Privacy, Integrity, and Incentive Compatibility in Computations with Untrusted Parties

Sheng Zhong Yale University

Dissertation Director: Joan Feigenbaum

Committee Members: James Aspnes,

Markus Jakobsson (RSA Labs),

Yang Richard Yang.

Thesis Statement

"Privacy, integrity, and incentive compatibility, when properly formulated, can often be achieved in new distributedcomputing scenarios."

— Supported by studies of efficient mix, secure storage on untrusted servers, privacy-preserving mining of association rules, secure mobile-agent computation, and security in ad hoc networks.

 Privacy and integrity are party of the traditional study of secure multiparty computation, but incentive compatibility is a relatively new consideration.

Summary of Major Work: Privacy, Integrity, and Incentive Compatibility

Component of Thesis Work	Privacy	Integrity	Incentive compatibility
Efficient Mix ([GZ+02], ASIACRYPT'02)	✓	✓	
Secure Storage on Untrusted Servers ([AFYZ04], <i>ESORICS'04</i>)		 ✓ 	
Privacy-Preserving Data Mining ([Z04])	 ✓ 		
Security of Mobile Agents ([ZY03], DIALM-POMC'03)	 ✓ 	✓	
Security in Mobile Ad hoc Networks ([ZCY03], <i>INFOCOM'03</i>)		 ✓ 	\checkmark

Outline of Talk

Quick Summary of Frequently Used Techniques

- (5 Components of Thesis:)
- Efficient Mix
- Secure Storage on Untrusted Servers
- Privacy-Preserving Mining for Association Rules
- Security of Mobile Agents
- Security in Mobile Ad Hoc Networks

Summary of Frequently Used Techniques

- Homomorphic Encryption (especially ElGamal Encryption — See next slide)
- (A Variant of) Selective Disclosure [AIR01]
- Feldman's Verifiable Secret Sharing [Fel87]
- Desmedt-Frankel Threshold Decryption [DF89]

ElGamal Encryption

Probabilistic encryption of message m (in a group where discrete log is hard):

$$C = (M,G) = (my^r, g^r),$$

where g is a generator, r is a random exponent, and $y=g^{x}$ is the public key.

Decrypting a ciphertext "requires" knowledge of private key x:

$$m = M / G^x$$
.

ElGamal Encryption (Cont'd)

 Without knowledge of private key, one can reencrypt (rerandomize) a ciphertext — compute another ciphertext having the same cleartext:

$$(M',G') = (My^s,Gg^s)$$

 (M',G') is called an reencryption (rerandomization) of (M,G).

Component 1: Efficient Mix [GZ+02]

- A mix network (consisting of a group of mix servers) is a construction for anonymizing communications.
- Security requirements:
 - Privacy: Infeasible to associate any input with the corresponding output.
 - Verifiability: Can ensure that outputs are a permutation of the decryptions /reencryptions of inputs.

Proof of Product with Checksum

- Question: How do we ensure that each server rerandomizes and repermutes messages correctly?
- Answer: Let the server prove
 Product of Inputs = Product of Outputs
 - This is easy, because ElGamal is multiplicatively homomorphic.
 - With an additional checksum, if any messages were corrupted, cheating would be detected.

Double Encryption

- Observation: If cheating is detected because of an invalid checksum, then detection is after decryption.
- \Rightarrow Problem: Privacy can be violated before cheating is detected.
- Solution: Additional layer of encryption.
 - Cheating is detected after outer-layer decryption but still before inner-layer decryption.

Analysis

- Efficiency: In normal cases (no cheating), our mix is highly efficient. It is the only mix in which reencryption & decryption (not proofs) are the major overhead.
- Privacy: With proper proofs of knowledge of inputs, our mix net achieves privacy similar to standard ElGamal-based mix nets.
- Public Verifiability: The operations of our mix net on the *well-formed* messages can be verified.

Component 2: Secure Storage with Untrusted Server [AFYZ04]

- Question: Suppose you store your data on a remote server. How do you ensure that it is not corrupted by the server?
- Answer: Have your data entangled with some VIPs' such that

corruption of your data \Rightarrow corruption of theirs.

Pool of n blocks

Our Model: Basic Framework

Our Model: Classification

Classification based on recovery algorithm:

- All users use a standard-recovery algorithm provided by the system designer.
- All users use a public-recovery algorithm provided by the adversary.
- Each individual uses a private-recovery algorithm provided by the adversary.

Classification based on corrupting algorithm:

- Destructive adversary that reduces the entropy of the data store
- Arbitrary adversary

Our Definitions

- Data dependency: d_i depends on d_j if with high probability
 - d_i is recovered $\Rightarrow d_j$ is recovered.
- All-or-Nothing Integrity (AONI): Every document depends on every other document.

Possibility of AONI in Standard-Recovery Model

- When combining data, mark data store using an unforgeable Message Authentication Code (MAC).
- Standard-recovery algorithm checks MAC:
 - If MAC is valid, recover data.
 - If MAC is invalid, refuse to recover data.

