
Abstract

Privacy, Integrity, and Incentive-Compatibility in

Computations with Untrusted Parties

Sheng Zhong

2004

In this dissertation, I study privacy, integrity, and incentive compatibility in com-

putations with untrusted parties. The study of privacy and integrity belongs to the

research area of secure multi-party computation, while incentive compatibility is a

natural extension of the research on secure multi-party computation.

First, I present a mix network tailored for election systems, with a substantial

speedup over previous work. Second, I design and analyze efficient algorithms for dis-

tributed mining of association rules. Third, to protect data integrity in an untrusted

storage service, I study the possibility of entangling multiple users’ data together in

such a way that loss of one user’s data implies loss of all others’. Fourth, I intro-

duce VDOT, a new cryptographic primitive, which can be viewed as an extension

of oblivious transfer with malicious servers. I also apply VDOT to the problem of

mobile-agent security to implement the key components of an architecture for mobile

agents.

Finally, I propose a way to add incentive considerations to the study of secure

multi-party computation, by stimulating cooperation among selfish mobile nodes in

an ad hoc network. I propose Sprite, a simple, cheat-proof, credit-based system

for accompanishing this task. The system suppresses cheating behavior and provides

incentives for mobile nodes to cooperate and report actions honestly. Simulations and

analysis show that mobile nodes can cooperate and forward each other’s messages,

unless the resources of each node are extremely depleted.

Privacy, Integrity, and

Incentive-Compatibility in Computations

with Untrusted Parties

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Sheng Zhong

Dissertation Director: Joan Feigenbaum

December 2004

Copyright c© 2004 by Sheng Zhong

All rights reserved.

ii

Contents

Acknowledgements x

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Secure Multi-party Computation . 2

1.2.1 Models of Secure Multi-party Computation 2

1.2.2 Existing Works in Secure Multi-party Computation 4

1.2.3 Proposed Solutions vs. Existing Results 6

1.3 Organization of Dissertation . 7

2 Technical Preliminaries 8

2.1 Definitions for Secure Computation 8

2.1.1 Preliminaries . 8

2.1.2 Secure Multi-party Computation 9

2.2 Frequently Used Techniques . 11

2.2.1 ElGamal Encryption . 11

2.2.2 Secret Sharing and Threshold Decryption 12

2.2.3 Keep-or-Randomize and Keep-or-Replace Operations 13

3 An Efficient Mix 15

i

3.1 Background and Motivation . 16

3.2 Related Work . 18

3.3 An ElGamal Re-encryption Mix Network 21

3.4 Mix Net Design . 22

3.4.1 Proof of Product with Checksum. 24

3.4.2 Double Enveloping . 26

3.5 Exit-Poll Mix Net . 27

3.6 Analysis of Efficiency and Security 31

3.7 Summary of the Work on Mix Network 34

4 Data Entanglement: Secure Storage with Untrusted Server 35

4.1 Background and Motivation . 36

4.1.1 Related Work . 40

4.2 Dagster and Tangler . 42

4.2.1 Dagster . 42

4.2.2 Tangler . 43

4.2.3 Analysis of Entanglement . 44

4.3 Our Model . 51

4.3.1 Basic Framework . 51

4.3.2 Adversary Classes . 54

4.4 Dependency and All-or-Nothing Integrity 56

4.4.1 Preliminaries . 56

4.4.2 Our Notions of Entanglement 57

4.5 Possibility and Impossibility Results 59

4.5.1 Possibility of AONI in the Standard-Recovery-Algorithm Model 60

ii

4.5.2 Impossibility of AONI in the Public and Private-Recovery-

Algorithm Models . 62

4.5.3 Possibility of Symmetric Recovery in the Public-Recovery-Algorithm

Model . 63

4.5.4 Possibility of AONI for Destructive Adversaries 66

4.6 Summary of the Study of Data Entanglement 72

5 Privacy-Preserving Data Mining for Association Rules 74

5.1 Background and Motivation . 75

5.2 Technical Preliminaries . 78

5.2.1 Problem Formulation . 78

5.2.2 Definitions of Privacy . 81

5.3 A Weakly Privacy-Preserving Algorithm for Vertically Partitioned Data 82

5.3.1 Overview . 82

5.3.2 Algorithm . 83

5.3.3 Security Analysis . 84

5.3.4 Efficiency Analysis . 84

5.4 A Strongly Privacy-Preserving Algorithm for Vertically Partitioned

Data . 85

5.4.1 Overview . 85

5.4.2 Algorithm . 88

5.4.3 Security Analysis . 89

5.4.4 Efficiency Analysis . 89

5.5 An Algorithm for Horizontally Partitioned Data 90

5.5.1 Overview . 90

5.5.2 Algorithm . 91

iii

5.5.3 Security Analysis . 92

5.5.4 Efficiency Analysis . 93

5.6 Extension to Multi-party Distributed Mining 93

5.6.1 An Algorithm for Vertically Partitioned Data 93

5.6.2 An Algorithm for Horizontally Partitioned Data 95

5.7 Summary of the Work on Data Mining 97

6 Secure Mobile-Agent Computation 98

6.1 Background and Motivation . 99

6.1.1 Related Work . 102

6.2 VDOT Definitions . 103

6.3 A VDOT Protocol . 105

6.3.1 Bellare-Micali OT . 105

6.3.2 Consistency Verification . 107

6.3.3 A VDOT Protocol Specification 108

6.4 Security Properties of VDOT . 110

6.5 A Protocol for Mobile-Agent Computation 113

6.5.1 A Global Picture of Mobile-Agent Computation 113

6.5.2 Protocol Design for Mobile-Agent Computation 114

6.5.3 Security Analysis of the Mobile-Agent Protocol 118

6.6 Implementation and Performance Evaluation 119

6.7 Summary of Secure Mobile-Agent Computation 121

7 Incentives in Ad Hoc Networks 123

7.1 Background and Motivation . 124

7.2 Related Work . 127

7.2.1 Reputation-based Approaches 127

iv

7.2.2 Stimulation Approaches from Terminodes 128

7.2.3 Related Work in Algorithmic Mechanism Design and Game

Theory . 130

7.3 Overview of our Approach . 131

7.3.1 System Architecture . 131

7.3.2 Who Pays Whom? . 133

7.3.3 Objectives of the Payment Scheme 134

7.3.4 Cheating Actions in the Receipt-Submission Game 135

7.3.5 Motivating Nodes to Forward Messages 135

7.3.6 Motivating Nodes to Report their Receipts 136

7.3.7 Preventing False Receipts . 137

7.4 Specification of the Message-Forwarding Protocol 139

7.4.1 Sending a Message . 139

7.4.2 Receiving a Message . 139

7.4.3 Computing Payments . 140

7.5 Formal Model and Analysis of the Message-Forwarding Protocol . . . 141

7.5.1 A Model of the Receipt-Submission Game 141

7.5.2 Security Analysis of the Receipt-Submission Game 143

7.5.3 Incentive Analysis of Performance 150

7.6 Stimulating Cooperation in Route Discovery 151

7.6.1 Sending a ROUTE REQUEST 151

7.6.2 Receiving a ROUTE REQUEST 151

7.6.3 Computing Payment . 151

7.7 Evaluations . 152

7.7.1 Overhead . 152

7.7.2 System Performance vs. Network Resources 153

v

7.8 Summary of the Work on Incentives in Mobile Ad hoc Networks . . . 156

8 Conclusion 158

vi

List of Figures

3.1 Optimistic cost per server (for a total of m servers) of mixing n items

with different mix schemes, measured in number of exponentiations.

Note that our proof and verification costs do not depend on n. The ta-

ble also indicates whether addition chains can be used to pre-compute

exponentiations. “Partially” indicates that addition chains can be

used only in the mixing phase but not to prove correctness. 20

4.1 An entanglement graph is a bipartite graph from the set of documents

to the set of server blocks. An edge (dj, Ck) is in the graph if server

block Ck can be used to reconstruct document dj. 45

4.2 Initialization, entanglement, and tampering stages. 52

6.1 System Architecture for Mobile Agent Computation 114

6.2 Data Format of a Security-Sensitive Function in an Agent 117

6.3 Evaluating a Security-Sensitive Function at Host j 118

6.4 Software Architecture of an Originator 119

6.5 Components of a Host . 120

6.6 Overhead of Evaluating a Garbled Circuit 121

6.7 Overhead of VDOT ((n, t) = (6, 3)) 122

7.1 The architecture of Sprite. 132

vii

7.2 Illustration of our payment scheme (version 1). 136

7.3 Illustration of our payment scheme (version 2). 137

7.4 Illustration of our payment scheme (final version). 138

7.5 Node n0 sends a message to nd. 139

7.6 Node ni receives (m, p, seq, s). 140

7.7 Message success rate vs. network battery resources. 155

7.8 Dynamics of message success rate. 156

viii

List of Tables

4.1 Summary of results. “All-or-nothing” means that all-or-nothing in-

tegrity can be achieved in this model; “symmetric recovery” means

that all-nothing integrity cannot be achieved, but symmetric recovery

can; “—” means that no guarantees are possible. 72

6.1 Notations in Figure 6.2 . 116

7.1 CPU processing time; sizes of authentication header and receipts. . . 152

ix

Acknowledgements

I am truly grateful to my advisor, Prof. Joan Feigenbaum, for teaching me how to

do research in computer science, especially in computer security. I am also highly

indebted to my collaborators —- Prof. James Aspnes, Prof. Dan Boneh, Jiang Chen,

Dr. Phillippe Golle, Dr. Markus Jakobsson, Dr. Ari Juels, Aleksandr Yampolskiy,

and Prof. Yang Richard Yang. Without their hard work, I would not have been able

to complete this dissertation.

I would also like to thank the National Science Foundation (NSF) and the Office

of Naval Research (ONR). The research work in this disseration has been supported

in part by NSF grant CCR-0208972 and ONR grant N00014-01-1-0795.

Last but not least, I thank my parents, Qiusheng Zhong and Ying Long, and my

girlfriend, Yue Ji, so much for their everlasting love and support.

x

Chapter 1

Introduction

1.1 Background and Motivation

Given the rapid advances of computer and information technology, many security

issues need to be addressed. For example, with the unprecedented convenience of

accessing information, people are very concerned about the privacy of their own

data; with the ease of editing information, they are eager to seek protection of the

integrity of their data. Furthermore, because networking technologies, especially

wireless technologies, are connecting huge numbers of mutually unfamiliar people

together to make a global economy, the incentives of each participant play a key role

in designing modern information systems.

In this dissertation, I study privacy, integrity, and incentive compatibility in

computations with untrusted parties. Here, by “privacy,” I mean the guarantee

that certain information is hidden from certain participants. By “integrity,” I mean

the guarantee that certain data are protected from being corrupted. By incentive

compatibility, I mean the guarantee that behaving cooperatively (more specifically,

following certain protocols) is the choice of each selfish and rational participant.

1

Clearly, the study of the first two issues, namely privacy and integrity, in the context

of protocol design with multiple mutually untrusted parties belongs to the research

area of secure multi-party computation. It is my belief that adding the third issue,

incentive compatibility, to the research on secure multi-party computation will be

essential, because, besides the malicious and semi-honest parties considered in tradi-

tional secure multi-party computation, selfish (or economically rational) parties are

also very popular in the practice of today’s computer networks.

This dissertation includes multiple technical components, which address practical

problems in various applications. Each of these problems focuses on one or two of

the issues mentioned above and can be viewed as a (in some cases extended) version

of secure multi-party computation. For completeness of this dissertation, next I give

a brief review of secure multi-party computation.

1.2 Secure Multi-party Computation

In this section, I present a very brief review of secure multi-party computation, listing

various models and definitions and some of the important existing results. Due to

space limitations, I do not attempt to cover the vast literature on this topic. For

more detailed surveys, please see [59, 62]. I also give a comparison of my proposed

solutions with the existing solutions to secure multi-party computation and explain

why this is still worth studying given the huge amount of existing work in the area.

1.2.1 Models of Secure Multi-party Computation

Secure multi-party computation involves a set of n parties. Each of these parties has

a private input, and the goal of the computation is to map the n private inputs to n

private outputs, where the outputs are a (random) functionality of the inputs. The

2

simplest case is the one in which n = 2, i.e., secure two-party computation.

A standard communication model of secure multi-party computation assumes the

existence of a private communication channel between each pair of parties. If n > 2,

for simplicity, the standard model assumes that the communication is synchronous.

Sometimes, we assume a broadcast channel in addition. It is clear that this additional

broadcast channel can be simulated in the standard communication model using a

Byzantine agreement protocol, provided that more than two thirds of the participants

are honest.

With respect to the computational power of the participants, there are two pop-

ular models — bounded and unbounded. In the bounded model, each party is a

probabilistic Turing Machine running in polynomial time; in the unbounded model,

no restriction is placed on the computational power of any party. (Sometimes a

mixed model is considered, where some parties are computationally unbounded, and

others are bounded.)

Proof of security of multi-party computation is based on the idea of simulation.

A protocol is considered secure if the joint view of all parties can be “simulated” in

an ideal model, in which each participant sends her input to an additional trusted

party and gets back the corresponding output. Note that simulation has differ-

ent meanings in different computational models: In the computationally bounded

model, it is sufficient that the two views be computationally indistinguishable; in the

computationally unbounded model, it is required that the two views be identically

distributed. Security in the former scenario is called “computational security,” and

in the latter scenario “information-theoretic security.” A third type of simulation

requires that the two views be statistically indistinguishable, which is more strict

than computational indistinguishability but less strict than identical distribution.

More details of these definitions will be provided as needed in Section 2.1.

3

Two adversarial models are often studied in secure multi-party computation:

semi-honest and malicious. A semi-honest (i.e., honest-but-curious) party follows

the protocol faithfully but may attempt to compute information about the honest

participants’ inputs. In contrast, a malicious party is allowed to deviate arbitrarily

from the protocol. In either case, it is implicitly assumed that all dishonest (semi-

honest or malicious, respectively) parties collude. As pointed out in [59], we can

conveniently suppose that all of them are controlled by one single adversary.

1.2.2 Existing Works in Secure Multi-party Computation

Completeness Theorems The problem of secure multi-party computation has

been studied extensively. In particular, Yao [142] and Goldreich, et al. [60] presented

very general results in the computationally bounded model, for two parties and

multiple parties, respectively,

In [142], Yao showed that, if trapdoor permutations exist, then any two-party

functionality can be securely computed. This is true even if either party is malicious.

To obtain this result, Yao used Goldreich, Micali, and Wigderson’s “compiler” [61] to

reduce the problem with a malicious adversary to that with a semi-honest adversary.

In [60], Goldreich, Micali, and Wigderson further proved that, if trapdoor per-

mutations exist, then any multi-party functionality can be securely computed, with

respect to a semi-honest adversary. Combined with [61], this result essentially im-

plies that any multi-party functionality can also be securely computed with respect

to a malicious adversary. More precisely, secure multi-party computation can be

achieved in two senses: In the first sense, the computation is either completed (with

correct outputs) or aborted (if there is cheating), without revealing any extra infor-

mation beyond the outputs (if any) to the adversary in either case; in the second

sense, under the assumptions that the majority of the participants are honest and

4

that broadcast channel is available, the computation is always completed successfully

and no information (other than the desired output) is revealed.

In the computationally unbounded model, a similar completeness theorem was

proved by Ben-Or, Goldwasser, and Wigderson [16] and by Chaum, Crepeau, and

Damg̊ard [29], independently.

More Efficient Solutions The protocols constructed for the proofs of these com-

pleteness theorems are highly expensive. Consequently, more efficient solutions have

been investigated.

Beaver, Micali, and Rogaway [12] considered round complexity in the compu-

tationally bounded model and showed that a constant number of rounds suffice.

Franklin and Yung [47] and Gennaro, Rabin, and Rabin [53], independently, fur-

ther reduced the communication complexity significantly. The most communication-

efficient results in the semi-honest-adversary model were given by Hirt, Maurer, and

Przydatek [70] in the computationally unbounded model and by Cramer, Damg̊ard,

and Nielson [35] in the computationally bounded model. Hirt and Maurer [69] pre-

sented a construction with the same communication complexity in the malicious-

adversary model.

In many practical situations, (e.g., in mobile-agent computation), it is necessary

to finish the computational task after one round of interaction. Toward this end,

Sander, Young, and Yung [126] proposed a solution to one-round, two-party secure

function evaluation1 for a log-depth circuit. Later, Cachin, Camenisch, Kilian, and

Müller [25] presented a solution to this problem for any polynomial-size circuit.

Cramer and Damg̊ard [34] studied an important class of secure computation

— secure distributed linear algebra. Note that their solution differs from other

1Secure function evaluation is a variant of secure computation in which one party’s output is
null.

5

solutions mentioned above in that it is specifically designed for one specific class of

computation. My proposed solutions are similar to theirs on this point (but not for

the same class of computation).

1.2.3 Proposed Solutions vs. Existing Results

In this dissertation, I will propose solutions to various secure multi-party computation

problems.

The first difference between my proposed solutions and the existing results men-

tioned above lies in efficiency. Each of my proposed solutions is specifically designed

for a concrete problem and thus more efficient than standard general-purpose con-

structions. In particular, general-purpose protocols are often based on the evaluation

of arithmetic circuits. However, in order to represent a conceptually simple function-

ality, typically we need a circuit of a very large size. Therefore, as pointed out by

Goldreich [59], general-purpose protocols constructed in the proofs of completeness

theorems should not be used for practical purposes. In contrast, my solutions are

based on high-level operations and thus do not have this drawback.

Another difference lies in the communication model. The practical problems for

which my solutions are designed often need non-standard communication models.

For example, a private and synchronous communication channel may not be available

between each pair of participants.

Yet another difference lies in the addition of incentive considerations. In particu-

lar, in Chapter 7, I attempt to consider the incentives of participants in the study of

a multi-party computation problem in wireless ad hoc networks. As far as I know,

this issue has not been well addressed in general.

6

1.3 Organization of Dissertation

The rest of this dissertation is organized as follows: Chapter 2 presents the basic

definitions of secure multi-party computation and the techniques I frequently use.

Chapter 3 presents joint work with Philippe Golle, Dan Boneh, Markus Jakobsson,

and Ari Juels [66], which designs an efficient mix that is both private and verifiable.

Chapter 4 presents joint work with James Aspnes, Joan Feigenbaum, and Aleksandr

Yampolskiy [10], which discusses the possibilities and impossibilities of using entan-

glement to protect the integrity of data on a remote, untrusted server. Chapter 5

presents a set of privacy-preserving algorithms for distributed mining of association

rules. Chapter 6 presents joint work with Yang Richard Yang [145], which introduces

a new cryptographic primitive and applies it to the problem of secure mobile-agent

computation. Chapter 7 presents joint work with Jiang Chen and Yang Richard

Yang [144], which is an attempt to add incentive compatibility to secure multi-party

computation. This work considers how to stimulate cooperation in mobile ad hoc

networks. Chapter 8 concludes this dissertation.

7

Chapter 2

Technical Preliminaries

In this chapter, I first review the important definitions of secure multi-party compu-

tation. Then, I summarize the techniques I frequently use; these techniques will be

the useful in various application, e.g., mix networks, distributed data mining, and

secure mobile-agent computation.

2.1 Definitions for Secure Computation

2.1.1 Preliminaries

For completeness, in this subsection, we review preliminary definitions from com-

plexity theory that will be used in this dissertation.

Negligible and High Probabilities Denote by N+ the set of positive integers.

Then we have the following standard definition of a negligible function.

Definition 1 Suppose that ν(·) : N+ → [0, 1] is a function. We say ν(·) is negligible

8

if, for all positive polynomial p(·), there exists n0 ∈ N+ such that, for any n > n0,

ν(n) <
1

p(n)
.

When we consider a computational problem, the probability of an event is a

function of the length of input. We say that an event happens with high probability

if the probability that it does not happen is negligible.

Computational Indistinguishability A probability ensemble is an (infinite) se-

quence of random variables with a bitstring index.

Definition 2 Two probability ensembles {u}i∈I and {v}i∈I (I ⊆ {0, 1}∗) are compu-

tationally indistinguishable if, for every polynomial-sized circuit family {Cn}n∈N+,

|Pr[Cn(ui) = 1]− Pr[Cn(vi) = 1]|

is a negligible function in the length of i. In such a case, we write

{ui}i∈I
C≡ {vi}i∈I .

2.1.2 Secure Multi-party Computation

A secure n-party computation problem involves n parties, each having a private input

xi. The goal is to compute

f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)),

where each fi(·, . . . , ·) (i = 1, . . . , n) is an n-ary function, such that the ith party

obtains an output fi(·, . . . , ·). (Note that, by saying that each fi(·, . . . , ·) is a function,

9

we have actually required f(x1, . . . , xn) to be a fixed, rather than random, vector for

each input vector (x1, . . . , xn). For the more general setting in which f(·, . . . , ·) is a

random functionality, please see [59].) For security, it is required that the privacy of

any honest party’s input is protected, in the sense that each dishonest party learns

nothing except its own output. If there is any malicious party that may deviate from

the protocol, it is also required that each honest party get a correct result whenever

possible.

Security with Semi-honest Parties To precisely define the security in the case

of semi-honest parties, we need first to define the view of each party during an exe-

cution of the protocol. During an execution of the protocol with input (x1, . . . , xn),

the ith party’s view, denoted by viewi(x1, . . . , xn), consists of this party’s input xi,

all the coin flips of this party, and all the messages this party receives. Clearly,

viewi(x1, . . . , xn) is a random variable. Therefore, {viewi(x1, . . . , xn)}(x1,...,xn)∈{0,1}∗

is a probability ensemble.

Definition 3 An n-party computation protocol for f(·, . . . , ·) is secure with respect to

semi-honest parties if, for each i ∈ {1, . . . , n}, there exists a probabilistic polynomial

algorithm M such that

{M(xi, fi(x1, . . . , xn))}x1,...,xn∈{0,1}∗
C≡ {viewi(x1, . . . , xn)}x1,...,xn∈{0,1}∗ .

