (which is our main objective). For instance, it
seems to us that if we try to prove an alternative to Theorem 5.2.3 (ampli�cation up
to arbitrary small, yet negligible error) in the nonuniform and noninteractive setting,
we need to build on an alternative version of Theorem 5.2.1, where all functions satisfy
statement 1. In other words, functions do not satisfy the notion of extraction that seem

128

to us necessary for ampli�cation in the nonuniform setting (we discuss this in more de-
tails later on in this section). Yet, for completeness, we present two theorems parallel to
those in the interactive setting. The �rst one pertains to extraction with nonnegligible
error and applies to the nonuniform and uniform setting. The second one deals with
negligible extraction error but is in the uniform model only.

5.3.1 Weak Extraction

As in the interactive model, we observe that any function satis�es a certain �obfuscation�
or �extraction� property. The obfuscation property says that there is a box, g that
receives as input the description, k, of a function, f , and computes fk(x, r) for some x

and r. On the other hand, nobody can recover x from this box. The extraction property
means that any adversary that tries to output a point in the range of the function fk,
knows a corresponding preimage. As before, knowledge is captured by the existence of
a nonblackbox extractor that computes a preimage with noticeable success. Formally,
Theorem 5.3.1. Let F = {{Fk}k∈Kn}n∈N be any family ensemble of probabilistic func-

tions . Then, exactly one of the following two statements should hold:

1. There is an in�nite subset of security parameters, N′, a well-spread distribution,

K = {Kn}n∈N′, on the function key domain, and a probabilistic function, G such

that for any nonuniform (respectively, uniform) polynomial-time machine, A:

Pr[g ← G(1N), k ← Kn, x = A(k, g)) : ∃r, g(k) = fk(x, r)] ≤ µ(n) (5.36)

and

Pr[g ← G(1N), k ← Kn : ∃x, r, g(k) = fk(x, r)], (5.37)

is nonnegligible in n, and g(.) runs in polynomial time.

2. For any PPT A, any in�nite subset of security parameters, N′, any distribution,

ZR = {ZRn}n∈N′, on auxiliary information and the private input of A, and any

well-spread distribution, K = {Kn}n∈N′, on the function key domain if:

Pr[(z, rA)← ZRn, k ← Kn, y = A(k, z, rA) : ∃x, r, y = fk(x, r)], (5.38)

129

is nonnegligible in n, then there exists a nonuniform (respectively, uniform) polynomial-

time machine, K, such that:

Pr[(z, rA)← ZRn, k ← Kn, y = A(k, z, rA), x = K(k, z, rA) : ∃r, y = fk(x, r)],

(5.39)
is nonnegligible in n.

Proof. Observe that statement 1 and 2 are mutually exclusive if we let g(.) to be
A(., z, rA) (i.e., a function of k) to prove one direction and A(., z, rA) to be g(.) to
prove the reverse direction. (=⇒)
Formally, suppose that statement 2 does not hold. Then, there exists a PPT, A, an
in�nite set of security parameters, N′, a distribution over auxiliary information and A's
private input, ZR, a well-spread distribution, K = {Kn}n∈N′ , a polynomial, pA, and an
in�nite subset of security parameters, N′′ ⊆ N′ such that for all n ∈ N′′:

Pr[(z, rA)← ZRn, k ← Kn, y = A(k, z, rA) : ∃x, r, y = fk(x, r)] ≥ 1
pA(n)

. (5.40)

and

Pr[(z, rA)← ZRn, k ← Kn, y = A(k, z, rA), x = K(k, z, rA) : ∃r, y = fk(x, r)] < µ(n).

(5.41)
G samples z, rA from ZRn and outputs g = A(., z, rA). Using G, Eq. 5.36 and 5.37

follow from Eq. 5.41 and 5.40, respectively. (⇐=)
In the reverse direction, suppose that statement 1 holds. Let G be as de�ned in state-
ment 1. Let A be the adversary with auxiliary information and randomness distribution
identical to G (i.e., g = z, rA) and A(k, g) = g(k). Then, Eq. 5.38 and 5.39 follow directly
from Eq. 5.37 and 5.36, respectively.

5.3.2 Amplifying Extraction

It seems that Theorem 5.3.1 is not su�cient to amplify extraction in the nonuniform
setting. The problem seems to be the following. Suppose there is a family of nonuniform

130

extractors such that no other extractor can extract �considerably� better than this family.
To prove that a member of this family succeeds except with arbitrary small probability,
we restrict the distributions of ZRn and Kn to elements on which this family fails. State-
ment 2 of Theorem 5.3.1 asserts the existence of an extractor that succeeds noticeably
where this family fails. However, it may be the case that a member of this family fails
on a polynomial fraction of the domain of ZRn and of Kn. but for any polynomial frac-
tion of ZRn, there is a corresponding polynomial fraction of Kn on which it succeeds.
Consequently, we can not restrict ZRn and Kn independently. In other words, sampling
an element from ZRn is coupled with sampling an element from Kn. This coupling is
not allowed by the current version of Theorem 5.3.1. On the other hand, if we allow this
coupling, say, as follows: Pr[(z, rA, k) ← ZRKn, y = A(k, z, rA) : ∃x, r, y = fk(x, r)].
Then, every function that satis�es statement 2 is not one-way: If k is chosen with the
code, g, (or with z, rA), then gk(.) can simply contain fk(Un, RN) in the clear (and
output it on input, k). Thus, if f is one-way, it is hard to recover a preimage.

In light of the previous discussion, we present knowledge ampli�cation in the uniform
setting only. As in the interactive setting, we assume that the function satis�es some
form of weak veri�cation. This notion is implied by public veri�cation (as in De�nition
2.5.1). Moreover, if a function is injective and has an extractor with arbitrary small
error, then it satis�es weak veri�cation.

One of the advantages of this result is that weak veri�cation is su�cient not only for
achieving arbitrary small yet noticeable extraction error (as in the interactive model),
but also for extraction with negligible error.
De�nition 5.3.1. A family ensemble, F = {{Fk}k∈Kn}n∈N, satis�es weak veri�cation

if for every PPT, A (with input z, rA), any distribution, ZR = {ZRn}n∈N′, on auxiliary

information and the private input of A, any well-spread distribution, Kn, on the func-

tion description, and any polynomial p, there exists a uniform polynomial-time machine,

VA,ZR,K,p, such that for su�ciently large n ∈ N′:

Pr[(z, rA)← ZRn, k ← Kn, y = A(k, z, rA), :

(∃x, r, VA,ZR,K,p(x, k, z, rA) 6= 1 and fk(x, r) = y

or ∃x, VA,ZR,K,p(x, k, z, rA) = 1 and ∀r, fn(x, r) 6= y)

131

and (∃x, r, fn(x, r) = y] <
1

p(n)
.

Theorem 5.3.2. Let F = {{Fk}k∈Kn}n∈N be any probabilistic family ensemble that

satis�es statement 2 of Theorem 5.3.1 in the uniform setting. If F is weakly veri�able

(as in De�nition 5.3.1), then for any PPT A, any in�nite set of security parameters,

N′, any well-spread distribution, Kn, on the function description, any distribution, ZR =

{ZRn}n∈N′, on auxiliary information and the private input of A, there is polynomial-time

machines, K, such that for n ∈ N′:

Pr[(z, rA)← ZRn, k ← Kn, y = A(k, z, rA), x = K(k, z, rA) :

∃r, fk(x, r) = y or ∀x′, r′, y 6= fk(x′, r′)] > 1− µ(n). (5.42)

Moreover, this implication is an equivalence for injective functions.

Proof. (=⇒) Let G be the function that outputs k, z, rA on input x if A(k, z, rA)

computes an image of x under fk (see proof of Theorem 5.2.3 for a similar formulation).
Apply Lemma 5.2.2 on this function to get a family of uniform polynomial-time machines,
U. Suppose, for the purpose of contradiction, that Eq. 5.42 is not true. Then, every
member, Ui, of U fails and A succeeds (in computing an valid image) with probability

1
pi(n) , where the polynomial pi may depend on Ui. This can be rephrased as: For any
Ui there is at least one element, z, rA such that Ui fails and A succeeds with probability

1
pi(n) , where the probability is taken over Kn alone. Since Kn is well-spread, this can
be rephrased as: for any Ui there is at least one element, z, rA such that Ui fails and A

succeeds over a super-polynomial number of keys taken from Kn. Now for any Ui, let
n = ai be the smallest security parameter for which Ui fails with probability 1

pi(n) . Then,
for any i and n = ai, let z, rA be the element on which Ui fails and A succeeds with
probability 1

pi(n) (where the probability is taken over Kn). Let ZR′n be the distribution
that samples this particular z, rA only. Moreover, let K ′n be the uniform distribution
on the elements of Kn such that Ui(k, z, rA) fails while A(k, z, rA) succeeds. As argued
above, the support of K ′n is super-polynomial and consequently K ′n is well-spread. Now
statement 2 of Theorem 5.3.1 with ZR′n and K ′n implies the existence of an extractor that
succeeds with nonnegligible probability where all members of U fail. This contradicts
Lemma 5.2.2 (in particular, condition 2).

132

(⇐=)
The converse of the above result is true for injective functions. That is, any extractor
that fails with probability (even just) 1

p can be turned into a weak veri�er that fails
with the same probability. Speci�cally, Let VA,ZR,K,p(x, k, z, rA) = 1 if and only if
x = K(k, z, rA). Note that if K succeeds in computing a preimage, then VA,ZR,p behaves
correctly on k, z, rA and for any x (due to injection).
Corollary 5.3.1. An injective family ensemble, F = {{Fk}k∈Kn}n∈N, is extractable with

negligible error if and only if it is extractable with arbitrary small, yet noticeable error.

Proof. If F is injective and extractable with arbitrary small error then, as outlined in
the proof of the previous theorem, F is also weakly veri�able. By Theorem 5.3.2, F is
extractable with negligible error.

133

Chapter 6

3-round Zero Knowledge

Summary: We show how a variant of extractable POW functions can be
used to construct 3-round ZK arguments of knowledge and membership, using
weaker knowledge assumptions than previously known results due to Hada
and Tanaka (Crypto 1998) and Lepinski (M.S. Thesis, 2004). This also opens
the door for constructing 3-round ZK arguments based on other assumptions.

6.1 Introduction

Zero-knowledge [GMR85] is one of the most fundamental notions of cryptography. This
notion captures the idea of proving correctness of a statement without revealing anything
beyond its validity. Zero-knowledge is usually manifested via a protocol between a prover
and a veri�er. In a zero-knowledge protocol, the task of a prover is to convince a veri�er
that a statement is correct but does not want to reveal anything beyond this.

Two properties of zero-knowledge protocols, namely soundness and zero-knowledge,
protect against adversarial strategies from both the prover and veri�er. Soundness guar-
antees that a dishonest prover can not convince the veri�er of the correctness of an invalid
statement. On the other hand, zero-knowledge insures that a malicious veri�er does not
learn anything beyond the validity of the statement. The latter property is formalized
via the simulation paradigm. In other words, for any veri�er, there is a simulator that
can replicate the conversation with the prover without knowledge of a witness for the
correctness of a statement.

This chapter is based on the paper [CD08a], which is a joint work with Ran Canetti. Note that
[CD08a] contains some additional results that do not appear in this chapter.

134

Soundness can be required against e�cient or unbounded provers. The �rst notion is
called a ZK argument while the latter is called a ZK proof. Zero-knowledge can also be
de�ned against e�cient or unbounded veri�ers. The �rst notion is called computational
zero-knowledge while the latter is called statistical zero-knowledge. In this chapter, we
use the term �zero-knowledge� to refer to computational zero-knowledge arguments with
negligible error.

One of the major e�ciency criteria of zero-knowledge protocols is round complex-
ity, i.e., number of messages exchanged between the two parties. Lower bounds on
round complexity include impossibility of 2-round zero-knowledge and 3-round blackbox-

simulation zero-knowledge except for languages in BPP [GO94, GK96]. Current 3-round
ZK arguments and proofs (with nonblackbox simulation) use strong and very speci�c
number theoretic assumptions [HT98, HT99, Lep02, BP04b]. Therefore, constructing 3-
round zero-knowledge based on weaker or general computational assumptions was posed
as an open problem [Bar01].

6.1.1 Our Work

We apply a variant of extractable functions towards constructing 3-round ZK arguments
and proofs of knowledge for any language in NP. This allows for abstracting from speci�c
number theoretic assumptions and opens the door for basing 3-round ZK arguments on
other computational assumptions.

At a high level, this construction uses the FLS technique [FLS99]. The FLS technique
allows a machine with some extra information to convince the veri�er of the validity
of a statement without knowledge of a witness. Naturally, to preserve soundness this
information is infeasible to compute by a prover interacting with a veri�er. However, it
is easy to compute by a simulator that has access to the private input of the veri�er.
Moreover, the veri�er can not tell whether the interaction is fake or not.

In more detail, the construction is built on two main primitives: extractable POW
functions and noninteractive witness-indistinguishable (WI) proofs [BOV03, GOS06]. We
use a variant of extractable POW functions to give the simulator access to some extra
information which is not available for the prover. Moreover, noninteractive WI proofs
guarantee indistinguishability between a real communication and a simulated one.

Informally, the protocol starts with the prover sending an extractable POW function.

135

The veri�er responds with a corresponding image of a random string. The protocol ends
with the prover sending a noninteractive witness-indistinguishable (WI) proof that either
the theorem is true or the prover knows a preimage of the veri�er's message. Intuitively,
this protocol is sound because the veri�er's message completely hides its preimage. Thus,
the (polynomially-bounded) prover can not e�ciently recover a preimage. Consequently,
if the veri�er accepts the conversation then by the soundness of the WI proof, the theorem
is true. On the other hand, this protocol is zero-knowledge because the veri�er knows
a preimage of its message. So, the simulator uses the extractor to recover a preimage
and produces a WI proof using this preimage as a witness. For more detail, refer to
Theorems 6.2.1 and 6.2.2.

As a concrete example, we can use Construction 3.3.2 in the protocol above. We
remark that the knowledge assumptions required by Construction 3.3.2 and consequently
by this protocol are weaker than the corresponding assumptions used for constructing
3-round ZK arguments in [HT98, HT99, BP04b]. Speci�cally, we eliminate the need for
the second KE assumption in [HT99] and later updated in [BP04b]. See Corollaries 6.2.1
and 6.2.2 for more detail.

6.1.2 Related Work

Zero-knowledge proofs were introduced in [GMR85] with the �rst construction for any
language in NP appearing in [GMW86]. Round-e�cient (constant-round) constructions
�rst appeared in [FS89, BCY89]. Bellare, Jakobsson, and Yung [BJY97] constructed
4-round zero-knowledge arguments for any language in NP from one-way functions. The
last result is the most round-e�cient zero-knowledge argument or proof from general
computational assumptions. All of the above constant-round zero-knowledge protocols
provide blackbox simulation in expected polynomial-time. Barak [Bar01] gave the �rst
constant-round (5 rounds) ZK argument with strict polynomial-time simulation. Simu-
lation of our protocols is in strict polynomial-time as well.

Goldreich and Oren [GO94] showed that 2-round zero-knowledge is possible only for
languages in BPP while Goldreich and Krawczyk [GK96] proved that there is no blackbox
zero-knowledge protocol for nontrivial languages. Both extraction and simulation of our
protocols are nonblackbox and thus do not contradict these negative results.

Nonblackbox 3-round ZK arguments �rst appeared in [HT98, HT99, BP04b] while

136

Lepinski [Lep02] gave a 3-round ZK proof. All of the previous 3-round ZK protocols re-
quire very speci�c and nonstandard knowledge assumptions such that the KE assumption
(Assumption 3.3.1) or the POK assumption (Assumption 3.3.4). On the other hand, our
protocols are based on general computational assumptions without resorting to speci�c
algebraic constructs.

6.2 Constructions

As mentioned in the introduction, we use an FLS-style technique [FLS99] on extractable
functions to construct 3-round ZK arguments of membership and knowledge. Recall,
at a high level, the prover utilizes a noninteractive WI arguments [GOS06] to prove
that either the theorem is true or it knows a preimage of the challenge of the veri�er.
Clearly, to preserve soundness, the prover does not know a preimage of the challenge.
On the other hand, a simulator can use an extractor to recover this preimage and then
prove knowledge of it. Moreover, witness indistinguishability and perfect one-wayness
guarantee indistinguishability between the simulated environment and the real one.

We present the argument of membership in Section 6.2.1 and proof of knowledge in
Section 6.2.2.

6.2.1 Arguments of Membership

Recall, the prover chooses a new extractable POW function and sends its description
to the veri�er. The veri�er chooses a random element, hashes it under the extractable
function, and sends the hash to the prover in addition to a new extractable POW func-
tion. Finally, the prover veri�es that the hash is valid. If so, it sends a noninteractive WI
proof that either the theorem under consideration is true or the prover knows a preimage
of the hash. In more detail, the prover sends in the last round a second hash (under the
new function) and a noninteractive WI proof that either the original theorem is true or
preimages of both hashes share a common substring.

Formally, let L be any NP language with the corresponding relation RL. Let H be a
veri�able family ensemble. De�ne a new NP language:

Lk1,k2 = {x′ = (x, y, s) : ∃w, (x,w) ∈ RL or ∃u1, u2, VHk1
(u1, y) = VHk2

((u1, u2), s) = 1}.

137

P (x,w) V (x, z)
(k1, zk1)← Kn (k2, zk2)← Kn

k1−→
r ← Rn

u← Un

y = Hk1(u, r)
k2, y←−−

u1, u2 ← Un, Un

s← Hk2((u1, u2, .)
π = P ′((x, y, s), w)
if Vrange(H)(y, zk1) 6= 1

send a uniform string and halt
otherwise: s, π

−→ if Vrange(H)(s, zk2) 6= 1
output 0 and halt

otherwise:
output V ′((x, y, s), π)

Figure 6.1: A 3-round ZK Argument of Membership
Let P ′ = (P ′, V ′) be a noninteractive witness indistinguishable argument system for
membership in Lk1,k2 . The argument of membership is in Figure 6.1.
Theorem 6.2.1. If there is an extractable and injective POW family ensemble with

auxiliary information and range veri�cation (as in De�nitions 3.2.3, 2.5.5, 3.3.2, and

4.3.6) and noninteractive WI arguments exist for any language in NP (as in De�nition

2.11.1, and where soundness is against nonuniform PPT provers), then 3-round ZK

arguments of membership exist for any language in NP (as in De�nition 2.8.1).

Proof. For any language L in NP (with relation RL), any extractable POW function,
H and any noninteractive WI for the corresponding class of languages Lk1,k2 , we argue
that the protocol in Figure 6.1 is a zero-knowledge argument system for L.

Completeness. If P and V behave according to the protocol, then both y and s

are valid images. So, Vrange(H)(y, zk1) = Vrange(H)(s, zk2) = 1. Consequently, neither P

nor V aborts and the output of V is that of V ′. Now, for any x ∈ L and any (y, s),
(x, y, s) ∈ Lk1,k2 . So, by completeness of P ′, V ′ outputs 1.

Soundness. Let x 6∈ L. Since H is a POW function, then for any k1 sent in the
�rst round, the prover can not recover u from the message of the veri�er. On the other
hand, the prover knows a preimage of s by the extraction property on H. Therefore,
the preimage of s can not contain u without violating the one-way property on H. The
injective property guarantees that there is exactly one preimage of s so that if there is

138

one preimage that contains u, then this is the image that the extractor recovers. Con-
sequently, if x 6∈ L, then the instance, (x, y, s) 6∈ Lk1,k2 with overwhelming probability.
Thus, soundness follows from soundness on the underlying noninteractive WI argument
system. Speci�cally, if the protocol in Figure 6.1 is not sound against a malicious prover
P̂ , let P̂ ′ be another malicious prover that defeats soundness of the underlying WI proof.
P̂ ′ receives x as auxiliary input (hence, the non-uniformity requirement), it simulates the
communication of P̂ (x) with an honest veri�er and outputs (x, y, s, π), where y is in the
message of the veri�er and s, π is the last message of P̂ .

Zero-knowledge. For every PPT, V̂ , we show there is a nonblackbox simulator,
S. S sends the �rst message exactly like an honest prover. Then, V ∗ sends the second
message, k2, y. The simulator uses Vrange(H) (and zk1) to verify that y belongs to the
range of Hk1 . If y is valid, it uses the nonblackbox extractor for H and V̂ to compute u.
Then, it computes an image of (u, u′) for some uniform u′. Finally, it uses the honest
prover of the noninteractive WI argument system to convince the veri�er using (u, u′)

as a witness for x, Hk1(u),Hk2(u, u′). By perfect one-wayness on H:

x, z, k1, k2,Hk1(u),Hk2(u, u′)

is computationally indistinguishable from

x, z, k1, k2,Hk1(u),Hk2(u
′, u′′).

Moreover, by witness indistinguishability,

S(x, z) = x, z, k1, k2,Hk1(u),Hk2(u, u′), P ′((x,Hk1(u),Hk2(u, u′)), (u, u′))

is computationally indistinguishable from

x, z, k1, k2,Hk1(u),Hk2(u, u′), P ′((x, Hk1(u),Hk2(u, u′)), w).