Impossibility of AONI in Publicand Private-Recovery Models

- Recovery algorithm can flip a coin to decide whether to recover data or not.
- With high probability, not all coin flips will have same result.
- ⇒ With high probability, some data are recovered while others are not.
- \Rightarrow Cannot guarantee AONI.

Possibility of AONI for Destructive Adversaries

- When combining data, interpolate a polynomial using points (key, data item).
- Store = polynomial.
- AONI is achieved if sufficient entropy is removed.
 - Many stores are mapped to single corrupted store.
 ⇒ With high probability, no data item can be recovered.

Component 3: Privacy-Preserving Mining for Association Rules [Z04]

Trans#	Bread	Milk	Egg	Apple	Cereal
1001	\checkmark	\checkmark	\checkmark		\checkmark
1002		\checkmark		\checkmark	\checkmark
1003	\checkmark	\checkmark			\checkmark
1004		\checkmark	\checkmark	\checkmark	\checkmark

• Association Rule: Milk \Rightarrow Cereal.

- {Milk, Cereal} is frequent (i.e., #{Milk, Cereal} is large).
- #{Milk, Cereal}/#{Milk} is close to 1.
- The key technical problem in association-rule mining is to find frequent itemsets.

Privacy in Distributed Mining

Distributed Mining:

- Two (or more) miners.
- Each miner holds a portion of a database.
- Goal: Jointly mine the entire database.
- Privacy: Each miner learns nothing about others' data, except the output.

Vertical Partition: Weakly Privacy-Preserving Algorithm

- Vertical Partition Each miner holds a subset of the columns.
- Algorithm provides weak privacy only support count (# of appearances of candidate itemset) is revealed.
- Computational Overhead: Linear in # of transactions.
 - Previous solution has a quadratic overhead.

Vertical Partition: Strongly Privacy-Preserving Algorithm

- Algorithm provides strong privacy no information (except the output) is revealed.
- Computational Overhead: Also linear in # of transactions.
 - Slightly more expensive than weakly privacy-preserving algorithm.

Horizontal Partition

- Horizontal Partition Each miner holds a subset of rows.
- Computational Overhead: Still linear in # of transactions.
- Works for two or more parties.
 - Previous solution only works for three or more parties.

Component 4: Secure Mobile-Agent Computation [ZY03]

- Mobile Agent: a piece of software moving around the network, performing a specific task
- Example: an agent searching for airline tickets

Problem Formulation (Cont'd)

Originator

Security Requirements

- Agent Originator's Privacy: Originator's private information (*e.g.*, a *buy-it-now* price in airline-ticket-agent example), even if stored in the agent, is not revealed to hosts.
- Host's Privacy: Each host's private input (*e.g.*, the ask price) and output (*e.g.*, whether to make a reservation) to the agent is not revealed to other hosts or to the originator.

Solution Framework [ACCK01]

Need for a Crypto Primitive

- Question: How to enable each host to translate I/O?
 - Output: Easy Agent supplies translation table to host.
 - Input: Tricky Must guarantee that only one value of input is translated. Don't want host to "test" the agent with many possible inputs.

Verifiable Distributed Oblivious Transfer (VDOT)

- Introduce a group of proxy servers.
- For each input bit: proxy servers hold garbled input for 0/1: G(0)/G(1).
 - Input bit = $b \rightarrow \text{transfer G(b) to host.}$
 - No information about G(1-b) is revealed to host.
 - No information about b is revealed to proxy servers.
 - Proxy servers cannot cheat host with incorrect G(b).

Analysis of VDOT Security Requirements

- Input bit = b → transfer G(b) to host
- No information about G(1-b) is revealed to host
- No information about b is revealed to proxy servers

1-out-of-2 Oblivious Transfer (OT)

 Proxy servers can't cheat host with incorrect G(b)

VDOT Design

 Choose a distributed variant of *Bellare-Micali OT* [BM89] as basis of design.

 Add detection of cheating by employing the special algebraic structure of keys in Feldman VSS [Fel87].

Performance: Overhead of Garbled Circuits

Component 5: Mobile Ad Hoc Network [ZCY03]

- Wireless multi-hop networks are formed by mobile nodes, with no pre-existing infrastructure.
- Nodes depend on other nodes to relay packets.
- A node may have no incentive to forward others' packets.

Sprite: System Architecture

Wide-area wireless network

Big Picture: Getting Payment

We Design a Cheat-Proof Payment Scheme

- Cheating cannot increase a player's welfare.
- In case of collusion, cheating cannot increase the sum of colluding players' welfares.

Evaluation: Overhead

Signing Alg.	Send (ms)	Forward (ms)	Header (bytes)	Receipt (bytes)
RSA 1024	10.4	0.3	128	180
ECNR 168	7.3	13.2	42	94
ECNR 168 w/ precomp	3.7	6.1	42	94

Effects of Battery on Performance

Dynamics of Message-Success Rate

Summary of Our Results on Mobile Ad Hoc Networks

- We designed a simple scheme to stimulate cooperation.
- Our system is provably secure against (colluding) cheating behaviors.
- Evaluations have shown that the system has good performance.

THANK YOU