Security with fully malicious parties For the general definition of security with

fully malicious parties, please refer to [59]. I am not including this definition here

because I will not directly use it in this dissertation. In my work on mix networks

(Chapter 3) and mobile agents (Chapter 6), I will consider malicious parties; however,

security will be defined and proved for the specific applications therein, so that it

10

will be simpler and more understandable.

2.2 Frequently Used Techniques

2.2.1 ElGamal Encryption

ElGamal Encryption This is a probabilistic encryption scheme. Denote by P
the set of primes. Define

Q def
= {q|p = 2q + 1 ∈ P , q ∈ P}.

For q ∈ Q and p = 2q + 1, denote by Gq the quadratic-residue subgroup of Z∗
p .

Consider a group family {Gq}q∈Q. Suppose that g is a generator of Gq. Let k ∈
[0, |Gq|−1] be a private key, and K = gk the corresponding public key. Suppose that

m ∈ Gq is a cleartext message. Then an encryption of m under the key pair (k, K)

is

C = (mKr, gr),

where r is chosen uniformly at random from [0, |Gq| − 1].

To decrypt a ciphertext C = (C1, C2) using the private key k, one can compute

m =
C1

Ck
2

.

To re-randomize a ciphertext C = (C1, C2), one can compute

C ′ = (C1 ·Kr′ , C2 · gr′),

where r′ is chosen uniformly at random from [0, |Gq| − 1].

11

Decisional Diffie-Hellman Assumption The security of ElGamal encryption is

based on the Decisional Diffie-Hellman (DDH) assumption [18]. Denote by Gen(Gq)

the set of generators of Gq. For uniformly random a, b, c ∈ [0, |Gq| − 1], the DDH

assumption states that

{(ga, gb, gc)}q∈Q,g∈Gen(Gq)
C≡ {(ga, gb, gab)}q∈Q,g∈Gen(Gq).

It is well known that the ElGamal encryption is semantically secure in the sense

of [63] if the DDH assumption holds.

2.2.2 Secret Sharing and Threshold Decryption

Feldman Verifiable Secret Sharing Let k ∈ [0, q− 1] be a secret. If we share k

using the Feldman Verifiable Secret Sharing (VSS) among n parties with threshold

t, then ki, the ith share of k, is exactly the ith share of k using the well-known (n, t)-

Shamir secret sharing. In addition, gki is made public as the ith party’s commitment

to ki. The advantage of the Feldman VSS is that the commitments allow us to do

various computations related to the secret shares without compromising privacy.

One way to set up the Feldman VSS is to use a single trusted party. Another

possible way to set up the Feldman VSS is to use a general-purpose protocol for

secure multi-party computation (like those constructed for completeness theorems),

which is less efficient. However, we need to set up VSS only once, and then we can

reuse the set-up for multiple sessions. Therefore, both ways to set up the Felman

VSS will be acceptable. (Although Pedersen’s protocol [114] was proposed to set up

VSS efficiently without a trusted party, it has been pointed out that there is a flaw

in this protocol [52].)

12

Desmedt-Frankel Decryption If a private key k is shared among n parties with

threshold t, Desmedt and Frankel [40] show that any quorum of t parties can jointly

decrypt the ElGamal ciphertexts without explicitly reconstructing k. Let ki be the

share of the ith party, and Ki = gki the commitment to ki. A quorum T of t parties

can decrypt a ciphertext (C1, C2) as follows:

Dk(C1, C2) =
C1

Ck
2

=
C1

∏
i∈T (Cki

2)
∏

j∈T,j 6=i
−j
i−j

.

Observe that this equation requires each party i ∈ T to raise C2 to the ki-th power.

If necessary, party i may prove that it has honestly computed S = Cki
2 with the

following proof of discrete-logarithm equality:

logC2
S = logg Ki(= ki).

If only semi-honest adversaries are considered, then the proof is not necessary.

2.2.3 Keep-or-Randomize and Keep-or-Replace Operations

In this subsection, we consider two special operations. To define these two operations,

we give two new notations.

The operator κb() is parameterized by an identity b. If b holds, κb() returns the

input; otherwise it returns a random element chosen uniformly from G.

The operator ιb;w() is similar to κb(); the only difference is that ιb;w() returns

w ∈ G, not a random element, if b does not hold.

Keep-or-Randomize Suppose that e, f are two random variables, whose ElGamal

encryptions, E, F are public. Now I show a technique to compute an ElGamal

encryption of κe=v(f) (v ∈ Gq is a constant) without knowing the private key or

13

decrypting E, F . Note that this technique is similar to the well-known technique of

selective disclosure [7], but it keeps, rather than discloses, f if e = v holds.

Suppose that E = (E1, E2) and F = (F1, F2). To achieve the above goal, any

involved party can compute

((E1/v)r · F1, (E2)
r · F2),

where r is a random element of [0, |Gq| − 1]. Then it re-randomizes this ciphertext.

It is straightforward to see that the result is a re-randomization of F if e = v and

that it is a random encryption of a random cleartext if e 6= v.

Keep-or-Replace Again, suppose that e is a random variable whose ElGamal

encryption E are public. I show a technique for party i to compute an ElGamal

encryption of ιxi=v;w(e) (v, w ∈ Gq are constants) without knowing the private key

or decrypting E, where xi is party i’s private input.

To achieve the above goal, party i compares xi and v, if they are equal, then it

re-randomizes E; otherwise, it computes an encryption of w.

14

Chapter 3

An Efficient Mix

A mix network is a series of servers for anonymizing traffic. In this dissertation, I

mainly consider decryption mix networks. In the setting of a decryption mix network,

a set of input messages is fed to the first mix server in an encrypted form. Then each

mix server processes the messages and forward them to the next server. Finally, the

outputs of the last mix server are decrypted,1 and the decryptions are supposed to

the cleartexts of the inputs in a random order, such that the association between the

inputs and the outputs is hidden. Obviously, the process of mixing is a special case

of computation with untrusted parties. Privacy and verifiability will be the major

security concerns.

In this chapter, I present joint work with Phillippe Golle, Dan Boneh, Markus

Jakobsson, and Ari Juels [66]. Using some techniques from Chapter 2 and some

specifically designed for this problem, we propose a new mix network that is opti-

mized to produce a correct output very fast when all mix servers execute the mixing

protocol correctly (the usual case). Our mix network only produces an output if no

server cheats. However, in the rare case when one or several mix servers cheat, we

1In some decryption mix networks, (partial) decryption is also performed while the messages are
forwarded.

15

convert the inputs to a format that allows “back-up” mixing. This back-up mixing

can be implemented using any one of a wide array of already proposed (but slower)

mix networks. When all goes well, our mix net is the fastest, both in real terms and

asymptotically, of all those that offer standard guarantees of privacy and correctness.

In practice, this benefit far outweighs the drawback of a comparatively complex pro-

cedure to recover from cheating. Our new mix is ideally suited to compute almost

instantly the output of electronic elections, whence the name “exit-poll” mixing.

Note that our original design in [66] was found flawed by Wikström [141]. The

mix presented in this chapter is an fixed version basd on what Wikström suggests

in [141]. In particular, this fix adds to our original design a proof of knowledge

of plaintext input, which guarantees that all inputs are independent and therefore

prevents relation attacks [78].

3.1 Background and Motivation

The recently devised mix network constructions of Furukawa and Sako [50] and

Neff [104] provide the full spectrum of security properties desirable in an election

scheme. They achieve privacy, which is to say concealment of individual votes,

and also robustness against Byzantine server failures. They additionally possess

the property of universal verifiability, that is, the ability for any entity to verify

the correct functioning of the mix, even in the face of an adversary that controls

all servers and voters. Finally, the Furukawa-Sako and Neff mixes are substantially

more efficient in terms of both computational and communications requirements than

previously proposed mix networks with similar security properties.

Fast as they are, however, these mixes still remain cumbersome as tools for large-

scale elections. Furukawa, et al. [49] report a running time of roughly six hours to

16

process a batch of 100,000 votes. In a federal election involving large precincts (con-

ceivably millions of ballots in some states) a complete tally would thus require many

hours. Premature media predictions of Gore’s victory in Florida in the 2000 U.S.

presidential election demonstrate the hunger of the electorate for timely information,

and also the mischief that can be wrought in its absence. There is clearly a political

and social need for faster tallying mechanisms than Furukawa-Sako and Neff alone

can provide.

We describe here a mix network that is tailored for election systems, but with

a substantial speedup over Furukawa-Sako and Neff. In settings like that described

by Furukawa et al., for example, we estimate that our construction is capable of

yielding a six-to-eight times speedup. We achieve this improvement by taking an

“optimistic” or “fast-track” [53] approach. In particular, we identify functionality in

Furukawa-Sako and Neff that is not needed in the likely case that mix servers behave

correctly and that most ballots are well formed. In the optimistic case, we show how

to dispense with the costly property of robustness against Byzantine server failures.

We also provide a form of universal verifiability that is somewhat weaker than the

standard definition, but less costly, and adequate for nearly all types of elections, as

we explain.

We refer to our proposal as an exit-poll mix network, by analogy with the “exit

polls” used to provide fast predictions of election outcomes. If servers behave cor-

rectly, our exit-poll mix yields a correct election tally very rapidly. We expect this to

be by far the most common case. If server cheating occurs, our mix identifies misbe-

having servers. The privacy of all votes remains protected (given a majority of honest

servers), but our mix does not produce an output. In such cases, our exit-poll scheme

permits seamless fallback to a more heavyweight mix (like Furukawa-Sako or Neff)

which can take over, complete the mixing and produce an output. Such heavyweight

17

mixes can also be employed to achieve supplemental, after-the-fact certification of

an election tally achieved with our mix.

While our mix network is designed particularly for use in election schemes, we

note that it can be employed in many of the other applications. Examples include

anonymous e-mail [28] and bulletin boards, anonymous payment systems [83] as well

as anonymized Web browsing [51].

The rest of this chapter is organized as follows. Related work is reviewed in

Section 3.2. In Section 3.3, an ElGamal re-encryption mix networks is described.

The high-level design of our new mix network is presented in Section 3.4, and a

detailed description of the protocol is given in Section 3.5. In Section 3.6, the security

properties of our mix network is analyzed. Section 3.7 summarizes this work on mix.

3.2 Related Work

Chaum proposed the first mix network, a decryption mix, in [28]. In Chaum’s con-

struction, users encrypt their inputs with the public-key of each mix server, starting

with the last and ending with the first mix server in the net. Each mix server re-

moves one layer of encryption, until the plaintexts are output by the last server.

The weakness of this approach is that the mixing can not proceed if a single server

is unavailable. To achieve robustness against server failures, Park, Itoh, and Kuro-

sawa [113] introduced a new type of mix, re-encryption mix nets, in which the mixing

and decryption phases are separated (see Section 3.3). The particular re-encryption

mix of Park-Ito-Kurosawa was shown insecure in [117, 116], but was later fixed

in [108].

The main difficulty of re-encryption mixes is to design computationally efficient

ways for mix servers to prove that they mixed and re-encrypted their inputs correctly

18

in the mixing phase. The first techniques were based on costly general purpose cut-

and-choose zero-knowledge proofs [124, 108, 1]. Millimix [81] and MIP-2 [2, 3] are

based on more efficient zero-knowledge proofs specifically designed to prove that an

output is a re-encryption of one of two inputs.

The most efficient schemes before our design that offer the full spectrum of se-

curity properties are those of Furukawa and Sako [50] and Neff [104]. The table in

Figure 3.2 compares the real cost of mixing n items (in terms of the number of ex-

ponentiations required) with different mixing schemes (the numbers are taken from

the respective papers). The column indicating the cost of proof and verification is in

bold, because that is typically by far the most expensive step, and it is the step that

we are optimizing. The cost of re-encryption is higher in our scheme than in others,

but the difference pales in comparison with our savings in the proof and verification

step. Furthermore, the re-encryption exponentiations can be pre-computed. The

table also indicates whether each mixing scheme can take advantage of the speed-

up techniques proposed in [79]2 for multiple exponentiations with respect to a fixed

base. These techniques, based on addition chains, reduce the equivalent cost of one

exponentiation to approximately 10 multiplications for reasonable sizes of batches

(see [79] for more details). This amounts to a very significant speed-up. Our scheme

is not only the fastest, but also the only one that can fully take advantage of addition

chains in this sense.

An attractive alternative to mix networks is homomorphic encryption, in partic-

ular the Paillier scheme [111]. Election schemes based on homomorphic encryption

require a good deal of computation for verification of correct ballot formation, but

2Other aspects of that proposal were later found flawed, and corrected, in [98]. The exposed
vulnerabilities do not affect the soundness of the speed-up techniques.

3We note that these proposals have computational costs quadratic in the number of servers, due
to the use of interactive proofs. However, if non-interactive proofs are employed – as in subsequent
papers – this is brought down to a linear cost. The computational cost we use in the table assumes
that this enhancement is performed.

19

Scheme Re- Proof and Decrypt Addition chain
encrypt verification speed-up?

Cut and choose3[124, 108] 2n 642nm (2 + 4m)n no
Pairwise permutation[2, 81] 2n 7n log n(2m− 1) (2 + 4m)n partially
Matrix representation[50] 2n 18n(2m− 1) (2 + 4m)n partially
Polynomial scheme[104] 2n 8n(2m− 1) (2 + 4m)n partially
Exit-poll mixing [this work] 6n 6 + 12m (5 + 10m)n yes

Figure 3.1: Optimistic cost per server (for a total of m servers) of mixing n items
with different mix schemes, measured in number of exponentiations. Note that our
proof and verification costs do not depend on n. The table also indicates whether ad-
dition chains can be used to pre-compute exponentiations. “Partially” indicates that
addition chains can be used only in the mixing phase but not to prove correctness.

very little for tallying. In practice, therefore, they can be much faster than mix-based

election schemes. An objection to homomorphic schemes has been their inability to

accommodate write-in votes, an unavoidable requirement in the election systems

of many jurisdictions. Kiayias and Yung [88] have devised a simple scheme that

circumvents this difficulty. In brief, the idea is to permit each ballot to contain ei-

ther a standard vote or a write-in vote, and to set aside write-in votes for separate

processing via a mix network (in the unlikely case that this is needed).

It is our belief that mix networks will nonetheless remain an essential tool in

electronic voting, as they still provide features that homomorphic schemes cannot.

Vote-buying and coercion are serious threats in any election, but potentially much

more problematic in Internet-based elections, given the anonymizing mechanisms

available on the Internet and its reach across many jurisdictions. Schemes based

on mix networks offer ways of minimizing these threats [71], while homomorphic

schemes do not. A second advantage of mix networks is their flexibility with regard

to key distribution. To distribute shares in the Paillier system without use of a

trusted third party requires expensive joint RSA key-generation protocols (e.g., [19]),

and distribution of a fresh RSA modulus for every election involving a different

20

distribution of trust. Mix-based schemes can be based on discrete-log cryptosystems,

with simpler and more generalizable keying mechanisms. With this in mind, we

propose a new mix network which offers a significant efficiency improvement over

existing constructions.

3.3 An ElGamal Re-encryption Mix Network

In this section, we describe the basic operation of a re-encryption mix network based

on the ElGamal cryptosystem. It will serve as a basis for our main construction

described in Sections 3.4 and 3.5. The operation of a mix network can be divided

into the following steps:

1. Setup phase. In the setup phase, the mix servers jointly generate the public

and private keys of an ElGamal cryptosystem. The private key is shared in a

(t, n)-Feldman VSS among all mix servers, while the public key is published.

2. Submission of inputs. All users submit their inputs to the mix encrypted

with the public key generated in the setup phase.

3. Mixing phase. Each mix server in turn mixes and re-randomizes the batch

of ciphertexts submitted to the mix.

4. Decryption phase. After the mixing is done, all output ciphertexts are de-

crypted by a quorum of mix servers, using the Desmedt-Frankel decryption.

Recall that ElGamal is a randomized encryption scheme that allows for re-

randomization of ciphertexts. Given an ElGamal ciphertext (C1, C2), a mix server

can efficiently compute a new ciphertext (C ′
1, C

′
2) that decrypts to the same plaintext

as (C1, C1). To re-randomize a ciphertext, the mix server chooses a value r ∈ ZQ

21

uniformly at random and computes (C ′
1, C

′
2) = (C1K

r, C2g
r), where K is the public

key. Given two ElGamal ciphertexts, it is infeasible to determine whether one is a

re-randomization of the other without knowledge of either the private decryption key

k or the re-randomization factor r. A mix server can use this property to hide the

correspondence between its input and output ciphertexts: the input ciphertexts are

first re-randomized, then output in a random order.

However, a mix server who knows the re-randomization factor r can efficiently

convince a verifier that (C ′
1, C

′
2) is a re-randomization of (C1, C2) without revealing

r. The proof of re-randomization consists simply of proving that

logg(C
′
2/C2) = logK(C ′

1/C1),

which trivially implies that there exists r such that (C ′
1, C

′
2) = (C1K

r, C2g
r). To

prove the foregoing discrete logarithm equality, we may use, for example, Schnorr

signatures [129] (as suggested by Jakobsson [78]) or a non-interactive version [46] of

the Chaum-Pedersen protocol [30]. This proof of re-randomization will serve as the

basis for a proof that allows a mix server to prove that it mixed its inputs correctly

(observe that in the real proof of correctness, a mix server must not reveal which

output is a re-randomization of which input, so the proof outlined above will not

work as is.)

3.4 Mix Net Design

Our new mix net mixes ciphertexts like an ElGamal re-encryption mix. The novelty

lies first in a highly efficient method for proving that the mixing was done correctly,

and second in a method for falling back on a more heavyweight mix if cheating by

22

a server is detected. We start with a high-level description of these two building

blocks.

Each input ciphertext submitted to our mix net is required to be the encryption

of a plaintext that includes a cryptographic checksum. To verify that a mix server

operated correctly, we ask for a proof that the product of the plaintexts corresponding

to the input ciphertexts equals the product of the plaintexts corresponding to the

output ciphertexts. As we shall show, such proofs can be produced and verified highly

efficiently without knowledge of the plaintexts. We call this proof a proof-of-product

(POP) with checksum.

This proof however does not detect all types of cheating. Rather, it guarantees

that if the mix server did not mix correctly, it had to introduce in the output at

least one new ciphertext that corresponds to a plaintext with an invalid checksum.

When outputs are decrypted, invalid checksums are traced to one of two sources:

either an input that was originally submitted to the mix network with an invalid

checksum, or a cheating mix server. The difficulty of this approach lies in the fact

that, because invalid checksums can only be traced at decryption time, cheating may

not be detected until after the harm is done. In effect, a cheating server may be able

to match inputs to outputs before cheating gets detected in the verification step.

If we were to use this mix just like that, nothing could be done after a server has

cheated to restore the privacy of those users whose inputs have already been traced.

In particular, a second round of mixing wouldn’t help.

To address this difficulty, we introduce the second main contribution of this work,

which may be of interest on its own. Our approach is to encrypt users’ inputs twice

(a technique we call double enveloping). In the verification step outlined above, the

output ciphertexts are first decrypted only once. If the verification succeeds and no

servers are found to have cheated, the output ciphertexts are decrypted one more time

23

and yield the plaintext. If, on the other hand, one or several servers are found to have

cheated, the output ciphertexts are not decrypted further. Instead, they become the

input to a different (slower) mix network such as Neff [104] and are mixed a second

time before being finally decrypted. This second round of mixing ensures that the

privacy of users can not be compromised. A cheating server in the first round of

mixing may learn at most the relationship between a double-encrypted ciphertext

and a single-encrypted ciphertext, which does not help to find the corresponding

plaintext after the second round of mixing.

In the rest of this section, we describe these two building blocks in greater detail.

3.4.1 Proof of Product with Checksum.

Consider a mix server who receives as inputs n ElGamal ciphertexts (C
(i)
1 , C

(i)
2),

and outputs a permuted re-randomization of these, namely a permutation of the

list of (C ′
1
(i), C ′

2
(i)) = (C

(i)
1 Kri , C

(i)
2 gri). Our key idea is to let the mix server prove

that its operations are product preserving, i.e. that the product of the plaintexts

corresponding to the input ciphertexts (C
(i)
1 , C

(i)
2) equals the product of the plaintexts

corresponding to the output ciphertexts (C ′
1
(i), C ′

2
(i)).

Using the homomorphic property of ElGamal encryption, any verifier can com-

pute an ElGamal encryption (C1, C2) of
∏

mi, and an ElGamal encryption (C ′
1, C

′
2)

of
∏

m′
i, where mi (resp. m′

i) is the plaintext corresponding to (C
(i)
1 , C

(i)
2) (resp.,

(C ′
1
(i), C ′

2
(i))). To prove that its operations are product preserving, the mix server

only needs to prove that

logK(C ′
1/C1) = logg(C

′
2/C2).

As we saw in Section 3.3, this implies that
∏

mi =
∏

m′
i.

24

The Need for a Checksum The product equality
∏

mi =
∏

m′
i clearly does not

imply that the sets {mi}n
i=1 and {m′

i}n
i=1 are equal. In other words, the property

of being product-preserving does not by itself guarantee that a mix net operates

correctly. Our approach is to restrict the plaintexts mi (and therefore also m′
i) to a

particular format, in such a way that it becomes infeasible for a dishonest mix server

to find a set {m′
i} 6= {mi} such that

∏
mi =

∏
m′

i and all the elements m′
i are of the

required format. We propose to define this special format by adding a cryptographic

checksum to the plaintext, drawing on the techniques of Jakobsson-Juels [82]. This

is done as follows.