Moreover, the latter distribution is indistinguishable from

< P (x,w), V (x, z) >= x, z, k1, k2,Hk1(u),Hk2(u
′, u′′), P ′((x,Hk1(u),Hk2(u

′, u′′)), w)

139

The last claim is true because of the �rst indistinguishability claim in this paragraph.
Suppose, for the purpose of contradiction, the latter claim is not true. Then, there is
a pair (x,w) ∈ RL, and a PPT D that distinguishes the last two distributions. Let A

be a PPT that uses D to defeat the �rst indistinguishability claim in this paragraph. A

receives z, (x,w), and Hk1(u) as auxiliary information. It also receives s which can be
either Hk2(u, u′) or Hk2(u

′, u′′). A then computes π = P ′(x,Hk1(u), s), w) and simulates
D′ on x, z, k1, k2,Hk1(u), s, π.
Corollary 6.2.1. If the KE assumption holds with independent auxiliary information (as

in Assumption 3.3.1) and the (strong) DDH assumption holds with auxiliary information

(as in Assumption 3.3.2), and noninteractive WI arguments exist for any language in

NP (as in De�nition 2.11.1, and where soundness is against nonuniform PPT provers),

then 3-round ZK arguments of membership exist for any language in NP (as in De�nition

2.8.1).

Proof. Use Construction 3.3.2 to get an extractable and injective POW function with
auxiliary information and range veri�cation.
On the hardness assumption of H. We emphasize that even though one-wayness
of H is su�cient for soundness, it is not so for proving zero-knowledge. In more detail,
when a (potentially malicious) prover, P̂ , interacts with the honest veri�er, it is su�cient
that H is only one-way against a uniform input. This insures that y does not reveal u.
Thus, if x 6∈ L, then it is di�cult for P̂ to �nd a tuple, (x, y, s) ∈ Lk1,k2 . On the other
hand, one-wayness is not su�cient to prove zero-knowledge because s may reveal few
bits about u1, which is su�cient for a malicious veri�er, V̂ , to detect whether s has a
preimage that contains u. This detection allows V̂ to distinguish interacting with an
honest prover from interacting with a simulator.
On replacing injection with collision resistance. Injection is used in the proof of
soundness of the protocol in Figure 6.1. It is used to guarantee equality of the preimage
of y and the �rst substring of the preimage of s, as recovered by the extractor. Intuitively,
collision resistance is su�cient for proving this claim. However, this seems not to be the
case. One attempt at a proof using collision resistance is as follows. If the extractor
recovers a preimage, (u′, w), of s and there is another preimage u, w′ (guaranteed by the
assumption that x 6∈ L but x, y, s is in Lk1,k2), we have an almost collision on s: simulate

140

P (x,w) V (x, z)
(k1, zk1)← Kn (k2, zk2)← Kn

k1−→
r ← Rn

u← Un

y = Hk1(u, r)
k2, y←−−

u1, u2, u3 ← Un, Un, Un

r′ ← Rn

s← Hk2((u1, u2, .)
v = Hk2((w, u3), r′)
π = P ′((x, v, y, s), (w, u3, r

′))
if Vrange(H)(y, zk1) 6= 1

send a uniform string and halt
otherwise: s, v, π

−−−→ if Vrange(H)(s, zk2) 6= 1 or
Vrange(H)(v, zk2) 6= 1 :

output 0 and halt
otherwise:
output V ′((x, v, y, s), π)

Figure 6.2: A 3-round ZK Proof of Knowledge

the whole experiment, recover u from the honest adversary and u′, w from the extractor.
However, w′ remains unknown. A potential remedy is to modify the protocol so that the
prover sends an image, s′, of w′ as well. However, this still does not solve the problem.
It may be possible the extractor for s′ recovers a completely di�erent preimage while w′

remains hard to compute.

6.2.2 Proofs of Knowledge

The proof of knowledge protocol is very similar to the protocol in Figure 6.1. The only
di�erence is that the prover has to prove knowledge of a witness. So, the prover computes
an image, under an extractable function, of the witness and a uniform string and sends it
to the veri�er. This protocol uses a noninteractive WI system for the following language:

L′k1,k2
= {x′ = (x, v, y, s) : ∃w, u, r, (x, w) ∈ RL and Hk2(w, u, r) = v or

∃z1, z2, VH(z1, y) = VH((z1, z2), s) = 1}.

Theorem 6.2.2. If there is an extractable and injective POW family ensemble with

141

auxiliary information and range veri�cation (as in De�nitions 3.2.3, 2.5.5, 3.3.2, 4.3.6)

and noninteractive WI arguments exist for any language in NP (as in De�nition 2.11.1,

and where soundness is against nonuniform PPT provers), then 3-round ZK proofs of

knowledge exist for any language in NP (as in De�nition 2.9.1).

Proof. For any language L in NP (with relation RL), any extractable POW function,
H and any noninteractive WI for the corresponding class of languages L′k1,k2

, we argue
that the protocol in Figure 6.2 is a zero-knowledge proof of knowledge for L.

The proof of completeness, soundness, and zero-knowledge are very similar to that
of Theorem 6.2.1 and are omitted here.

Proof of Knowledge. Let P̂ be any malicious prover. If the honest veri�er, V ,
accepts a conversation with P̂ , then by soundness, we know that x ∈ L and v has a
valid and unique (by injection) preimage under H. By extraction on H, there is an
e�cient extractor KP̂ that recover the preimage, (w′, u3), of v. On the other hand,
by indistinguishability and extraction on H, it is infeasible for P̂ to compute s such
that there is u′ and VH((u, u′), s) = 1, where VH(u, y) = 1. Otherwise, it is possible to
invert y by simulating the whole protocol on y and using the extractor on s to recover
u, u′ (injection guarantees that the preimage extracted is u, u′). Also, by soundness of
P ′, x, v, y, s ∈ L′k1,k2

. Since y and s do not share a preimage (or more precisely, s

does not contain the preimage of y), then there is w, u′3 such that (x,w) ∈ RL and
VH((w, u′3), v) = 1. By injection w′ = w.
Corollary 6.2.2. If the KE assumption holds with independent auxiliary information (as

in Assumption 3.3.1) and the (strong) DDH assumption holds with auxiliary information

(as in Assumption 3.3.2), and noninteractive WI arguments exist for any language in NP

(as in De�nition 2.11.1, and where soundness is against nonuniform PPT provers), then

3-round ZK proofs of knowledge exist for any language in NP (as in De�nition 2.8.1).

We emphasize that both simulation and extraction in the previous protocol are non-
blackbox. Thus, our results do not contradict the impossibility results in [GK96, BL04].

142

Chapter 7

Random Oracle Instantiation

Summary: We apply extractable functions towards Random Oracle instan-
tiation in encryption schemes. Speci�cally, we convert a class of semantically
secure and CCA2-secure encryption schemes in the Random Oracle model to
concrete ones by simply replacing the Random Oracle with an extractable
POW function, without much change in the logic of the original proof.
We initiate our study with an instantiation of a speci�c encryption scheme
before studying instantiation of a more general class of encryption schemes,
that includes schemes with no previously known instantiation such as OAEP
(Bellare and Rogaway, EuroCrypt 1994).
Extractable functions are instrumental for these results because such func-
tions can be used to capture, in the standard model, the �knowledge of
queries� property that is so useful in the Random Oracle model.

7.1 Introduction

The Random Oracle (RO) methodology [FS86, BR93] consists of two steps. The �rst step
involves designing a protocol and proving security in an idealized model called the RO
model. In the RO model, all parties have oracle access to a public random function, O.
The oracle answers are uniform and independent with only one constraint, speci�cally,
that all answers to the same query are identical. The second step involves �moving�
the protocol from this idealized model to the real world. This is done by �replacing�

This chapter is based on the paper [CD08a], which is a joint work with Ran Canetti. Note that
[CD08a] contains some additional results that do not appear in this chapter.

143

the Random Oracle with a cryptographic hash function such as SHA1 [(FI93] or MD5
[Riv92]. In other words, every oracle call is replaced by a function call to some publicly
known cryptographic hash function. This transformation is known as an instantiation
of Random Oracles.

Although the �rst step of the RO methodology is rigorous, the second step remains
a heuristic for the most part. While most results in this area provide proofs in the RO
model, they lack even informal justi�cation as to why the instantiated protocols may
be secure. Such justi�cation is of dire need given the fact that the RO methodology is
not sound in general. Speci�cally, it was shown that there are schemes secure in the RO
model without any secure instantiations [CGH98, MRH04, GK03]. Furthermore, there
exist natural primitives that are realizable in the RO model but can not be realized at
all in the standard model, regardless of the computational assumptions used [Nie02].

Given the general impossibility results mentioned above, one may resort to consider-
ing a proof in the RO model as a �stepping stone� towards a proof in the standard model.
However, there is a severe �aw with this point of view: when it comes to security proper-
ties, proofs in the RO model use the Random Oracle somewhat like a Swiss Army knife.
Random Oracles satisfy many cryptographic properties including collision resistance (it
is hard to �nd two queries with the same RO answer, see De�nition 2.5.2), uniformity
(the answer to any query is uniformly distributed), unpredictability or correlation in-
tractability [CGH98], programmability [Nie02] and knowledge of queries (any machine
that computes O(q) knows q). Furthermore, current work that use the RO methodology
do not often highlight the speci�c properties of Random Oracles that are used or needed
for the current proof. This makes translating a proof from the RO model to the standard
model a harder task. And indeed, proofs in the RO model usually follow di�erent lines
from the corresponding ones in the standard model. This is contrary to the intuition
behind the RO methodology, which is to use the randomness in the RO model to come
up with simple proofs and then replace the Random Oracle by an appropriate function
while maintaining the overall proof structure.

In light of the above discussion, it is interesting to identify speci�c properties of
Random Oracles that are essential for the security of speci�c protocols. Once these
properties are identi�ed, it may then be possible to capture them with concrete func-
tions that can be used to replace Random Oracles. Such an approach motivated the

144

introduction of perfectly one-way (POW) functions in [Can97] as functions that capture
the hiding property of Random Oracles and that are then used to instantiate Random
Oracles in a semantically-secure encryption scheme (see De�nition 2.7.1). In another
attempt, Boldyreva and Fischlin [BF06] introduce a strong variant of pseudorandom
generators geared towards instantiating OAEP.

However, attempts at direct instantiation of encryption schemes secure against chosen
ciphertext attacks (IND-CCA2, see De�nition 2.7.2) have failed. It seems that one main
problem is to translate a central property of Random Oracles, namely knowledge of
queries, to the standard model. This property proves essential for the security proof
in the RO model but it has not been previously formalized and captured by concrete
functions.

7.1.1 Our Work

We use extractable functions to capture the �knowledge of queries� property mentioned
above. Speci�cally, we use extractable POW functions not only to instantiate such
schemes but also use a proof of security that follows similar logic as the original proof.
The intended goal in this instantiation is not to try to achieve a more e�cient construc-
tion than the existing ones in the literature but rather identify and realize the needed
properties of the random oracle so that the proof of security remains the same in the
standard model in both its logic and simplicity.

7.1.1.1 Using Extractable Functions to Instantiate a Speci�c Encryption
Scheme

As mentioned before, POW functions are used in [Can97] to capture and realize semantic
security of the encryption scheme in [BR93]. However, this is not su�cient for CCA2-
security as POW functions may not guarantee extractability. So, an extractable POW
function provides the missing link, namely preimage extraction, for replacing a Random
Oracle by a POW function. Here, we use extractable POW functions to instantiate the
second encryption scheme in [BR93] (recalled shortly), and translate the proof to the
standard model in a straightforward way. This scheme uses a trapdoor permutation,
M , and two Random Oracles, O1, O2, to encrypt a message, m, as c = (M(r), O1(r) ⊕

m,O2(r, m)), where r is uniform. At a high level, it is CCA2-secure because the hiding

145

property of Random Oracles gives us semantic security while knowledge of queries gives
us knowledge of plaintext (the latter property is what enables proving CCA2-security).
Thus, if we replace the Random Oracle by an extractable POW function in the previous
scheme we get a CCA2-secure encryption scheme in the standard model. This scheme
can be either noninteractive or 3-round1 depending on whether the POW function is
noninteractively or interactively extractable.

7.1.1.2 Towards a General Instantiation of Encryption Schemes

We next address the question whether this methodology can be generalized to realize
other encryption schemes in the RO model. However, we already know that the con-
ventional instantiation is not secure in general [CGH98, MRH04]. Intuitively, the main
reason why this is so is that e�cient functions can not emulate unpredictability (answers
to queries are uniform and independent of all other answers) and consistency (answers to
same queries are the same for all parties) at the same time. So, we devise a di�erent type
of Random Oracle instantiation for a special class of encryption schemes, called �rst-
query hiding. A �rst-query hiding encryption scheme is one where the �rst Random
Oracle query made by the encryption algorithm is the same as that made by the de-
cryption scheme and it is not revealed by the ciphertext. Even though �rst-query hiding
encryption schemes are restricted, the negative results of [CGH98] still apply here.

In more detail, we device a construct that captures both unpredictability and con-
sistency. The idea is simple. To achieve unpredictability, oracle answers are chosen
uniformly and independently. To maintain consistency, these answers have to be se-
cretly communicated to other parties. We emphasize that Random Oracles implicitly
play this role and our construct tries to capture exactly this. Towards this end, we as-
sume that the encryption and decryption algorithms, E and D, in the original scheme
share a secret. Speci�cally, we require the original scheme to satisfy the �rst-query
hiding property. Now, we can send the encryption of these answers using a symmetric-
key encryption scheme with the �rst query as the secret key. This symmetric encryption
scheme is built from POW functions. Using this construct, we instantiate any �rst-query
hiding semantically-secure encryption scheme in the RO model. Moreover, extractable
POW functions can be used to convert these schemes into CCA2-secure schemes. See

1Refer to Section 7.2.3.1 for de�nitions of 3-round encryption.

146

Section 7.3 for more detail.
A new Instantiation. We emphasize that we use a new type of instantiation to
realize both unpredictability and consistency. Clearly, the conventional instantiation that
replaces every Random Oracle call by a function call is simpler. However, our deviation
from this tradition is necessary. This is so because we realize a class of schemes that
includes schemes provably uninstantiable under the conventional method. Speci�cally,
the transformation in [CGH98] can use any �rst-query hiding scheme to yield a scheme
that is not instantiable in the standard way but our technique works for such a scheme
as well (refer to Section 7.3.3).

7.1.1.3 Instantiating OAEP

OAEP [BR94] is a commonly used and standardized encryption scheme. In spite of
its popularity, it is not previously known whether it has any CCA2-secure or even
semantically-secure instantiation. Even though OAEP does not satisfy the �rst-query
hiding requirement, our results imply that OAEP has both a semantically-secure and
CCA2-secure instantiation (see Section 7.4). These results utilize the assumption that
the trapdoor permutation used in OAEP is partially one-way [FOPS01], i.e., it does not
reveal the �rst part of the input. We emphasize that these instantiations are of a type
di�erent from the conventional one. We note that Boldyreva and Fischlin [BF06] use the
traditional instantiation but their (full instantiation) result is limited to CPA-security of
unknown random plaintext.
On the number of decryption queries. In CCA2 encryption, an adversary is allowed
to ask a polynomial number of decryption queries. The only restriction is that these
queries do not include the challenge ciphertext. Whereas this requirement is met by all
3-round instantiations, our noninteractive instantiations allow only a constant number
of decryption queries. The reason seems to be the dependency of the extractor on the
adversary. This implies that each decryption query may potentially require a di�erent
extractor.

7.1.1.4 On the Connection to Other Approaches and CCA2 Schemes

We remark that generic transformations from any semantically-secure scheme to a CCA2-
secure one have been studied before [DDN00, Sah99]. Also, the KE assumption (see

147

Assumption 3.3.1) has been used to prove that certain encryption schemes are plaintext-
aware, which when coupled with semantic security gives CCA-secure schemes [BP04b,
Den06]. Moreover, Katz [Kat03] used the notion of proofs of plaintext knowledge to
construct e�cient 3-round CCA2-secure schemes. We emphasize that the contributions
of this work are not in giving better or more e�cient constructions than existing ones in
the literature, but rather in the methodology of replacing Random Oracles as described
above.

7.1.2 Organization

We instantiate the encryption scheme of [BR93] in Section 7.2. Also, we instantiate
�rst-query hiding encryption schemes in Section 7.3, and apply these results to OAEP
in Section 7.4.

7.2 Instantiation of a Speci�c Encryption Scheme

We use extractable POW functions to instantiate Random Oracles in the second encryp-
tion scheme of [BR93] while maintaining a similar proof of security. Extractable POW
functions allow us to do so because they capture two properties of Random Oracles
essential for the original proof, namely, pseudorandomness and knowledge of queries.

We recall the original scheme and highlights of its proof in Section 7.2.1 and instan-
tiate it in Sections 7.2.2 (noninteractive) and 7.2.3 (interactive).

7.2.1 The Original Scheme

The original construction uses a family ensemble of trapdoor permutations, M, with
key space PKn and trapdoor space SKn, and two random oracles O1 and O2. The
encryption of a message, m, is c = Mpk(q), O1(q) ⊕ m,O2(m, q), where q is uniform.
Formally, encryption and decryption are as follows.
Construction 7.2.1 (The Original Scheme, [BR93]). Let M = {Mn}n∈N be a

family ensemble of trapdoor permutations with key space PKn and trapdoor SKn, where

Mpk : {0, 1}n → {0, 1}n. Let O1 be a random function from {0, 1}n to {0, 1}l(n) and O2

be another random function from {0, 1}n+l(n) to {0, 1}l(n+l(n)) for some polynomial l:

148

• EO1,O2(m, pk) selects q uniformly from {0, 1}n and returns Mpk(q), O1(q)⊕m,

O2(m, q).

• DO1,O2(c = (c1, c2, c3), sk) computes q = Msk(c1), m = c2 ⊕O1(q), and returns m

if O2(m, q) = c3. Otherwise, it returns ⊥ (c is invalid).

Informally, this construction is IND-CCA2 because it is IND-CPA and the decryption
oracle does not help the adversary. In more detail, the proof assumes the existence of
trapdoor permutation and consists of a reduction from the security of the construction
to the security of the trapdoor permutation. Speci�cally, an adversary, A, that defeats
IND-CCA2 can be turned into an adversary, B, that inverts the trapdoor permutation.
To invert y, B runs A and simulates both the Random Oracle and decryption oracle. If A

queries the Random Oracle on q or q, m such that Mpk(q) = y, B has found a preimage.
Otherwise, it chooses an answer uniformly and returns it to A. Whenever A makes a
decryption query, c1, c2, c3, B checks if A has already made two Random Oracle queries,
q and q, m satisfying the conditions Mpk(q) = c1, O1(q) ⊕m = c2, O2(m, q) = c3. If so,
B returns m. Moreover, when A outputs a message pair m0,m1, B responds with the
challenge ciphertext y, c2, c3 where c2 and c3 are chosen uniformly. Then, B continues
to run A as described above.

It is shown [BR93] that B has a noticeable success in inverting y. This is so because if
A does not query the Random Oracle on q and (m, q) and does not query the decryption
oracle on y, c′2, c

′
3, its advantage is zero. Moreover, if A asks for the decryption of y, c′2, c

′
3

without asking O2 for the image of (q, O1(q) ⊕ c′2), its advantage remains negligible.
This argument can be rephrased as: Without access to a decryption oracle, A has a
negligible advantage because M is one-way. On the other hand, any valid decryption
query, c1, c2, c3, that A makes must be preceded by two Random Oracle queries, Msk(c1)

and (Msk(c1), O1(Msk(c1)) ⊕ c2). However, if A makes any of these two queries it can
compute the plaintext on its own.

Jumping ahead, the proof of our instantiation follows similar lines. We �rst prove
that A can not achieve noticeable advantage without access to a decryption oracle, i.e.,
the construction is semantically secure. Then, we prove that the decryption oracle can
be removed without changing the advantage of A because it knows the plaintext of its
decryption queries.

149

7.2.2 Noninteractive Instantiation

We replace both random oracles O1 and O2 in Construction 7.2.1 with an extractable
(with dependent auxiliary information) and pseudorandom POW (with public random-
ness and auxiliary information) function. This instantiation maintains security and a
similar proof if the adversary is restricted to ask a constant number of decryption queries.
At a very high level, the proof uses perfect one-wayness to prove semantic security and
extraction to reduce CCA2-security to semantic security. The formal construction and
proof follow.
Construction 7.2.2. Let M is a trapdoor permutation (with key space PKn and trapdoor

SKn) and H be a veri�able family ensemble. De�ne the encryption scheme, (G, E,D)

as follows:

• G(1n) = (k1, k2, pk, sk), where pk, sk ← PKn, SKn and k1, k2 ← Kn.

• E(m, pk′ = (pk, k1, k2)) = r1,Mpk(q), y ⊕m, Hk2((q, m, r1), r2), where r1, r2, q are

uniform and Hk1(q, r1) = r1, y.

• D(c = (r1, c1, c2, c3 = (r2, c
′
3)), sk

′ = (sk, k1, k2)) computes q = Msk(c1), r1, y =

Hk1(q, r1), m = c2 ⊕ y, and check if c3 = Hk2((q, m, r1), r2). If so, it outputs m,

otherwise ⊥ (c is invalid).

Theorem 7.2.1. If there exists a family ensemble, H, that satis�es preimage extraction

(as in De�nition 3.2.5), pseudorandomness with auxiliary input (as in De�nition 2.5.6),

collision resistance (as in De�nition 2.5.2), and public randomness, and there exists a

family of trapdoor permutations, then Construction 7.2.2 is IND-CCA2 (as in De�nition

2.7.2) against a constant number of decryption queries.

Proof. As mentioned before, we show that Construction 7.2.2 is IND-CPA based on the
perfect one-wayness of H and one-wayness of M. Then, we use preimage extraction to
show that IND-CPA implies IND-CCA2 for this scheme.
Construction 7.2.2 is IND-CPA (as in De�nition 2.7.1)
Let A = (A1, A2) be any PPT that tries to defeat IND-CPA of Construction 7.2.2.
Let m0,m1 be any message pair that A1 produces. Since Mpk(q) is one-way in q,
then by pseudorandomness of H with auxiliary input, we have r1,Mpk(q), y (where
Hk1(q, r1) = r1, y)) is computationally indistinguishable from r1,Mpk(q), U|Hk1

(q,r1)|−|r1|.
150

Consequently, for any m ∈ {m0,m1}, r1,Mpk(q), y ⊕ m is also computationally indis-
tinguishable from r1,Mpk(q), U|Hk1

(q,r1)|−|r| ⊕ m. Otherwise, one can distinguish the
former two distributions: run A to compute m0,m1, choose one of the two message at
random, xor it to the third string in the input, and then run the distinguisher for the
latter two distribution. Moreover, for any m, we have r1,Mpk(q), U|Hk1

(q,r1)|−|r| ⊕m ≡

r1,Mpk(q), U|Hk1
(q,r1)|−|r|. Thus, r1,Mpk(q), y ⊕m is indistinguishable from r1,Mpk(q),

U|Hk1
(q,r1)|−|r|. This implies that r1,Mpk(q), y ⊕m is one-way in q, m. Using again the

fact the H is POW with auxiliary information, we have r1,Mpk(q), y⊕m,Hk2((q, m, r1),

r2) is indistinguishable from r1,Mpk(q), y ⊕m,U|Hk2
((q,m,r1),r2)|. By the previous argu-

ment, the latter distribution is indistinguishable from r1,Mpk(q), U|Hk1
(q,r1)|−|r|,

U|Hk2
((q,m,r1),r2)|. Consequently, for any m ∈ {m0,m1} that A1 outputs, E(m, pk′) =

r1,Mpk(q), y⊕m,Hk2((q, m, r1), r2) is indistinguishable from r1,Mpk(q), U|Hk1
(q,r1)|−|r|,

U|Hk2
((q,m,r1),r2)|. The result follows.

Construction 7.2.2 is IND-CCA2 (as in De�nition 2.7.2)
Now, we use the assumption that H is extractable and that this construction is IND-
CPA to conclude that it is IND-CCA2 with a constant number of decryption queries.
Informally, we show how to construct from any machine, A = (A1, A2), that breaks
IND-CCA2 another one, B = (B1, B2), that breaks IND-CPA. B behaves very much
like A except with things to do with decryption queries. Since in the IND-CPA setting,
adversaries do not have access to a decryption oracle, B has to somehow answer A's
decryption queries on its own. Ofcourse, the way to do that is by utilizing extractability
to �nd the desired preimage. Once a preimage is found, decryption queries can be
correctly answered. In other words, B will simulate A until a decryption query occurs.
Then, the simulation is paused, the extractor runs to �nd a preimage, a decryption
answer is computed, and the simulation resumes again.

Formally, let A = (A1, A2) be any adversary that defeats CCA2-security of Con-
struction 7.2.2. Let l be a constant bounding the number of decryption queries that A

makes. Let c = r1, c1, c2, c3 be the ciphertext that A receives. We �rst show that for
any valid decryption query, d, that A makes, can not contain c3. This is because if d

contains c3 then d = c (which is not permitted). In more detail, if d contains c3, and
d 6= c, then there exists a pair q, m, r1 and q′,m′, r′1 such that (q, m, r1) 6= (q′,m′, r′1) and
VH(q, m, r1, c3) = VH(q′,m′, r′1, c3) = 1. However, this contradicts collision resistance (a

151

collision resistance adversary can simulate the whole experiment with knowledge of sk

to recover q, m, r1 and q′,m′, r′1).
Let A1, ..., Al be a sequence of machines, where Ai simulates A until the ith query,

then it outputs the last substring of the ith query and halts. By extraction, there is
a corresponding extractor, KAi for Ai. In more detail, Ai is de�ned inductively: Ai

simulates Ai−1, which stops at the (i− 1)th query, then Ai runs KAi−1 to compute the
decryption and continues to simulate A until the ith query.

Now, B runs Al (which asks only 1 decryption query), and uses KAl to answer this
decryption query. Note that the answers returned by the extractor should be the same
as those returned by the decryption oracle except with negligible probability. Otherwise,
collision resistance is violated: simulate the whole experiment with knowledge of the
decryption key. Then, use the decryption key to recover one preimage of c3 and the
extractor to recover a di�erent one. Consequently, except with negligible probability,
the view of A is the same when simulated by B as when interacting with a decryption
oracle. Thus, B defeats semantic security with probability overwhelmingly close to the
probability of A defeating CCA2-security.
Towards strengthening Theorem 7.2.1. Observe from the proof of Theorem 7.2.1
that extraction is used only on the last substring, c3, of the ciphertext while pseudoran-
domness is needed only for the second substring, c2, to mask the plaintext, m. Thus,
Theorem 7.2.1 can be strengthened by using two di�erent POW functions. The �rst one
is a pseudorandom POW function with auxiliary information (as in De�nition 2.5.6) but
not necessarily extractable. This function is used in place of Hk1 in Construction 7.2.2.
The second function is an extractable POW function (as in De�nitions 2.5.5 and 3.2.5)
and replaces Hk2 in Construction 7.2.2.

7.2.3 Interactive Instantiation

We use interactively-extractable POW functions to instantiate Construction 7.2.1 and
get an interactive encryption scheme. We formalize the notion of interactive encryption
in Section 7.2.3.1 and give the construction in Section 7.2.3.2.

152

7.2.3.1 Interactive Encryption

In an interactive (3-round) encryption scheme, the encryption algorithm engages in a 3-
round communication with the decryption algorithm in order to transmit the plaintext
securely. In other words, if the communication is consistent, then after the interaction is
over, the decryption algorithm is able to output the intended plaintext. In this model, the
ciphertext consists of the interaction between the encryption and decryption algorithm,
denoted by < E(m, pk), D(sk) >. Indistinguishability under a chosen plaintext attack
means the adversary can not tell by observing the ciphertext (communication) which
message the encryption algorithm is transmitting. Formally,
De�nition 7.2.1 (Interactive IND-CPA). An interactive public key encryption scheme,

(G, E,D), is called IND-CPA if for any PPT pair (A1, A2):

|Pr[(pk, sk)← G(1n), (m0,m1, s)← A1(pk),

c←< E(m0, pk), D(sk) >, b← A2(s, c) : b = 1] −

Pr[(pk, sk)← G(1n), (m0,m1, s)← A1(pk),

c←< E(m1, pk), D(sk) >, b← A2(s, c) : b = 1]| ≤ µ(n),

where < E(m, pk), D(sk) > is the distribution over possible messages communicated

between E and D.

We emphasize that unlike the common notion of encryption, where decryption is de-
terministic, this notion allows for probabilistic decryption. In particular, the probability
above is taken over the random coins of D as well.

Our notion of interactive CCA2 security assumes the existence of �phonecall-type�
channel between the honest encryption and decryption algorithm when the challenge
ciphertext is computed. This de�nition di�ers from the one in [Kat03] in which the
adversary may stage a man-in-the-middle attack. However, digital signatures can be
introduced into our schemes to achieve the stronger de�nition, e.g., by using signatures
as in the interactive encryption scheme of [DDN00]. Nevertheless, for clarity and to focus
on the applications and usage of extractable POW functions, we avoid using signatures
and settle for the weaker de�nition.

153

De�nition 7.2.2 (Interactive IND-CCA2). An interactive public key encryption

scheme, (G, E,D), is called IND-CCA2 if for any PPT pair (AD(sk)
1 , A

D(sk)
2):

|Pr[(pk, sk)← G(1n), (m0,m1, s)← A
D(sk)
1 (pk),

c←< E(m0, pk), D(sk) >, b← A
D(sk)
2 (s, c) : b = 1] −

Pr[(pk, sk)← G(1n), (m0,m1, s)← A
D(sk)
1 (pk),

c←< E(m1, pk), D(sk) >, b← A
D(sk)
2 (s, c) : b = 1]| < µ(n),

where < E(m, pk), D(sk) > is the distribution over possible messages communicated

between E and D. Moreover, we assume that c′ 6= c for c′ ←< A2(s, c), D(sk) >.

In the previous de�nition A is prohibited from replaying the same communication
with D as in c. Moreover, this may not be possible, even if permitted, against proba-
bilistic decryption.

7.2.3.2 The Construction

The idea behind this instantiation is to make use of interaction to verify that the sender
actually knows q. This utilizes the fact that H satis�es interactive extraction. So that
any adversary communicating with the decryption oracle knows what the plaintext is.
Hence, the decryption oracle does not really help the adversary. Therefore, IND-CCA2
can be reduced to IND-CPA. Since this construction is IND-CPA, it must be IND-CCA2.

To encrypt a message, m, E sends an image of a uniform string, q, in the �rst round.
D responds by sending random strings r1, ..., rn. In the last round, E sends n images
of q using r1, ..., rn as random coins for H. E also sends the ciphertext of m using the
original construction (with H in place of the Random Oracle) with the same q as the
one used in the �rst round. We note that the �rst two messages are independent of the
plaintext and thus can be sent ahead of time.

The formal construction appears in Figure 7.1 and the claim is in Theorem 7.2.2. We
emphasize that we don't restrict the number of decryption queries the adversary makes
(as in Theorem 7.2.1). This is so because we use the universal blackbox extractor of
De�nition 4.2.6.

154

E′(m, pk′) D′(sk′)

r0 ← Rn

q ← {0, 1}n
y0 = Hk(q, r0)

y0−→
r1, ..., rn ← Rn, ..., Rn

r1, ..., rn←−−−−−
y1 = Hk(q, r1)...
yn = Hk(q, rn)
c1 = Mpk(q)
u1, u2 ← Rn, Rn+l(n)

u1, y = Hk(q, u1)
c2 = y ⊕m
c3 = Hk(q, m, u2)

y1, ..., yn, c1, u1, c2, c3−−−−−−−−−−−−−−−→
q = Msk(c1)
u1, y = Hk(q, u1)
m = y ⊕ c2if Hk(q, m, u2) = c3 and

y0 = Hk(q, r0), ...,
yn = Hk(q, rn) :
output m.

Otherwise, output ⊥
Figure 7.1: Interactive Instantiation of the Second Encryption Scheme in [BR93]

155

Theorem 7.2.2. If there exists a family ensemble that satis�es preimage extraction (as

in De�nition 4.2.6), pseudorandomness with auxiliary input (as in De�nition 2.5.6),

collision resistance (as in De�nition 2.5.2), and public randomness, and there exists a

family of trapdoor permutations, then the construction in Figure 7.1 is IND-CCA2 (as

in De�nition 7.2.2).

Proof. As mentioned before, this proof follows similar lines as the original proof. First, we
show that without a decryption oracle, the adversary can not possibly have a noticeable
advantage. In other words, we show the construction is IND-CPA. Second, we argue
that a decryption oracle does not help because an adversary can compute on its own
answers to its queries. Pseudorandomness with auxiliary information allows us to prove
IND-CPA and extractability proves the second part.

Let H = {Hn}n∈N be an extractable POW with auxiliary input and public random-
ness. Let M = {Mn}n∈N be any family ensemble of trapdoor permutations.
The construction satis�es IND-CPA (as in De�nition 7.2.1) This proof is very
similar to the corresponding part in the proof of Theorem 7.2.1. We use H's pseudo-
randomness with auxiliary input to show that this Construction is IND-CPA. The proof
consists of three steps. First, we consider q as our input to H and Mpk(q) as auxil-
iary input about q. Since H is pseudorandom with respect to auxiliary information,
Mpk(q),Hk(q, u1) (and thus, Mpk(q),Hk(q, u1) ⊕mb, where b ∈ {0, 1}) is indistinguish-
able from Mpk(q), Ul(n). This implies that Mpk(q),Hk(q, u1) ⊕mb is uninvertible in q.
Second, we consider q, mb as our input to H. Again, by H's pseudorandomness with
auxiliary information, Mpk(q),Hk(q, u1) ⊕ mb,Hk(q, mb, u2) is indistinguishable from
Mpk(q),Hk(q, u1)⊕mb, Ul(n+l(n)). Finally, by a similar argument, the latter distribution
is indistinguishable from Mpk(q), Ul(n), Ul(n+l(n)). We conclude that this construction is
IND-CPA.

This proof can be interpreted as: If the construction is not IND-CPA then, by the
properties on H, M is not one-way and thus not a trapdoor permutation.
The construction satis�es IND-CCA2 (as in De�nition 7.2.2)

Now, we use the assumption that H is extractable and that this construction is IND-
CPA to conclude that it is IND-CCA2. Informally, we show how to construct from any
machine, A = (A1, A2), that breaks IND-CCA2 another one, B = (B1, B2), that breaks
IND-CPA. B behaves very much like A except with things to do with decryption queries.

156

Since in the IND-CPA setting, adversaries do not have access to a decryption oracle, B

has to somehow answer A's decryption queries on its own. Ofcourse, the way to do that
is by utilizing extractability to �nd the desired preimage. Once a preimage is found,
decryption queries can be easily and correctly answered. In other words, B will simulate
A until a decryption query occurs. Then, the simulation is paused, the extractor runs
to �nd a preimage, a decryption answer is computed, and the simulation resumes again.

A slight complication arises due to the nature of our extractor. Since the extractor is
known to succeed with probability at least 1− 1

p −µ, for some polynomial p, invoking it
multiple times will lower its chances of answering all queries. In particular, if we invoke
it np(n) times, then it may have a negligible chance in answering all queries correctly.
This means simulation of a decryption oracle may almost always di�er from a real one.
To avoid that, we allow our extractor's running time to depend on the number of queries
that A makes.

Formally, suppose, for the purpose of contradiction, that this construction does not
satisfy De�nition 7.2.2. Then, there exists a PPT pair A = (A1, A2), an in�nite set of
security parameters N′ ⊆ N, and a polynomial p, such that:

Pr[(pk′, sk′)← G′(1n), (m0,m1, s)← A
D′(sk′)
1 (pk′),

c←< E′(m0, pk′), D′(sk′) >, b← A
D′(sk′)
2 (s, c) : b = 1] −

Pr[(pk′, sk′)← G′(1n), (m0,m1, s)← A
D′(sk′)
1 (pk′),

c←< E′(m1, pk′), D′(sk′) >, b← A
D′(sk′)
2 (s, c) : b = 1] >

1
p(n)

. (7.1)

Let pA be a polynomial bounding the running time of A. Then, A can ask at most pA

queries. Without loss of generality, we assume that ∀n, pA(n) ≥ p(n). Let K be a PPT
capable of extraction with probability at least 1− 1

6p2
A
− µ. Consider the following PPT

pair B = (B1, B2) that attacks IND-CPA of the same construction. B1(pk′) simulates
A

SIM(pk′)
1 (pk′) and outputs what A1 does. Similarly, B2(s, c) simulates A

SIM(pk′)
2 (s, c).

Next, we describe SIM in more detail.
SIM is a PPT that tries to answer A's interactive decryption queries. It utilizes K,

as de�ned earlier. Informally, everytime SIM is invoked, K interacts (with rewinding)
with A to compute a preimage, q. To �nd the corresponding plaintext, SIM checks

157

whether q, as computed by K, is consistent with the communication that took place.
If so, it computes the plaintext. Otherwise, it returns ⊥. Formally, SIM is de�ned in
Algorithm 7.2.1.

input : pk′

interaction: with an external PPT, A

q ← KA(k);1

receive y0;2

r1, ..., rn ← Rn, ..., Rn;3

send r1, ..., rn;4

receive y1, ..., yn, c1, u1, c2, c3;5

Hk(q, u1) = u1, y;6

m = y ⊕ c2;7

if ∀i ≤ n, Hk(q, ri) = yi and Mpk(q) = c1 and Hk(q, m, u2) = c3 then8

return m;9

else10

return ⊥;11

end12

Algorithm 7.2.1: SIM

Analysis
We show that using SIM as a decryption oracle instead of D does not change the output
of A except with probability at most 1

3p + µ. Combining this claim with Eq. 7.1, we
have that ASIM (and consequently B) breaks IND-CPA with probability at least 1

3p −µ.
Formally, we need to show for any b ∈ {0, 1} and all n:

|Pr[(pk′, sk′)← G′(1n), (m0,m1, s)← A
SIM(pk′)
1 (pk′), c←< E′(mb, pk′), D′(sk′) >,

b← A
SIM(pk′)
2 (s, c) : b = 1]−

Pr[(pk′, sk′)← G′(1n), (m0,m1, s)← A
D′(sk′)
1 (pk′), c←< E′(mb, pk′), D′(sk′) >,

b← A
D′(sk′)
2 (s, c) : b = 1]| ≤ 1

3p(n)
+ µ(n), (7.2)

To prove Eq. 7.2, we need to focus only on the interaction between A and its oracle.
Note that when D′ returns ⊥ (error) at the end of a conversation, then SIM will also
return ⊥ since SIM carries out the same veri�cation procedure as D′. Thus, D′ and
SIM can only di�er in their behavior when the interaction is a valid one. Observe again
that if SIM returns a message m 6=⊥ then D′ should output the same message. This

158

is true because if SIM outputs m, then K must have found q such that Mpk(q) = c1

and m = y ⊕ c2. Since Mpk is a trapdoor permutation, D′ computes the same q and
consequently, the same message. Furthermore, if D′ outputs a valid plaintext while
SIM returns ⊥, then by collision resistance, K could not have computed a consistent
preimage, q′ 6= q (except with negligible probability, which is accounted for by µ in
Eq. 7.2). Otherwise, a collision (e.g., q, q′, c1) occurs between q′, as computed by K, and
q = M

(−1)
pk (c1). Therefore, the only noticeable way in which D′ and SIM can di�er

is when K fails in �nding a preimage. This event happens with probability at most
1

6p2
A

+ µ ≤ 1
3p2

A
per decryption query. Since there are at most pA decryption queries in

the game, then by the union bound such a bad event happens with probability at most
pA

3p2
A
≤ 1

3pA
≤ 1

3p .2 This proves Eq. 7.2.
Putting all the pieces together, we have for all n ∈ N′:

Pr[(pk′, sk′)← G′(1n), (m0,m1, s)← B1(pk′), c←< E′(m0, pk′), D′(sk′) >,

b← B2(s, c) : b = 1] −

Pr[(pk′, sk′)← G′(1n), (m0,m1, s)← B1(pk′), c←< E′(m1, pk′), D′(sk′) >,

b← B2(s, c) : b = 1]

= Pr[(pk′, sk′)← G′(1n), (m0,m1, s)← A
SIM(pk′)
1 (pk′), c←< E′(m0, pk′), D′(sk′) >,

b← A
SIM(pk′)
2 (s, c) : b = 1]−

Pr[(pk′, sk′)← G′(1n), (m0,m1, s)← A
SIM(pk′)
1 (pk′), c←< E′(m1, pk′), D′(sk′) >,

b← A
SIM(pk′)
2 (s, c) : b = 1]

≥ Pr[(pk′, sk′)← G′(1n), (m0,m1, s)← A
D′(sk′)
1 (pk′), c←< E′(m0, pk′), D′(sk′) >,

b← A
D′(sk′)
2 (s, c) : b = 1]−

Pr[(pk′, sk′)← G′(1n), (m0,m1, s)← A
D′(sk′)
1 (pk′), c←< E′(m1, pk′), D′(sk′) >,

b← A
D′(sk′)
2 (s, c) : b = 1]− 2

3p(n)
− µ(n) (7.3)

2Recall that pA(n) ≥ p(n), ∀n.

159

≥ 1
3p(n)

− µ(n), (7.4)

where Eq. 7.3 holds due to Eq. 7.2 , and Eq. 7.4 holds by Eq. 7.1. A contradiction
with IND-CPA. Therefore, this construction is IND-CCA2.

7.3 Towards Instantiation of General Encryption Schemes

In this section, we investigate a general question regarding encryption schemes in the
RO model. In particular, what does security of such schemes tells us about the security
of the �instantiated� ones? As elaborated in [CGH98], security of encryption schemes in
the RO model does not guarantee, in general, security in the standard model, i.e., when
each Random Oracle query is replaced by a call to a function �xed at the beginning of
the protocol. This is so because no e�cient function satis�es both unpredictability and
consistency, two properties of Random Oracles. Unpredictability means that answers to
di�erent queries are uniform and independent while consistency means that answers to
the same queries are the same. To get around this impossibility result, we propose a
new construct that satis�es both properties. At a high level, this construct assumes that
the encryption algorithm, E, and decryption algorithm, D share a secret. Then, answers
to new Random Oracle queries are chosen uniformly and independently (thus, achieving
unpredictability), and transmitted to the other party using this secret, e.g., by using a
symmetric encryption scheme based on the secret, to guarantee consistency.

Before we discuss our instantiation in more detail, a few words are due about our
assumption that E and D share a secret. This requirement may be implemented in
several ways. Our solution is to assume that the �rst Random Oracle query made by
both parties is the same but can not be e�ciently retrieved from the ciphertext without
the decryption key. If so, then the secret can be designated as the �rst Random Oracle
query itself. Formally, our requirements on the original encryption scheme are:
De�nition 7.3.1 (First-Query Hiding Encryption Schemes). An encryption scheme

in the RO model, P = (G, E, D), is called �rst-query hiding if it satis�es the following

two conditions:

• A ciphertext, c, reveals the number of oracle queries that E makes to compute c.

Denote this number by dc.

160

• If E makes a Random Oracle query, then the �rst such query, q1, satis�es the

following three conditions:

� q1 is taken from a well-spread distribution.

� q1 is also the �rst query that D makes.

� For any message, m, and any PPT, K:

Pr[(pk, sk)← G(1n), c← E(m, pk), q ← K(c) : q = q1] ≤ µ(n),

where q1 is the �rst query made by E while computing c.

We emphasize that �rst-query hiding encryption schemes need not use the Random
Oracle. Thus, this class of encryption schemes include all schemes in the standard model.