Users format their inputs to the mix net as an ElGamal encryption of a plaintext

m and an ElGamal encryption of h(m), where h is a cryptographic hash function (in

security analysis, we model h has a random oracle [15]):

(
EK(m, r), EK(h(m), r′)

)

Each input to the mix now consists of a pair of ElGamal ciphertexts. The mix

re-randomizes separately each of the two ElGamal ciphertexts in every pair, then

outputs all the pairs in a random order. The mix must then prove that the products

of the plaintexts corresponding to the first element in the pair are the same in the

input and the output (
∏

mi =
∏

m′
i) and also that the products of the plaintexts

corresponding to the second element in the pair are the same in the input and the

output (
∏

h(mi) =
∏

h(m′
i)). As we shall prove in Section 3.6, these two proofs

together guarantee the set equality {mi} = {m′
i}.

25

3.4.2 Double Enveloping

As we have already pointed out, a mix whose correctness was enforced only by a

proof-of-product with redundancy may not detect server cheating until after the harm

is done. To illustrate how users’ privacy may be compromised even if all cheating

servers are disqualified, we offer the following example. Assume that the first mix

server is corrupt and that the input submitted by user i is (EK(mi, ri), EK(h(mi), r
′
i)).

The corrupt first server can replace the input of user 1 by

(EK(m1, r1)EK(m2, r2), EK(h(m1), r
′
1)EK(h(m2), r

′
2)),

(recall that we define the product of vectors as a vector of products of the corre-

sponding components), and replace the input of user 2 by (1, 1, 1, 1). Such cheating

will only be detected after the decryption phase. Even if the cheating server were

to be disqualified and the mixing protocol restarted, the cheating server would still

be able to distinguish the plaintexts submitted by users 1 and 2 from other users’

plaintexts, by comparing the output of the restarted protocol with that of the first

execution.

To defend against this attack, we add a second layer of encryption to the plaintext

m of a user. A user whose plaintext input is m is required to submit the following

triple of ciphertexts to the mix:

(EK(C1, r), EK(C2, r
′), EK(h(C1, C2), r

′′)),

where

(C1, C2) = E(m, r̂)
4
= (m(K ′)r̂, K r̂).

(In the above inner-layer encryption, we use a new public key K ′ and replace the

26

canonical generator g with the outer-layer public key K. This technique, suggested by

Wilkström [141], will allow the user to prove his knowledge of the plaintext and thus

avoid a flaw of our original design in [66]. The proof will be detailed in Section 3.5.)

If cheating is caused by a corrupted server, we can re-randomize all the inner-layer

encryptions and their order, with a standard ElGamal-based re-randomization mix

net, before they are finally decrypted to plaintexts. Although the adversary might

be able to link some inner-layer encryptions to the input ciphertexts, he cannot link

the final output plaintexts to them.

3.5 Exit-Poll Mix Net

Assumptions As in Chapter 2, we assume that there exists a bulletin board,

which is accessible to the public, and is authenticated, tamper-proof, and resistant

to denial-of-service attacks. All messages and proofs are posted on this bulletin

board.

Setup The mix servers jointly generate parameters (p, q, g, k,K) for an ElGamal

cryptosystem E, and an additional pair of keys (k′, K ′) (which uses K, not g, as

generator). The public parameters and the additional public key K ′ are made public,

while the private keys k, k′ are shared among the mix servers in a (t, n)-Feldman VSS

scheme. Users are required to submit their input mi to the mix net formatted as

follows:

1. The user encrypts the input mi to produce EK′(mi) = (C
(i)
1 , C

(i)
2) = (mi(K

′)r̂, K r̂).

2. The user computes H(i) = h(EK′(mi)). As explained earlier, we model h as a

random oracle in the proof of security. In practice, a publicly available hash

function such as MD5 [120] or SHA-1 [107] should be used.

27

3. The user submits the triple EK(C
(i)
1), EK(C

(i)
2), EK(H(i)). The mix servers

check that every component belongs to Gq, and that this input has not already

been submitted. If any component is not in Gq, the user is disqualified and the

triple is discarded. If the same input has already been submitted by another

user, the duplicate submission is discarded.

4. The user proves his knowledge of the plaintext. (In the original design in [66],

we only require the user to prove his knowledge of C
(i)
1 , C

(i)
2 , H(i), but this was

found flawed by Wikström [141]. The following description is based on what

Wikström suggests in [141].) To achieve this goal, the user only needs to prove

that he knows all the random elements used for encrypting the plaintext. Recall

that

(EK(C
(i)
1), EK(C

(i)
2), EK(H(i))) = ((C

(i)
1 Kr, gr), (C

(i)
2 Kr′ , gr′), (H(i)Kr′′ , gr′′))

= ((mi(K
′)r̂Kr, gr), (K r̂+r′ , gr′),

(h(mi(K
′)r̂, K r̂)Kr′′ , gr′′)).

It suffices for the user to prove knowledge of r, r′, r′′ and r̂ + r′. Any user who

fails to give the proof is disqualified, and the corresponding input is discarded.

5. We note that dishonest users may submit inputs that are not properly format-

ted, in the sense that the equality H(i) = h(EK′(mi)) does not hold. We stress

that such improperly formatted inputs can not force our mix net to default to

the slower back-up mixing. The only event that can trigger a default to the

back-up mixing is cheating by one of the mix servers.

First stage: re-randomization and mixing This step proceeds as in all re-

randomization mix nets based on ElGamal. One by one, the mix servers re-randomize

28

all the inputs and their order. (Note that the components of triples are not separated

from each other during the re-randomization.) In addition, each mix net must give

a proof that the product of the plaintexts of all its inputs equals the product of the

plaintexts of all its outputs.

1. Each mix server reads from the bulletin board the list of triples corresponding

to re-encryptions of EK(C
(i)
1), EK(C

(i)
2), EK(H(i)) output by the previous mix

server: {(ai ·Kri , gri), (bi ·Ksi , gsi), (ci ·Kti , gti)}N
i=1. (Note that even if some

servers have cheated, the ciphertexts can still be formatted like that, provided

that every component belongs to Gq.)

2. The mix server re-randomizes the order of these triples according to a secret and

random permutation. Note that it is the order of triples that is re-randomized,

and that the three components EK(C
(i)
1), EK(C

(i)
2), and EK(H(i)) that make

up each triple remain in order.

3. The mix server then re-randomizes each component of each triple indepen-

dently, and outputs the results: {(a′i ·Kr′i , gr′i), (b′i ·Ks′i , gs′i), (c′i ·Kt′i , gt′i)}N
i=1.

4. The mix server proves that
∏

ai =
∏

a′i and
∏

bi =
∏

b′i and
∏

ci =
∏

c′i.

Second stage: decryption of the inputs

1. A quorum of mix servers jointly decrypt each triple of ciphertexts to produce

the values C
(i)
1 , C

(i)
2 and H(i), using the Desmedt-Frankel decryption technique.

2. All triples for which H(i) = h(C
(i)
1 , C

(i)
2) are called valid.

3. Invalid triples are investigated according to the procedure described below. If

the investigation proves that all invalid triples are benign (only users cheated),

29

we proceed to Step 4. Otherwise, the decryption is aborted, and we continue

with the back-up decryption.

4. A quorum of mix servers jointly decrypts the ciphertexts (C
(i)
1 , C

(i)
2) for all valid

triples. This successfully concludes the mixing. The final output is defined as

the set of plaintexts corresponding to valid triples.

Special step: investigation of invalid triples The investigation proceeds as

follows. The mix servers must reveal the path of each invalid triple through the

various permutations. For each invalid triple, starting from the last server, each

server reveals which of its inputs corresponds to this triple, and how it re-randomized

this triple. The cost of checking the path of an invalid triple is one exponentiation

per mix server (the same cost as that incurred to run one input through the mix

net). One of two things may happen:

• Benign case (only users cheated): if the mix servers successfully produce

all such paths, the invalid triples are known to have been submitted by users.

The decryption is resumed after the incorrect elements have been removed.

• Serious case (one or more servers cheated): if one or more mix servers fail

to recreate the paths of invalid triples, these mix servers are accused of cheating

and replaced, and our mix terminates without producing an output. In this

case, the inputs are handed over to the back-up mixing procedure described

next.

Back-up mixing The outer-layer encryption of the inputs posted to the mix net

is decrypted by a quorum of mix servers. The resulting set of inner-layer ciphertexts

becomes the input to a standard re-encryption mix net based on ElGamal (using,

30

for example, Neff’s scheme described in [104]). At the end of this second mixing, the

ciphertexts are finally decrypted to plaintexts, which concludes the mixing.

3.6 Analysis of Efficiency and Security

Efficiency We start with a brief discussion of the efficiency of our scheme. The

costs are as follows for a batch consisting of n inputs:

• Re-encryption and mixing: linear number of modular exponentiations (6n).

• Proof of correct mixing: constant number of modular exponentiations (but

number of modular multiplications linear in n).

• Verification: constant number of modular exponentiations per server (but

number of modular multiplications linear in n). The cost is also linear in the

number of servers.

• Decryption: linear number of modular exponentiations ((5 + 10m)n for m

servers).

This makes our mix twice as fast as the fastest mix network before this work [104].

Furthermore, in our mix, the costs are incurred mostly in the re-encryption and

decryption phases, which is similar to the Flash mix [79]. This is important because

these two phases (unlike the proof phase) can benefit from the significant speed-

up techniques developed by Jakobsson [79]. Using addition chains, we estimate

that the cost of one exponentiation is roughly equivalent to 10 multiplications, with

reasonably sized batches.

Correctness We now turn to the guarantees of correctness offered by our mix

network.

31

Claim 4 (Correctness) If all parties follow the protocol, the output of the mix net is

a permuted decryption of the input.

Because the set of plaintexts is preserved in re-randomizations, this follows im-

mediately from the correctness of decryption.

Verifiability The verifiability of our mix net is a restricted form of universal veri-

fiability in the sense that only the operation of the mix net on valid inputs (i.e., the

inputs that are well-formed according to our protocol) are universally verifiable. We

call this restricted form of verifiability “public verifiability”.

Definition 5 (Public Verifiability) A mix net is publicly verifiable if there exists a

polynomially bounded verifier that takes as input the transcript of the mixing posted on

the bulletin board, outputs “valid” if the set of valid outputs is a permuted decryption

of all valid inputs, and otherwise outputs “invalid” with high probability. Note that,

to prove public verifiability, we consider an adversary that can control all mix servers

and all users.

Claim 6 Our mix net is publicly verifiable if the discrete logarithm problem is hard

in Gq.

Proof: The proof proceeds by contradiction. We assume that one or several mix

servers cheat during the execution of a mixing protocol, yet manage to produce a

transcript that fools an outside verifier into believing that the mixing was done cor-

rectly. We show how to use these cheating mix servers to compute discrete logarithms

in the group Gq. Our proof is based on the following lemma:

Lemma 7 Let a and b be two elements of Gq. For random values ri and si, we

compute the following group elements: hi = aribsi. Let S be a non-empty subset of

32

the indices i’s such that
∏

i∈S hi = 1. With high probability, the knowledge of this set

S allows us to compute loga b.

The proof of the lemma is trivial: if
∑

i∈S ri 6= ∑
i∈S si, which happens with high

probability, then loga b = −(
∑

i∈S ri)/(
∑

i∈S si).

Now let us order the mix servers by the order in which they mix the inputs,

and consider the first cheating mix server. We denote the inputs given to this first

cheating mix server as:

(EK(C
(1)
1 , r1), EK(C

(1)
2 , r′1), EK(H(1), r′′1)), . . . , (EK(C

(N)
1 , rN), EK(C

(N)
2 , r′N), EK(H(N), r′′N)),

and its output as

(EK(C
(1)
1 , r1), EK(C

(1)
2 , r′1), EK(H

(1)
, r′′1)), . . . , (EK(C

(N)
1 , rN), EK(C

(N)
2 , r′N), EK(H

(N)
, r′′N)),

For cheating to escape detection, the equation

∏

i

H(i) =
∏

i

H
(i)

(3.1)

must hold, and in addition, we must have H
(i)

= h(C
(i)
1 , C

(i)
2) for all i. Furthermore,

because all servers before the first dishonest server are honest, the checksums in the

input are all correct, and therefore H(i) = h(C
(i)
1 , C

(i)
2). Equation 3.1 can therefore

be rewritten as:
∏

i

h(C
(i)
1 , C

(i)
2) =

∏

i

h(C
(i)
1 , C

(i)
2). (3.2)

Now recall that we model the hash function h as a random oracle. Each time a mix

server queries h on a new input, we choose random values ri and si and return aribsi

(we answer queries on inputs that have already been queried consistently). Because

33

the mix server cheated, Equation 3.2 gives us a non-trivial product relationship of

the type that allows us to compute discrete logarithms in the group Gq according to

Lemma 7, and this concludes the proof.

Privacy The above presented version of our mix network, based on the suggested

fix in [141], offers the same guarantee of privacy as all mix networks based on ElGamal

re-encryptions, e.g., [104].

3.7 Summary of the Work on Mix Network

We constructed a verifiable mix network that is extremely fast in case none of the

mix servers cheat. This enables election officials to quickly announce the results in

the common case when all mix servers honestly follow the mixing protocol. In case

one or more of the mix servers cheat, our system detects the cheating server or servers

and then redoes the mixing using one of the standard (slower) mix systems [104].

We emphasize that server cheating cannot compromise user privacy; it just causes

the mixing process to run slower.

This work on mix uses some of the techniques I show in Chapter 2. It also

uses additional techniques like internal checksum and double enveloping. Public

verifiability is a security property against malicious adversaries, specifically defined

for mix networks. Interested readers can compare it with the general definition of

security against malicious adversaries in secure multi-party computation [59].

34

Chapter 4

Data Entanglement: Secure

Storage with Untrusted Server

The previous chapter studies anonymization with an efficient mix network. In this

chapter, I consider a different scenario: building secure storage with an untrusted

server. To achieve this goal, one possible way is to entangle many users’ data to-

gether, so that corrupting one user’s data will lead to corruption of all other users’.

Obviously, the process of entangling is also a special case of computation with un-

trusted parties. The major security concern here is, however, integrity. In joint work

with James Aspnes, Joan Feigenbaum, and Aleksandr Yampolskiy [10], I study this

methodology.

Using data entanglement in storage systems was first proposed in Dagster [136]

and Tangler [96]. These systems split data into blocks in such a way that a single

block becomes a part of several documents; these documents are said to be entangled.

Dagster and Tangler use entanglement in conjunction with other techniques to deter

a censor from tampering with unpopular data. In this work, however, we focus on

entanglement only.

35

We argue that while Dagster and Tangler achieve their stated goals, they do not

achieve ours. In particular, we prove that deleting a typical document in Dagster

affects, on average, only a constant number of other documents; in Tangler, it affects

virtually no other documents. This motivates us to propose two stronger notions of

entanglement, called dependency and all-or-nothing integrity, which bind the users’

data so that it is hard to delete or modify the data of any one user without dam-

aging the data of all users. We study these notions in several submodels, which

vary in whether they permit arbitrary tampering with the common data store or

only destructive tampering, and in whether they restrict all users to a standard re-

covery algorithm or let some users adopt a non-standard algorithm supplied by the

adversary. In each of these models, we not only provide mechanisms for limiting

the damage done by the adversary, but also argue, under reasonable cryptographic

assumptions, that no stronger mechanisms are possible.

4.1 Background and Motivation

Suppose that I provide you with remote storage for your most valuable information.

I may advertise various desirable properties of my service: underground disk farms

protected from nuclear attack, daily backups to chiseled granite monuments, repli-

cation to thousands of sites scattered across the globe. But what assurance do you

have that I will not maliciously delete your data as soon as your subscription check

clears?

To convince you that you will not lose your data at my random whim, I might

offer stronger technical guarantees. Two storage systems proposed linking your data

to the data of other users: Dagster [136] and Tangler [96]. The intuition behind these

systems is that data are partitioned into blocks in a way that every block can be

36

used to reconstruct several documents. New documents are represented using some

number of existing blocks, chosen randomly from the pool, combined with new blocks

created using exclusive-or (Dagster) or 3-out-of-4 secret sharing [130] (Tangler). Two

documents that share a server block are said to be entangled.

Entangling new documents with old ones provides an incentive to retain blocks,

as the loss of a particular block might render many important documents inaccessi-

ble. Dagster and Tangler use entanglement as one of many mechanisms to discourage

negligent or malicious destruction of data; others involve disguising the ownership

and contents of documents and (in Tangler) storing documents redundantly. This

work is motivated in part by the question of whether these additional mechanisms

are necessary, or whether entanglement by itself can effectively deter malicious cen-

sorship.

We begin by analyzing the use of entanglement in Dagster and Tangler in Sec-

tion 4.2. We argue that the notion of entanglement provided by Dagster and Tangler

is not by itself sufficiently strong to discourage censorship by punishing data loss, as

not enough documents get deleted on average if an adversary destroys a block for

some targeted document. In particular, we show in Subsection 4.2.3 that destroying

a typical document in Dagster requires destroying only a constant number of addi-

tional documents on average, even if the adversary is restricted to the very limited

attack of deleting a single block chosen uniformly at random from the blocks that

make up the document. The situation with Tangler is worse: deleting two blocks

from a particular document destroys the document without destroying any others

(which lose at most one block each) in the typical case.

Our objective in this work is to examine the possibility of obtaining stronger

notions of entanglement, in which the fates of specific documents are directly tied

together. These stronger notions might be enough by themselves to deter censor-

37

ship, in that destroying a particular document, even if done by a very sophisticated

adversary, could require destroying most or all of the other documents in the system.

A system that provides such tight binding between documents gives a weak form of

censorship resistance; though we cannot guarantee that no documents will be lost,

we can guarantee that no documents will be lost unless the adversary burns down

the library. Under the assumption that the adversary can destroy data at will, this

may be the best guarantee we can hope to offer.

In Section 4.3, we define our model for a document-storage system in which the

adversary is allowed to modify the common data store after all documents have been

stored. Such modifications may include the block-deletion attacks that Dagster and

Tangler are designed to resist, but they may also include more sophisticated attacks

such as replacing parts of the store with modified data, or superencrypting all or

part of the store.

In addition to modifying the data store, in some variants of the model the adver-

sary is permitted to carry out what we call an upgrade attack (see Subsection 4.3.2),

in which the adversary offers all interested users the choice of adopting a new algo-

rithm to recover their data from the common store if they find that the old one no

longer works. Allowing such upgrade attacks is motivated by the observation that

a selfish user will jump at the chance to get his data back (especially if he has the

ability to distinguish genuine from false data) if the alternative is losing the data.

Upgrade attacks also exclude dependency mechanisms that rely on excessive fastid-

iousness in the recovery algorithm, as one might see in a recovery algorithm that

politely declines to return its user’s data if it detects that some other user’s data has

been lost.

In Section 4.4, we propose two stronger notions of entanglement in the context

of our model: document dependency and all-or-nothing integrity. If a document

38

of user A depends on a document of user B, then A can recover her document

only if B can. Unlike entanglement, document dependency is an externally-visible

property of a system; it does not require knowing how the system stores its data,

but only observing which documents can still be recovered after an attack. All-

or-nothing integrity is the ultimate form of document dependency, in which every

user’s document depends on every other user’s, so that either every user gets his data

back or no user does. Our stronger notions imply Dagster’s and Tangler’s notion of

entanglement but also ensure that an adversary cannot delete a document without

much more serious costs.

The main part of this work examines what security guarantees can be provided

depending on the assumptions made in the model. In Section 4.5, we consider how

the possibility or impossibility of providing document dependency is determined by

the choice of permitted adversary attacks. Subsection 4.5.1 shows that detecting

tampering using a MAC suffices for obtaining all-or-nothing integrity if all users use

a standard “polite” recovery algorithm. Subsection 4.5.2 shows that all-or-nothing

integrity can no longer be achieved for an unrestricted adversary if we allow upgrade

attacks. In Subsection 4.5.3, we show how to obtain a weaker guarantee that we call

symmetric recovery even with the most powerful adversary; here, each document

is equally likely to be destroyed by any attack on the data store. This approach

models systems that attempt to prevent censorship by disguising where documents

are stored. In Subsection 4.5.4, we show that it is possible to achieve all-or-nothing

integrity despite upgrade attacks if the adversary can only modify the common data

store in a way that destroys entropy, a generalization of the block-deleting attacks

considered in Dagster and Tangler.

Finally, in Section 4.6, we discuss the strengths and limitations of our approach,

and offer suggestions for future work on this topic.

39

4.1.1 Related Work

The problem of building reliable storage using untrusted servers has been studied for

a long time. We distinguish between three basic approaches: replication, tamper de-

tection, and entanglement. We also discuss the all-or-nothing transform, an unkeyed

cryptographic tool that provides guarantees similar to all-or-nothing integrity.

Replication. Anderson, in his seminal paper describing an “Eternity Service” [9],

proposed building a network of tamper-resistant servers spread around the world.

Stored documents are redundantly replicated across the network, thereby making

them censorship-resistant — difficult to delete without the cooperation of all servers.

Many subsequent storage systems [27, 58, 99, 32, 139] have since implemented vari-

ations on this idea.

These systems solve a problem that is different from, and complementary to, the

one considered in our work.

Our definition of all-or-nothing integrity applies just as well to distributed storage

mechanisms as to centralized ones and reflects the concerns of users who care more

about whether they will get their data back than how. Thus, even in a system that

promises data availability through replication, all-or-nothing integrity provides addi-

tional assurance to the users by guaranteeing that any failure to fulfill this promise

will carry a very high cost.

Tamper detection. A second approach to providing secure storage is based on

detecting invalid modifications of the stored data. Two common tools used for tamper

detection are digital signatures and Merkle hash trees [97]. Typical examples of such

systems include NASD [56], S4 [135], SFSRO [48], SiRiUS [57], SUNDR [94, 95], and

TDB [92].

40

The guarantee provided by these systems is rather weak. A user whose data is

lost is likely to notice with or without being notified by the system. However, as we

show in Section 4.5.1, tamper detection can be leveraged in to give all-or-nothing

integrity if all users run standard recovery algorithms by the simple expedient of

having all users politely refuse to recover their data if the store is tampered with.