We proceed as follows. We show how to convert any �rst-query hiding IND-CPA
encryption scheme in the RO model to a CCA2 encryption scheme. This result combines
two steps in one. Speci�cally, it consists of converting any �rst-query hiding IND-CPA
encryption scheme to an IND-CPA encryption scheme in the standard model and then
converting the latter to a CCA2 encryption scheme. After we present this result in the
interactive model, we explain how this result can be applied in the noninteractive setting
with the help of noninteractively-extractable POW functions.

7.3.1 Interactive Instantiation

Our starting point is a semantically secure encryption scheme in the RO model, denoted
by P = (G, E,D), and an (interactively) extractable POW family ensemble, H, satisfying
strong pseudorandomness (De�nition 4.3.5). Given these two primitives, we construct
a 3-round encryption scheme, P ′ = (G′, E′, D′), secure against chosen message attack
in the standard model. At a high level, E′ runs E, with E′ providing uniform and
independent answers to Random Oracle queries made by E. When E halts with a
ciphertext, E′ veri�es to D′ that it knows the corresponding message and the secret
random coins of E. This is done using the extractability property of H. Also, it sends
the ciphertext computed by E as well as all the Random Oracle query and answer pairs.
D′ uses D to decrypt with the query/answer pairs sent by E′ acting as a Random Oracle
(this oracle is de�ned formally in Algorithm 7.3.2). When D �nishes, D′ veri�es that

161

the interaction is consistent (as in Algorithm 7.3.3) before returning the plaintext.
In more detail, to encrypt a message, m, E′ chooses private random coins for E,

denoted by rE , computes the encryption of m under E using rE as well as the encryption
of rE . As mentioned earlier, answers to Random Oracles queries are chosen uniformly
and independently by E′. Then, E′ engages in a 3-round interaction with D′ to prove
knowledge of m, rE . In addition, E′ sends both ciphertexts (of m and rE) as well as
an encryption of Random Oracle query/answer pairs in the 3rd round. Each oracle
query/answer (qi, ui) is encrypted as:

Encq1(qi, ui) = Hk((q1, qi), r
qi
0),Hk((q1, qi, u

1
i), r

qi
1 .), ...,Hk((q1, qi, u

n
i), rqi

n),

where uj
i is the jth bit of ui. Notice that it is possible to compute ui given Encq1(qi, ui),q1,

and qi. Speci�cally, uj
i = 1 if and only if VH((q1, qi, 1),Hk((q1, qi, u

j
i), r

qi
j)) = 1.

Formally, let P ′ = (G′, E′, D′), with G′ de�ned in Algorithm 7.3.1 and E′, D′ de�ned
in Figure 7.2. We assume without loss of generality that both E and D do not repeat a
Random Oracle query, e.g., E and D remember answers to previous queries. It can be
shown that P ′ satis�es completeness. In Theorem 7.3.1, we state that it is IND-CCA2.

input: 1n

(pk1, sk1)← G(1n);1

(pk2, sk2)← G(1n);2

k ← Kn;3

pk′ , (pk1, pk2, k);4

sk′ , (sk1, sk2, k);5

return (pk′, sk′);6

Algorithm 7.3.1: G′

162

input: k, yq1
0 , ..., yq1

n , ..., yqd
0 , ..., yqd

n , q1, q
′

if ∃i, VH((q1, q
′), yqi

0) = 1 and ∀j < i, VH((q1, q
′), yqj

0) = 0 then1

u = VH((q1, qi, 1), yqi
1), ..., VH((q1, qi, 1), yqi

n);2

return u;3

else4

u← Un;5

return u;6

end7

Algorithm 7.3.2: O′

input: pk′, y0, ..., yn, r1, ..., rn, yq1
0 , ..., yq1

n , ..., yqd
0 , ..., yqd

n , c1, c2,m
′, r′

if VH((m′, r′), y0) = 1 and ∀i ≥ 1, Hk((m′, r′), ri) = yi and d = dc1 + dc2 and1

EO′(k,y
q1
0 ,...,y

q1
n ,...,y

qdc1
0 ,...,y

qdc1
n ,q1,.)(m′, pk1, r

′) = c1 then
for i = 1 to dc1 do2

let q′i be the ith query made by E(m′, pk1, r
′);3

if VH((q′1, q
′
i), y

qi
0) 6= 1 or ∃j ≥ 1, VH((q′1, q

′
i, 0), yqi

j) = VH((q′1, q
′
i, 1), yqi

j)4

then
return 0 ;5

end6

return 1 ;7

else8

return 0;9

end10

Algorithm 7.3.3: Ver

Theorem 7.3.1. Let P = (G, E,D) be any �rst-query hiding encryption scheme that

is IND-CPA in the RO model, and H be any extractable (as in De�nition 4.2.6) fam-

ily ensemble that satis�es strong pseudorandomness with auxiliary information (as in

De�nition 4.3.5), collision resistance (as in De�nition 2.5.2) and has public random-

ness. Then, P ′, the corresponding protocol in Figure 7.2, is IND-CCA2 (as in De�nition

163

E
′ (
m

,p
k
′)

D
′ (
sk
′)

rE
←

R
E n

c 1
=

E
(m

,p
k

1
,r

E
)

c 2
←

E
(r

E
,p

k
2
)

d
=

d
c 1

+
d

c 2

u
1
,.

..
,u

d
←

U
n
,.

..
,U

n

use
u

1
,.

..
,u

d
as

RO
ans

wer
sto

q 1
,.

..
,q

d

y
q 1 0

,y
q 1 1

,.
..
,y

q 1 n
←

H
k
(q

1
,q

1
,.

),
H

k
(q

1
,q

1
,u

1 1
,.

),
..
.,

H
k
(q

1
,q

1
,u

n 1
,.

)
. . . y

q d 0
,y

q d 1
,.

..
,y

q d n
←

H
k
(q

1
,q

d
,.

),
H

k
(q

1
,q

d
,u

1 d
,.

),
..
.,

H
k
(q

1
,q

d
,u

n d
,.

)

y 0
←

H
k
((

m
,r

E
))

y 0 −→
r 1

,.
..
,r

n
←

R
n
,.

..
,R

n

r 1
,.

..
,r

n
←−
−−
−−

y 1
=

H
k
((

m
,r

E
),

r 1
),

..
.,

y n
=

H
k
((

m
,r

E
),

r n
)

y 1
,.

..
,y

n
,y

q 1 0
,.

..
,y

q d n
,c

1
,c

2
−−
−−
−−
−−
−−
−−
−−
−−
−−
−→

m
′
=

D
O
′ (

k
,y

q
1

0
,.
..
,y

q
1

n
,.
..
,y

q
d
c
1

0
,.
..
,y

q
d
c
1

n
,q

1
,.
) (

c 1
,s

k
1
)

r′
=

D
O
′ (

k
,y

q
d
c
1
+

1

0
,.
..
,y

q
d
c
1
+

1
n

,.
..
,y

q
d
c
2

0
,.
..
,y

q
d
c
2

n
,q

1
,.
) (

c 2
,s

k
2
)

//R
eca

llD
ask

sq 1
as

the
�rs

tq
uer

y
ifV

er
(p

k
′ ,

y 0
,.

..
,y

n
,r

1
,.

..
,r

n
,y

q 1 0
,.

..
,y

q 1 n
,.

..
,y

q d 0
,.

..
,y

q d n
,

c 1
,c

2
,m
′ ,

r′
)

=
1:

out
put

m
′

oth
erw

ise,
out

put
⊥

Fig
ure

7.2
:In

ter
act

ive
Ins

tan
tiat

ion
ofF

irst
-qu

ery
Hid

ing
En

cry
pti

on
Sch

em
es

164

7.2.2).

Proof. The proof is by contradiction. We suppose P ′ is not IND-CCA2, then we use a
reducibility argument to conclude that P is not semantically secure.

In more detail, if A is an adversary that defeats P ′, we construct another adversary,
B, that runs A to defeat P . Two major issues emerge when B runs A, namely decryption
queries and the challenge ciphertext. Recall that B is a CPA adversary and as such does
not have access to a decryption oracle while A does. So, when B runs A it has to answer
A's decryption queries on its own. Moreover, B receives a challenge ciphertext under P

while A expects a proper challenge ciphertext under P ′. Thus, B needs to convert the
former to the latter.

To resolve the �rst issue, B simulates a decryption oracle by using a knowledge ex-
tractor to �nd the plaintext. This simulation is formally de�ned in Algorithm 7.3.6.
Regarding the second issue, B extends its challenge ciphertext to a new string that is
indistinguishable from a valid ciphertext under P ′ and then runs A on it. This indistin-
guishability argument uses the assumption that H is perfectly one-way. The conversion
is formally de�ned in Algorithm 7.3.7.

The proof proceeds as follows. First, we de�ne B. Second, we use an indistinguisha-
bility argument to show that the noticeable advantage A has when playing the CCA2
game as in De�nition 7.2.2 translates to a noticeable advantage when A runs in the
simulated world of B. Thus, B has a noticeable advantage in defeating P .
Analysis
Formally, suppose, for the purpose of contradiction, that scheme P ′ does not satisfy
de�nition 7.2.2. Then, there exists a PPT pair A = (A1, A2), an in�nite set of security
parameters N′ ⊆ N, and a polynomial p, such that:

|Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

D′(sk′)
1 (pk′), c′ ←< E′(m0, pk′), D′(sk′) >,

b← A
D′(sk′)
2 (s′, c′) : b = 1] −

Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

D′(sk′)
1 (pk′), c′ ←< E′(m1, pk′), D′(sk′) >,

b← A
D′(sk′)
2 (s′, c′) : b = 1]| > 1

p(n)
. (7.5)

165

input: pk1

(pk2, sk2)← G(1n);1

k ← Kn;2

pk′ = (pk1, pk2, k);3

(m0,m1, s
′)← A

SIM(pk′,sk2)
1 (pk′);4

return m0,m1, s = (s′, pk′, sk2);5

Algorithm 7.3.4: B1

input: c1, s = (s′, pk′, sk2)

c′ ←Extend (c1, s);1

b← A
SIM(pk′,sk2)
2 (c′, s′);2

return b;3

Algorithm 7.3.5: B2

Let pA be a polynomial bounding the running time of A. Then, A can ask at most
pA decryption queries. Without loss of generality, we assume that pA(n) ≥ p(n),∀n.
Let K be a blackbox extractor that succeeds with probability at least 1− 1

6p2
A
− µ (as in

De�nition 4.2.6). We use A to construct a PPT pair, B = (B1, B2), that attacks P . B

is formally de�ned in Algorithms 7.3.4 and 7.3.5.

input : pk′, sk2

interaction: with an external PPT, A

(m′, r′)← KA(k);1

receive y0;2

r1, ..., rn ← Rn, ..., Rn;3

send r1, ..., rn;4

receive y1, ..., yn, yq1
0 , ..., yqd

n , c1, c2;5

let q′1 be the �rst query E(m′, pk1, r
′) makes;6

if V er(pk′, y0, ..., yn, r1, ..., rn, yq1
0 , ..., yq1

n , ..., yqd
0 , ..., yqd

n , c1, c2,m
′, r′) = 1 and7

DO′(k,y
q1
0 ,...,y

q1
n ,...,y

qdc1
0 ,...,y

qdc1
n ,q1,.)(c2, sk2) = r′ then

return m′;8

else9

return ⊥;10

end11

Algorithm 7.3.6: SIM

166

input: c1, s

rE
1 ← RE

n ;1

c2 ← E(rE
1 , pk2);2

y0, ..., yn ← Un, ..., Un;3

yq1
0 , ..., yq1

n , ..., yqd
0 , ..., yqd

n ← Un, ..., Un;4

c′ = y0, ..., yn, yq1
0 , ..., yq1

n , ..., yqd
0 , ..., yqd

n , c1, c2;5

return c′;6

Algorithm 7.3.7: Extend

We argue that the behavior of A does not di�er much when playing the real CCA2
game from the simulated game. In particular, we show that if we replace the decryption
oracle, D′, by SIM , A's output remains the same except with probability 1

3p . Moreover,
when a valid ciphertext, c′, is replaced by Extend(s, c1), A's output di�er only with
negligible probability.

Formally, we need to show that the following two equations hold for all su�ciently
large n ∈ N′ and any i ∈ {0, 1}:

|Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

SIM(pk′,sk2)
1 (pk′), c′ ←< E′(mi, pk′), D′(sk′) >

b← A
SIM(pk′,sk2)
2 (s′, c′) : b = 1]−

Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

D′(sk′)
1 (pk′), c′ ←< E′(mi, pk′), D′(sk′) >

b← A
D′(sk′)
2 (s′, c′) : b = 1]| ≤ 1

3p(n)
+ µ(n). (7.6)

|Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

SIM(pk′,sk2)
1 (pk′), c← EO(mi, pk1),

c′ ← Extend(c, s), b← A
SIM(pk′,sk2)
2 (s′, c′) : b = 1]−

Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

SIM(pk′,sk2)
1 (pk′), c′ ←< E′(mi, pk′), D′(sk′) >

b← A
D′(sk′)
2 (s′, c′) : b = 1]| ≤ µ(n). (7.7)

167

To prove Eq. 7.6, we need to focus only on the interaction between A and its oracle.
Note that if D′ returns ⊥, then SIM also returns ⊥. Moreover, if SIM returns a valid
plaintext, m′, then by collision resistance, D′ returns the same message, m′. Therefore,
the only way D′ and SIM may di�er is when D′ returns m′ but SIM outputs ⊥. This
happens when KA fails to �nd a valid preimage, i.e., it happens with probability at most

1
6p2

A
+ µ ≤ 1

3p2
A
. Therefore, by the union bound, the probability that D′ and SIM di�er

in any interaction with A is at most pA

3p2
A
≤ 1

3pA
≤ 1

3p .
Eq. 7.7 is true because P is �rst-query hiding and semantically secure and H satis�es

De�nition 4.3.5. In more detail, semantic security implies that c1 = E(mi, pk1, r
E), c2 ←

E(rE , pk2) is indistinguishable from c1, E(Un, pk2). Thus, c1, c2 is uninvertible in both q1

and (mi, r
E), because c1, E(Un, pk2) is uninvertible in both q1 (by �rst-query hiding) and

(mi, r
E) (we assume, without loss of generality that RE

n is a well-spread distribution on
strings of length at least n). In other words, c1, c2 can be regarded as auxiliary informa-
tion about either q1 or (mi, r

E). Thus, by De�nition 4.3.5, yq1
0 , ..., yq1

n , ..., yqd
0 , ..., yqd

n , c1, c2

is indistinguishable from Udl(n)+dnl(2n+1), c1, c2. Consequently, yq1
0 , ..., yq1

n , ..., yqd
0 , ..., yqd

n ,

c1, c2 is uninvertible in (mi, r
E). Moreover, using De�nition 4.3.5 again, y0, ..., yn, yq1

0 , ...,

yq1
n , ..., yqd

0 , ..., yqd
n , c1, c2 is indistinguishable from U(n+1)l(n), y

q1
0 , ..., yq1

n , ..., yqd
0 , ..., yqd

n , c1, c2

which, as argued earlier, is indistinguishable from U(n+1)l(n), Udl(n)+dnl(2n+1), c1, E(Un, pk2).
Eq. 7.7 follows.

Putting all the pieces together, we have for all n ∈ N′:

|Pr[(pk, sk)← G(1n), (m0,m1, s)← B1(pk), c← EO(m0, pk), b← B2(s, c) : b = 1] −

Pr[(pk, sk)← G(1n), (m0,m1, s)← B1(pk), c← EO(m1, pk), b← B2(s, c) : b = 1]|

= |Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

SIM(pk′,sk2)
1 (pk′), c← EO(m0, pk1),

c′ ← Extend(s, c), b← A
SIM(pk′,sk2)
2 (s′, c′) : b = 1]−

Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

SIM(pk′,sk2)
1 (pk′), c← EO(m1, pk1),

c′ ← Extend(s, c), b← A
SIM(pk′,sk2)
2 (s′, c′) : b = 1]|

≥ |Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

D′(sk′)
1 (pk′), c′ ←< E′(m0, pk′), D′(sk′) >,

168

b← A
′D′(sk′)
2 (s′, c′) : b = 1]−

Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

D′(sk′)
1 (pk′), c′ ←< E′(m1, pk′), D′(sk′) >,

b← A
D′(sk′)
2 (s′, c′) : b = 1]| − 2

3p(n)
− µ(n) (7.8)

≥ 1
3p(n)

− µ(n), (7.9)

where Eq. 7.8 holds due to Eq. 7.6 and Eq. 7.7, and Eq. 7.9 holds due to Eq. 7.5, a
contradiction with the assumption that P is IND-CPA.
Remark 7.3.1. Observe that in the proof of Theorem 7.3.1, B did not access the RO.

Thus, Theorem 7.3.1 still holds if P is not IND-CPA (as in de�nition 2.7.1) but is so

against adversaries without access to the Random Oracle. For instance, if Mpk is a

trapdoor permutation, Mpk(r1), r2, O(r2) ⊕m ← EO(m, pk) is not IND-CPA but P ′, as

de�ned in Figure 7.2, is CCA2-secure, provided that the �rst Random Oracle query of

both E and D is r1. This is true because Random Oracle answers can not be recovered

in P ′ without knowledge of r1.

7.3.2 Noninteractive Instantiation

7.3.2.1 IND-CPA Instantiation

We remark that P ′ (Figure 7.2) can be modi�ed so that it becomes noninteractively IND-
CPA in the standard model. For this result, we have the same assumptions on P while we
assume that H is only a (strong pseudorandom) POW family ensemble. We emphasize
that we do not assume any extractability property on H. The formal construction is as
follows.
Construction 7.3.1. Let P = (G, E,D) be any �rst-query hiding encryption scheme in

the RO model and P ′ = (G′, E′, D′) be the following encryption scheme in the standard

model.

• G′(1n) = (pk, sk, k), where (pk, sk)← G(1n) and k ← Kn.

169

• E′(m, pk, k) = c0, c1

c0 , Encq1(q1, u1), ..., Encq1(qdc1
, udc1

),

c1 , EO′(k,Encq1 (q1,u1),...,Encq1 (qdc1
,udc1

),q1,.)(m, pk1, rE),

where rE, r′E, and u1, ..., ud are uniform, q1 is the �rst query that EO′(m, pk1, rE)

makes, O′ is de�ned in Algorithm 7.3.2, and Encq1(qi, ui) = Hk(q1, qi, r0),Hk(q1, qi,

u1
i , r1), ...,Hk(q1, qi, u

n
i , rn) (where r0, ..., rn are uniform).

• D′(c = (c0, c1), sk, k) = DO′(k,c0,q1,.)(c1, sk)

Theorem 7.3.2. Let P = (G, E,D) be any �rst-query hiding encryption scheme that is

IND-CPA in the RO model (as in De�nition 2.7.1), and H be any family ensemble that

satis�es strong pseudorandomness with auxiliary information (as in De�nition 4.3.5),

and collision resistance (as in De�nition 2.5.2). Then, Construction 7.3.1 is IND-CPA

(as in De�nition 2.7.1).

Proof. The proof of this theorem is very similar to the proof of Eq. 7.7 (in the proof of
Theorem 7.3.1). By perfect one-wayness with auxiliary information and the fact that
c1 is one-way in q1 (�rst-query hiding), we know that c0, c1 is indistinguishable from
U|c0|, c1. Therefore, any noticeable advantage that an adversary has against c0, c1, it
also has it against U|c0|, c1. However, by semantic security of P , it is not possible to
tell whether U|c0|, c1 (and consequently c0, c1) is an encryption of m0 or m1. Note that
the fact that E is simulated with O′ does not alter semantic security of P because O′

behaves exactly like a Random Oracle from the perspective of E.
We need collision resistance to show completeness. Speci�cally, collision resistance

implies that u1, ..., udc1
that O′ recovers are the same as those used by E′ and con-

sequently D and E use the same Random Oracle. Thus, completeness follows from
completeness of the underlying scheme.

7.3.2.2 IND-CCA2 Instantiation

The following modi�cation to Construction 7.3.1 is a CCA2-secure instantiation of any
�rst-query hiding encryption scheme, provided that H is an extractable POW family
ensemble. We emphasize that the adversary is restricted to asking a constant number of
decryption queries.

170

Construction 7.3.2. Let P = (G, E,D) be any �rst-query hiding encryption scheme in

the RO model and P ′ = (G′, E′, D′) be the following encryption scheme in the standard

model.

• G′(1n) = (pk1, pk2, sk1, sk2, k), where (pk1, sk1), (pk2, sk2)← G(1n) and k ← Kn.

• E′(m, pk1, pk2, k) = Hk((m, rE , c0, c2), rH), c0, c1, c2

c0 , Encq1(q1, u1), ..., Encq1(qd, ud),

c1 , EO′(k,Encq1 (q1,u1),...,Encq1 (qd,ud),q1,.)(m, pk1, rE),

c2 , EO′(k,Encq1 (q1,u1),...,Encq1 (qd,ud),q1,.)(rE , pk2, r
′
E),

where rE, r′E, rH, and u1, ..., ud are uniform, q1 is the �rst query that EO′(m, pk1, rE)

makes, O′ is de�ned in Algorithm 7.3.2, and Encq1(qi, ui) = Hk(q1, qi, r0),Hk(q1, qi,

u1
i , r1), ...,Hk(q1, qi, u

n
i , rn) (where r0, ..., rn are uniform).

• D′((y, c0, c1, c2), pk1, sk1, pk2, sk2, k). Let q1 be the �rst query that DO′(k,c0,.,.)(c1, sk1)

makes, DO′(k,c0,q1,.)(c1, sk1) = m, and DO′(k,c0,q1,.)(c2, sk2) = rE. Then D′ out-

puts m if V er2(y, c0, c1, c2,m, rE , q1, pk1, pk2, k) = 1 (V er2 is de�ned in Algorithm

7.3.8). Otherwise, D′ returns ⊥.

input: y, c0, c1, c2,m, rE , q1, pk1, pk2, k

let q′1 be the �rst query and dc1 be the number of queries that1

EO′(k,c0,q1,.)(m, pk1, r
E) makes.;

EO′(k,c0,q1,.)(m, pk1, r
E) = c′1;2

if q1 6= q′1 or c′1 6= c1 or VH((m, rE , c0, c2), y) 6= 1 then3

return 0 ;4

else5

interpret y as yq1
0 , ..., yq1

n , ..., y
qdc1
0 , ..., y

qdc1
n , ..., yqd

n ;6

for i = 1 to dc1 do7

let q′i be the ith query made by EO′(k,c0,q1,.)(m, pk1, r
E);8

if VH((q′1, q
′
i), y

qi
0) 6= 1 or ∃j ≥ 1, VH((q′1, q

′
i, 0), yqi

j) = VH((q′1, q
′
i, 1), yqi

j)9

then
return 0 ;10

end11

return 1 ;12

end13

Algorithm 7.3.8: Ver2

Theorem 7.3.3. Let P = (G, E,D) be any �rst-query hiding encryption scheme that

is IND-CPA in the RO model (as in De�nition 2.7.1), and H be any family ensem-

171

ble that satis�es strong pseudorandomness with auxiliary information (as in De�nition

4.3.5), extraction with auxiliary input (as in De�nition 3.2.5), and collision resistance

(as in De�nition 2.5.2). Then, Construction 7.3.2 is IND-CCA2 (as in De�nition 2.7.2),

against a constant number of decryption queries.

Proof. The proof follows very similar lines to the proof of Theorem 7.3.1. Thus, the
formal proof is recreated here without high-level description.

Suppose, for the purpose of contradiction, that Construction 7.3.2 does not satisfy
de�nition 2.7.2. Then, there exists a PPT pair A = (A1, A2), an in�nite set of security
parameters N′ ⊆ N, and a polynomial p, such that:

|Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

D′(sk′)
1 (pk′), c′ ← E′(m0, pk′),

b← A
D′(sk′)
2 (s′, c′) : b = 1] −

Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

D′(sk′)
1 (pk′), c′ ← E′(m1, pk′),

b← A
D′(sk′)
2 (s′, c′) : b = 1]| > 1

p(n)
. (7.10)

Let K be a preimage extractor for all of the constant number of queries that A makes,
as described in the proof of Theorem 7.2.1. De�ne a new PPT pair, B = (B1, B2) that
uses A to break semantic security of the underlying scheme, P , as in Algorithms 7.3.4
and 7.3.5 (with Extend and SIM de�ned in Algorithms 7.3.9 and 7.3.10).

input: c1, s

rE ← RE
n ;1

c2 ← E(rE , pk2);2

c0 = yq1
0 , ..., yq1

n , ..., yqd
0 , ..., yqd

n ← Un, ..., Un;3

y ← U|Hk(mb,rE ,c0,c2)|;4

c′ = y, c0, c1, c2;5

return c′;6

Algorithm 7.3.9: Extend

We argue that the advantage that A has when interacting with D′ remains when
interacting with SIM . Formally, for su�ciently large n ∈ N′ and any i ∈ {0, 1}:

|Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

SIM(pk′,sk2)
1 (pk′), c′ ← E′O(mi, pk′),

172

input : pk1, pk2, k, sk2, y, c0, c1, c2

(m′, r′E , c′0, c
′
2)← KA(k, rA);1

let q′1 be the �rst query E(m′, pk1, r
′) makes;2

if V er2(y, c0, c1, c2,m
′, r′E , q′1, pk1, pk2, k) = 1 and DO′(k,c0,q1,.)(c2, sk2) = r′E3

and (c′0, c
′
2) = (c0, c2) then

return m′;4

else5

return ⊥;6

end7

Algorithm 7.3.10: SIM

b← A
SIM(pk′,sk2)
2 (s′, c′) : b = 1]−

Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

D′(sk′)
1 (pk′), c′ ← E′O(mi, pk′),

b← A
D′(sk′)
2 (s′, c′) : b = 1]| ≤ µ(n). (7.11)

To prove Eq. 7.11, we need to focus only on the interaction between A and its oracle.
Observe that the output of D′ can be di�erent from that of SIM only if there is a
di�erence on m, rE , q1. First, note that SIM computes q′1 as the �rst Random Oracle
query made by E while D′ computes q1 as the �rst Random Oracle query made by D.
By the �rst-query hiding property, q′1 = q1.

Moreover, if D′ outputs m 6=⊥, then by construction, we know that D′ runs V er2

on m, rE (among other inputs) and V er2 returns 1. Thus, VH((m, rE , c0, c2), y) = 1

(this is veri�ed by V er2). Since y has a valid preimage, KA returns m′, r′E , c′0, c
′
2

such that VH((m′, r′E , c′0, c
′
2), y) = 1 (except with negligible error). By collision resis-

tance, (m, rE , c0, c2) = (m′, r′E , c′0, c
′
2). Thus, m, rE , q1 = m′, r′E , q′1. Since rE , c′0, c

′
2 =

r′E , c0, c2 and rE is the plaintext of c2, then the second and third conditions on line 3 of
SIM is valid. Consequently both D′ and SIM have the same output, m.

In addition, if SIM returns m′ 6=⊥, then by construction, KA recovers m′, r′E , c′0, c
′
2

such that V er2 returns 1 on m′, r′E , q′1 (among other inputs), c′0, c
′
2 = c0, c2, m′ is the

plaintext of c1, and r′E is the plaintext of c2. By correctness, DO′(k,c0,q1,.)(c1, sk1) = m′

and DO′(k,c0,q1,.)(c2, sk2) = r′E . Thus, D′ recovers m, rE , q1 = m′, r′E , q′1, and outputs
m′ because V er2 accepts.

Next, we show that we do not loose the advantage of A if we run it on Extend(c1)

173

instead of a valid ciphertext. Formally, for any i ∈ {0, 1} and su�ciently large n ∈ N′:

|Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

SIM(pk′,sk2)
1 (pk′), c← EO(mi, pk1),

c′ ← Extend(c, s), b← A
SIM(pk′,sk2)
2 (s′, c′) : b = 1]−

Pr[(pk′, sk′)← G′(1n), (m0,m1, s
′)← A

SIM(pk′,sk2)
1 (pk′), c′ ← E′(mi, pk′)

b← A
SIM(pk′,sk2)
2 (s′, c′) : b = 1]| ≤ µ(n). (7.12)

Note that semantic security of P is not violated if we replace the Random Oracle, O,
with O′(k, c0, q1, .) because the answers of O′ are uniform and independent (like O). For
any i ∈ {0, 1}, let:

cmi
1 , EO′(k,Encq1 (q1,u1),...,Encq1 (qd,ud),q1,.)(mi, pk1, rE),

cmi
2 , EO′(k,Encq1 (q1,u1),...,Encq1 (qd,ud),q1,.)(rE , pk2, r

′
E)

Observe that semantic security implies that rE is well-spread. Otherwise, a nonuni-

form adversary, A, can distinguish an encryption of m0 from an encryption of m1.
A guesses rE with nonnegligible advantage (or the particular rE with the nonnegligi-
ble probability weight can be given to A as an advice string). Then, A recomputes
c′ = E(m0, pk, rE) and c′′ = E(m1, pk, rE). Note that by correctness of the encryption
scheme, c′ 6= c′′. Then, A compares c′ and c′′ to the actual ciphertext. If there is a
match with mi, A outputs i. Otherwise, output a uniform bit. It follows that A has a
nonnegligible advantage against semantic security.

By semantic security and the fact that rE is drawn from a well-spread distribution,
for any i, (cmi

1 , cmi
2) is computationally indistinguishable from

cmi
1 , EO′(k,Encq1 (q1,u1),...,Encq1 (qd,ud),q1,.)(Un, pk2, r

′
E).

Consequently, cmi
1 , cmi

2 is one-way in q because, by de�nition, the latter distribution
is. Thus, cmi

1 , cmi
2 can be regarding as auxiliary information about q and then by per-

fect one-wayness with auxiliary information, we have cmi
0 , cmi

1 , cmi
2 is computationally

indistinguishable from U|cmi
0 |

, cmi
1 , cmi

2 . However, as argued earlier, the latter distribu-

174

tion is indistinguishable from U|cmi
0 |

, cmi
1 , EO′(Un, pk2, .). We also know that cmi

1 does
not reveal rE because otherwise, it is easy to check whether cmi

1 is an encryption of
mi by recomputing E(mi, pk, rE) and comparing it with cmi

1 . Thus, we conclude that
U|cmi

0 |
, cmi

1 , EO′(.)(Un, pk2, .) and consequently cmi
0 , cmi

1 , cmi
2 is one-way in rE . Using per-

fect one-wayness again, we have E′(mi, pk′, .) = Hk((mi, r
E , cmi

0 , cmi
2), .), cmi

0 , cmi
1 , cmi

2

is computational indistinguishable from U|Hk((mi,rE ,c
mi
0 ,c

mi
2),.)|, c

mi
0 , cmi

1 , cmi
2 . The latter

distribution is indistinguishable from Extend(cmi
1 , s) = U|Hk((mi,rE ,c

mi
0 ,c

mi
2),.)|, U|cmi

0 |
, cmi

1 ,

EO′(Un, pk2, .). To �nish the proof of Eq. 7.12, note that SIM does not help A in
distinguishing E′(mi, pk′) from Extend(c, s) because SIM responds with ⊥ except on
ciphertexts for which A knows a corresponding plaintext.

Combining Eq. 7.11 and Eq. 7.12 implies that B has a nonnegligible advantage against
semantic security of P . A contradiction.

7.3.3 Realizing Unrealizable Schemes

[CGH98] contains a transformation that converts any encryption scheme to another one
in the RO model with the following properties. The new scheme is secure if the original
scheme is. However, any conventional instantiation fails to maintain security. It is inter-
esting to note that if the original scheme is �rst-query hiding, both the noninteractive
and interactive instantiation described in Section 7.3 can be modi�ed to securely instan-
tiate the new scheme. In other words, there are encryption schemes in the RO model
for which there are secure (both IND-CPA and IND-CCA2) instantiations but no secure
conventional instantiations.

We sketch here such an instantiation. Let P be any �rst-query hiding IND-CPA
encryption scheme and P ′ be the scheme resulting from applying the transformation
of [CGH98] to P . We apply a slightly di�erent version of Construction 7.3.2 on P ′ =

(G′, E′, D′) to get an IND-CCA2 scheme, P ′′. P ′′ di�ers from Construction 7.3.2 in that
the �rst query of E, not of E′ is used to encryption random oracles answers.

We emphasize that D′′ does not reveal a plaintext that E′′ or A does not know.
In particular, D′′ does not reveal the secret key as is the case with the conventional
instantiation of P ′ (refer to the original paper for more detail).

175

7.4 OAEP

Even though OAEP [BR94] is not �rst-query hiding (see De�nition 7.3.1), it has secure
instantiations in very similar ways to Constructions 7.3.1 and 7.3.2.

Instead of encrypting Random Oracle answers using the �rst query, we encrypt the
answers using the corresponding queries themselves. Then, we have the same results as
Theorems 7.3.2 and 7.3.3.

We �rst formalize the original scheme and then give both the IND-CPA and IND-
CCA2 instantiations.
Construction 7.4.1 (OAEP,[BR94]). Let M be a trapdoor permutation (with key

space PKn and trapdoor space SKn) and P = (G, E,D) be the following encryption

scheme in the RO model:

• G(1n) = (pk, sk), where pk ← PKn, sk ← SKn.

• EO1,O2(m, pk) = Mpk(s,O2(s)⊕ r), where r is uniform and s = O1(r)⊕m.

• DO1,O2(c, sk) computes Msk(c) = y1, y2, queries O2(y1), computes r = y2⊕O2(y1),

queries O1(r), and recover m = y1 ⊕O1(r).

Construction 7.4.2 (IND-CPA instantiation). Let M be a trapdoor permutation

(with key space PKn and trapdoor space SKn), H be a veri�able family ensemble, and

P ′ = (G′, E′, D′) be the following encryption scheme in the standard model:

• G′(1n) = (pk, sk, k), where pk ← PKn, sk ← SKn, and k ← Kn.

• E′(m, pk, k) = Encr(r, u1), Encs(s, u2),Mpk(s, u2 ⊕ r), where r is uniform, s =

u1 ⊕ m, Enci(j, k) = Hk(i, j, r0),Hk(i, j, k1, r1), ...,Hk(i, j, kn, rn), and r0, ..., rn

are uniform.

• D′(c = (c0, c1), sk, k) computes Msk(c1) = y1, y2, recovers u2 from y1 and c0 (in

particular Encs(s, u2)), computes r = y2 ⊕ u2, recovers u1 from r and c0 (in

particular Encr(r, u1)), and outputs m = y1 ⊕ u1.

Using the same arguments as in Theorem 7.3.2, we show that Construction 7.4.2 is
IND-CPA, provided that the trapdoor permutation used in OAEP is partially one-way.
Recall that a function is partially one-way if it is one-way in the �rst half of the input

176

and one-way in the second half as well. The proof of the following theorem is almost the
same as that of Theorem 7.3.2 and is omitted here.
Theorem 7.4.1. Let M be a partially one-way trapdoor permutation and H be any

family ensemble that satis�es strong pseudorandomness with auxiliary information (as in

De�nition 4.3.5), and collision resistance (as in De�nition 2.5.2). Then, Construction

7.4.2 is IND-CPA (as in De�nition 2.7.1).

We strengthen Construction 7.4.2 in a similar way to Construction 7.3.2 to get a
CCA2-secure instantiation against a constant number of decryption queries. Formally,
Construction 7.4.3 (IND-CCA2 instantiation). Let M be a trapdoor permutation

(with key space PKn and trapdoor space SKn), H be a veri�able family ensemble, and

P ′ = (G′, E′, D′) be the following encryption scheme in the standard model:

• G′(1n) = (pk1, pk2, sk1, sk2, k), where pk1, pk2 ← PKn, sk1, sk2 ← SKn, and

k ← Kn.

• E′(m, pk1, pk2, k) = Hk((m, r, c0, c2), c0, c1, c2

c0 , Encr(r, u1), Encr(r′, u′1), Encr(s′, u′2), Encs(s, u2)

c1 , Mpk1(s, u2 ⊕ r)

c2 , Mpk2(s
′, u′2 ⊕ r′),

where r, r′, u1, u2, u
′
1, u
′
2 are uniform, s = u1 ⊕m and s′ = u′1 ⊕ r.

• D′(c = (y, c0, c1, c2), sk1, sk2, k)

� compute Msk1(c1) = y1, y2 and Msk2(c2) = y′1, y
′
2

� recover u2 from y1 and c0 (in particular Encs(s, u2))

� compute r = y2 ⊕ u2,

� recover u1 from r and c0

� compute m = y1 ⊕ u1

� recover u′2 from r, y′1, c0

� compute r′ = y′2 ⊕ u′2

177

� recovers u′1 from r, r′, c0

� compute r′′ = y′1 ⊕ u′1

� if r′′ 6= r or VH((m, r, c0, c2), y) 6= 1 or c0 is not a valid encryption of

u1, u2, u
′
1, u
′
2, return ⊥

� return m

The following theorem is a specialization of Theorem 7.3.3 to OAEP.
Theorem 7.4.2. Let M be a partially one-way trapdoor permutation, and H be any

family ensemble that satis�es strong pseudorandomness with auxiliary information (as

in De�nition 4.3.5), extraction with auxiliary input (as in De�nition 3.2.5), and colli-

sion resistance (as in De�nition 2.5.2). Then, Construction 7.4.3 is IND-CCA2 (as in

De�nition 2.7.2), against a constant number of decryption queries.

178

Chapter 8

Digital Lockers: Obfuscating

Multibit Point Functions

Summary: We study obfuscation of point functions with multibit output
and other related functions. A point function with multibit output returns
a �xed string on a single input point and zero everywhere else. Obfuscation
of such functions has a useful application as a strong form of symmetric
encryption where security holds without any assumption on the distribution
of the secret key. We provide a construction that obfuscates these functions.
The construction is generic in the sense that it can use any perfectly one-way
(POW) function or obfuscator for point functions.
Analyzing this construction reveals gaps in the de�nition of obfuscation,
speci�cally, that it does not guarantee security even under self-composition,
a property needed in our analysis. Thus, we use obfuscation secure under
composition. In particular, we show that composable obfuscation of multibit
point functions exists if and only if composable obfuscation of point functions
exists. Moreover, we show that this construction is secure based on statisti-
cally indistinguishable POW functions. However, if we relax the assumption
to computational indistinguishability, then the construction satis�es a weaker
notion of obfuscation. Finally, the same technique can be used to obfuscate
set-membership predicates and functions, for polynomial-size sets.

This chapter is based on the paper [CD08b], which is a joint work with Ran Canetti.

179

8.1 Introduction

Obfuscation is one of the most intriguing problems in cryptography. Informally, an ob-
fuscator is a compiler that converts a program into another one, called the obfuscated
program or code, that has a similar functionality but satis�es certain secrecy require-
ments. Informally, the secrecy requirement stipulates that whatever �useful� information
the obfuscated code reveals is learnable from the program's input/output behavior. In
other words, an obfuscated program should not reveal anything useful beyond executing
it. This requirement is formalized by Barak et al. [BGI+01] through a simulation-based
de�nition called the virtual-blackbox property. The virtual-blackbox property says that
every adversary has a corresponding simulator that emulates the output of the adversary
given oracle (i.e., blackbox) access to the same functionality being obfuscated.

In the same work, Barak et al. provide impossibility results regarding general ob-
fuscation, even when the output of the adversary is restricted to predicates. In other
words, it is shown that there are certain functionalities and corresponding predicates
where these predicates are learnable from any program implementing the functionalities
but not so given blackbox access to them. In light of this general negative result, we
are forced to study obfuscation of restricted classes of functions if we wish to adopt the
de�nition of [BGI+01]. Here, we follow this line of work. In particular, we build on
previous work on point function obfuscation [Can97, CMR98, Wee05, LPS04] towards
obfuscating slightly more complex functions, namely point functions with multibit out-
put. Moreover, we show that obfuscation of point functions are not necessarily secure
even under self-composition, a property needed in our analysis. We next go into a more
detailed exposition of our work.

8.1.1 Our Work

Obfuscation of point functions with multibit output. A point function returns 1

on a single input and 0 everywhere else. Formally, Fx(y) = 1 if y = x and 0 otherwise.
A point function with multibit output generalizes point functions in that it outputs, on
a single input, a long string instead of 1. Formally, Fx,y(z) = y if z = x, and 0 otherwise.
The connection to symmetric encryption. Obfuscation of such functions has a
useful application as what we call a digital locker. A digital locker is a strong form of

180

symmetric encryption where privacy holds without an assumption on the distribution of
the key. Privacy without requiring anything about the distribution of the key essentially
means that nothing can be learned about the plaintext unless the key is recovered in full.
That is, the complexity of learning anything about the plaintext corresponds to that of
�nding the key. We stress that this notion is not ruled out by the impossibility results
of [MP90, DS02, BD07] because we allow the encryption scheme to be probabilistic and
thus, has access to a perfectly random source.

Real life applications of such a notion include password-based encryption where the
human-generated password is far from uniform. For instance, Firefox has a password
manager that acts as a digital locker [FPM]. The password manager locks website
credentials using a master password chosen by the user. Then, the user has to provide
this password in order to unlock the content.

We formalize this privacy notion using the simulation paradigm in a way similar
to obfuscation. Speci�cally, the behavior of the adversary on a ciphertext is simulated
given blackbox access to the multibit point function, Fkey,plaintext. Thus, obfuscation of
point functions with multibit output can be used to realize digital lockers as follows: to
encrypt a message m using a key k, simply output the obfuscation of Fk,m.

A closer look at our de�nition of digital lockers reveals the following weakness. Even
though privacy is captured when the secret key is uniform or taken from a well-spread
distribution (i.e., the min-entropy is superlogarithmic), the de�nition does not really
capture privacy when the distribution is not well-spread, e.g., when the support is of
polynomial size. This is so because it does not relate the number of queries of the
simulator to the running time of the adversary. Consequently, an anomaly arises. A
scheme, deemed secure by this de�nition, may reveal the plaintext when the key is taken
from a polynomial-sized set. Note that this weakness is not restricted to this application.
Rather, it applies to obfuscation in general: an obfuscation may be totally insecure on a
polynomial number of functions. We explore one way to address this weakness. Further
work on this issue is left for further research.
The construction. Even though obfuscation of point functions with multibit output
is known in the Random Oracle Model [LPS04], it is not known in the standard model
except when the function is drawn from a uniform distribution (speci�cally, when x in
Fx,y is uniform) [FKSW05] or when the output length of the function is short (specif-

181

ically, when |y| = O(log|x|)) [Wee05]. Here, we provide a transformation from point
function obfuscators to obfuscators of point functions with multibit output. The idea is
simple. The obfuscation of multibit point functions consists of some number of copies
of obfuscated point functions. These copies have the property that the �rst and the ith
copy correspond to an obfuscation of the same point function if and only if the ith bit
in the multibit output is 1. In more detail, let Fa,b be the multibit point function to
be obfuscated, t = |b|, and O(Fa, r) be the obfuscation of the point function, Fa, using
randomness r. Then, the obfuscation of Fa,b consists of O(Fa, r0), O(x1, r1), ..., O(xt, rt),
where xi is Fa if bi = 1 and xi is a uniformly chosen point function otherwise. To re-
cover b from the correct a and this obfuscation, �rst verify that O(Fa, r0)(a) = 1, then
b = O(x1, r1)(a), ..., O(xt, rt)(a).
On composing obfuscation. The construction described above is very simple and
modular, and one expects that its proof be likewise. However, it turns out that this
is not the case. To prove the security of the above transformation, we face an issue.
Observe that our construction is composed of a concatenation of t + 1 obfuscated point
functions. Thus, in order for our construction to be secure, the original obfuscation has

to remain secure under composition. However, we show that the current de�nition of
obfuscation does not guarantee composition. This is also the case even for composing
multiple obfuscated copies of the same function. Interestingly, the statement still holds
even if we consider obfuscation secure in the presence of auxiliary information. We
emphasize that this is a fundamental point about the de�nition of obfuscation that is of
independent interest.