That some users might insist on recovering their uncorrupted data anyway points

out a fundamental limitation of both the model of standard recovery algorithms and

the approach of tamper detection.

Entanglement. To prevent impolite users from recovering their own data even if

other users’ data have been lost, two storage systems have been proposed that create

dependencies between blocks of data belonging to different users: Dagster [136] and

Tangler [96]. Because of their close connection to our work, we discuss these systems

in Section 4.2.

All-or-nothing transform. Motivated by security problems in block ciphers, Rivest [121]

proposed a cryptographic primitive called all-or-nothing transform (AONT). An all-

or-nothing transform is an invertible transformation, which is similar to our notion

of all-or-nothing integrity in the sense that either all bits of the preimage can be

recovered (if the image is available) or none can be (if l bits of the image are lost)

(see [26, 134]). However, it is also radically different because it does not involve

multiple users who possess individual keys. Moreover, AONT does not consider the

possibility that the image may be corrupted in other ways than some bits being

deleted, such as the adversary superencrypting the entire data store.

41

4.2 Dagster and Tangler

We review how Dagster [136] and Tangler [96] work in Subsections 4.2.1 and 4.2.2,

respectively. We describe these systems at the block level and omit details of how

they break a document into blocks and assemble blocks back into a document. In

Subsection 4.2.3, we analyze the intuitive notion of entanglement provided by these

systems, pointing out some of this notion’s shortcomings if it is the only mechanism

provided to deter censorship.

4.2.1 Dagster

The Dagster storage system may run on a single server or on a P2P overlay network.

Each document in Dagster consists of c+1 server blocks: c blocks of older documents

and one new block, which is an exclusive-or of previous blocks with the encrypted

document. The storage protocol proceeds as follows:

Initialization Upon startup, the server creates approximately 1000 random server

blocks and adds them to the system.

Entanglement To publish document di, user i generates a random key ki. He then

chooses c random server blocks Ci1 , . . . , Cic and computes a new block

Ci = Eki
(di)⊕

⊕

j=1...c

Cij ,

where E is a plaintext-aware encryption function1 and ⊕ is bitwise exclusive-

or. The user releases instructions on recovering di, which come in the form

of a Dagster Resource Locator (DRL), a list of hashes of blocks needed to

1A plaintext-aware encryption function is one for which it is computationally infeasible to gener-
ate a valid ciphertext without knowing the corresponding plaintext. See [13] for a formal definition.

42

reconstruct di:

(
ki, π [h(Ci), h(Ci1), H(Ci2), . . . , h(Cic)]

)
.

Here h(·) is a cryptographic hash function and π is a random permutation.

Recovery To recover di, the user asks the server for blocks with hashes listed in the

DRL of di. If the hashes of the blocks returned by the server match the ones

in the DRL, the user computes:

Dki


Ci ⊕

⊕

j=1...c

Cij


 ,

where D represents a decryption function. Otherwise, the user exits.

4.2.2 Tangler

The Tangler storage system derives its name from the use of (4, 3)-Shamir secret

sharing [130] to entangle the data. Each document is represented by four server

blocks, any three of which are sufficient to reconstruct the original document. The

blocks are replicated across a subset of Tangler servers. A data structure similar to

Dagster Resource Locator, called an inode, is used to record the hashes of the blocks

needed to reconstruct the document. Here is the storage protocol:

Initialization As in Dagster, the server is jump-started with a bunch of random

blocks.

Entanglement Each server block in Tangler is a pair (x, y), where x is a random

element of GF (216) and y is the value of a polynomial at x. The polynomial

is uniquely determined by any three blocks; it is constructed in a way that

43

evaluating it at zero yields the actual data. To publish document di, user i

downloads two random server blocks, Ci1 = (x1, y1) and Ci2 = (x2, y2), and

interpolates them together with (0, di) to form a quadratic polynomial p(·).
Evaluating p(·) at two different nonzero integers yields new server blocks C ′

i1

and C ′
i2
. The user uploads the blocks and records the hashes of the blocks

comprising di (i.e., Ci1 , Ci2 , C
′
i1
, C ′

i2
) in di’s inode.

Recovery To recover his document, user i sends a request for blocks listed in di’s

inode to a subset of Tangler servers. Upon receiving three of di’s blocks, the

user can reconstruct p(·) and compute di = p(0).

4.2.3 Analysis of Entanglement

Let us take a snapshot of the contents of a Dagster or Tangler server. The server

contains a set of blocks {C1, . . . , Cm} comprising documents {d1, . . . , dn} of a group

of users. (Here m, n ∈ N+ and m ≥ n.)

Data are partitioned in a way that each block becomes a part of several doc-

uments. We can depict this documents-blocks relationship using an entanglement

graph (see Figure 4.1). The graph contains an edge (dj, Ck) if block Ck can be used

to reconstruct document dj. Note that even if the graph contains (dj, Ck), it may

still be possible to reconstruct dj from other blocks excluding Ck. Document nodes

in Dagster’s entanglement graph have an out-degree c + 1, and those in Tangler’s

have out-degree four. Entangled documents share one or more server blocks. In

Figure 4.1, documents d1 and dn are entangled because they share server block C1;

meanwhile, documents d1 and d2 are not entangled.

This shared-block notion of entanglement has several drawbacks. Even if docu-

ment dj is entangled with a specific document, it may still be possible to delete dj

44

...

d c11

c2

cmdn

d2

Figure 4.1: An entanglement graph is a bipartite graph from the set of documents
to the set of server blocks. An edge (dj, Ck) is in the graph if server block Ck can be
used to reconstruct document dj.

from the server without affecting that particular document. For example, knowing

that dn is entangled with d1 (as in Figure 4.1), and that d1 is owned by some Very

Important Person, may give solace to the owner of dn, who might assume that no

adversary would dare incur the wrath of the VIP merely to destroy dn. But in the

situation depicted in the figure, the adversary can still delete server blocks C2 and

Cm and corrupt dn but not d1.

Moreover, the user does not get to choose the documents to be entangled with

his document; these documents are chosen randomly. While destroying a user’s

document is likely to destroy some others, there are no specific other documents

that will necessarily be destroyed. If few other documents get destroyed on average,

the small risk of accidentally corrupting an important document will be unlikely to

deter the adversary from tampering with data.

We now derive an upper bound on how many documents get destroyed if we

delete a random document from a Dagster or Tangler server. We consider a re-

stricted adversary, who randomly chooses several blocks of an arbitrary document

(one block in Dagster; two in Tangler) and overwrites them with zeroes. Intuitively,

one might expect that the earlier the document was uploaded onto the server, the

more documents it will be entangled with and the more other documents will be

45

destroyed.

This turns out to be the case, as we prove for any specific target document in

Lemmas 8 and 9. In these two lemmas, we bound the expected number of documents

lost when deleting the j-th of n documents. The effects of deleting a document chosen

uniformly at random, stated in Claims 10 and 11, are computed by averaging these

bounds over all documents.

Without loss of generality, we assume that documents are numbered in the order

in which they were uploaded; namely, for all 1 ≤ j < n, document dj was uploaded

to the server before dj+1.

Lemma 8 In a Dagster server with n0 = O(1) initial blocks and n documents,

where each document is linked with c pre-existing blocks, deleting a random block

of document dj (1 ≤ j ≤ n) destroys on average

O

(
c log

(
n

j

))

other documents.

Proof: Altogether, there are n0 + n blocks stored on the server: n0 initial blocks

and n data blocks. We label the data blocks C1, . . . , Cn. The initial blocks exist on

the server before any data blocks have been added. We label them C−n0+1, . . . , C0.

Every document dj consists of c pre-existing or “old” blocks2 and a “new” data

block Cj that is computed during the entanglement stage. Consider an adversary

who destroys a random block Ci of dj. This will destroy dj, but it will also destroy

any documents with outgoing edges to Ci in the entanglement graph. We would like

to compute the number of such documents, Ni.

2These may be either initial blocks or data blocks of documents added earlier than dj (i.e., dk

with k < j).

46

If Ci is a data block (i.e., i ≥ 1), then

E[Ni] =
n∑

k=i

Pr[dk has an edge to Ci]

= 1 +
n∑

k=i+1

(
1−

(
k − 2 + n0

c

)
/

(
k − 1 + n0

c

))

< 1 + c
n+n0−1∑

j=i+n0

1

j

= 1 + c(hn+n0−1 − hi+n0−1)

= O
(
c log

(
n

i

))
under the assumption that n0 is a constant.

Meanwhile, if Ci is an initial block (i.e., i < 1), it can be linked by any of the

documents:

E[Ni] =
n∑

k=1

Pr[dk has an edge to Ci]

= O(c log n).

The number of documents deleted on average when the adversary destroys a

random block of dj is

Navg =
1

j + n0




j∑

i=−n0

E[Ni]




<
1

j


O(c log n) +

j∑

i=1

O
(
c log

(
n

i

))
 (4.1)

We can use Stirling’s formula to bound the leading term in (4.1):

j∑

i=1

O
(
c log

(
n

i

))
= O


c log




j∏

i=1

n

i







= O

(
cj log

(
n

j/e

))

47

= O

(
cj log

(
n

j

))
.

The lemma follows.

Lemma 9 In a Tangler server with n0 = O(1) initial blocks and n documents, delet-

ing two random blocks of document dj (1 ≤ j ≤ n) destroys on average

O

(
1

j

)

other documents.

Proof: The server contains n0 + 2n blocks, n0 of which are initial and 2n are data

blocks. We label the blocks as in the proof of Claim 10. The initial blocks are

C−n0+1, . . . , C0 and the data blocks are C1, C2, . . . , C2n−1, C2n.

In Tangler, every document dj consists of two old blocks of pre-existing documents

and two new blocks C2j−1 and C2j, computed during the entanglement stage. Suppose

an adversary deletes any two out of four blocks comprising dj; call these blocks Ci, Ct.

Then any document dk (k 6= j) that contains both Ci and Ct (i.e., has edges outgoing

to Ci and Ct in the entanglement graph), will also get destroyed. We would like to

compute the number of such documents, Navg.

In our analysis, we consider whether deleted blocks Ci, Ct are new or old to dj

and dk. We distinguish between five cases:

Case 1: Ci, Ct are old to both dj and dk. Then the number of deleted documents is

j−1∑

k=1

1(
2j−2+n0

2

) +
n∑

k=j+1

1(
2k−2+n0

2

) .

48

Case 2: Ci, Ct are old to dj. However, only one of them is old to dk, while the other

is new to dk. Note that, in this case, we must have k < j.

j−1∑

k=1

4(
2j−2+n0

2

) .

Case 3: Ci, Ct are old to dj, but new to dk. Note that, in this case, we must also

have k < j.

j−1∑

k=1

1(
2j−2+n0

2

) .

Case 4: One of Ci, Ct is old to dj, the other is new to dj. Note that both Ci and Ct

must be old to dk (because otherwise we would have k < j, which implies that

the block in Ci, Ct that is new to dj is not linked to dk, which further implies

that dk will not get deleted).

n∑

k=j+1

4(
2k−2+n0

2

) .

Case 5: Ci, Ct are new to dj. In this case, both Ci and Ct must be old to dk (for

the same reason as in Case 4).

n∑

k=j+1

1(
2k−2+n0

2

) .

Summing up the five cases gives us the total number of documents destroyed:

Navg =
6(j − 1)(
2j−2+n0

2

) +
n∑

k=j+1

6(
2k−2+n0

2

)

49

<
6

2j − 3
+

n∑

k=j+1

3

(k − 3
2
)2

<
6

2j − 3
+

∫ n

j

3

(x− 3
2
)2

dx

=
12

2j − 3
− 6

2n− 3

= O

(
1

j

)
for large n.

Using Lemma 8, we can show that destroying a typical document in Dagster

affects few other documents on average:

Claim 10 In a Dagster server with n documents, where each document is linked

with c pre-existing blocks, deleting a block of a random document destroys on average

O(c) other documents.

Proof: Suppose the server contains n documents, each document linked with c

server blocks. Then, Lemma 8 tells us that deleting document dj (1 ≤ j ≤ n) affects

O (c log (n/j)) other documents. Therefore, deleting a typical dj will affect

1

n

n∑

j=1

O

(
c log

(
n

j

))
= O


 c

n
log




n∏

j=1

n

j







= O

(
c

n
log

(
nn

(n/e)n

))

= O(c)

documents, as claimed.

We have a similar result for destroying a typical document in Tangler:

Claim 11 In a Tangler server with n documents, deleting two blocks of a random

document destroys on average O
(

log n
n

)
other documents.

50

The proof of Claim 11 is immediate from Lemma 8, so we do not give it here.

Even a small chance of destroying an important document will deter tampering

to some extent, but some tamperers might be willing to run that risk. Still more

troubling is the possibility that the tamperer might first flood the system with junk

documents, so that almost all real documents were entangled only with junk. Since

our bounds show that destruction of a typical document will on average affect only

a handful of others in Dagster and almost none in Tangler, we will need stronger

entanglement mechanisms if entanglement is to deter tampering by itself.

4.3 Our Model

In Subsection 4.3.1, we start by giving a basic framework for modeling systems

such as Dagster and Tangler that entangle data. Specializing the general framework

gives specific system models, differentiated by the choice of recovery algorithms and

restrictions placed on the adversary. We discuss them in Section 4.3.2.

As we mentioned, Dagster and Tangler use many worthwhile techniques in con-

junction with entanglement to provide censorship-resistance. Our model abstracts

away many such details of storage and recovery processes. We concentrate on a sin-

gle entanglement operation performed by these systems, which takes documents of

a finite group of users and intertwines these documents to form a common store. In

practice, the server contents would be computed as an aggregation of common stores

from multiple entanglement operations.

4.3.1 Basic Framework

Our model consists of an initialization phase, in which keys are generated and dis-

tributed to the various participants in the system; an entanglement phase, in which

51

the individual users’ data are combined into a common store; a tampering phase,

in which the adversary corrupts the store; and a recovery phase, in which the users

attempt to retrieve their data from the corrupted store using one or more recovery

algorithms. For simplicity of notation, we number the users {1, . . . , n}, where every

user i possesses a document di that he wants to publish.

Figure 4.2: Initialization, entanglement, and tampering stages.

An encoding scheme consists of three probabilistic Turing machines, (I, E,R),

that run in time polynomial in the size of their inputs and a security parameter

s. The first of these, the initialization algorithm I, hands out the keys used in the

encoding and recovery phases. The second, the encoding algorithm E, combines the

users’ data into a common store using the encoding key. The third, the recovery

algorithm R, attempts to recover each user’s data using the appropriate recovery

key.

Acting against the encoding scheme is an adversary (Ǐ , Ť , Ř), which also consists

of three probabilistic polynomial-time Turing machines . The first is an adversary-

52

initialization algorithm Ǐ; like the good initializer I, the evil Ǐ is responsible for

generating keys used by other parts of the adversary during the protocol. The second

is a tampering algorithm Ť , which modifies the common store. The third is a non-

standard recovery algorithm Ř, which may be used by some or all of the users to

recover their data from the modified store.

We assume that Ǐ, Ť and Ř are chosen after I, E, and R are known but that a

single fixed Ǐ, Ť , and Ř are used for arbitrarily large values of s and n.

Given an encoding scheme (I, E,R) and an adversary (Ǐ , Ť , Ř), the storage pro-

tocol proceeds as follows (see also Figure 4.2):

1. Initialization. The initializer I generates a combining key kE used by the

encoding algorithm and recovery keys k1, k2, . . . kn, where each key ki is used

by the recovery algorithm to recover the data for user i. At the same time, the

adversary initializer Ǐ generates the shared key ǩ for Ť and Ř.

kE, k1, k2, . . . kn ← I(1s, n),

ǩ ← Ǐ(1s, n).

2. Entanglement. The encoding algorithm E computes the combined store C from

the combining key kE and the data di:

C ← E(kE, d1, d2, . . . dn).

3. Tampering. The tamperer Ť alters the combined store C into Č:

Č ← Ť (ǩ, C).

53

4. Recovery. The users attempt to recover their data. User i applies his recovery

algorithm Ri to ki and the changed store Č. Each Ri could be either the

standard recovery algorithm R, supplied with the encoding scheme, or the

non-standard algorithm Ř, supplied by the adversary, depending on the choice

of the model.

d′i ← Ri(ki, Č)

We say that user i recovers his data if the output of Ri equals di.

4.3.2 Adversary Classes

We divide our model on two axes: one bounding the users’ choices of reconstruc-

tion algorithms and the other bounding the adversary’s power to modify the data

store. With respect to recovery algorithms, we consider three variants on the basic

framework (listed in order of increasing power given to the adversary):

• In the standard-recovery-algorithm model, the users are restricted to a single

standard recovery algorithm R, supplied by the system designer. Formally, this

means Ri = R for all users i; The adversary’s recovery algorithm Ř is not used.

This is the model used to analyze Dagster and Tangler.

• In the public-recovery-algorithm model, the adversary not only modifies the

combined store, but also supplies a single non-standard recovery algorithm Ř

to all of the users. Formally, we have Ri = Ř for each i. The original recovery

algorithm R is not used.3 We call this an upgrade attack by analogy to the real

life situation of a company changing the data format of documents processed

3Though it may seem unreasonable to prevent users from choosing the original recovery algorithm
R, any R can be rendered useless in practice by superencrypting the data store and distributing
the decryption key only with the adversary’s Ř. We discuss this issue further in Subsection 4.5.2.

54

by its software and distributing a new version of the software to read them.

We believe such an attack is a realistic possibility, because most self-interested

users will be happy to adopt a new recovery algorithm if it offers new features

or performance, or if the alternative is losing their data.

• In the private-recovery-algorithm model, the adversary may choose to supply

the non-standard recovery algorithm Ř to only a subset of the users. The rest

continue to use the standard algorithm R. Formally, this model is a mix of the

previous two models: Ri = R for some i and Ri = Ř for others.

We also differentiate between two types of tamperers:

• An arbitrary tamperer can freely corrupt the data store and is not restricted

in any way. Most real-life systems fit into this category as they place no

restrictions on the tamperer.

• A destructive tamperer can only apply a transformation to the store whose

range of possible outputs is substantially smaller than the set of inputs. The

destructive tamperer can superimpose its own encryption on the common store,

transform the store in arbitrary ways, and even add additional data, provided

that the cumulative effect of all these operations is to decrease the entropy of

the data store. Though a destructive tampering assumption may look like an

artificial restriction, it subsumes natural models of block deletion or corruption,

and either it or some similar assumption is needed to achieve all-or-nothing

integrity in the private-recovery-algorithm model.

An adversary class specifies what kind of tamperer Ť is and which users, if any,

receive Ř as their recovery algorithm. Altogether, we consider 6 (= 3× 2) adversary

classes, each corresponding to a combination of constraints on the tamperer and the

recovery algorithms.

55

4.4 Dependency and All-or-Nothing Integrity

We now give our definition of document dependency for a particular encoding scheme

and adversary class. We first discuss some basic definitions and assumptions in

Subsection 4.4.1. Our strong notions of entanglement, called dependency and all-or-

nothing integrity, are defined formally in Subsection 4.4.2.

4.4.1 Preliminaries

Fix an encoding (I, E, R), an adversary A = (Ǐ , Ť , Ř), and the recovery algorithm

Ri for each user i. An execution of the resulting system specifies the inputs ki and di

to E, the output of E, the tamperer’s input ǩ and output Č, and the output of the

recovery algorithm Ri (R(ki, Č) or Ř(ǩ, ki, Č) as appropriate) for each user. The set

of possible executions of the storage system is assigned probabilities in the obvious

way: the probability of an execution is taken over the inputs to the storage system

and the coin tosses of the encoding scheme and the adversary. It will be convenient

to consider multiple adversaries with a fixed encoding scheme. In this case, we use

PrA(Q) to denote the probability that an event Q occurs when A is the adversary.

During an execution of the storage system, the tamperer alters the combined

store from C into Č. As a result, some users end up recovering their documents

while others do not. The recovery vector of an execution specifies which documents

were successfully recovered in that execution. Formally:

Definition 12 The recovery vector of execution α, denoted ~ρ(α), is a bit vector

~ρ(α) = (ρ1, ρ2, . . . , ρn),

56

where

ρi =





1 if Ri(ki, Č) = di,

0 otherwise

To illustrate, suppose that the server contains three documents: d1, d2, and d3.

If in execution α we recover only documents d1 and d2, we then have: ~ρ(α) = 110.

When we think of α as a random variable (having fixed a particular encoding

algorithm and adversary), we will use ~r as a shorthand for the random variable

~ρ(α).

4.4.2 Our Notions of Entanglement

In Section 4.2, we observed that the block-sharing notion of entanglement provided

by Dagster and Tangler does not by itself provide strong security guarantees. Two

documents may be entangled in this sense even though it is still possible to delete

one of them without affecting the other. This motivates us to propose the notion of

document dependency. Document dependency formalizes the idea that “if my data

depends on yours, I can’t get my data back if you can’t.” In this way, the fates of

specific documents become linked together: specifically, if document di depends on

document dj, then whenever dj cannot be recovered neither can di. Formally:

Definition 13 A document di depends on a document dj with respect to a class of

adversaries A, denoted di
A
↪→ dj, if, for all adversaries A ∈ A,

Pr
A

[ri = 0 ∨ rj = 1] ≥ 1− ε,

where ε is negligible in the security parameter s.

Remark: Hereafter, ε refers to a negligible function of the security parameter s.

The ultimate form of dependency is all-or-nothing integrity. Intuitively, a storage

57

system is all-or-nothing if either every user i recovers his data or no user does:

Definition 14 A storage system is all-or-nothing with respect to a class of adver-

saries A if, for all A ∈ A,

Pr
A

[~r = 0n ∨ ~r = 1n] ≥ 1− ε.

It is easy to show that

Lemma 15 A storage system is all-or-nothing with respect to a class of adversaries

A if and only if, for all users i, j, di
A
↪→ dj.