In more detail, we show that there exists an obfuscation of point functions that
reveals the input when it is self-composed. Speci�cally, we show an obfuscator, O, such
that for any x, it is possible to recover x from O(Fx, r1), ..., O(Fx, rnlog(n)), where n = |x|.
Moreover, similar results holds for POW functions and POW functions with auxiliary
information [Can97, CMR98].

In light of these negative results, we analyze the above construction using, as the
underlying primitive, three di�erent forms of composable obfuscation of point functions.
First, if the underlying primitive is a composable obfuscation of point functions (as in
the simply-composable obfuscation of [LPS04]), then this construction is a composable
obfuscation of multibit point functions. This is actually a characterization: composable

182

obfuscation of point functions exists if and only if that of multibit point functions exists.
Second, we show that our construction is an obfuscation of multibit point functions if
the underlying primitive is a statistically indistinguishable POW function.1 Third, if the
primitive is a computationally indistinguishable POW function, then the construction is
an obfuscation provided that y in Fx,y, is independent of x (see Eq. 8.3).

Finally, we show how to generalize this construction to obfuscate set-membership
predicates and functions for polynomial-sized sets. A set-membership predicate outputs
1 if the input belongs to the set and 0 otherwise, while a set-membership function outputs
a string, yi, if the input matches a set member, xi, and 0 otherwise.

8.1.2 Related Work

Obfuscating Point Functions in the Random Oracle Model. Lynn et al. [LPS04],
inspired by the password-hiding scheme in Unix that stores a hash of the password instead
of the password itself, propose a similar obfuscation of point functions in the random
oracle model. In this model, an obfuscator, O, has oracle access to a truly random
function, R. In order to construct an obfuscation of a point function, Fx, O queries R on
x to get z = R(x) and then stores z in the obfuscated code, O(Fx). O(Fx) also contains
preprocessing code which on input y returns 1 if and only if R(y) = z.

It is easy to see that O(Fx) and Fx have approximate functionality (they have the
same functionality almost always). Intuitively, O(Fx) is an obfuscation of Fx because
R's answers on queries are completely independent and random. So, storing R(x) does
not reveal any information about x, but it allows veri�cation of a guess, which is also
achievable via oracle access to Fx.

Also, Lynn et al. [LPS04] generalize this construction to obfuscate multibit point
functions and set-membership predicates and functions in the random oracle model. To
obfuscate a multibit point function, Fx,y, choose a random r, and output r, R1(x, r), R2(x, r)⊕

y, where R1 and R2 denote the �rst and second half of the bits of R(.). This construction
is secure under composition (as in De�nition 8.2.1 or the simply-composable de�nition
of [LPS04]). In Section 8.2.3, we instantiate this scheme. The resulting construction is
more e�cient than our �rst one but uses a stronger assumption.

1 To be accurate, the second construction satis�es approximate functionality only computationally,
i.e., it is hard to e�ciently �nd an input point on which the obfuscated function di�ers from the original
one.

183

Obfuscating Point Functions in the standard model. Perfectly one-way (POW)
functions [Can97] can be used to obfuscate a point function Fx by replacing the random
oracle in [LPS04] with a POW function, H. Here, instead of storing R(x), we store H(x)

in the obfuscated code and use the veri�er for H to determine if H(x) is a valid hash of
the input.

Canetti [Can97] constructs a POW function based on a strong version of the Di�e-
Hellman assumption. In particular, it assumes that the Di�e-Hellman assumption holds
not only against uniform distributions but also with respect to any well-spread distri-
bution (see Assumption 3.3.2). Moreover, Wee [Wee05] shows how to obfuscate point
functions and point functions with logarithmic output based on a strong one-way per-
mutation assumption. Speci�cally, the assumption is that any polynomial-time machine
can invert the permutation on at most a polynomial number of points. The two construc-
tions mentioned so far (and our construction as well) use a weaker notion of obfuscation
than the one in [BGI+01]. Speci�cally, the simulator in [Can97, Wee05] depends on the
simulation-error gap between the adversary and the simulator (see De�nition 2.6.1 for
more detail).

Canetti et al. [CMR98] provide two constructions of POW functions based on stan-
dard computational assumptions (in particular, based on either claw-free permutations
or one-way permutations). The simulator for these constructions does not depend on
the gap. However, the input distribution is assumed to have high min-entropy (nε).
Moreover, Futoransky et al. [FKSW05] show how to obfuscate point functions and point
functions with multibit output based on standard assumption. However, the input dis-
tribution is assumed to be uniform. Finally, Hofheinz et al. [HMLS07] obfuscate point
functions deterministically. However, the secrecy requirement does not guarantee no
information leakage, rather that it is hard to recover the input in its entirety. This ob-
fuscation is self-composable because the obfuscator is deterministic. However, it is not
composable according to our notion. In particular, di�erent obfuscated point functions
can not be securely composed.

184

8.1.3 Organization

We present our construction and analyze it in Section 8.2. (We also present a more
e�cient construction under a stronger assumption in Section 8.2.3.) In Section 8.3,
we study the issue of composable obfuscation. Finally, we discuss the connection to
encryption schemes in Section 8.4.

8.2 Obfuscating Point Functions with Multibit Output

We show how to obfuscate point functions with multibit output as well as set-membership
predicates and functions for polynomial-sized sets. Because the constructions and proofs
for obfuscating set-membership predicates and functions are similar to that for multibit
point function, we focus on the latter. We comment on the former in Section 8.2.2. Fi-
nally, we present a more e�cient obfuscation of multibit point functions using a stronger
assumption in Section 8.2.3.

We use obfuscated point functions as building blocks in obfuscating point functions
with multibit output. The idea is simple. To obfuscate Fx,y, we encode y bit-by-bit using
an obfuscator for Fx. Speci�cally, if the ith bit of y is 1, it is encoded as an obfuscation
of Fx, otherwise, it is encoded as an obfuscation of an independent and uniform point
function. In more detail, let H be a randomized obfuscator for point functions. Then
the obfuscation contains H(Fx, r),H(Fx1 , r1), ...,H(Fxt , rt), where t = |y| and xi = x

if the ith bit of y is 1, otherwise, xi is uniform. The �rst obfuscated point functions
always corresponds to x, and is used to check whether the input is actually x. Now,
y can be recovered given z = x. First, check that H(Fx, r)(z) = 1. If so, for every i,
yi = H(Fxi , ri)(z).

Formally, we present an obfuscator, O, for the class of multibit output point func-
tions, F. O, on input Fx,y, where y has length t, selects r1, ..., rt+1 from Rn, the ran-
domness domain of the point function obfuscator, H. It then computes H(Fx, r1). It
also computes H(Fx, ri+1) if yi = 1 and H(zi+1, ri+1) otherwise, where zi+1 is uniform.
Let ux = u1, ..., ut+1 be the sequence of obfuscated functions just computed. Then O

185

outputs the following obfuscation, O(Fx,y), with ux stored in it.
input: a

if u1(a) = 0 then1

return 0;2

else3

for i← 2 to t + 1 do4

if ui(a) = 1 then5

yi−1 ← 1;6

else7

yi−1 ← 0;8

return y = y1, ..., yt;9

end10

Algorithm 8.2.1: O(Fx,y)

8.2.1 Analysis

This construction is simple and modular. It is possible to replace H by any relative
of point function obfuscation such as POW functions and analyze the security of the
construction based on the security of the underlying primitive. We would like to prove
that our construction is secure based on the simple assumption that the underlying
primitive is an obfuscation of point functions. However, as we show in Section 8.3, this
is not possible. This is so because the de�nition of obfuscation does not guarantee even
self-composition. Thus, there exist point function obfuscators and POW functions for
which this construction is provably insecure.

We investigate the secrecy of this construction based on three underlying primitives
with di�erent composition properties. In the �rst case, we consider the notion of com-
posable obfuscation (as in De�nition 8.2.1, also known as simply-composable obfuscation
in [LPS04]). We give a characterization that shows that composable point function ob-
fuscation exists if and only if composable multibit point function obfuscation exists. In
the second case, we show that if H is a statistically indistinguishable POW function,
then our construction is secure. Finally, if H is a computationally indistinguishable
POW then this construction satis�es a weaker form of obfuscation where y, in Fx,y, is
independent of x.

186

8.2.1.1 Analysis based on composable obfuscation

In this work, composable obfuscation refers to the fact that concatenating any sequence
of obfuscated functions, where the functions are taken from the same class, constitutes
an obfuscation for that sequence of functions. This form of composition, also known as
simply-composable obfuscation in [LPS04], should not be confused with self-composition,
which means that concatenating a sequence of independent obfuscation of the same

function does not compromise secrecy. Formally,
De�nition 8.2.1 (t-Composable Obfuscation, [LPS04]). Let F be any family of

functions. A PPT, O, is called a t-composable obfuscator for F, if:

1. Approximate functionality and polynomial slowdown are as in De�nition 2.6.1.

2. Virtual Black-box property For any nonuniform PPT, A, and any polynomial,

p, there is a nonuniform PPT, S, such that for any functions F1, ..., Ft(n) ∈ F (n

is a security parameters, e.g., n = |F1| = ... = |Ft(n)|) and su�ciently large n:

|Pr[b← A(O(F1), ...O(Ft(n)) : b = 1]− Pr[b← SF1,...,Ft(n)(1n) : b = 1]| ≤ 1
p(n)

If O is a t-composable obfuscator for F for any polynomial t, then it is called a composable

obfuscator.

If H is a (t + 1)-composable obfuscator for some t, then our construction can be
shown to be an obfuscation of multibit point function with output length t. Ap-
proximate functionality and polynomial slowdown follow from the corresponding prop-
erties on H. By the virtual black-box property on H, the output of A(O(Fx,y) =

O(Fx), O(Fx1), ..., O(Fxt(n)
)) can be simulated by S

Fx,Fx1 ,...,Fxt(n) (1n), where xi = Fx

if yi = 1 and xi is uniform otherwise. Moreover, oracle access to Fx, Fx1 , ..., Fxt(n)
can be

simulated with oracle access to Fx,y: if S queries any of its oracle on a point z such that
Fx,y(z) = 0, then answer 0 (this may incur a negligible simulation error only), otherwise,
z = x so y can be fully recovered. Thus, this construction satis�es the virtual black-box
property.

Observe that our construction is a composable obfuscation of multibit point functions
with the appropriate parameters. Speci�cally, if the output length of the multibit point
function is restricted to at most t, then this construction is a t′-composable obfuscation

187

if H is (t + 1)t′-composable. In addition, it is easy to see that the existence of a t-
composable obfuscation of multibit point functions implies a t-composable obfuscation
of point functions. Formally, we have the following characterization with a proof that
follows the above discussion.
Theorem 8.2.1. Composable obfuscators of point functions with multibit output exist if

and only if composable obfuscators of point functions exist.

Speci�cally, if a point function obfuscator, H, is (t + 1)t′-composable (as in De�ni-

tion 8.2.1) then the above construction is a t′-composable obfuscation of multibit point

functions with output length t. On the other hand, a t-composable obfuscation of multibit

point functions implies a t-composable obfuscation of point functions.

8.2.1.2 Analysis based on statistical indistinguishability

Suppose G is a statistically indistinguishable POW family ensemble (as in De�nition
2.5.3). We can replace H by G in the above construction. Speci�cally, the obfuscator,
O, samples a key, k, for G and replaces H(x, .)(a) with V (a,Gk(x, .)), where V is the
veri�cation algorithm for G. This results in an obfuscation of point function with multibit
output except with computational approximate functionality [Wee05], i.e, no adversary
can e�ciently �nd a point on which the original function di�ers from the obfuscated one.
This relaxation to approximate functionality is necessary when using statistical POW
functions because they can not be statistically collision resistant. Formally,
De�nition 8.2.2 (Computational functionality). Let F be any family of functions.

A PPT, O, is called an obfuscator of F, with computational functionality if for any

F ∈ F and any nonuniform PPT, A: Pr[x← A(O(F)) : O(F)(x) 6= F (x)] ≤ µ(n).

On the other hand, we argue that the result satis�es the virtual-blackbox property.
Informally, from the fact that G is a statistical POW function we can conclude that an
obfuscation of Fx,y, where x is taken from a well-spread distribution and y is arbitrary,
is statistically close to a sequence of images of random inputs. It follows that for all but
polynomially many x, an obfuscation of Fx,y is indistinguishable from random images.
Consequently, we get a simulator that runs the adversary on random images unless x is
taken from this polynomial set, in which case the simulator can recover y and run the
adversary on an obfuscation of Fx,y. Formally,

188

Theorem 8.2.2. Let G be a statistically (t + 1)-indistinguishable POW function (as

in De�nition 2.5.3) with public veri�cation and collision resistance (as in De�nitions

2.5.1 and 2.5.2). Then, the above construction is an obfuscation of point functions with

multibit output length t, where approximate functionality is only computational (as in

De�nitions 2.6.1 and 8.2.2).

Proof. Polynomial slowdown. This follows immediately from the fact that G has a
polynomial output length.
Computational approximate functionality. Suppose for the purpose of contradic-
tion there is a function, Fx,y and a nonuniform PPT, A that violates computational
functionality, i.e., Pr[x′ ← A(O(Fx,y)) : O(Fx,y)(x′) 6= Fx,y(x′)] is nonnegligible. Let B

be the following adversary that defeats collision resistance of G. Then, B has Fx,y as
auxiliary information and receives Gk. It simulates O, using Gk (i.e., it skips the step
where O samples Gk), on Fx,y to get O(Fx,y) which contains w = Gk(x, r) for some
key k and random r. It then runs A on O(Fx,y) to compute x′ and outputs (x, x′, w).
By construction VG(x,w) = 1. Also, since O(Fx,y)(x′) 6= Fx,y(x′) then this means that
VG(x′, w) = 1. Note that the input to A when simulated by B is equivalent to that in
the de�nition of approximate functionality. Consequently, B outputs a collision with the
same probability that A �nds an input on which Fx,y and O(Fx,y) di�er. This contradicts
collision resistance.
Virtual black-box property. Recall, the de�nition of statistical indistinguishability
says that for any well-spread distribution, X:

∆(Gk(Xn, R1
n), ..., Gk(Xn, R(t+1)(n)

n), Gk(U1
n, R1

n), ..., Gk(U t(n)
n , R(t+1)(n)

n) ≤ µ(n),

where each distribution Ri
n (respectively, U i

n) is the same as Rn (respectively, Un).
Using the fact that for any function, λ, ∆(λ(X), λ(Y)) ≤ ∆(X, Y), we have for any

distribution,XY on (x, y), where the corresponding distribution on x is well-spread:

∆(O(FXn,Yn), Gk(U1
n, R1

n), ..., Gk(U t(n)
n , R(t+1)(n)

n) ≤ µ(n). (8.1)

(We assume without loss of generality that O(Fx,y) consists only of the t + 1 G-images.)

189

Using the same technique from the proof of Theorem 4 in [Can97], it can be shown
that O(Fx,y) is indistinguishable from G-images of uniform strings on all but a polynomial
number of x. That is, for any nonuniform PPT, A, and any polynomial, p, there exists a
family of polynomial-size sets, {Ln}, such that for su�ciently large n, x /∈ Ln, and any
y:

|Pr[b← A(O(Fx,y)) : b = 1]−

Pr[u1, ..., ut+1 ← Un, ..., Un,

r1, ..., rt+1 ← Rn, ..., Rn, b← A(Gk(u1, r1), ..., Gk(ut+1, rt+1)) : b = 1]| ≤ 1
p(n)

. (8.2)

Intuitively, this is true because otherwise there is a super-polynomial number of values
for x (with a corresponding value for y), on which A can distinguish O(Fx,y) from images
of random strings. By de�ning a well-spread distribution, e.g., a uniform distribution,
on this superpolynomial number of values for x, A violates Eq. 8.1. For the complete
proof of Eq. 8.2, we refer the reader to [Can97].

Now, for any nonuniform PPT, A, and a polynomial, p, we construct a nonuniform
PPT, S that simulates A. S receives the polynomial-size set, Ln, as an advice string.
It checks if the oracle, Fx,y, responds with the nonzero value, y, to any element in the
set, Ln. If so, then S can compute O(Fx,y) and simulate A on it. Otherwise, x is not
in Ln, so S runs A on images of random inputs. By Eq. 8.2, this is close to a true
simulation.

8.2.1.3 Analysis based on computational indistinguishability

We would like to weaken the assumption in Theorem 8.2.2 to computational indistin-
guishability. However, it is not clear how to use computational indistinguishability,
i.e., that Gk(x, r1), ..., Gk(x, rt+1) is computationally indistinguishable from images of
uniform-distributed inputs, to conclude that O(Fx,y) is indistinguishable from images of
random inputs. It seems that the problem lies in the potential dependence of y on x, e.g.,
y may be equal to x. This is not a problem in the statistical case, because we can use the
fact that statistical di�erence does not increase by applying the same function on both
distributions. In the computational setting, if we use traditional blackbox reductions, we
need to construct O(Fx,y) from images of x and then run A on it. However, it is not clear

190

how to do so if y = x. On the other hand, suppose y is independent of x. Then, for some
y, it is possible to compute O(Fx,y) given images of x, Gk(x, r1), ..., Gk(x, rt+1), by re-
placing Gk(x, ri) with an image of a random string if the ith bit of y is 0. Thus, we know
that computational indistinguishability gives us a weaker notion of obfuscation where the
simulator depends on the distribution on y. Whether computational indistinguishability
gives us the standard virtual-blackbox property remains unknown. Nevertheless, this
weak obfuscation can be used as a digital locker as described in the introduction. The
caveat is that the message being encrypted should be independent of the encryption key.
This is the case if, for instance, the message is chosen without knowledge of the key.

Formally, the virtual black-box property becomes: for any nonuniform PPT A, any
polynomial p, and any (e�ciently samplable) distribution Y, there exists a nonuniform
PPT S such that for any x and su�ciently large n:

|Pr[y ← Yn, b← A(O(Fx,y)) : b = 1]− Pr[y ← Yn, b← SFx,y(1|Fx,y |) : b = 1]|

≤ 1
p(n)

. (8.3)

Also, we remark that this construction has either approximate or computational ap-
proximate functionality depending on whether the POW function satis�es statistical or
computational collision resistance. Formally, we have the following theorem whose proof
follows that of Theorem 8.2.2 and the above discussion.
Theorem 8.2.3. If G is a computationally (t + 1)-indistinguishable POW function (as

in De�nition 2.5.5, against nonuniform adversaries) with public veri�cation and collision

resistance (as in De�nition 2.5.2), then the above construction is an obfuscation of point

function with output length t (as in De�nition 2.6.1, where the virtual-blackbox property

is as in Eq. 8.3).

Proof. Polynomial slowdown. This follows immediately from the fact that G has a
polynomial output length.
Computational functionality. Same proof as Theorem 8.2.2. Moreover, (statistical)
approximate functionality can be proven in the same way by removing the polynomial-
time restriction on adversaries.
Virtual Blackbox property. Let G be a computational t + 1-indistinguishable POW

191

function. For simplicity, we remove any preprocessing code from O(Fx,y) and view it as
Gk(x, r), Gk(x1, r1), ..., Gk(xt, rt), where xi = x if yi = 1, otherwise xi is uniform.

First, we claim that O(Fx,y) is computationally indistinguishable from images of
uniform strings, where x is taken from any well-spread distribution and y is taken from
Yn. Then we use the proof idea of Theorem 4 in [Can97], to show that O(Fx,y) is
computationally indistinguishable from images of uniform strings on all but a polynomial
number of x. Finally, we hardwire this polynomial-sized set of inputs into a simulator.

In more detail, we have for any nonuniform PPT, A, any well-spread distribution X,
and any k ∈ Kn:

|Pr[x← Xn, y ← Yn, b← A(O(Fx,y)) : b = 1]−

Pr[x← Xn u1, ..., ut+1 ← Un, ..., Un, r1, .., rt+1 ← Rn, ..., Rn,

b← A(Gk(u1, r), ..., Gk(ut+1, rt+1)) : b = 1]| ≤ µ(n). (8.4)

In the above inequality, we assume that O uses Gk. Suppose, for the purpose of con-
tradiction that Eq. 8.4 is not true. Let A be an adversary that defeats it. Consider
another nonuniform PPT, B, that receives t + 1 images under G, w1, ..., wt+1. B sam-
ples y from Yn and simulates A on w1, w

′
2, ..., w

′
t+1, where w′i = wi if yi = 1, otherwise

w′i = Gk(ui, ri), where ui and ri are sampled uniformly by B. Observe that if w1, ..., wt+1

are images of the same input, x, then B simulates A on O(Fx,y). However, if w1, ..., wt+1

are images of uniform and independent inputs, then B simulates A on images of uniform
and independent inputs as well. Therefore, we have by Eq. 8.4:

|Pr[x← Xn, r1, ..., rt+1 ← Rn, ..., Rn, b← B(Gk(x, r1), ..., Gk(x, rt+1)) : b = 1]−

Pr[u1, ..., ut+1 ← Un, ..., Un, r1, ..., rt+1 ← Rn, ..., Rn,

b← B(Gk(u1, r1), ..., Gk(ut+1, rt+1)) : b = 1]|

is nonnegligible. This contradicts computational indistinguishability on G.
By Eq. 8.4 and the proof of Theorem 4 in [Can97], we have for any nonuniform PPT,

A, and any polynomial p, there exists a family of polynomial-size sets, {Ln}, such that

192

for su�ciently large n, and x /∈ Ln and any y:

|Pr[b← A(O(Fx,y)) : b = 1]−

Pr[u1, ..., ut+1 ← Un, ..., Un,

r1, ..., rt+1 ← Rn, ..., Rn, b← A(Gk(u1, r1), ..., Gk(ut+1, rt+1)) : b = 1]| ≤ 1
p(n)

.