Proof: Fix an adversary in A. Let E be the event that an execution of the storage

system is not all-or-nothing, and Fij the event that document di was recovered in an

execution and dj was not. Then E = {~r 6= 0n ∧ ~r 6= 1n} and Fij = {ri = 1∧ rj = 0}.

(⇒) : If the system is all-or-nothing, then Pr[E] < ε. Clearly, for all i, j, we have

Fij ⊆ E, which means Pr[Fij] ≤ Pr[E] < ε. This in turn implies di
A
↪→ dj.

(⇐) : If for all i, j, di
A
↪→ dj, then Pr[Fij] < ε. We can choose ε < ε′/n2 for a

negligible ε′.

Notice that E ⊆ ⋃
i,j Fij. Therefore, Pr[E] ≤ ∑

i,j Pr[Fij] < n2ε < ε′. Hence,

Pr[Ec] ≥ 1− ε′ and so the storage system is all-or-nothing.

All-or-nothing integrity is a very strong property. In some models, we may not

be able to achieve it, and we will accept a weaker property called symmetric recov-

ery. Symmetric recovery requires that all users recover their documents with equal

probability:

58

Definition 16 A storage system has symmetric recovery with respect to a class of

adversaries A if, for all A ∈ A and all users i and j,

Pr
A

[ri = 1] = Pr
A

[rj = 1].

Symmetric recovery says nothing about what happens in particular executions.

For example, it is consistent with the definition for exactly one of the data items to

be recovered in every execution, as long as the adversary cannot affect which data

item is recovered. This is not as strong a property as all-or-nothing integrity, but it

is the best that can be done in some cases.

4.5 Possibility and Impossibility Results

The possibility of achieving all-or-nothing integrity (abbreviated AONI) depends on

the class of adversaries we consider. In Subsections 4.5.1 through 4.5.3, we consider

adversaries with an arbitrary tamperer. In the standard-recovery-algorithm model, a

simple application of Message Authentication Codes (MACs) achieves all-or-nothing

integrity. In the public-recovery-algorithm model, all-or-nothing integrity is no longer

possible. The best that can be done is to prevent the adversary from targeting

specific users by hiding the location of each user’s data within the store. In the

private-recovery-algorithm model, even the weak guarantees of the public-recovery-

algorithm model are no longer possible, because the adversary can superencrypt the

data store and refuse to distribute the decryption key to users he doesn’t like.

In Subsection 4.5.4, we look at adversaries with a destructive tamperer. We give

a simple interpolation scheme that achieves all-or-nothing integrity for a destructive

tamperer in all three recovery models.

59

4.5.1 Possibility of AONI in the Standard-Recovery-Algorithm

Model

In the standard-recovery-algorithm model, all users use the standard recovery al-

gorithm R; that is Ri = R for all users i. Both Dagster and Tangler assume this

model.

This model allows a very simple mechanism for all-or-nothing integrity based on

Message Authentication Codes (MACs).4 The intuition behind this mechanism is

that the encoding algorithm E simply tags the data store with a MAC using a key

known to all the users, and the recovery algorithm R returns an individual user’s

data only if the MAC on the entire database is valid.

We now give an encoding scheme (I, E, R) based on a MAC scheme (GEN, TAG, V ER):

Initialization The initialization algorithm I computes kMAC = GEN(1s). It then

returns an encoding key kE = kMAC and recovery keys ki = (i, kMAC).

Entanglement The encoding algorithm E generates an n-tuple

m = (d1, d2, . . . , dn) and returns C = (m,σ) where σ = TAG(kMAC ,m).

Recovery The standard recovery algorithm R takes as input a key ki = (i, kMAC)

and the (possibly modified) store Č = (m̌, σ̌). It returns m̌i if V ER(kMAC , m̌, σ̌) =

accept and returns a default value ⊥ otherwise.

The following theorem states that this encoding scheme achieves all-or-nothing

4Recall that a MAC consists of three algorithms (GEN,TAG, V ER) (see [64]). A key generator
GEN on input 1s outputs an s-bit key kMAC . A tagging algorithm TAG on input kMAC and
message m (|m| ≤ sc) computes a signature σ. A verification algorithm V ER can be used to check
if σ is a valid signature on m. It has the property that V ER(kMAC ,m, TAG(kMAC ,m)) = accept
for all m.

We require a MAC to be existentially unforgeable under chosen message attacks. This means
there is no polynomial time forger F that generates a new message-signature pair (m′, σ′) that is
accepted by V ER with probability exceeding O(s−c) for any c > 0, even if F is given a sample of
valid message-signature pairs (mi, σi), where mi is chosen by the adversary.

60

integrity with standard recovery algorithms:

Theorem 17 Let (GEN, TAG, V ER) be a MAC scheme that is existentially un-

forgeable against chosen message attacks, and let (I, E,R) be an encoding scheme

based on this MAC scheme as above. Let A be the class of adversaries that does not

provide non-standard recovery algorithms Ř. Then there exists some minimum s0

such that for any security parameter s ≥ s0 and any inputs d1, . . . , dn with
∑ |di| ≤ s,

(I, E, R) is all-or-nothing with respect to A.

Proof: Fix some c > 0. Recall that the adversary changes the combined store from

C = (m, σ) to Č = (m̌, σ̌). We consider two cases, depending on whether or not

m̌ = m.

In the first case, m̌ = m. Suppose R(ki, Č) = di but R(kj, Č) 6= dj. Then

R(kj, Č) = ⊥, which implies that V (kMAC ,m, σ̌) 6= accept when computed by

R(kj, Č) and thus that σ̌ 6= σ. But R(ki, Č) = di only if V (kMAC ,m, σ̌) = accept

when computed by R(ki, Č). It follows that (m, σ̌) is a message-MAC pair not equal

to (m, σ) that V accepts in the execution of R(ki, Č); by the security assumption

this occurs for a particular execution of V only with probability O(s−c′) for any fixed

c′. If we choose c′ and s0 so that the O(s−c′) term is smaller than 1
2n

s−c for s ≥ s0,

then the probability that any of the n executions of V in the recovery stage accepts

(m, σ̌) in some case where m = m̌, is bounded by 1
2
s−c.

In the second case, m 6= m̌. Now (m̌, σ̌) is a message-MAC pair not equal to

(m,σ). If every execution of V rejects (m̌, σ̌), then all R(di, Č) return ⊥ and the

execution has a recovery vector 0n. The only bad case is when at least one execution

of V erroneously accepts (m̌, σ̌). But using the security assumption and choosing

c′, s0 as in the previous case, we again have that the probability that V accepts (m̌, σ̌)

in any of the n executions of R is at most 1
2
s−c.

61

Summing the probabilities of the two bad cases gives us the desired bound:

PrA[~r = 0n ∨ ~r = 1n] > 1− s−c.

4.5.2 Impossibility of AONI in the Public and Private-Recovery-

Algorithm Models

In both these models, the adversary modifies the common store and distributes a

non-standard recovery algorithm Ř to the users (either to all users or only to a few

select accomplices). Let us begin by showing that all-or-nothing integrity cannot be

achieved consistently in either case:

Theorem 18 For any encoding scheme (I, E, R), if A is the class of adversaries

providing non-standard recovery algorithms Ř, then (I, E, R) is not all-or-nothing

with respect to A.

Proof: Let the adversary initializer Ǐ be a no-op and let the tamperer Ť be the

identity transformation. We will rely entirely on the non-standard recovery algorithm

to destroy all-or-nothing integrity.

Let Ř flip a biased coin that comes up tails with probability 1/n, and return the

result of running R on its input if the coin comes up heads and ⊥ if the coin comes

up tails. Then exactly one document is not returned with probability n · (1/n) ·
(1− 1/n)n−1, which converges to 1/e in the limit. Because this document is equally

likely to be any of the n documents by symmetry, we get each of the recovery vectors

described in the theorem with a non-negligible probability that converges to 1/en.

The outcome is all-or-nothing only if all instances of Ř flip the same way, which

occurs with probability PrA[~r = 0n ∨ ~r = 1n] < 1− 1/en.

The proof of Theorem 18 is rather trivial, which suggests that letting the adver-

sary substitute an error-prone recovery algorithm in place of the standard one gives

62

the adversary far too much power. But it is not at all clear how to restrict the model

to allow the adversary to provide an improved recovery algorithm without allowing

for this particular attack.

One possibility would be to allow users to choose between applying the original

recovery algorithm and the adversary’s new and improved version; but in practice

this approach is easily defeated by a tamperer Ť that encrypts C (which renders Č

unusable as input to R) coupled with an error-prone Ř that reverses the encryption

(when its coin comes up heads) before applying R.

A more sophisticated approach would be to allow R to analyze Ř to attempt

to undo whatever superencryption may have been performed and extract a recovery

algorithm that works all the time. Unfortunately, this approach depends on being

able to extract useful information about the workings of an arbitrary Turing machine.

While it has been shown that program obfuscation is impossible in general [11], even

in a specialized form this operation is likely to be very difficult, especially if the

random choice to decrypt incorrectly is not a single if-then test but is the result of

accumulating error distributed throughout the computation of Ř.

On the other hand, we do not know of any general mechanism to ensure that no

useful information can be gleaned from Ř, and it is not out of the question that there

is an encoding so transparent that no superencryption can disguise it for sufficiently

large inputs, given that both Ř and the adversary’s key ǩ are public.

4.5.3 Possibility of Symmetric Recovery in the Public-Recovery-

Algorithm Model

As we have seen, if we place no restrictions on the tamperer, it becomes impossible

to achieve all-or-nothing integrity in the public-recovery-algorithm model. We now

63

show that we can still achieve symmetric recovery.

Because we cannot prevent mass destruction of data, we will settle for preventing

targeted destruction. The basic intuition is that if the encoding process is symmetric

with respect to permutations of the data, then neither the tampering algorithm nor

its partner, the non-standard recovery algorithm, can distinguish between different

inputs. Symmetry in the encoding algorithm is not difficult to achieve and basically

requires not including any positional information in the keys or the representation

of data in the common store. One example of a symmetric encoding is a trivial

mechanism that tags each input di with a random ki and then stores a sequence of

(di, ki) pairs in random order.

Symmetry in the data is a stronger requirement. Here, we assume that users’

documents di are independent and identically distributed (i.i.d.) random variables.

If documents are not i.i.d (in particular, if they are fixed), we can use a simple trick

to make them appear i.i.d.: Each user i picks a small number ri independently and

uniformly at random, remembers the number, and computes d′i = di ⊕G(ri), where

G is a pseudorandom generator. The users can then store documents d′i (1 ≤ i ≤ n)

instead of the original documents di. To recover di, user i would retrieve d′i from the

server and compute di = d′i ⊕G(ri).

We shall need a formal definition of symmetric encodings:

Definition 19 An encoding scheme (I, E, R) is symmetric if, for any s and n, any

inputs d1, d2, . . . dn, and any permutation π of the indices 1 through n, if the joint

distribution of k1, k2, . . . , kn and C in executions with user inputs d1, d2, . . . dn is

equal to the joint distribution of kπ1 , kπ2 , . . . , kπn and C in executions with user inputs

dπ1 , dπ2 , . . . dπn.

Using this definition, it is easy to show that any symmetric encoding gives sym-

64

metric recovery:

Theorem 20 Let (I, E, R) be a symmetric encoding scheme. Let A be a class of ad-

versaries as in Theorem 18. Fix s and n, and let d1, . . . , dn be random variables that

are independent and identically distributed. Then (I, E,R) has symmetric recovery

with respect to A.

Proof: Fix i and j. From Definition 19 we have that the joint distribution of the

ki and C is symmetric with respect to permutation of the user indices; in particular,

for any fixed d, S and x,

Pr[C = S, ki = x | di = d] = Pr[C = S, kj = x | dj = d]. (4.2)

We also have, from the assumption that the di are i.i.d.,

Pr[di = d] = Pr[dj = d]. (4.3)

Using (4.2) and (4.3), we get

Pr[Ř(ǩ, ki, Ť (C)) = di]

=
∑

x,S,d

Pr[Ř(ǩ, x, Ť (S)) = d] Pr[C = S, ki = x, di = d]

=
∑

x,S,d

Pr[Ř(ǩ, x, Ť (S)) = d] Pr[C = S, ki = x | di = d] Pr[di = d]

=
∑

x,S,d

Pr[Ř(ǩ, x, Ť (S)) = d] Pr[C = S, kj = x | dj = d] Pr[dj = d]

= Pr[Ř(ǩ, kj, Č) = dj].

This is simply another way of writing PrA[ri = 1] = PrA[rj = 1].

65

4.5.4 Possibility of AONI for Destructive Adversaries

Unfortunately, neither all-or-nothing integrity nor symmetric recovery can be achieved

in the private-recovery-algorithm model for an arbitrary tamperer. The adversary

can always superencrypt the data store and distribute a useless recovery algorithm

to some users that refuses to return the data. We need to place some additional

restrictions on the adversary.

A tampering algorithm Ť is destructive if the range of Ť when applied to an

input domain of m distinct possible data stores has size less than m. The amount

of destructiveness is measured in bits: if the range of Ť when applied to a domain

of size m has size r, then Ť destroys lg m − lg r bits of entropy. Note that it is not

necessarily the case that the outputs of Ť are smaller than its inputs; it is enough

that there be fewer of them.

Below, we describe a particular encoding, based on polynomial interpolation, with

the property that after a sufficiently destructive tampering, the probability that any

recovery algorithm can reconstruct a particular di is small. While this is trivially

true for an unrestrained tamperer that destroys all lg m bits of the common store,

our scheme requires only that with n documents the tamperer destroy slightly more

than n lg(n/ε) bits before the probability that any of the data can be recovered drops

below ε (a formal statement of this result is found in Corollary 22). Because n counts

only the number of users and not the size of the data, for a fixed population of users

the number of bits that can be destroyed before all users lose their data is effectively

a constant independent of the size of the store being tampered with.

The encoding scheme is as follows. It assumes that each data item can be encoded

as an element of Zp, where p is a prime of roughly s bits.

Initialization The initialization algorithm I chooses k1, k2, . . . kn independently and

66

uniformly at random without replacement from Zp. It sets kE = (k1, k2, . . . , kn)

and then returns kE, k1, . . . kn.

Entanglement The encoding algorithm E computes, using Lagrange interpola-

tion, the coefficients cn−1, cn−2, . . . c0 of the unique degree (n − 1) polyno-

mial f over Zp with the property that f(ki) = di for each i. It returns

C = (cn−1, cn−2, . . . c0).

Recovery The standard recovery algorithm R returns f(ki), where f is the polyno-

mial whose coefficients are given by C.

Intuitively, the reason the tamperer cannot remove too much entropy without

destroying all data is that it cannot identify which points d = f(k) correspond to

actual user keys. When it maps two polynomials f1 and f2 to the same corrupted

store Č, the best that the non-standard recovery algorithm can do is return one of

f1(ki) or f2(ki) given a particular key ki. But if too many polynomials are mapped

to the same Č, the odds that Ř returns the value of the correct polynomial will be

small.

A complication is that a particularly clever adversary could look for polynomi-

als whose values overlap; if f1(k) = f2(k), it doesn’t matter which f the recovery

algorithm picks. But here we can use that fact that two degree (n− 1) polynomials

cannot overlap in more than (n − 1) places without being equal. This limits how

much packing the adversary can do.

As in Theorem 20, we assume that the user inputs d1, . . . , dn are chosen indepen-

dently and have identical distributions. We make a further assumption that each di is

chosen uniformly from Zp. This is necessary to ensure that the resulting polynomials

span the full pn possibilities.5

5The assumption that the documents are i.i.d. does not constraint the applicability of our results
much, because the technique to get rid of it described in Section 4.5.2 can also be used here.

67

Under these conditions, sufficiently destructive tampering prevents recovery of

any information with high probability. We will show an accurate but inconvenient

bound on this probability in Claim 21 and give a cruder but more useful statement

of the bound in Corollary 22.

Claim 21 Let (I, E,R) be defined as above. Let A = (Ǐ , Ť , Ř) be an adversary where

Ť is destructive: for a fixed input size and security parameter, there is a constant M

such that for each key ǩ,

|{Ť (ǩ, f)}| ≤ M,

where f ranges over the possible store values, i.e. over all degree-(n−1) polynomials

over Zp. If the di are drawn independently and uniformly from Zp, then the probability

that at least one user i recovers di using Ř is

Pr
A

[~r 6= 0n] <
2n2 + nM1/n

p
, (4.4)

even if all users use Ř as their recovery algorithm.

Proof: Condition on ǩ and the outcome of all coin-flips used by Ť and Ř. Then,

there are exactly pn
(

p
n

)
possible executions, each of equal probability, determined by

the pn choices for the di and the
(

p
n

)
choices for the ki. For each i, we will show that

the number of these executions in which Ř(ǩ, ki, Č) = di is small.

For each degree-(n−1) polynomial f , define f ∗ to be the function mapping each k

in Zp to Ř(ǩ, k, Ť (ǩ, f)). Note that f ∗ is deterministic given that we are conditioning

on ǩ and all coin-flips in Ť and Ř. Define Cf , the correct inputs for f , to be the set

of keys k for which f(k) = f ∗(k).

The adversary produces a correct output only if at least one of the n user keys

68

appears in Cf . For a given f , the probability that none of the keys appear in Cf is

(
p−|Cf |

n

)
(

p
n

) >
(p− |Cf | − n)n

pn

=

(
1− |Cf |+ n

p

)n

> 1− n(|Cf |+ n)

p
,

and so the probability that at least one key appears in Cf is at most n
p
|Cf | + n2

p
.

Averaging over all f then gives

Pr [f ∗(ki) = di for at least one i] <
n2

p
+

n

pn+1

∑

f

|Cf |. (4.5)

We will now use the bound on the number of distinct f ∗ to show that
∑

f |Cf | is

small.

Consider the set of all polynomials f1, f2, . . . fm that map to a single function

f ∗, and their corresponding sets of correct keys Cf1 , Cf2 , . . . Cfm . Because any two

degree (n− 1) polynomials are equal if they are equal on any n elements of Zp, each

n-element subset of Zp can be contained in at most one of the Cfi
. On the other

hand, each Cfi
contains exactly

(|Cfi
|

n

)
subsets of size n. Because there are only

(
p
n

)

subsets of size n to partition between the Cfi
, we have

∑

i

(|Cfi
|

n

)
≤

(
p

n

)
,

and summing over all M choices of f ∗ then gives

∑

f

(|Cf |
n

)
≤ M

(
p

n

)
.

69

We now wish to bound the maximum possible value of
∑

f |Cf | given this constraint.

Observe that
(|Cf |

n

)
>

(|Cf |−n)n

n!
when |Cf | ≥ n, from which it follows that

∑

f :|Cf |≥n

(|Cf | − n)n < n!
∑

f

(|Cf |
n

)
< n!M

(
p

n

)
. (4.6)

Now, (|Cf | − n)n is a convex function of |Cf |, so the left-hand side is minimized

for fixed
∑

f |Cf | by setting all |Cf | equal. It follows that
∑

f |Cf | is maximized for

fixed
∑

f :|Cf |≥n(|Cf | − n)n when all |Cf | are equal.

Setting each |Cf | = c and summing over all pn values of f , we get

pn(c− n)n < n!M

(
p

n

)
,

from which it follows that

c <
1

p

(
n!M

(
p

n

))1/n

+ n,

and thus that
∑

f

|Cf | ≤ pnc < pn−1

(
n!M

(
p

n

))1/n

+ npn.

Plugging this bound back into (4.5) then gives

Pr
A

[~r 6= 0n] = Pr [f ∗(ki) = di for at least one i]

<
2n2

p
+

n

p2

(
n!M

(
p

n

))1/n

<
2n2

p
+

n

p2
(Mpn)1/n

=
2n2 + nM1/n

p
.

70

Using Claim 21, it is not hard to compute a limit on how much information the

tamperer can remove before recovering any of the data becomes impossible:

Corollary 22 Let (I, E, R) and (Ǐ , Ť , Ř) be as in Claim 21. Let ε > 0 and let

p > 4n3/ε. If for any fixed ǩ, Ť destroys at least n lg(n/ε) + 1 bits of entropy, then

Pr
A

[~r = 0n] ≥ 1− ε.

Proof: Let ε′ = ε /
(

1
2n

+ 2−1/n
)
. If Ť destroys at least n lg(n/ε′)+1 bits of entropy,

then we have

M ≤ pn · 2−(n lg(n/ε′)+1) =
1

2
pn(n/ε′)−n =

1

2
(pε′/n)

n
. (4.7)

Plug this into (4.4) to get:

Pr[some di is recovered] ≤ 2n2 + nM1/n

p

≤
2n2 + n

(
1
2
(pε′/n)n

)1/n

p

=
2n2

p
+ 2−1/nε′

<
2n2

4n3/ε′
+ 2−1/nε′

= ε′
(

1

2n
+ 2−1/n

)

= ε.

We thus have:

Pr
A

[~r = 0n] = 1− Pr[some di is recovered] ≥ 1− ε.

71

Destructive Tamperer Arbitrary Tamperer

Standard Recovery all-or-nothing all-or-nothing
Public Recovery all-or-nothing symmetric recovery
Private Recovery all-or-nothing —

Table 4.1: Summary of results. “All-or-nothing” means that all-or-nothing integrity
can be achieved in this model; “symmetric recovery” means that all-nothing integrity
cannot be achieved, but symmetric recovery can; “—” means that no guarantees are
possible.

4.6 Summary of the Study of Data Entanglement

Entangling documents of different users is a promising idea for strengthening the

integrity of individual users’ data, especially when the data is stored in an untrusted

server. However, existing systems such as Dagster and Tangler only have an intu-

itive notion of entanglement that is insufficient by itself to provide much increased

security. In this chapter, we analyzed the probability of destroying one document

without affecting any other documents in these systems. Our analysis showed that

the security they provide is not strong, even if we limit the class of attacks permitted

against the entangled data.

Motivated by the desire to improve the security provided by entanglement, we

defined the stronger notion of document dependency, in which destroying some docu-

ment is guaranteed to destroy specific other documents, and all-or-nothing integrity,

in which destroying some document is guaranteed to destroy all other documents.

We considered a variety of potential attacks and showed for each what level of se-

curity was possible. These results are summarized in Table 4.6; they show that it is

possible in principle to achieve all-or-nothing integrity with only mild restrictions on

the adversary.

Whether it is possible in practice is a different question. Our model abstracts

away most of the details of the storage and recovery processes, which hides unde-

72

sirable features of our algorithms such as the need to process all data being stored

simultaneously and the need to read every bit of the data store to recover any data

item. Some of these undesirable features could be removed with a more sophisticated

model, such as a round-based model that treated data as arriving over time, allowing

combining algorithms that would touch less of the data store for each storage or re-

trieval operation at the cost of making fewer documents depend on each other. The

resulting system might look like a variant of Dagster or Tangler with stronger mech-

anisms for entanglement. But such a model might permit more dangerous attacks if

the adversary is allowed to tamper with data during storage, and finding the right

balance between providing useful guarantees and modeling realistic attacks will be

necessary.

73

Chapter 5

Privacy-Preserving Data Mining

for Association Rules

This chapter addresses a concrete scenario of computation with untrusted parties in

the context of data mining for association rules. Standard algorithms for association-

rule mining are based on identification of frequent itemsets. In this chapter, we

consider how to maintain privacy in distributed mining of frequent itemsets [143].

That is, we study how two (or more) parties find frequent itemsets in a distributed

database without revealing each party’s portion of the data to the other. The previ-

ous solution for vertically partitioned data leaks a significant amount of information,

while the previous solution for horizontally partitioned data only works for three

parties or more. In this work, we apply the techniques from Chapter 2 to design

algorithms for both vertically and horizontally partitioned data. We give two algo-

rithms for vertically partitioned data; one of them reveals only the support count,

and the other reveals nothing. Both of them have computational overheads linear in

the number of transactions. Our algorithm for horizontally partitioned data works

for two or more parties and is more efficient than the previous solution.

74

5.1 Background and Motivation

Data mining has been studied extensively and applied widely. Through the use of

data-mining techniques, businesses can discover hidden patterns and rules from a

database and then employ them to predict the future. An important case of data

mining is distributed data mining, in which a database is distributed among two

or more parties, and each party owns a portion of the data. These parties need

to collaborate with each other so that they can jointly mine the data and produce

results that are interesting to both of them. Privacy concerns are of great importance

in this scenario, because each party does not want to reveal her own portion of the

data, although she would like to participate in the mining.

This work is concerned with a major category of data mining, namely mining

of association rules. Look at the transaction database of a supermarket. We may

find that most of those who buy bread also buy milk. Therefore, “bread ⇒ milk,”

which means “buying bread implies buying milk,” is a candidate association rule.

Two metrics are defined to measure such a candidate rule: confidence and support.

Here confidence means the number of transactions in which both bread and milk are

bought divided by the number of transactions in which bread is bought. Support

means the number of transactions in which bread and milk are bought divided by

the overall number of transactions. A candidate is considered a valid association rule

if both its confidence and its support are sufficiently high.

Standard algorithms for association rule mining are based on identification of

frequent itemsets [6]. We say that bread and milk constitute a frequent itemset if,

in a sufficiently large percentage of transactions, both of them are bought (i.e. if its

support is high). If all frequent itemsets can be computed, then all association rules

can be computed easily from the frequent itemsets.

75

In this work, we study how to maintain privacy in distributed mining of frequent

itemsets. That is, we study how two (or more) parties find frequent itemsets in a

distributed database without revealing each party’s portion of the data to the other.

We will formally specify what we mean by “privacy.” We will also give solutions for

two major types of data partition, namely vertical partition and horizontal partition,

and show that our algorithms preserve privacy.

Related Work To the best of our knowledge, Clifton and his students were the first

to study privacy-preserving distributed mining of association rules/frequent itemsets.

In [138], Vaidya and Clifton gave an algebraic solution for vertically partitioned data.

However, this solution can leak many linear combinations of each party’s private data

to the other. Furthermore, to process one candidate frequent itemset, its computa-

tional overhead is quadratic in the number of transactions. In [86, 87], Kantarcioglu

and Clifton gave a solution for horizontally partitioned data. However, this solu-

tion uses Yao’s generic secure-computation protocol as a subprotocol; furthermore,

it only works for three parties or more, not for two parties.

Privacy-preserving data mining has been a topic of active study (see, e.g., papers

by Agrawal and his collaborators [5, 4]). In particular, many papers have addressed

the privacy issues in mining of association rules/frequent itemsets. Some examples

are [39, 43, 122, 109, 128]. However, these papers are concerned with privacy of indi-

vidual transactions and/or hiding of sensitive rules, rather than privacy in distributed

mining.

Privacy-preserving distributed mining was first addressed by Lindell and Pinkas [90],

but their paper only discusses the classification problem, not the association-rule

problem.

As pointed out in [41], the problems of privacy-preserving data mining can be

76

viewed as an application of generic secure computation. Previous protocols for

generic secure computation [142, 16, 61, 29] can solve such problems in theory. How-

ever, these generic protocols are highly expensive, and thus it is our goal to design

special-purpose solutions that are much more efficient for our problems.

Our Contributions In this work, we rigorously specify the problems and privacy

requirements of privacy-preserving mining of frequent itemsets. We give algorithms

for vertically and horizontally partitioned data.

For vertically partitioned data, we design algorithms with two levels of privacy.

The privacy guarantees for both levels are superior to those in previous works by

others. Our algorithms are very efficient in that their computational overheads are

linear in the number of transactions.

For horizontally partitioned data, our algorithm is more efficient than the previous

solution. In addition, our algorithm works not only for three parties and above but

also for two parties.

Chapter Organization The rest of this chapter is organized as follows. In Sec-

tion 5.2, we present the problem formulation and the privacy requirements. In Sec-

tions 5.3 and 5.4, we describe two-party algorithms for vertically partitioned data,

with weak privacy and strong privacy, respectively. In Section 5.5, we give a two-

party algorithm for horizontally partitioned data. In Section 5.6, we show how to

extend the algorithms to distributed mining with more than two parties. We sum-

marize this work in Section 5.7.

77

5.2 Technical Preliminaries

5.2.1 Problem Formulation

Association Rules and Frequent Itemsets We adopt the following standard

formulation of association-rule mining: Assume that I = {I1, . . . , Im} is a set of

literals, which are called items. We call any subset of I an itemset. Assume that

T = {T1, . . . , Tn} is a set of transactions, where each transaction Ti is a set of items

(i.e., Ti ⊆ I). We say that a transaction Ti contains an itemset X if and only if

X ⊆ Ti. An association rule is of the form X ⇒ Y , where X and Y are non-empty

itemsets such that X ∩ Y = Φ.

Such an association rule holds in the transaction set T with confidence α% if

α% of the transactions containing X also contain Y . Such an association rule has

support β% if β% of the transactions contain both X and Y .

The major technical problem in association-rule mining is frequent itemset iden-

tification. suppose that a sufficiently large β has been chosen. An itemset is frequent

if and only if its support is greater than or equal to β%.

Matrix Representation Mathematically, the transaction set T can be repre-

sented by a boolean matrix D. Each row of the matrix corresponds to a transaction,

while each column corresponds to an item. A matrix element D(i, j) is 1 if the ith

transaction Ti contains the jth item Ij; it is 0 otherwise. The following example

78

illustrates how to convert the transaction set T to the boolean matrix D.

Bread Milk Eggs

Transaction 1
√ √

Transaction 2
√

Transaction 3
√ √ √

Transaction 4
√ √

=⇒
1 0 1

1 0 0

1 1 1

0 1 1

We define the support count of an itemset as the number of transactions that

contain this itemset. Formally, let C be the set of columns corresponding to an

itemset. The support count of the itemset {Ij|j ∈ C} is S = |{i|∀j ∈ C, D(i, j) =

1}|. Therefore, to decide whether the itemset {Ij|j ∈ C} is frequent, we actually

need to decide whether S > β·n
100

(recall that n is the number of transactions).

As pointed out in [138], the support count S is essentially the inner product of

all columns in set C. Because D is a boolean matrix,

S = |{i|∀j ∈ C, D(i, j) = 1}|

= |{i| ∏

j∈C

D(i, j) = 1}|

=
n∑

i=1

∏

j∈C

D(i, j)

(= InnerProductj∈C
~Dj),

where ~Dj = (D1,j, . . . ,Dn,j) stands for the jth column ofD. Therefore, the problem of

frequent itemset mining amounts to comparing this inner product with the threshold

β·n
100

.

79

Vertical Partition and Horizontal Partition We consider our problem with

respect to two types of data partition, namely vertical and horizontal. Intuitively,

vertical partition means that each party owns some columns of the matrix D, while

horizontal partition means that each party owns some rows. For simplicity, at this

point we only discuss two-party distributed mining and leave the extension to more

parties to Section 5.6. Suppose that the two parties are A and B.

Formally, if the data are vertically partitioned, then A (resp., B) owns a set

CA (resp., CB) of columns of the boolean matrix D, where CA ∪ CB = [1,m] and

CA ∩ CB = Φ. Recall that we are studying an itemset {Ij|j ∈ C}. The column set

C of this itemset is partitioned into two subsets — C ∩ CA, which is owned by A,

and C ∩ CB, which is owned by B. It is easy to see that

S =
n∑

i=1

∏

j∈C

D(i, j) =
n∑

i=1

(
∏

j∈C∩CA

D(i, j) · ∏

j∈C∩CB

D(i, j)).

Let xi =
∏

j∈C∩CA
D(i, j) and yi =

∏
j∈C∩CB

D(i, j). Note that A can privately

compute all xis and that B can privately compute all yis. Let t = β·n
100

. Therefore,

our problem can be formulated as follows.

Problem 23 (Problem for Vertically Partitioned Data) A has a private input ~x =

(x1, . . . , xn) (xi ∈ {0, 1}), and B has a private input ~y = (y1, . . . , yn) (yi ∈ {0, 1}).
For a public threshold t ∈ [0, n], design a two-party algorithm to decide whether

∑n
i=1 xiyi > t. This algorithm should be either strongly or weakly privacy-preserving,

as define in Subsection 5.2.2.

If the data are horizontally partitioned, then A (resp., B) owns a set RA (resp.,

RB) of rows, where RA ∪RB = [1, n] and RA ∩RB = Φ. It is easy to see

S =
n∑

i=1

∏

j∈C

D(i, j) =
∑

i∈RA

∏

j∈C

D(i, j) +
∑

i∈RB

∏

j∈C

D(i, j).

80

Let x =
∑

i∈RA

∏
j∈C D(i, j) and y =

∑
i∈RB

∏
j∈C D(i, j). Note that A can privately

compute x and B can privately compute y. Therefore, our problem can be formulated

as follows.

Problem 24 (Problem for Horizontally Partitioned Data) A has a private input

x ∈ [0, n], and B has a private input y ∈ [0, n]. For a public threshold t ∈ [0, n],

design a two-party algorithm to decide whether x + y > t. This algorithm should be

either strongly or weakly privacy-preserving, as define in Subsection 5.2.2.

5.2.2 Definitions of Privacy

As in previous works on privacy-preserving distributed mining [90, 138, 86, 87], we

assume that the participants are semi-honest. We specify our privacy requirements

by adapting the definition of security with respect to semi-honest parties in Chapter 2

to our distributed frequent-itemset mining problems. Our definitions will apply to

both the problem for vertically partitioned data and the problem for horizontally

partitioned data.

It is clear that, in the best possible case, we could have an algorithm that leaks

nothing but its output. For frequent itemset mining, it is often also acceptable for

an algorithm to leak the support count of a candidate. So we distinguish two levels

of privacy, namely strong privacy and weak privacy.

Definition 25 A two-party distributed algorithm for frequent-itemset mining is strongly

privacy-preserving if it securely computes the output of Problem 23 or 24 with respect

to semi-honest parties as definied in Definition 3.

A two-party distributed algorithm for frequent itemset mining is weakly privacy-

preserving if it securely computes the support count with respect to semi-honest par-

ties as definied in Definition 3 and then computes the output of Problem 23 or 24.

81

5.3 A Weakly Privacy-Preserving Algorithm for

Vertically Partitioned Data

5.3.1 Overview

Recall that, in the problem of vertically partitioned data, A has a private input

(x1, . . . , xn) and B has a private input (y1, . . . , yn). We need to design an algorithm

to decide whether
∑n

i=1 xiyi > t, where t is a public input.

We build our weakly privacy-preserving algorithm based on probabilistic public-

key encryption. Consider a probabilistic public-key encryption scheme whose cleart-

ext space is {0, 1}. Let EK(xi, ri) stand for an encryption of cleartext xi using public

key K and random string ri. Let Dk(Zi) stand for the decryption of ciphertext Zi

using private key k. Assume that we have a rerandomization algorithm that can

rerandomize any ciphertext in polynomial time. (One such encryption scheme was

given by Goldwasser and Micali in [63].)

For weak privacy, we only need to compute S =
∑n

i=1 xiyi securely and compare

it to the threshold t. The main idea of our algorithm is that A counts the number of

1s in a random permutation of (x1y1, . . . , xnyn) — this number is equal to
∑n

i=1 xiyi.

As to privacy, A cannot learn more information, because she only sees a random

permutation.

More specifically, the algorithm has 4 steps. In Step 1, A encrypts (x1, . . . , xn)

using her own public key (so that B cannot decrypt them) and sends the encryptions

to B. In Step 2, B computes encryptions of (x1y1, . . . , xnyn) from these encryptions.

Then B rerandomizes the newly computed encryptions, repermutes them, and sends

them to A. In Step 3, A decrypts the encryptions she received, counts the number of

1s, and compare it to the threshold. In Step 4, B outputs the value it has received

82

from A.

The only thing left to explain is how B computes encryptions of (x1y1, . . . , xnyn)

from encryptions of (x1, . . . , xn). Observe that xiyi = xi if yi = 1, and xiyi = 0

otherwise. Therefore, if yi = 1, B simply takes the encryption of xi as an encryption

of xiyi. Otherwise, B computes an encryption of 0.

5.3.2 Algorithm

Mine1(A, B, ~x, ~y)

A’s Input: ~x = (x1, . . . , xn) (xi ∈ {0, 1}); (k, K);

B’s Input: ~y = (y1, . . . , yn) (yi ∈ {0, 1}); K;

Public Input: t ∈ [0, n].

Step 1

(1.1) For i = 1, . . . , n, A encrypts xi using public key K: Xi = EK(xi, ri), where ri

is picked uniformly at random.

(1.2) A sends ~X = (X1, . . . , Xn) to B.

Step 2

(2.1) For i = 1, . . . , n, B computes Zi, an encryption of zi = xiyi as follows:

• If yi = 1, Zi = Xi; otherwise, Zi = EK(0, 0).

(2.2) For i = 1, . . . , n, B rerandomizes Zi.

(2.3) B repermutes ~Z as follows:

• For i = 1, . . . , n, Zi = Zπ(i), where π is a random permutation on [1, n].

(2.4) B sends ~Z = (Z1, . . . , Zn) to A.

Step 3

(3.1) For i = 1, . . . , n, A decrypts Zi to get cleartext zi: zi = Dk(Zi).

83

(3.2) A counts the number of 1’s in {z1, . . . , zn}. If the the number is greater than

t, then A outputs “This is a frequent itemset;” otherwise, A outputs “This is not a

frequent itemset.” A sends its output to B.

Step 4

B outputs the output it has received from A.

5.3.3 Security Analysis

Theorem 26 Mine1 is weakly privacy-preserving, if the encryption scheme is se-

mantically secure.

Proof: We construct a simulator SA as follows. First, SA outputs A’s input (which

it also receives as input) and simulates the coin flips of A in the algorithm. Then,

to simulate message ~Z, SA computes S encryptions of 1 and n− S encryptions of 0,

rerandomizes them at random and repermutes them at random.

We construct SB as follows. First, SB outputs B’s input (which it also receives as

input) and simulates the coin flips of B in the algorithm. Then SB simulate message

~X by generating n random ciphertexts.

The computational indistinguishabilities between the views (for computing the

support count) and the simulators’ outputs immediately follow from the semantic

security of the encryption scheme.

5.3.4 Efficiency Analysis

Computational Overhead The algorithm Mine1 needs to compute at most 2n

encryptions, n rerandomizations, and n decryptions. How expensive these oper-

ations are depends on what encryption scheme we use. Assume that we use the

Goldwasser-Micali encryption scheme. Then each encryption amounts to one modu-

84

lar multiplication, where the modulus is s bits long. Each rerandomization requires

two modular multiplications. Decryption is more expensive — two modular expo-

nentiations, which are equivalent to no more than 2s modular multiplications. To

summarize, the overall computational overhead is no more than (2s + 4)n modular

multiplications.

Communication Overhead The algorithm Mine1 needs to transfer 2n items,

each s bits long. Therefore, the overall communication overhead is 2sn bits.

5.4 A Strongly Privacy-Preserving Algorithm for

Vertically Partitioned Data

5.4.1 Overview

Homomorphic Encryption We build our strongly privacy-preserving algorithm

using homomorphic encryption. We need a probabilistic public-key encryption algo-

rithm F that satisfies the following conditions:

• The cleartext space M is a large field of size Θ(2s). In particular, the size is

greater than 2n + 1.

• It is not necessary to have an efficient decryption algorithm; however, there

exists a polynomial-time algorithm that uses the private key to decide whether

a ciphertext decrypts to 0.

• There is a polynomial-time rerandomization algorithm.

85

• F is additively homomorphic. That is, for m1, m2 ∈M,

F (m1, r1)] F (m2, r2)

is an encryption of m1 + m2, where] is an “addition” operation that can be

performed without decrypting F (m1, r1) or F (m2, r2).

• F allows homomorphic computation of constant multiplication. That is, for

m1 ∈M and constant c1,

c1 ◦ F (m1, r1)

is an encryption of c1m1, where ◦ is a “constant multiplication” operation that

can be performed without decrypting F (m1, r1).

One example of F is a variant of ElGamal encryption: FK(mi, ri) = (gmi(K)ri , gri),

where g is a generator of a group in which discrete logarithm is hard. The second

condition above is satisfied, because we can use the private key to compute gmi from

a ciphertext and compare it with g0, i.e., compare with 1. To satisfy the fourth

condition, we define, for any ciphertexts (M1, G1) and (M2, G2),

(M1, G1)] (M2, G2) = (M1M2, G1G2).

To satisfy the fifth condition, we define, for any constant c1,

c1 ◦ (M1, G1) = (M c1
1 , Gc1

1).

The reader can easily verify that] implements addition and ◦ implements constant

multiplication.

86

Algorithm Design Recall that the support count of the candidate itemset is S,

i.e., S =
∑n

i=1 xiyi. For strong privacy, our algorithm needs to decide whether S > t

without revealing S to either A or B. The main idea of our algorithm is that S > t

if and only if there exists a 0 in (S− t−1, . . . , S− t−n).1 We would be able to solve

this problem immediately if the vector (S − t − 1, . . . , S − t − n) could be revealed

to A or B. However, for strong privacy, this vector cannot be revealed. Therefore,

we reveal a masked vector (r1(S− t− 1), . . . , rn(S− t−n)) instead, where r1, . . . , rn

are random non-zero elements of M. Note that this masked vector has a 0 if and

only if the original vector has a 0. On the other hand, all non-zero elements in the

original vector have been replaced by randomized elements in the masked vector, so

that no extra information is leaked. In this way, the algorithm can decide whether

S > t without revealing any extra information.

More specifically, the algorithm has 4 steps. In Step 1, A encrypts (x1, . . . , xn)

using her own public key (so that B cannot decrypt them) and sends the encryptions

to B. In Step 2, B computes encryptions of (r1(S−t−1), . . . , rn(S−t−n)) from these

encryptions. Then B rerandomizes the newly computed encryptions, repermutes

them, and sends them to A. In Step 3, A checks these encryptions to see whether

there is one that decrypts to 0. In Step 4, B outputs the output it has received from

A.

The only thing left to explain is how B computes encryptions of (r1(S − t −
1), . . . , rn(S − t − n)) from the encryptions of (x1, . . . , xn). Observe that, because

xi, yi ∈ {0, 1}, we have S =
∑n

i=1 xiyi =
∑

yi=1 xi. Therefore, B can sum up all

encryptions of xi where yi = 1, to get an encryption of S. Then, using the homomor-

phic property of F , B can compute encryptions of (r1(S − t− 1), . . . , rn(S − t− n)),

1We can prove this fact as follows. S > t ⇔ 0 < S − t (≤ n) ⇔ S − t ∈ [1, n] ⇔ there exists
i ∈ [1, n] such that S − t = i ⇔ there exists i ∈ [1, n] such that S − t− i = 0 ⇔ there exists a 0 in
(S − t− 1, . . . , S − t− n).

87

because t is public and ris are picked by herself.

5.4.2 Algorithm

Mine2(A, B, ~x, ~y)

A’s Input: ~x = (x1, . . . , xn) (xi ∈ {0, 1}); (k, K);

B’s Input: ~y = (y1, . . . , yn) (yi ∈ {0, 1}); K;

Public Input: t ∈ [0, n].

Step 1

(1.1) For i = 1, . . . , n, A encrypts xi using public key K: Xi = FK(xi, ri), where ri

is picked uniformly at random.

(1.2) A sends ~X = (X1, . . . , Xn) to B.

Step 2

(2.1) B computes an encryption S of S =
∑n

i=1 xiyi as follows:

• S = FK(0, 0);

• For i = 1, . . . , n, if yi = 1, S = S] Xi.

(2.2) For i = 1, . . . , n, B picks ri ∈M− {0} uniformly at random and computes an

encryption of ri(S − t− i):

Ui = ri ◦ (S] F (−t− i, 0)).