The remaining part of the proof is exactly the same as the last part of the proof of
Theorem 8.2.2.

8.2.2 Obfuscating Set-membership Predicates and Functions

To obfuscate a set-membership predicate, simply obfuscate the point functions on every
element in the set (this is feasible because the set has a polynomial size), and then
store all the obfuscated functions in a randomly permuted order. To determine whether
a particular input is in the set, we only need to check whether any of the obfuscated
functions outputs 1 on this input. It can be shown, in a direct way, that this construction
is an obfuscation of set-membership predicate based on composable obfuscation of point
functions. In fact, composable obfuscation of point functions is also an obfuscation of
set-membership predicates.

Moreover, to obfuscate a set-membership function, F(x1,y1),...,(xt,yt), we only need to
run the obfuscator for the multibit output point function on each Fxi,yi , and then store
these obfuscated functions in a randomly permuted order. Theorem 8.2.1 implies that
this construction is secure if the underlying obfuscation is composable.

8.2.3 A More E�cient Obfuscation of Multibit Point Functions

We note that the obfuscation of multibit point function in the RO model [LPS04] can be
instantiated by using a stronger assumption on the underlying primitive. The end result
is a more e�cient construction than the one described previously. Speci�cally, let G be
a POW function with public randomness. To obfuscate Fx,y, select r1 and r2 uniformly
from the randomness domain of G and output Gk(x, r1), r2, z, where Gk(x, r2) = (r2, v)

and z = y⊕v.2 To recover y from (a, b, c) and x′, �rst check that V (x′, a) = 1, if so, then
2Without loss of generality, we assume that y and v have the same length. Otherwise, the input

should be longer, say x0t.

193

return y = c⊕v, where Gk(x′, b) = (b, v). Even though this construction is more e�cient
than the �rst one, it su�ers from two problems. First, in order to completely hide y,
it is not su�cient that G be indistinguishable as in De�nition 2.5.5 rather its output
has to be indistinguishable from uniform. If, for example, the �rst bit of the image is
always 0, then the �rst bit of y is revealed. Second, if y is allowed to depend on x,
we need to assume that G is statistically indistinguishable from uniform. Contrast this
assumption with the one used in Theorem 8.2.2, where G is statistically indistinguishable
from images of uniform strings.
Theorem 8.2.4. Let G be a statistically 2-pseudorandom POW function (as in De�ni-

tion 2.5.4) with public randomness and collision resistance (as in De�nition 2.5.2). Then,

the above construction is an obfuscation of point functions with output length l(n) − |r|

(|x| = n, l(n) = |Gk(x)|), where approximate functionality is only computational (as in

De�nitions 2.6.1 and 8.2.2).

Proof. Polynomial slowdown. This follows immediately from the fact that G has a
polynomial output length.
Computational approximate functionality. Same as that of Theorem 8.2.2.
Virtual black-box property. From the de�nition of statistical pseudorandomness, we
have for any well-spread distribution, X:

∆(Gk(Xn, R1
n), Gk(Xn, R2

n), U2l(n)) ≤ µ(n),

where each distribution Ri
n is the same as Rn.

Using the fact that for any function, λ, ∆(λ(X), λ(Y)) ≤ ∆(X, Y), we have for any
distribution,XY on (x, y), where the corresponding distribution on x is well-spread:

∆(O(FXn,Yn), U2l(n)) ≤ µ(n). (8.5)

From here on, the proof is the same as that of Theorem 8.2.2.

8.3 On Composable Obfuscation of Point Functions

In Section 8.2, we provided a transformation from an obfuscation of a point function to
an obfuscation of a point function with multibit output. This transformation requires

194

an essential property on the given obfuscation, speci�cally, composition. In other words,
our construction assumes that we have an obfuscation of a point function such that
security is not compromised when multiple obfuscated functions are given. Notably,
Theorems 8.2.1, 8.2.2, and 8.2.3 all assume that H satis�es some form of composable
security. Since the obfuscator is probabilistic, composable security is nontrivial. In
this section, we address the question: does the basic de�nition of obfuscation imply
composition? From a di�erent angle, Canetti et al. [CMR98] ask if semantic perfect
one-wayness implies indistinguishable perfect one-wayness or if t-indistinguishable POW
functions are t + 1-indistinguishable. We answer these questions negatively: such prim-
itives are not necessarily secure even under self-composition.3 In more detail, we show
that weak c-indistinguishable POW functions (where the probability is taken over the
choice of the seed as well, refer to [CMR98] or De�nition 3.4.2) are not necessarily
(c + 1)-indistinguishable for any constant c. We also show that POW functions, POW
functions with auxiliary input, and obfuscation of point functions do not imply composi-
tion. Speci�cally, 1-indistinguishable POW functions and obfuscation of point functions
are not necessarily secure for a polynomial number of copies. Moreover, even though
1-indistinguishable POW functions with auxiliary input are also c-indistinguishable for
any constant c, they are not necessarily t-indistinguishable with auxiliary input for a
polylogarithmic t.

In Section 8.3.1, we show a tight impossibility result for weak POW functions. Specif-
ically, we show that for any constant c, weak c-indistinguishable POW functions are not
weakly (c + 1)-indistinguishable. We also show that if t is a polynomial, then weak
t-indistinguishable POW functions are not weakly n(t + 1)-indistinguishable. In Section
8.3.2, we prove that 1-indistinguishable POW functions and point function obfuscation
are not secure if composed roughly nlog(n) times. Moreover, if we consider the same
functions with respect to auxiliary information, then we have a tighter result where they
are not secure with respect to auxiliary information if composed superlogarithmically-
many times.

3Recall, self-composition refers to concatenation of multiple outputs of a randomized function on the
same input.

195

8.3.1 Weak POW Functions are not Self-composable

Recall from Section 3.4, a weak POW function deviates from De�nition 2.5.5 in that
the probability is taken over the choice of the function key as well. Here, we show
that a weak c-indistinguishable POW function with respect to the uniform distribution
may not be c + 1 indistinguishable for any constant c. The idea is simple: we take
any weak 2c-indistinguishable POW function and convert it into a new function that is
c-indistinguishable but the output contains shares of the input such that it is easy to
compute the input from c+1 images. Informally, we add c uniform strings to the original
seed and make sure that an image of the input using any one of these c strings appears
in the output with probability 1

c+1 . Also, with the same probability the exclusive-or of
the input and all the aforementioned images appears in the output. Therefore, if the
output of the function contains all c images and the exclusive-or of these images with
the input, then it is easy to recover the input. Formally,
Construction 8.3.1. Let H be any (possibly weak) 2c-pseudorandom POW function

with key space, Kn, and public randomness. De�ne a new family ensemble, G, with a

key space (Kn, Rn, ..., Rn︸ ︷︷ ︸
c

), an input domain ({0, 1}n, {0, 1}n), and randomness domain

(Rn, {0, 1}logc), as follows:

Gk,u1,...,uc((x1, x2), (r1, r2)) =

r2,Hk(x1, r1),Hk(x2, r1),Hk(x1, ur2) if r2 6= 0

r2,Hk(x1, r1),Hk(x1, u1)⊕Hk(x1, u2)...⊕Hk(x1, uc)⊕ x2 if r2 = 0

Theorem 8.3.1. If there exist a constant c and any weak POW function that is 2c-

indistinguishable from uniform (as in De�nition 2.5.6) and has public randomness, then,

there exist weak POW functions that are c-indistinguishable with respect to the uniform

distribution but not (c + 1)-indistinguishable with respect to the uniform distribution.

Proof. For any weak 2c-indistinguishable POW function H, apply Construction 8.3.1 on
H to get G.
G is not weak (c + 1)-indistinguishable from uniform. Observe that it is easy to
recover x2 from Gk,u1,...,uc((x1, x2), (r0

1, 0)), ...,

Gk,u1,...,uc((x1, x2), (rc
1, c)). Thus, for a constant c, G is not (c + 1)-indistinguishable

196

because c + 1 randomly-chosen images of (x1, x2) have distinct r2 (i.e., match the afore-
mentioned set of images) with probability (c+1)!

(c+1)c+1 (a nonnegligible probability).
G is weak c-indistinguishable from uniform. First, we argue that by the 2c-
indistinguishability of H, for any PPT, A:

|Pr[k, u1, ..., uc ← Kn, R1, ..., Rn, x1, x2 ← Un, Un,

(r1
1, r

1
2), ..., (r

c
1, r

c
2)← (Rn, {0, 1}logc), ..., (Rn, {0, 1}logc),

b← A(Gk,u1,...,uc((x1, x2), (r1
1, r

1
2)), ..., Gk,u1,...,uc((x1, x2), (rc

1, r
c
2))) : b = 1]−

Pr[k, u1, ..., uc ← Kn, R1, ..., Rn, v1, ..., vc, x2 ← Un, ..., Un,

(r1
1, r

1
2), ..., (r

c
1, r

c
2)← (Rn, {0, 1}logc), ..., (Rn, {0, 1}logc),

b← A(Gk,u1,...,uc((v1, x2), (r1
1, r

1
2)), ..., Gk,u1,...,uc((vc, x2), (rc

1, r
c
2))) : b = 1]| ≤ µ(n).

(8.6)
Suppose, for the purpose of contradiction, there is an adversary, A that contradicts

this claim. Let B be an adversary that defeats 2c-pseudorandomness of H. Then, B

receives 2c images under H, y1, ..., y2c. B samples x2 and r1
2, ..., r

c
2 uniformly. It then

runs A on k, rc+1, ..., r2c, w1, ..., wc, where ri is the public randomness of yi, and

wi =

ri
2, yi,Hk(x2, ri), yc+ri

2
if r2 6= 0

ri
2, yi, yc+1 ⊕ ...⊕ y2c ⊕ x2 if r2 = 0

Note that if the input to B consists of images of the same input then the input given
to A is the same as in the �rst experiment of Eq. 8.6. Moreover, if the input to B

consists of images of uniform and independent input, then the input of A is the same as
in the second experiment of Eq. 8.6. Thus, B breaks 2c-indistinguishability of H with
the same probability that A defeats Eq. 8.6, which is assumed to be nonnegligible. This
contradicts 2c-indistinguishability of H.

We then use 2c-indistinguishability again (this time indistinguishability from uni-
form) to show that for any PPT, A:

|Pr[k, u1, ..., uc ← Kn, R1, ..., Rn, v1, ..., vc, x2 ← Un, ..., Un,

197

(r1
1, r

1
2), ..., (r

c
1, r

c
2)← (Rn, {0, 1}logc), ..., (Rn, {0, 1}logc),

b← A(Gk,u1,...,uc((v1, x2), (r1
1, r

1
2)), ..., Gk,u1,...,uc((vc, x2), (rc

1, r
c
2))) : b = 1]−

|Pr[k, u1, ..., uc ← Kn, R1, ..., Rn, v1, ..., vc, z1, ..., zc ← Un, ..., Un,

(r1
1, r

1
2), ..., (r

c
1, r

c
2)← (Rn, {0, 1}logc), ..., (Rn, {0, 1}logc),

b← A(Gk,u1,...,uc((v1, z1), (r1
1, r

1
2)), ..., Gk,u1,...,uc((vc, zc), (rc

1, r
c
2))) : b = 1]| ≤ µ(n).

(8.7)
Again, suppose for the purpose of contradiction, that there is a PPT, A, that contra-

dicts this claim. Construct another PPT, B that uses A to break c-indistinguishability
of H. B receives c images, y1, ..., yc. It chooses r1

2, ..., r
c
2, v1, ..., vc, and u1, ..., uc and d

uniformly and runs A on k, r1, ..., rc, w1, ..., wc, where ri is the public randomness of yi,
and

wi =

ri
2,Hk(vi, ri), yi,Hk(vi, uri

2
) if r2 6= 0

ri
2,Hk(vi, ri), d if r2 = 0

We argue that if the input to B consists of images of the same point, then the
corresponding input to A is computationally indistinguishable from its input in the �rst
experiment of Eq. 8.7. If this were not to be the case, then it is possible to distinguish 2c

images under H from uniform (by taking 2c hashes as input, choosing x2 at random, and
computing the corresponding distribution). By the same argument, if the input to B

consists of images of uniform and independent point, then the corresponding input to A

is computationally indistinguishable from its input in the second experiment of Eq. 8.7.
Thus, B breaks indistinguishability of H with nonnegligible probability. A contradiction.

Combining Eq. 8.6 and Eq. 8.7 �nishes the proof.
Moreover, this result can be generalized to any polynomial t. If H is 2t-indistinguishable

from uniform, then G is a weak t-indistinguishable POW function with respect to the
uniform distribution. On the other hand, G is not n(t+1)-indistinguishable with respect
to the uniform distribution. This is so because all the (t + 1) �shares� appear in n(t + 1)

images with overwhelming probability. This result is stated formally in the following
theorem.
Theorem 8.3.2. If there exists a polynomial t and a weak POW function that is 2t-

198

indistinguishable from uniform (as in De�nition 2.5.6) and has public randomness, then,

there exist weak POW functions that are t-indistinguishable with respect to the uniform

distribution but not n(t + 1)-indistinguishable with respect to the uniform distribution.

Proof. For any weak 2t-indistinguishable POW function H, apply Construction 8.3.1 on
H to get G.
G is not weak n(t + 1)-indistinguishable from uniform. If the t + 1 shares ap-
pear with nonnegligible probability in n(t + 1) images then G is not weak n(t + 1)-
indistinguishable from uniform. The probability that a particular share does not appear
in n(t + 1) uniformly sampled shares is (t

t+1)n(t+1). By the union bound, the proba-
bility that a share does not appear in n(t + 1) images is at most (t + 1)(t

t+1)n(t+1) ≤

(t + 1)(1 − 1
t+1)n(t+1) ≤ (t + 1)e−n. Thus, all (t + 1) shares appear in n(t + 1) images

with high probability.
G is weak t-indistinguishable from uniform. This proof is exactly the same as the
corresponding one in Theorem 8.3.1.

8.3.2 Point Function Obfuscation and POW Functions Are Not Self-

composable

We show that POW functions, POW functions with auxiliary input, obfuscation of point
functions, and obfuscation of point functions with auxiliary input are not generally self-
composable. Also, we note that the obfuscation of point functions in [Wee05] is not self-
composable as well. The idea is simple, we start with a POW function and append to
its output a hardcore bit, speci�cally the inner product between the input and a random
string. This hardcore bit does not compromise security of a single image. However, the
function becomes completely insecure for polynomially many images as the input can be
recovered with high probability by solving a linear system of equations. The results are
stated formally as follows.
Construction 8.3.2. Let H be a POW function (respectively, point function obfusca-

tion). De�ne a new family ensemble, G:

Gk(x, (r1, r2)) = r2,Hk(x, r1), 〈x, r2〉,

where 〈x, r2〉 is the inner product of x and r2 mod 2.

199

Theorem 8.3.3. If there exists a 1-indistinguishable POW function (respectively, a point

function obfuscation) with auxiliary input then there exists another 1-indistinguishable

POW function (respectively, another point function obfuscation) with auxiliary input such

that for any constants c and ε, the latter is not t-indistinguishable (respectively, is not

a t-self-composable point function obfuscation) with auxiliary input with respect to the

uniform distribution , where t = ω(1)log(n)log ω(1)log(n)

−ln(1
nc +ε)

.

Moreover, if there exists a 1-indistinguishable POW function (respectively, a point

function obfuscation) then there exists another 1-indistinguishable POW function (re-

spectively, another point function obfuscation) such that for any constants c and ε, the

latter is not t-indistinguishable (respectively, is not a t-self-composable point function

obfuscation) with respect to the uniform distribution, where t = nlog n
−ln(1

nc +ε)
.

Proof. Here, we prove the result for POW functions with auxiliary input only. The
results for the other classes are very similar.
G is 1-indistinguishable with auxiliary input. For any uninvertible function F ,
F (x),H(x, r1), r2 is one-way in x because H is 1-indistinguishable with auxiliary input.
Therefore, by the Goldreich-Levin theorem [GL89], we have that F (x), r2,H(x, r1), 〈x, r2〉

is indistinguishable from F (x), r2,H(x, r1), b, where b is uniform. Moreover, by 1-
indistinguishability with auxiliary input on H, F (x), r2,H(x, r1), b, is indistinguishable
from F (x), r2,H(Un, r1), b.

G is not polylogarithmically-indistinguishable with auxiliary input. We argue
that G is breakable with respect to the uniform distribution in the presence of poly-
logarithmic number of images and some auxiliary information. Speci�cally, let F be a
function that outputs the last n − ω(1)log(n) bits of its input. Then, F is uninvertible
with respect to the uniform distribution. However, given F (x) and a t number of images,
x can be recovered completely by solving a system of linear equations. Formally,
Lemma 8.3.1. For any two constants c and ε, there exists a t, which is polylogarithmic

in n (speci�cally, t = ω(1)log(n)log ω(1)log(n)

−ln(1
nc +ε)

) and a PPT, A, such that for any k ∈ Kn:

Pr[x← Un, r1, ..., rt ← RG
n , ..., RG

n , A(F (x), Gk(x, r1), ..., Gk(x, rt))] ≥
1
nc

.

Proof. Let A be a PPT that ignores all H images (Hk(x, .)) but plugs-in the values of the
last n − ω(1)log(n) bits of x in the system of linear equations: r2

1, 〈x, r2
1〉, ..., r2

t , 〈x, r2
t 〉.

200

We show that by solving this system we can recover x with probability 1
nc . Given the

last n − ω(1)log(n) bits of x revealed by F , we can recover x from ω(1)log(n) linearly
independent equations on the �rst ω(1)log(n) bits. Thus, we need to show that we
have this many linearly independent equations in t uniformly chosen equations with
probability 1

nc . First, observe that a uniform and independent r is linearly independent
from ω(1)log(n) − 1 or less equations with probability at least 1

2 . Consequently, the
probability that t equations contain ω(1)log(n) linearly independent equations is at least:

1− 1

2
log

ω(1)log(n)

−ln(1
nc +ε)

ω(1)log(n)

≥ eln(1
nc +ε) − ε =

1
nc

.

As a concrete example, note that the main obfuscation of point functions in [Wee05]
outputs 〈x, r〉 in the clear, where x is the point on which the function, Fx, outputs 1

and r is uniform. By Theorem 8.3.3, this construction is not secure when composing
t = nlog n

−ln(1
nc +ε)

obfuscated copies of the same point function.

8.4 On the Relationship Between Obfuscation of Multibit

Point Functions and Symmetric Encryption

It is interesting to note that obfuscation of point functions with multibit output and
symmetric encryption are similar. At the conceptual level, they capture the same idea
except with a subtle di�erence. First, both of them satisfy the same correctness prop-
erty. In particular, an encryption scheme (respectively, obfuscation of point function
with multibit output) allows the recovery of the message (respectively, y) given the key
(respectively, x). Second, they share similar privacy requirements. An obfuscation hides
the special output, y, of the function, Fx,y unless x is given. Likewise, a symmetric
encryption should ensure the privacy of the message unless the adversary possesses the
key. However, the former primitive di�ers from the latter in that its behavior is de�ned
over all possible input x, while the decryption scheme leaves the behavior unde�ned on
wrong keys. In other words, one may, at least conceptually, think of an obfuscation of

201

point functions with multibit output as a special form of encryption, where wrong keys
are promptly detected by the decryption algorithm.

At a more technical level, another di�erence arises, regarding the assumption on the
key distribution. Recall that symmetric encryption requires uniform keys. On the other
hand, an obfuscation of point functions with multibit output does not assume anything
about the distribution on x. Speci�cally, it provides a de�nition of privacy for any x.
Thus, casting the former primitive as an encryption scheme, i.e., as O(Fkey,message),
gives us an encryption scheme with the same privacy as de�ned for obfuscation. In other
words, any predicate computed from the ciphertext can also be computed by exhaustively
searching for the right key to recover the message. Formally,
De�nition 8.4.1 (Single-message encryption for any key). A symmetric encryp-

tion scheme, (E,D), satis�es privacy for any key if for any nonuniform PPT A, and any

polynomial p, there exists a nonuniform PPT S such that for any key, k, any message,

m, and su�ciently large n:

|Pr[b← A(E(k,m)) : b = 1]− Pr[b← SFk,m(1n) : b = 1]| ≤ 1
p(n)

.

Observe that in the special case where the key is uniform or even sampled from a well-
spread distribution, De�nition 8.4.1 implies that whatever predicate computed from the
ciphertext can be computed without it (and without oracle access to Fk,m). Formally, an
encryption scheme satisfying De�nition 8.4.1 also satis�es the following privacy property.
De�nition 8.4.2 (Single-message encryption with well-spread keys). A symmet-

ric encryption scheme, (E,D), satis�es privacy for well-spread keys if for any nonuni-

form PPT A, and any polynomial p, there exists a nonuniform PPT S such that for any

well-spread distribution, K = {Kn}n∈N, any message m, and su�ciently large n:

|Pr[k ← Kn, b← A(E(k,m)) : b = 1]− Pr[b← S(1n) : b = 1]| ≤ 1
p(n)

.

Although De�nitions 8.4.1 and 8.4.2 consider single-message encryption, encryption
of multiple messages can be readily achieved using appropriately composable obfuscation
of point functions with multibit output.