(2.3) For i = 1, . . . , n, B rerandomizes Ui.

(2.4) B repermutes ~U = (U1, . . . , Un) as follows:

• For i = 1, . . . , n, Ui = Uπ(i), where π is a random permutation on [1, n].

(2.5) B sends ~U = (U1, . . . , Un) to A.

88

Step 3

If one of Uis decrypts to 0, A outputs “This is a frequent itemset;” otherwise, A

outputs “This is not a frequent itemset.” A also sends its output to B.

Step 4

B outputs the output it has received from A.

5.4.3 Security Analysis

Theorem 27 Mine2 is strongly privacy-preserving if the encryption scheme is se-

mantically secure.

Proof: We construct a simulator SA as follows. SA outputs the input of A (which

it also receives as input) and simulates the coin flips of A in the algorithm. If this

is a frequent itemset, SA simulates message ~U using one random encryption of 0

and n− 1 random encryptions of random elements of M− {0}, in a random order;

otherwise, it simulates message ~U using n random encryptions of random elements

of M−{0}, in a random order.

We construct SB as follows. SB outputs the input of B (which it also receives as

input) and simulates the coin flips of B in the algorithm. SB simulates message ~X

using n random ciphertexts.

The computational indistinguishability of the views and the simulators’ outputs

immediately follows from the semantic security of the encryption scheme.

5.4.4 Efficiency Analysis

Computational Overhead The algorithm Mine2 needs to compute 2n+1 encryp-

tions and n rerandomizations. It also needs to check n ciphertexts to see whether

they decrypt to 0. In addition, it needs to compute] a total of 2n times and ◦ a

89

total of n times. Therefore, its computational overhead is still linear in n and much

lower than the previous solution.

Assume that we use the variant of ElGamal encryption: FK(mi, ri) = (gmi(K)ri , gri).

Then each encryption amounts to three modular exponentiations plus one modular

multiplication, where the modulus is s-bit. Each rerandomization is worth two mod-

ular exponentiations plus two modular multiplications. It takes one modular expo-

nentiation plus one modular multiplication to check whether a ciphertext decrypts

to 0. Computing] costs two modular multiplications, while computing ◦ costs two

modular exponentiations. To summarize, the overall computational overhead is no

more than (11s + 9)n + (3s + 1) modular multiplications.

Communication Overhead The communication overhead of Mine2 is also 2sn

bits.

5.5 An Algorithm for Horizontally Partitioned Data

5.5.1 Overview

Recall that, in the problem for horizontally partitioned data, A has a private input

x and B has a private input y. We need to design an algorithm to decide whether

x + y > t where t is public.

We still build a strongly privacy-preserving algorithm based on homomorphic

encryption. We use the homomorphic encryption scheme F specified in Section 5.4.

For strong privacy, our algorithm needs to decide whether x + y > t without

revealing x to B or revealing y to A. The main idea of our algorithm is that x+y > t

if and only if there exists a 0 in (x + y − t− 1, . . . , x + y − t− n) (see the footnote

in Subsection 5.4.1 to see why this is true). However, for strong privacy, the vector

90

(x + y− t− 1, . . . , x + y− t− n) cannot be revealed to A or B. Therefore, we reveal

a masked vector (r1(x + y − t − 1), . . . , rn(x + y − t − n)) instead, where r1, . . . , rn

are random non-zero elements of M. Note that this masked vector has a 0 if and

only if the original vector has a 0. On the other hand, all non-zero elements in the

original vector have been replaced by randomized elements in the masked vector. In

this way, the algorithm can decide whether x + y > t without revealing any extra

information.

More specifically, the algorithm has 4 steps. In Step 1, A encrypts x using her

own public key (so that B cannot decrypt them) and sends the encryptions to B. In

Step 2, B computes encryptions of (r1(x + y− t− 1), . . . , rn(x + y− t−n)) from the

encryption of x, using the homomorphic property of F . Then B rerandomizes the

newly computed encryptions, repermutes them, and sends them to A. In Step 3, A

checks these encryptions to see whether there is one that decrypts to 0. In Step 4,

B outputs the output it has received from A.

5.5.2 Algorithm

Mine3(A, B, x, y)

A’s Input: x ∈ [0, n]; (k, K);

B’s Input: y ∈ [0, n]; K;

Public Input: t ∈ [0, n].

Step 1

(1.1) A encrypts x: X = FK(x, r), where r is picked uniformly at random.

(1.2) A sends X to B.

Step 2

(2.1) For i = 1, . . . , n, B picks ri ∈ M − {0} and computes Ui, an encryption of

91

ui = ri(x + y − t− i):

Ui = ri ◦ (X] FK(y − t− i, 0)).

(2.2) For i = 1, . . . , n, B rerandomizes Ui.

(2.3) B repermutes ~U = (U1, . . . , Un) at random.

(2.4) B sends ~U = (U1, . . . , Un) to A.

Step 3

If one of Uis decrypts to 0, A outputs “This is a frequent itemset;” otherwise, A

outputs “This is not a frequent itemset.” A also sends the output to B.

Step 4

B outputs the output it has received from A.

5.5.3 Security Analysis

Theorem 28 Mine3 is strongly privacy-preserving, if the encryption scheme is se-

mantically secure.

Proof: We construct a simulator SA as follows. SA outputs the input of A (which it

also receives as input) and simulates the coin flips of A in the algorithm. If this is a

frequent itemset, SA simulates message ~U using one random encryption of 0 and n−1

random encryptions of random elements of M−{0}, in a random order; otherwise,

SA simulates ~U using n random encryptions of random elements of M− {0}, in a

random order.

We construct SB as follows. SB outputs the input of B (which it also receives as

input) and simulates the coin flips of B in the algorithm. SB simulates message X

using a random encryption.

The computational indistinguishability of the views and the simulators’ outputs

92

immediately follows from the semantic security of the encryption scheme.

5.5.4 Efficiency Analysis

Computational Overhead The algorithm Mine3 needs to compute n + 1 encryp-

tions and n rerandomizations. It also needs to check n ciphertexts to see whether

they decrypt to 0. In addition, it needs to compute] and ◦ each n times.

Assume that we use the variant of the ElGamal encryption scheme: FK(mi, ri) =

(gmi(K)ri , gri). Then the overall computational overhead is (8s + 6)n + (3s + 1)

modular multiplications.

The previous solution for horizontally partitioned data only works for three par-

ties or more. In Section 5.6, we will show how to extend our algorithm Mine3 to

more parties.

Communication Overhead The communication overhead of Mine3 is sn+s bits.

5.6 Extension to Multi-party Distributed Mining

In this section, we demonstrate how to extend our algorithms to multi-party dis-

tributed mining. To avoid overly complicated notations, instead of presenting general

algorithms for k parties, we give three-party algorithms for vertically and horizon-

tally partitioned data. It is straightforward to further extend our algorithms to more

parties in a similar way.

5.6.1 An Algorithm for Vertically Partitioned Data

Now we extend our strongly privacy-preserving algorithm Mine2 to three-party dis-

tributed mining.

93

Suppose that we have the third party C with private input (z1, . . . , zn). The

extended algorithm has 5 steps. In Step 1, A encrypts (x1, . . . , xn) using her own

public key and sends the encryptions to B. In Step 2, B computes encryptions of

(x1y1, . . . , xnyn) and sends them to C. In Step 3, C computes (r1(
∑n

i=1 xiyizi − t −
1), . . . , rn(

∑n
i=1 xiyizi− t−n)). Then C rerandomizes these newly computed encryp-

tions, repermutes them, and sends them to A. In Step 4, A checks the encryptions

she received to see whether there is one that decrypts to 0. In Step 5, B and C output

the output they have received from A. Note that Steps 1, 3, 4, and 5 of the extended

algorithm correspond to Steps 1, 2, 3, and 4 of algorithm Mine2, respectively. The

only new step is Step 2, which is based on the fact that xiyi = xi if yi = 1, and

xiyi = 0 otherwise.

Mine4(A, B, C, ~x, ~y, ~z)

A’s Input: ~x = (x1, . . . , xn) (xi ∈ {0, 1}); (k, K);

B’s Input: ~y = (y1, . . . , yn) (yi ∈ {0, 1}); K;

C’s Input: ~z = (z1, . . . , zn) (zi ∈ {0, 1}); K;

Public Input: t ∈ [0, n].

Step 1

(1.1) For i = 1, . . . , n, A encrypts xi using public key K: Xi = FK(xi, ri), where ri

is picked uniformly at random.

(1.2) A sends ~X = (X1, . . . , Xn) to B.

Step 2

(2.1) For i = 1, . . . , n, B computes Ui, an encryption of ui = xiyi as follows:

• If yi = 1, B sets Ui = Xi; otherwise, B sets Ui = FK(0, 0);

• B rerandomizes Ui.

(2.2) B sends ~U = (U1, . . . , Un) to C.

94

Step 3

(3.1) C computes an encryption of v =
∑n

i=1 xiyizi as follows:

• V = FK(0, 0);

• For i = 1, . . . , n, if zi = 1, V = V] Ui.

(3.2) For i = 1, . . . , n, C picks ri ∈M− {0} uniformly at random and computes an

encryption of ri(v − t− i):

Wi = ri ◦ (V] FK(−t− i, 0)).

(3.3) For i = 1, . . . , n, C rerandomizes Wi.

(3.4) C repermutes ~W = (W1, . . . , Wn) at random.

(3.5) C sends ~W = (W1, . . . , Wn) to A.

Step 4

If one of Wis decrypts to 0, A outputs “This is a frequent itemset;” otherwise, A

outputs “This is not a frequent itemset.” A also sends the output to B and C.

Step 5

B and C output the output they have received from A.

5.6.2 An Algorithm for Horizontally Partitioned Data

Now we extend our algorithm Mine3 to three-party distributed mining.

Suppose that we have the third party C with private input z. The extended

algorithm has 5 steps. In Step 1, A encrypts x using her own public key and sends it

to B. In Step 2, B computes an encryption of x + y and sends it to C. In Step 3, C

computes encryptions of (r1(x+y +z− t−1), . . . , rn(x+y +z− t−n)) using the ho-

momorphic property of F . Then C rerandomizes these newly computed encryptions,

95

repermutes them, and sends them to A. In Step 4, A checks the encryptions she

received to see whether there is one that decrypts to 0. In Step 5, B and C output

the output they have received from A. Note that Steps 1, 3, 4, and 5 of the extended

algorithm correspond to Steps 1, 2, 3, and 4 of algorithm Mine3, respectively. The

only new step is Step 2, which is also based on the homomorphic property of F .

Mine5(A, B, C, x, y, z)

A’s Input: x ∈ [0, n]; (k, K);

B’s Input: y ∈ [0, n]; K;

C’s Input: z ∈ [0, n]; K;

Public Input: t ∈ [0, n].

Step 1

(1.1) A encrypts x: X = FK(x, r), where r is picked uniformly at random.

(1.2) A sends X to B.

Step 2

(2.1) B computes U , an encryption of u = x + y: U = X] FK(y, 0).

(2.2) B rerandomizes U .

(2.3) B sends U to C.

Step 3

(3.1) For i = 1, . . . , n, C picks ri ∈ M − {0} and computes Vi, an encryption of

vi = ri(x + y + z − t− i) = ri(u + z − t− i):

Vi = ri ◦ (U] FK(z − t− i, 0)).

(3.2) For i = 1, . . . , n, C rerandomizes Vi.

(3.3) C repermutes ~V = (V1, . . . , Vn) at random.

(3.4) C sends ~V = (V1, . . . , Vn) to A.

96

Step 4

If one of Vis decrypts to 0, A outputs “This is a frequent itemset;” otherwise, A

outputs “This is not a frequent itemset.” A also sends the output to B and C.

Step 5

B and C output the output they have received from A.

5.7 Summary of the Work on Data Mining

In this chapter, we study privacy-preserving algorithms for distributed mining of

frequent itemsets. Our algorithms provide very strong privacy guarantee as defined

in cryptography. They have computational overheads linear in the number of trans-

actions and therefore are very efficient.

The work described in this chapter is the most direct application of the techniques

presented in Chapter 2. There are other ways to apply those techniques to the

problems addressed in this chapter. We choose what we have presented because it is

the most efficient option.

97

Chapter 6

Secure Mobile-Agent Computation

Yet another concrete scenario of computation with untrusted parties is mobile agent

computation. The major security concern here is privacy. In this joint work with

Yang Richard Yang [145], I study the security issues in mobile-agent computation.

It is known that oblivious transfer (OT) from a trusted party can be used to protect

the agent’s privacy and the hosts’ privacy.1 In this work, we introduce a new cryp-

tographic primitive called Verifiable Distributed Oblivious Transfer (VDOT), which

allows us to replace a single trusted party with a group of threshold trusted servers.

The design of VDOT uses a novel technique consistency verification of encrypted

secret shares to protect the privacy of both the sender and the receiver against mali-

cious attacks of the servers. We also show the design of a system to apply VDOT to

protect the privacy of mobile agents. Our design partitions an agent into the general

portion and the security-sensitive portion. We implement the key components of our

system. Our preliminary evaluation shows that protecting mobile agents not only is

possible, but also can be implemented efficiently.

1Note that this is not the only way to protect privacy for mobile agents. For example, X-Cash,
which was proposed by Jakobsson and Juels, can also be used to protect privacy in e-commerce
generally.

98

6.1 Background and Motivation

As an important paradigm of computation, the mobile agent has the a lot of potential

applications in electronic commerce. However, the success of the mobile agents

depends on security. In the past, the focus of mobile-agent security has been on

protecting the safety and the integrity of visited hosts. To achieve this objective,

researchers have proposed novel techniques such as the Sandbox architecture [67],

which restricts the access of a visiting mobile agent, and proof-carrying code [103],

which allows a host to efficiently verify that the visiting mobile agent will not do

harm to the host.

However, in mobile agent computing, it is as important to protect the privacy of

the agent from the hosts as to protect the privacy of the hosts from the agent. Since

Sander and Tschudin’s pioneering work [125], various systems have been designed

for this purpose [126, 25, 8]. In particular, Algesheimer, Cachin, Camenisch, and

Karjoth [8] present a nice and general solution that has provable security. However,

the security of this system relies on a single trusted party which carries out oblivious

transfer (OT). If the trusted party is compromised, the privacy of both the agent

and the hosts can be violated.

The security of [8] can be significantly strengthened if the single trusted party is

replaced by a group of threshold trusted servers. For this end, a “threshold extension”

of OT is needed. One possible solution is to use Naor and Pinkas’s distributed OT

(DOT) [102], which involves a sender, a receiver, and a group of servers. In DOT,

the sender has two items and the receiver chooses to receive one of them. First, the

sender distributes to each server some data derived from her items, in such a secure

way that no single server can figure out any information about her items. Then

the receiver queries the servers. From the servers’ responses, the receiver is able to

99

reconstruct one and only one of the two items. Furthermore, the receiver has no

information about the other item and the sender has no information about which of

the items the receiver has chosen.

However, DOT assumes semi-honest servers. If some servers are malicious, they

can mislead the receiver to reconstruct a false item. To deal with such malicious

servers, we propose a new cryptographic primitive called “Verifiable Distributed

Oblivious Transfer,” or VDOT for short.

Challenges and Contributions The design of VDOT is technically challenging.

One might suggest that the objective of VDOT could be achieved by a secret-sharing

scheme with oblivious transfer of each share. However, there are two somewhat

conflicting goals that need to be achieved. On the one hand, the receiver must

be able to verify the correctness of both items; otherwise, a malicious server could

violate the receiver’s privacy by tampering with its share of one item and observing

whether or not this attack is detected by the receiver. On the other hand, in order

to protect the sender’s privacy, the receiver should be able to reconstruct only one

of the two items. In summary, the major technical challenge is to allow the receiver

to reconstruct only one item but verify the correctness of both items.

Our VDOT protocol uses a novel technique to address the above challenge. An

overview of the VDOT protocol is as follows. During initialization, a global private

key is shared in the Feldman VSS. An advantage of this setup is that the consistency

of secret shares encrypted using ElGamal can be verified. Before each transfer, the

sender distributes the shares of both items among the servers. During the transfer

procedure, the receiver invokes the one-round OT protocol by Bellare and Micali [14,

25], with each server in a quorum (called main servers) in order to get the share

of the item he chooses. Although the receiver can reconstruct only one item, he

100

can verify the consistency of both items through the help of the remaining servers

(called verification servers), because the encryptions of the shares of both items are

transfered to the receiver during the OT.

We then apply VDOT to mobile agent security to implement the key components

of a mobile agent architecture. As far as we know, this is the first effort to implement

a system that protects the privacy of mobile agents. To write an agent in our system,

the designer extracts the security-sensitive portion of the agent into a function. Then

the function is encoded as a garbled circuit, which is carried by the agent. Because we

only apply the security mechanism to the security-sensitive portion of an agent, our

system is efficient. Because the result of the security-sensitive portion is interpreted

by the normal portion of the agent, all that a host needs to provide is an interpreter

of garbled circuits. As a result, our system provides a general-purpose solution. We

measure the overhead of our system and show that the overhead is acceptable. In

other words, our preliminary evaluation shows that protecting mobile agents not only

is possible, but also can be implemented efficiently.

In summary, the contributions of this work are as follows. First, we introduce a

new cryptographic primitive, VDOT, which can be used in situations where proxies

of OT are needed but no single proxy can be trusted. In particular, VDOT can be

used to strengthen the security of the mobile agent system designed in [8]. Second,

the design of VDOT uses a novel technique to achieve consistency verification of

encrypted secret shares. Third, we apply VDOT to the problem of mobile agent

security to implement the key components of an architecture for mobile agents.

Chapter Organization The rest of this chapter is organized as follows. In Subsec-

tion 6.1.1, we discuss related work. In Section 6.2, we define the security requirements

for VDOT. (In principle, we can use the general definitions of secure multi-party

101

computation with respect to malicious adversaries in [59]; however, these general

definitions are much more complicated than the definitions we give specifically for

VDOT.) In Section 6.3, we present how VDOT implements consistency verification

of encrypted shares. We prove the security properties of VDOT in Section 6.4. In

Section 6.5, we show how to apply VDOT to a mobile-agent system. In Section 6.6,

we present implementation issues and report initial performance evaluation. We

summarize this work in Section 6.7.

6.1.1 Related Work

OT Protocols Oblivious Transfer was first introduced by Rabin [119]. Later,

several variations were proposed, e.g., 1-out-of-2 OT [42], 1-out-of-N OT [20], k-out-

of-N OT [100], and adaptive k-out-of-n OT [101]. Our work can be viewed as an

extension of DOT [102], which introduces a group of servers to the 1-out-of-2 OT

scenario. The major difference is that, as we have explained, our VDOT protocol

considers potentially malicious servers, while the DOT protocol considers semi-honest

servers. Another difference is that our model allows the receiver to communicate with

all servers.

PIR/SPIR Protocols A problem similar to OT is private information retrieval

(PIR) [31], in which a user (analogous to the receiver in OT) privately retrieves a bit

from a database (analogous to the sender in OT). However, in PIR, only the user’s

privacy is protected, and the amount of communication is required to be small.

In order to get nontrivial solutions with information-theoretic privacy, it is often

assumed that there are two or more copies of the database, held by database servers

that do not communicate with each other. With computational assumptions, a PIR

protocol with a single copy of the database can be constructed [89]. Gertner, Ishai,

102

Kushilevitz, and Malkin added the privacy of the database to the PIR model [55].

The result is called symmetric PIR (SPIR). The difference between SPIR and OT is

that the former further requires small-communication overhead.

Interestingly, Gertner, Goldwasser, and Malkin introduced auxiliary servers to

PIR [54], just as Naor and Pinkas introduced a group of servers to OT. However,

in the Gertner-Goldwasser-Malkin model, the database itself is still involved in the

protocol after the initialization stage, and the auxiliary servers may contain no in-

formation about the data at all (in the case of “total independence”). Therefore, it

is significantly different from the models of distributed OT and verifiable distributed

OT. The relationship between OT and PIR/SPIR is further studied in [36].

6.2 VDOT Definitions

We formulate the problem of VDOT as follows. A VDOT protocol involves a sender,

a receiver, and a group of servers, T1, . . . , Tn. Each of the honest parties is a prob-

abilistic Turing machine who is restricted to run in time polynomial in a security

parameter s, while all the dishonest parties are controlled by an adversary who is also

a probabilistic Turing machine running in time polynomial in s. We assume an au-

thenticated, untappable channel between the sender (resp., receiver) and each server.

Let x0, x1 ∈ {0, 1} be the two items held privately by the sender. Let σ ∈ {0, 1} be

a private input of the receiver.

A VDOT protocol consists of an initialization stage and a transfer stage.2 In

the initialization stage, the sender sends a function Fj : {0, 1}∗ → {0, 1}∗ to each

server Tj, where Fj depends on (x0, x1) and the sender’s coin tosses. In the transfer

2We assume that all participants of the protocol, including the malicious ones, will proceed to
the end of the protocol. Therefore, there is no fairness problem. This is a reasonable assumption
because we detect cheating when any participant aborts the protocol, and in many realistic scenarios
it is good enough to detect cheating.

103

stage, in order to learn xσ, the receiver sends query qj to server Tj and receiving reply

rj = Fj(qj) from Tj. Because the receiver may not send his queries all at once, qj may

depend on the replies to previous queries. After receiving replies from the servers,

the receiver decides either to accept the replies (and gives an output O(r1, . . . , rn)

which is supposed to be xσ) or to reject the replies (and output ⊥ which means

cheating is detected).

We summarize the security requirements of a VDOT protocol as follows.

Definition 29 (correctness) A VDOT protocol is correct if the receiver’s outputs xσ

when all parties follow the protocol.

Definition 30 (receiver’s privacy) A VDOT protocol protects the receiver’s privacy

against a coalition of the sender and t1 servers if, for σ chosen uniformly at random

from {0, 1}, for any probabilistic polynomial-time adversary that controls a colluding

group of the sender and t1 servers, when all parties out of the colluding group are

honest, the probability that the adversary outputs σ is at most 1
2

+ ε, where ε is

negligible in s.