202

8.4.1 Weakness of De�nition 8.4.1

It may seem that De�nition 8.4.1 captures our intuition that the only way of breaking
the encryption scheme is through exhaustively searching for the correct key. However,
it turns out that this de�nition is not strong enough. Speci�cally, there are encryption
schemes that satisfy this de�nition but reveal the plaintext when the key is taken from a
polynomial-size set. For instance, modify any encryption scheme that satis�es De�nition
8.4.1 so that it reveals the plaintext when the key is one of the �rst n lexicographically-
ordered keys. The new scheme still satis�es this de�nition, because the simulator can
query the oracle on those n keys to recover the message. However, this scheme does not
match our intuitive requirement. This is so because an adversary can, in constant time,
output the �rst bit of the plaintext on the �rst n keys but the simulator needs O(n)

time to do the same. We stress that this weakness is already inherent in the notion of
obfuscation, not just in the application to encryption.

Coming up with a realizable de�nition that captures our intuition about encryption
with low-entropy keys is interesting, given the potential applications in password-based
encryption. Here, we take a step in this direction. We strengthen De�nition 8.4.1 by
restricting the number of queries of the simulator to some �xed polynomial in the running
time of the adversary and the simulation error. In more detail, for any key, k, the number
of queries the simulator makes in the worst case is bounded by a �xed polynomial in the
worst-case running-time of the adversary and the simulation error.
De�nition 8.4.3 (t-secure encryption). A symmetric encryption scheme, (E,D), is

t-secure if for any nonuniform PPT A, and any polynomial p, there exists a nonuniform

PPT S such that for any key, k, any message, m, and su�ciently large n:

|Pr[b← A(E(k, m)) : b = 1]− Pr[b← SFk,m(1n) : b = 1]| ≤ 1
p(n)

,

where S makes at most t(RA,k,m, n, p) queries and RA,k,m is the worst-case running time

of A on E(k, m), taken over the coin tosses of A and E.

The de�nition of obfuscation can also be strengthened in a similar way. Obviously,
the smaller t is, the stronger the security guarantee. For instance, if an encryption
scheme (respectively, obfuscation) is t-secure then it (respectively, the obfuscator) can
not do certain �stupid� things such as outputting the plaintext (respectively, the original

203

function) in the clear on more than nt(|E(.,.)|,n,n)
n−1 keys (respectively, nt(|O(.)|,n,n)

n−1 functions).
We note that the construction in Section 8.2 satis�es this de�nition for some speci�c t.
However, the question remains as to how small t can be made.

204

Bibliography

[Bab85] L. Babai. Trading group theore for randomness. ACM Symposium on Theory

of Computing (STOC), 1985.
[Bar01] B. Barak. How to go beyond the black-box simulation barrier. IEEE Sym-

posium on Foundations of Computer Science (FOCS), pages 106�115, 2001.
[BCY89] G. Brassard, C. Cr´epeau, and M. Yung. Everything in NP can be argued

in perfect zero-knowledge in a bounded number of rounds. Eurocrypt, 1989.
[BD07] C. Bosley and Y. Dodis. Does privacy require true randomness? Theory of

Cryptography Conference (TCC), 2007.
[BF06] A. Boldyreva and M. Fischlin. On the security of OAEP. AsiaCrypt, 2006.
[BFM88] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and

its applications. ACM Symposium on Theory of Computing (STOC), pages
103�112, 1988.

[BG92] M. Bellare and O. Goldreich. On de�ning proofs of knowledge. Crypto, 1992.
[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,

and K. Yang. On the (im)possibility of obfuscating programs. Crypto, 2001.
[BJY97] M. Bellare, M. Jakobsson, and M. Yung. Round-optimal zero-knowledge

arguments based on any one-way function. Eurocrypt, 1997.
[BL04] B. Barak and Y. Lindell. Strict polynomial-time in simulation and extraction.

SIAM Journal on Computing, 2004.
[Bla79] G. R. Blakley. Safeguarding cryptographic keys. Proceedings of the National

Computer Conference, 48:313�317, 1979.
205

[Blu86] M. Blum. How to prove a theorem so no one else can claim it. Proceedings
of the International Congress of Mathematicians, 1986.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences
of pseudo-random bits. SIAM Journal on Computing, 13:850�864, 1984.

[BOV03] B. Barak, S. Ong, and S. Vadhan. Derandomization in cryptography. Crypto,
2003.

[BP04a] M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and
3-round zero-knowledge protocols. Crypto, 2004.

[BP04b] M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption
without random oracles. Asiacrypt, 2004.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical:a paradigm for
designing e�cient protocols. CCS, 1993.

[BR94] M. Bellare and P. Rogaway. Optimal asymmetric encryption. EuroCrypt,
1994.

[Can97] R. Canetti. Towards realizing random oracles:hash functions that hide all
partial information. Crypto, 1997.

[CD08a] R. Canetti and R. R. Dakdouk. Extractable perfectly one-way functions.
International Colloquim on Automata, Languages and Programming, Track

C, 2008.
[CD08b] R. Canetti and R. R. Dakdouk. Obfuscating point functions with multibit

output. EuroCrypt, 2008.
[CD09] R. Canetti and R. R. Dakdouk. Towards a theory of extractable functions.

Theory of Cryptography Conference (TCC), 2009.
[CDN01] R. Cramer, I. Damgard, and J.B. Nielsen. Multiparty computation from

threshold homomorphic encryption. EuroCrypt, 2001.
[CGH98] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,

revisited. ACM Symposium on Theory of Computing (STOC), 1998.

206

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Veri�able secret sharing
and achieving simultaneity in the presence of faults. IEEE Symposium on

Foundations of Computer Science (FOCS), pages 383�395, 1985.
[CMR98] R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic

hash functions. ACM Symposium on Theory of Computing (STOC), 1998.
[Dam92] I. Damgard. Towards practical public key systems secure against chosen

ciphertext attacks. Crypto, 1992.
[DDN00] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM

Journal on Computing, 30, 2000.
[Den06] A. Dent. The cramer-shoup encryption scheme is plaintext aware in the

standard model. Eurocrypt, 2006.
[DH76] W. Di�e and M. Hellman. New directions in cryptography. IEEE Transac-

tions on Information Theory, 1976.
[DS02] Y. Dodis and J. Spencer. On the (non)universality of the one-time pad.

IEEE Symposium on Foundations of Computer Science (FOCS), 2002.
[DS05] Y. Dodis and A. Smith. Entropic security and the encryption of high-entropy

messages. Theory of Cryptography Conference (TCC), 2005.
[Fel87] P. Feldman. A practical scheme for non-interactive veri�able secret sharing.

IEEE Symposium on Foundations of Computer Science (FOCS), pages 427�
437, 1987.

[(FI93] Federal Information Processing Standard (FIPS). Secure hash standard.
NIST, FIPS publication 180, 1993.

[FKSW05] A. Futoransky, E. Kargieman, C. Sarraute, and A. Waissbein. Foundations
and applications for secure triggers. eprint, 284, 2005.

[FLS99] U. Feige, D. Lapidot, and A. Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput., 29, 1999.

[FOPS01] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure
under the RSA assumption. Crypto, 2001.

207

[FPM] Firefox password manager. http://www.�refoxtutor.com/61/securing-�refox-

passwords/.
[FS86] A. Fiat and A. Shamir. How to prove yourself:practical solutions to identi-

�cation and signature problems. Crypto, 1986.
[FS89] U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds.

Crypto, 1989.
[FS90] U. Feige and A. Shamir. Witness indistinguishability and witness hiding

protocols. ACM Symposium on Theory of Computing (STOC), pages 416�
426, 1990.

[Get63] E. Gettier. Is justi�ed true belief knowledge? Analysis, 23, 1963.
[GK96] O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof

systems. SIAM Journal on Computing, 1996.
[GK03] S. Goldwasser and Y. T. Kalai. On the (in)security of the �at-shamir

paradigm. IEEE Symposium on Foundations of Computer Science (FOCS),
2003.

[GK05] S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation with aux-
iliary input. IEEE Symposium on Foundations of Computer Science (FOCS),
2005.

[GL89] O. Goldreich and L. Levin. Hard-core predicates for any one-way function.
ACM Symposium on Theory of Computing (STOC), 1989.

[GM84] Sha� Goldwasser and Silvio Micali. Probabilistic encryption. Journal of

Computer and System Science, 28, 1984.
[GMR85] S. Goldwasser, S. Micali, and C. Racko�. The knowledge complexity of inter-

active proof-systems. ACM Symposium on Theory of Computing (STOC),
1985.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but
their validity or all languages in np have zero-knowledge proof systems. IEEE
Symposium on Foundations of Computer Science (FOCS), 1986.

208

[GO94] O. Goldreich and Y. Oren. De�nitions and properties of zero-knowledge
proof systems. Journal of Cryptology, 1994.

[Gol01] O. Goldreich. Foundations of Cryptography. Cambridge University Press,
2001.

[GOS06] J. Groth, R. Ostrovsky, and A. Sahai. Non-interactive zaps and new tech-
niques for NIZK. Crypto, 2006.

[HMLS07] D. Hofheinz, J. Malone-Lee, and M. Stam. Obfuscation for cryptographic
purposes. Theory of Cryptography Conference (TCC), 2007.

[HT98] S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge proto-
cols. Crypto, 1998.

[HT99] S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge proto-
cols. eprint, 1999.

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. IEEE
Symposium on Foundations of Computer Science (FOCS), 1995.

[Kat03] J. Katz. E�cient and non-malleable proofs of plaintext knowledge and ap-
plications. Eurocrypt, 2003.

[Lep02] M. Lepinski. On the existence of 3-round zero-knowledge proofs. M.S. Thesis,
2002.

[LPS04] B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques for
obfuscation. Eurocrypt, 2004.

[MP90] J. McInnes and B. Pinkas. On the impossibility of private key cryptography
with weakly random keys. Crypto, 1990.

[MRH04] U. Maurer, R. Renner, and C. Holenstein. Indi�erentiability, impossibility
results on reductions, and applications to the random oracle methodology.
Theory of Cryptography Conference (TCC), 2004.

[Nao03] M. Naor. On cryptographic assumptions and challenges. Crypto, pages 96�
109, 2003.

209

[Nie02] J. Nielsen. Separating random oracle proofs from complexity theoretic
proofs:the non-committing encryption case. Crypto, 2002.

[NY90] M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. ACM Symposium on Theory of Computing

(STOC), 1990.
[Pha] Phaedo. Phaedo.
[Plaa] Plato. Meno.
[Plab] Plato. Theaetetus.
[PX09] M. Prabhakaran and R. Xue. Statistically hiding sets. RSA conference,

Cryptography-track, 2009.
[Riv92] R. Rivest. The MD5 message-digest algorithm. IETF Network Working

Group, RFC 1321, 1992.
[Sah99] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive

chosen-ciphertext security. IEEE Symposium on Foundations of Computer

Science (FOCS), 1999.
[SCO+01] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai.

Robust non-interactive zero knowledge. Crypto, 2001.
[SCP00] A. De Santis, G. Di Crescenzo, and G. Persiano. Necessary and su�cient

assumptions for non-interactive zero-knowledge proofs of knowledge for all
NP relations. International Colloquim on Automata, Languages and Pro-

gramming, 2000.
[Sha79] A. Shamir. How to share a secret. Communications of the ACM, pages

612�613, 1979.
[SP92] A. De Santis and G. Persiano. Zero knowledge proofs of knowledge without

interaction. IEEE Symposium on Foundations of Computer Science (FOCS),
1992.

[Wee05] H. Wee. On obfuscating point functions. ACM Symposium on Theory of

Computing (STOC), 2005.
210

[Yao82] A.C. Yao. Theory and application of trapdoor functions. IEEE Symposium

on Foundations of Computer Science (FOCS), 1982.

211

Appendix A

General De�nitions of

Interactively-extractable Functions

The general form (with an even number of rounds) of the 3-round game described in
Chapter 4 starts with the challenger, C, sending random coins, r1, in the �rst round,
then A sends the response, Hk(x, r1), in the second round. The remaining rounds follow
the same pattern. As in the original formulation, no veri�cation occurs. In particular,
A may be sending random strings. The consequences include, ofcourse, the invalidity of
the consistency and thus inability of preimage extraction. On the other hand, if A plays
the game consistently, then we require an extractor to recover a preimage common to all
images sent. The usefulness of this notion is apparent when this game is embedded in a
protocol where veri�cation can actually occur, e.g., the Random Oracle instantiation in
encryption schemes (see Chapter 7).

In the case of an odd number of rounds, the game starts with A sending an image of
x with an r of its choice and then the game proceeds as above. Let r1, ..., rt(n) denote
the list of random coins that C sends and y1, ..., yt(n) denote the corresponding response
of A.

A.1 Preimage Knowledge without Auxiliary Information

Again, there are two notions, one that holds for any function and another for a uniformly
chosen one.
De�nition A.1.1 ((Strong) Interactive extraction without auxiliary informa-

212

tion). A veri�able family ensemble, H = {Hn}n∈N, is called (strongly) (2t + 1)-round

extractable without auxiliary information if for any PPT, A (with private ran-

dom coins denoted by rA), and polynomial, p, there exists a PPT, KA such that for any

k ∈ Kn:

Pr[r1, ..., rt(n) ← Rn, ..., Rn,

(y0, s) = A(k, rA), (y1, ..., yt(n)) =< A(s, rA), C(r1, ..., rt(n)) >,

x← KA(k, r1, ..., rt(n), rA) :

(VH(x, y0) = 1 and ∀i, yi = Hk(x, ri)) or (∀x′, ∃i, yi 6= Hk(x′, ri) or VH(x′, y0) 6= 1)]

> 1− 1
p(n)

− µ(n).

De�nition A.1.2 (Interactive extraction without auxiliary information). A ver-

i�able family ensemble, H = {Hn}n∈N, is called (2t + 1)-round extractable without

auxiliary information if for any PPT, A (with private random coins denoted by rA),

and polynomial, p, there exists a PPT, KA such that:

Pr[k ← Kn, r1, ..., rt(n) ← Rn, ..., Rn,

(y0, s) = A(k, rA), (y1, ..., yt(n)) =< A(s, rA), C(r1, ..., rt(n)) >,

x← KA(k, r1, ..., rt(n), rA) :

(VH(x, y0) = 1 and ∀i, yi = Hk(x, ri)) or (∀x′, ∃i, yi 6= Hk(x′, ri) or VH(x′, y0) 6= 1)]

> 1− 1
p(n)

− µ(n).

The de�nitions for the even round versions are very similar. Note that the 1-round
versions of these de�nitions correspond directly to noninteractive extraction (De�nitions
3.2.1 and 3.2.2), except with noticeable error.

213

A.2 Preimage Knowledge with Independent Auxiliary In-

formation

Adding auxiliary information to De�nition A.1.1 yields a de�nition for dependent auxil-
iary information. So, we present this notion in the next section. Here, we add indepen-
dent auxiliary information to De�nition 3.2.2.
De�nition A.2.1 (Interactive extraction with independent auxiliary informa-
tion). Let H = {Hn}n∈N be any family ensemble, where Hk : {0, 1}n × Rn → {0, 1}l(n)

for some polynomial l. Then, H is called (2t + 1)-round extractable with independent

auxiliary information if for any PPT, A (with private random input, rA), and polyno-

mial, p, there exists a PPT, KA, such that for any distribution Z = {Zn}n∈N:

Pr[k ← Kn, z ← Zn, r1, ..., rt(n) ← Rn, ..., Rn,

(y0, s) = A(k, z, rA), (y1, ..., yt(n)) =< A(s, rA), C(r1, ..., rt(n)) >,

x← KA(k, z, r1, ..., rt(n), rA) :

(VH(x, y0) = 1 and ∀i, yi = Hk(x, ri)) or (∀x′, ∃i, yi 6= Hk(x′, ri) or VH(x′, y0) 6= 1)]

> 1− 1
p(n)

− µ(n).

The even round version of this de�nition is similar. Again, 1-round extractable func-
tions with independent auxiliary information correspond to noninteractive extractable
functions with independent auxiliary information except with noticeable extraction error.

A.3 Preimage Knowledge with Dependent Auxiliary Infor-

mation

De�nition A.3.1 (Interactive extraction with dependent auxiliary informa-
tion). Let H = {Hn}n∈N be any family ensemble, where Hk : {0, 1}n × Rn → {0, 1}l(n)

for some polynomial l. Then, H is called (2t + 1)-round extractable with dependent

auxiliary information if for any PPT, A (with private random input, rA), and polyno-

mial, p, there exists a PPT, KA, such that for any distribution Z = {Zn}n∈N and any

214

k ← Kn:

Pr[z ← Zn, r1, ..., rt(n) ← Rn, ..., Rn,

(y0, s) = A(k, z, rA), (y1, ..., yt(n)) =< A(s, rA), C(r1, ..., rt(n)) >,

x← KA(k, z, r1, ..., rt(n), rA) :

(VH(x, y0) = 1 and ∀i, yi = Hk(x, ri)) or (∀x′, ∃i, yi 6= Hk(x′, ri) or VH(x′, y0) 6= 1)]

> 1− 1
p(n)

− µ(n).

From a di�erent angle, these general de�nitions involve a sequential repetition of a
2-round interaction where the challenger sends a challenge r and the adversary responds
with the corresponding answer. Consequently, the 3-round version as described in Chap-
ter 4 considers a parallel version, where the challenger sends all of its challenges in one
round.

215

	Abstract
	Acknowledgements
	Introduction
	Our Work
	Informal Notion
	Formalization
	Constructions
	Characterization
	Applications
	Zero-knowledge
	Random Oracle Instantiation
	Obfuscating Multibit Point Functions

	Organization

	Technical Preliminaries
	Notations and Basic Definitions
	One-way Functions and Uninvertible Functions
	Assumptions
	The Discrete-Logarithm (DL) Assumptions
	The Decisional Diffie-Hellman (DDH) Assumption

	Pseudorandom Generators
	Perfectly One-way Probabilistic Functions
	Perfect One-wayness.

	Obfuscation
	Encryption Schemes
	Zero-knowledge Arguments
	Zero-knowledge Proofs of Knowledge
	Non-interactive Zero-knowledge Arguments
	Non-interactive Witness Indistinguishable Arguments
	-Protocols

	Extractable Functions
	Introduction
	Our Work
	Formulating Extraction
	Constructions

	On the Strength of the Assumptions
	Organization

	Definitions
	Preimage Knowledge without Auxiliary Information
	Preimage Knowledge with Independent Auxiliary Information
	Preimage Knowledge with Dependent Auxiliary Information

	Constructions
	Constructions from the KE Assumption
	Extractable One-way Function
	Extractable Pseudorandom Generator
	Extractable Perfectly One-way Function

	Constructions from the Diffie-Hellman Knowledge of Exponent Assumption
	Constructions from the Proof of Knowledge Assumption
	The POK assumption
	Extractable One-way Function
	Extractable Perfectly One-way Function

	The Relationship Between Extractable Functions and NIZK proofs of knowledge

	Interactively Extractable Functions
	Introduction
	Our Work
	Formulating Extraction
	Constructions

	Organization

	Definitions
	Preimage Knowledge without Auxiliary Information
	Preimage Knowledge with Independent Auxiliary Information
	Preimage Knowledge with Dependent Auxiliary Information

	Constructions
	Extractable One-way Functions
	Extractable POW Functions
	Extractable POW Functions without Auxiliary Information
	Extractable POW Functions with Auxiliary Information
	Injective POW Functions from Strong Perfect One-wayness

	On the Connection to -Protocols
	Differences Among Constructions 4.3.2, 4.3.3, and 4.4.1

	Characterization of Extraction
	Introduction
	Our work
	Interactive Extraction
	Noninteractive Extraction

	Organization

	Interactive Extraction versus Obfuscation
	Weak Extraction
	In the Uniform Setting

	Amplifying Extraction
	In the Uniform Model

	Towards Extraction with Negligible Error

	Noninteractive Extraction versus Obfuscation
	Weak Extraction
	Amplifying Extraction

	3-round Zero Knowledge
	Introduction
	Our Work
	Related Work

	Constructions
	Arguments of Membership
	Proofs of Knowledge

	Random Oracle Instantiation
	Introduction
	Our Work
	Using Extractable Functions to Instantiate a Specific Encryption Scheme
	Towards a General Instantiation of Encryption Schemes
	Instantiating OAEP
	On the Connection to Other Approaches and CCA2 Schemes

	Organization

	Instantiation of a Specific Encryption Scheme
	The Original Scheme
	Noninteractive Instantiation
	Interactive Instantiation
	Interactive Encryption
	The Construction

	Towards Instantiation of General Encryption Schemes
	Interactive Instantiation
	Noninteractive Instantiation
	IND-CPA Instantiation
	IND-CCA2 Instantiation

	Realizing Unrealizable Schemes

	OAEP

	Digital Lockers
	Introduction
	Our Work
	Related Work
	Organization

	Obfuscating Point Functions with Multibit Output
	Analysis
	Analysis based on composable obfuscation
	Analysis based on statistical indistinguishability
	Analysis based on computational indistinguishability

	Obfuscating Set-membership Predicates and Functions
	A More Efficient Obfuscation of Multibit Point Functions

	On Composable Obfuscation of Point Functions
	Weak POW Functions are not Self-composable
	Point Function Obfuscation and POW Functions Are Not Self-composable

	On the Relationship Between Obfuscation of Multibit Point Functions and Symmetric Encryption
	Weakness of Definition 8.4.1

	Bibliography
	General Definitions of Interactively-extractable Functions
	Preimage Knowledge without Auxiliary Information
	Preimage Knowledge with Independent Auxiliary Information
	Preimage Knowledge with Dependent Auxiliary Information