Definition 31 (sender’s privacy) A VDOT protocol protects the sender’s privacy

against a coalition of the receiver and t2 servers if, for (x0, x1) chosen uniformly at

random from {0, 1}2, for any probabilistic polynomial-time adversary that controls

a colluding group of the receiver and t2 servers, for any random tape the adversary

uses, when all parties out of the colluding group are honest, there exists σ′ ∈ {0, 1}
such that the probability that the adversary outputs x1−σ′ is at most 1

2
+ ε, where ε is

negligible in s.

For verifiability, we require that cheating be detected if it may lead the receiver

to compute a false xσ. On the other hand, if the cheating behavior of some servers

does not affect correct reconstruction of xσ, it will be unnecessary to detect it.

104

Definition 32 (verifiability of reconstruction) A VDOT protocol is verifiable if,

when the sender and the receiver are honest, there exists a probabilistic polynomial-

time algorithm V such that

• V (r1, . . . , rn) = “accept′′ if no server cheats;

• V (r1, . . . , rn) = “reject′′ with high probability if O(r1, . . . , rn) 6= xσ.

Remark: In the above definition, we do not have any requirement of V ’s output if

some server is cheating but O(r1, . . . , rn) = xσ. In this case, both acceptance and re-

jection will be fine, because there is cheating but it does not affect the reconstruction.

6.3 A VDOT Protocol

In this section, we address the technical challenge mentioned in Section 6.1 and

present our protocol. Before describing our protocol in details, we first review an

adapted version of the Bellare-Micali OT protocol, which can be understood as

transferring both items encrypted using ElGamal. Then we show how to verify

the consistency of secret shares encrypted using ElGamal, which is the key technical

contribution of our protocol.

Recall that p, q are large primes such that p = 2q + 1, that Gq is the quadratic

residue subgroup of Z∗
p , and that g is a generator of Gq. We assume that q has s

bits.

6.3.1 Bellare-Micali OT

Assume that there exists a public random source. In this adapted version of Bellare-

Micali OT, the receiver first picks δ ∈ Gq using the public random source. Because

105

the receiver has no control over the public random source, he does not know logg δ,

the discrete logarithm of δ. The receiver then picks β ∈ [0, q − 1] and sets

Gσ = gβ, G1−σ = δ/gβ.

Note that the receiver knows logg Gσ but not logg G1−σ. The receiver sends G0, G1, δ

to the sender, along with a proof that he knows one of the two discrete logarithms,

logg G0 and logg G1, using a result by Cramer et al. [33]. The sender first verifies that

δ has been chosen properly according to the public random source, and δ = G0G1.

Then the sender computes, for b = 0, 1,

x̂b = xbG
k
b ,

where k ∈ [0, q − 1] is the sender’s private key and K = gk her public key.

This OT protocol can be understood as transferring both items in ElGamal ci-

phertexts. Recall that in the ElGamal encryption scheme, which is semantically se-

cure under the DDH assumption, when cleartext m ∈ Gq is encrypted with public key

K using random string r ∈ [0, q−1], the ciphertext will be (mKr, gr) = (m(gr)k, gr).

In the Bellare-Micali OT above, x̂b can be understood as the first element of the

ElGamal ciphertext of xb, encrypted using random string logg Gb. For convenience,

hereafter we often refer to the first element of an ElGamal ciphertext as the cipher-

text. In order to decrypt x̂b, a party not knowing k (e.g., the receiver) must know

logg Gb, the random string used for encryption.

The sender gives both x̂0 and x̂1 to the receiver. Because Gk
σ = (gβ)k = Kβ, the

receiver can reconstruct xσ by computing

xσ = x̂σ/K
β,

106

where K is public and β is known to the receiver. However, because the receiver

does not know logg G1−σ, he cannot compute s1−σ.

6.3.2 Consistency Verification

The basis of our VDOT protocol is actually a distributed version of the above Bellare-

Micali OT. The sender distributes shares of the two items, x0 and x1 respectively,

among the servers; then each server runs the above Bellare-Micali OT with the

receiver, to transfer the shares of the two items, such that the shares of xσ, but

not x1−σ, can be received by the receiver. The privacy properties of our protocol

are based on the privacy properties of Bellare-Micali OT. Therefore, our remaining

question is how the receiver detects cheating if any server does not transfer the correct

share.

To detect cheating, the receiver can verify the consistency of shares. More pre-

cisely, suppose that (s1, . . . , sn) are the shares of a secret using (n, t)-Shamir secret

sharing. Then, for any quorum J (|J |=t), any i 6∈ J , it must hold that

∑

j∈J

sj ·
l 6=j∏

l∈J

i− l

j − l
= si.

Now suppose that we consider a variant of Shamir scheme by applying a homomor-

phic mapping α → gα to the Shamir scheme. Then, for secret shares (s1, . . . , sn), it

must hold that
∏

j∈J

s

∏l6=j

l∈J
i−l
j−l

j = si.

We say that si is consistent with {sj|j ∈ J} whenever the above equation holds.

Therefore, if no share is corrupted, any share should be consistent with any disjoint

quorum. But if some shares are corrupted while others are not, with high probability

there is inconsistency that can be detected.

107

However, note that the receiver needs to detect inconsistency of shares of either

item. For x1−σ, the receiver only sees the encryptions of its shares, but not its shares

in cleartext. To allow the receiver to detect inconsistency on encrypted shares, we

need to use a property of Feldman VSS.

Specifically, suppose that the servers share k using (n, t)-Feldman VSS. Denote

by kj the share of k held by Tj, and Kj = gkj the corresponding committment. Then

clearly,
∏

j∈J

K

∏l6=j

l∈J
i−l
j−l

j = Ki.

Therefore, for the shares (s1, . . . , sn) in the above variant of Shamir scheme,

∏

j∈J

s

∏l6=j

l∈J
i−l
j−l

j = si ⇔ ∏

j∈J

(sjK
β)

∏l6=j

l∈J
i−l
j−l = (siK

β)

⇔ ∏

j∈J

(sjK
1−β)

∏l6=j

l∈J
i−l
j−l = (siK

1−β).

The above means that, to verify consistency among shares (the equation on the

left side), the receiver only needs to check an identity on the right side, which only

involves encrypted shares (which the receiver is able to see).

6.3.3 A VDOT Protocol Specification

In this subsection, we give the full details of our protocol. A server Tj is called “main

server” if 1 ≤ j ≤ t; it is called “verification server” otherwise.

System Initialization An (n, t)-Feldman VSS is set up among T1, . . . , Tn to share

k, the sender’s private key.

Step 0: The sender distributes the shares of x0 and x1 (in the variant of Shamir’s

scheme with threshold t), respectively, among T1, . . . , Tn.

108

Step 1: The receiver picks δ ∈ Gq uniformly at random according to the public

random source. He also picks β ∈ [0, q − 1] uniformly at random, and computes

Gσ = gβ and G1−σ = δ/gβ. He sends query (G0, G1, δ) to each main server, along

with a proof that he knows one of the two discrete logarithms, logg G0 and logg G1.

Step 2: Each main server Tj first verifies that 1) the receiver’s proof is valid;

2) δ is chosen properly according to the public random source; and 3) δ = G0G1

(G0, G1, δ ∈ Gq). If all the three conditions are satisfied, Tj computes, for b = 0, 1,

ŝb,j = sb,jG
κj

b , (6.1)

where sb,j is Tj’s share of xb in the variant of Shamir scheme. Tj sends (ŝ0,j, ŝ1,j) to

the receiver.

Step 3: The receiver checks, for each j, that ŝ0,j, ŝ1,j ∈ Gq. Using the public key

of main server Tj, the receiver computes each share of xσ by

sσ,j = ŝσ,j/K
β
j .

Then the receiver computes

xσ =
∏

j∈{1,...,t}
s

∏l6=j

l∈{1,...,t}
−l
j−l

σ,j . (6.2)

Step 4: The receiver computes, for b = 0, 1 and i = t + 1, . . . , n,

ŝ′b,i =
∏

j∈{1,...,t}
ŝ

∏l6=j

l∈{1,...,t}
i−l
j−l

b,j .

Then he sends (G0, G1, ŝ′0,i, ŝ′1,i) to each verification server Ti.

109

Step 5: Each verification server Ti tests, for b = 0, 1,

ŝ′b,i = sb,iG
ki
b , (6.3)

and sends the results of comparisons back to the receiver.

Step 6: If for both b = 0 and b = 1, more than half of the verification servers reply

with “yes” (i.e., reply that (6.3) holds), the receiver accepts the servers’ replies and

outputs xσ. Otherwise, the receiver rejects.

6.4 Security Properties of VDOT

Our VDOT protocol has security properties as follows.

Claim 33 This VDOT protocol is correct.

Claim 34 The VDOT protocol protects the receiver’s privacy against a coalition of

the sender and all the servers.

Proof: Consider an adversary that controls the sender and all the servers. It is clear

that, no matter how adversary cheats, the message sequnce M sent by the receiver

follow a distribution that is symmetric in σ. That is, ∀m ∈ {0, 1}∗,

Prob[M = m|σ = 0] = Prob[M = m|σ = 1] = Pr[M = m] = pm.

Suppose that the adversary’s output OA = OA(M, κ), where κ represents the adver-

sary’s knowledge. Then,

Prob[OA = σ] = Prob[OA = 0|σ = 0]Prob[σ = 0] + Prob[OA = 1|σ = 1]Prob[σ = 1]

110

=
∑
m

Prob[OA = 0|σ = 0 ∧M = m]Prob[M = m|σ = 0]/2

+
∑
m

Prob[OA = 1|σ = 1 ∧M = m]Prob[M = m|σ = 1]/2

=
∑
m

pm

2
Prob[OA(m,κ) = 0|σ = 0 ∧M = m]

+
∑
m

pm

2
Prob[OA(m, κ) = 1|σ = 1 ∧M = m].

Because each m is a constant string, and κ is independent of σ,

Prob[OA = σ] =
∑
m

pm

2
Prob[OA(m,κ) = 0|M = m] +

∑
m

pm

2
Prob[OA(m,κ) = 1|M = m]

=
∑
m

pm

2

=
1

2
.

Claim 35 Under the DDH assumption, the VDOT protocol protects the sender’s

privacy against a coalition of the receiver and t− 1 servers.

Proof: Note that there is at least one honest main server. Because the receiver’s

proof has been checked by the honest main server(s), it must be the case that the

receiver knows either logg G0 or logg G1. Suppose that the receiver knows logg Gσ′ ;

we will show that the adversary outputs x1−σ′ with probability less than 1
2

+ ε.

First, it is clear that, whenever the adversary computes x1−σ′ , it can derive each

share of x1−σ′ . For example, it can derive s1−σ′,j, where Tj is an honest main server.

Therefore, it will be sufficient if we can show that the adversary computes s1−σ′,j

with probability less than 1
2

+ ε.

To determine the probability that the adversary computes s1−σ′,j, let’s look at

the adversary’s interaction with the honest parties. All the adversary learns from the

honest parties is the ŝ1−σ′,js from the honest main servers and the replies indicating

111

whether ŝ′1−σ′,i = s1−σ′,iG
ki
1−σ′ from the honest verification servers. The latter can

be ignored because the adversary can compute such replies by checking the following

identity itself:

ŝ′1−σ′,i = ŝ

∏l6=j

l∈{1,...,t}
i−l
j−l

1−σ′,j .

However, the former (ŝ1−σ′,js) are ElGamal encryptions of s1−σ′,js. Because the

ElGamal encryption scheme is semantically secure under the DDH assumption, the

probability that the adversary computes s1−σ′,j must be less than 1
2

+ ε.

Claim 36 The VDOT protocol is verifiable if the number of dishonest servers is not

more than than n−t
2

.

Proof: We construct a verification algorithm V as follows. If the majority of the

verification servers reply with “yes,” then V outputs “accept;” otherwise, V outputs

“reject.” It is clear that, if no server cheats, all verification server will reply with

“yes” and V will output “accept.” In the remainder of this proof, we will show that,

when the majority of the verification servers reply with “yes,” the receiver’s must

equal xσ.

Because the number of dishonest servers is not more than n−t
2

, among the main

servers and the verification servers that reply with “yes,” there are at least t that

are honest. Suppose that there are h honest main servers and t− h dishonest main

servers. Then there are at least t−h honest verification servers that reply with “yes.”

For each such honest verification server Ti, it must hold that,

ŝ′σ,i = sσ,iG
ki
σ ,

which implies

sσ,iG
ki
σ =

∏

j∈{1,...,t}
ŝ

∏l6=j

l∈{1,...,t}
i−l
j−l

σ,j .

112

For j ∈ {1, . . . , t}, we define sσ,j using ŝσ,j = sσ,jG
kj
σ . Note that, if Tj is honest, then

it must be the case that sσ,j = sσ,j. Therefore, we can simplify the above equation

as

sσ,i =
∏

j∈{1,...,t}
s

∏l6=j

l∈{1,...,t}
i−l
j−l

σ,j .

We now have at least t − h sσ,is and t sσ,js that are consistent. Exclude the t − h

sσ,js from dishonest main servers. Then we have at least t− h sσ,is and h sσ,js that

are consistent, where each sσ,j = sσ,j. These t items uniquely define a degree-(t− 1)

polynomial, which must be the original polynomial used for secret sharing. The

output of the receiver equals this polynomial evaluated at 0, which is exactly xσ.

6.5 A Protocol for Mobile-Agent Computation

6.5.1 A Global Picture of Mobile-Agent Computation

In this section, we apply VDOT to design a secure protocol for mobile agents. Our

system architecture, which is a threshold extension to that in [8], is shown in Fig-

ure 6.1.

There are three types of entities in our system architecture: the originator, the

hosts, and the servers. The reason for introducing the servers in this mobile com-

puting environment is that the originator may not always be online. Furthermore,

because the majority of Internet users are still using dial-up service, they do not

have persistent connections. In such scenarios, the servers serve as a proxy to the

originator.

Next we briefly discuss each of the entities.

• Originators The responsibility of an originator is to create an agent and send

113

server 1

server 3

server 2

originator

host 1 host 2 host k
agent

agent

Figure 6.1: System Architecture for Mobile Agent Computation

the agent to the hosts. To improve efficiency, we partition an agent into the

security-sensitive portion and the general portion.

• Hosts The responsibility of a host is to run the general portion of an agent

and interpret the garbled-circuit portion of the agent. In order to interpret a

garbled circuit, the host needs to run the VDOT protocol with the servers to

get the appropriate entries from the translation table.

• Servers The responsibility of the servers is to serve as a proxy for an originator

and provide translation tables to the hosts through the VDOT protocol.

6.5.2 Protocol Design for Mobile-Agent Computation

The crucial part of our protocol is how to evaluate the security-sensitive function

of an agent. Therefore, we start our presentation of the protocol by describing the

encoding of the security-sensitive function.

114

Encoding of a security-sensitive function

For each host, the originator of an agent encodes the security-sensitive function

by a garbled circuit and attaches the circuit to the agent. It is proven in [142]

that a garbled circuit never reveals any information (to any polynomially bounded

adversary) when it is evaluated. However, to evaluate a garbled circuit, a host needs

four translation tables:

• (table In1) A table that translates clear input 1 (the previous state) to garbled

input 1.

• (table In2) A table that translates clear input 2 (the local input) to garbled

input 2.

• (table Out1) A table that translates garbled output 1 to clear output 1 (the

new state);

• (table Out2) A table that translates garbled output 2 to clear output 2 (the

local output).

Among the four tables, table Out2 is attached to the agent in cleartext so that

the host can obtain its local output immediately after the evaluation.

Tables In1 and Out1 encode the state of the agent. Note that the clear output

1 at host j should be the same as the clear input 1 at host j + 1. A chaining

technique [25, 8] is used to combine the entries of table Out1 at host j with the

corresponding entries of table In1 at host j + 1, the next host. Therefore, as long

as host j attaches its garbled output 1 to the agent, host j + 1 is able to obtain its

garbled input 1 which corresponds to the agent’s state after visiting host j.

Now the only remaining table is In2. For each bit of input 2, the agent originator

holds two items —- the garbled inputs for 0 and 1. Note that we must guarantee that

115

the host receives the item corresponding to its real input bit, but not the other item,

because otherwise the host would be able to test the agent with all possible inputs to

violate the originator’s privacy. So, a VDOT is invoked, with the originator as the

sender, the host as the receiver, and the servers as the servers in VDOT. Through

this VDOT, the host obtains the garbled input corresponding to its real input bit.

ID Session identifier
GbCircuitj Garbled circuit for host j
GbIn1Host1 Garbled input 1 for host 1
ekm The encryption (public) key of

the mth server
GbIn1Tabj(i,b) The entry of table In1 for host j

when the i-th bit of input 1 is b
GbIn2Tabj(i,b,m) The m-th share of the entry of table

In2 for host j when the i-th bit of
input 2 is b

GbOut1Tabj(i,b) The entry of table Out1 for host j
when the i-th bit of output 1 is b

GbOut2Tabj The translation table Out2 for host j

Table 6.1: Notations in Figure 6.2

Figure 6.2 summarizes the data format carried by an agent for a security-sensitive

function (the notation is explained in Table 6.1). In our protocol, we use both

asymmetric encryption and symmetric encryption. Here, we denote by PE(ek, m)

the asymmetric encryption of cleartext m with encryption key ek; we denote by

E(k, m) the symmetric encryption of cleartext m with key k. In our protocol, we

require that it be easy to verify whether or not a ciphertext is encrypted with a key

in the symmetric encryption scheme. Note that this property can be implemented

by adding redundancy to the cleartext before encryption.

116

Figure 6.2: Data Format of a Security-Sensitive Function in an Agent

Protocol Summary for Mobile-Agent Computation

When an agent arrives at a host, since In1 is chained to Out1 of the previous host,

the host uses the garbled output 1 of the previous host to retrieve its garbled input 1.

The host then executes VDOT to obtain the value of garbled input 2 corresponding

to its local input.

With both garbled input 1 and garbled input 2, the host evaluates the garbled

circuit. After the evaluation, the host uses the attached table Out2 to get its local

output. Then it attaches its garbled output 1 to the agent so that the next host can

retrieve its garbled input 1 from the agent.

Figure 6.3 shows the information flow of our protocol at a host.

The last host sends the agent back to the originator. The originator then trans-

lates the garbled output 1 to determine the final state of the computation.

117

Figure 6.3: Evaluating a Security-Sensitive Function at Host j

6.5.3 Security Analysis of the Mobile-Agent Protocol

We briefly analyze the security properties of our protocol for mobile-agent computa-

tion.

• Originator’s Privacy The originator’s private information in the security-

sensitive portion of the agent is private against any hosts and any servers,

unless t or more servers collude.

This follows from the property of sender’s privacy of VDOT. Because only

the originator knows the translation tables of input 1 and output 1, the state

information (in which the originator’s private information is hidden) is private

against other parties. Because VDOT ensures that each host can only evaluate

the garbled circuit with one value of its local input, no host is able to extract

partial private information from the garbled circuit by evaluating it for multiple

times.

• Host’s Privacy A host’s local input to the agent and local output from the

118

agent are private against the originator, any other hosts and any servers, no

matter how many parties involved collude.

The privacy of local input follows from the property of receiver’s privacy of

VDOT. Because the local input is not revealed in VDOT, there is no way for

other parties to learn about it. The privacy of the local output is obvious.

• Cheating Detection If the servers cheat to change the garbled input 2, the

host is able to detect cheating, unless n−t
2

or more servers collude.

This follows from the verifiability of VDOT.

6.6 Implementation and Performance Evaluation

We have implemented VDOT and garbled circuits, the key components of system.

We have also measured preliminary performance.

encryption encapsulation

garbled
circuit

generator

Java
compiler

general
portion

security
sensitive
portion

final agent

Figure 6.4: Software Architecture of an Originator

In our software design, the general portion of an agent will be implemented in

Java, while the security-sensitive portion will be encoded as a garbled circuit. Fig-

119

ure 6.4 shows the components and the information flow at an originator. In our

current implementation, a user needs to manually generate a garbled circuit, which

should be very small for many applications. In the future, we expect that an auto-

matic circuit generator will be built. Using the automatic circuit generator, a user

can generate a circuit for her own use by specifying her own parameters. For exam-

ple, to build an agent that searches for airline tickets, all a user needs to do is to

execute the generator and input her desired flight date, source, destination and price

threshold. Then the generator immediately outputs a mobile agent on her behalf.

circuit
Java
agent

garbled

VDOT

input
clear

Java
virtual machine

garbled
circuit

interpreter

general
portion

output

input
garbled

agent
updated

Figure 6.5: Components of a Host

An agent is sent to hosts for execution. Figure 6.5 shows the components and

the information flow at a host. Because garbled circuits are general purpose and

are represented in a platform-independent format, for the purpose of efficiency, our

current interpreter is implemented in C.

Obviously, one potential major overhead will be the evaluation of garbled cir-

cuits. However, measurement of our prototype interpreter shows that the overhead

is very small. Figure 6.6 shows the overhead of evaluating random garbled circuits

120

of different sizes. The result shows that the overhead of evaluating a garbled circuit

of several hundred gates is pretty small.

0

1

2

3

4

5

500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(m

s)

Number of gates

Overhead of Evaluating a Garbled Circuit

Figure 6.6: Overhead of Evaluating a Garbled Circuit

In order to interpret garbled circuits, the hosts need to interact with the servers

through the VDOT protocol to retrieve garbled input 2. Our prototype of VDOT is

implemented in C++. We evaluate the overhead of the VDOT protocol on machines

with Intel 1.0GHz CPU running Linux. Figure 6.7 shows the steps of the VDOT

protocol and labels the cost of each computational step. The setting of the evaluation

is n = 6 and t = 3. It is clear that the cost of VDOT is acceptable.

6.7 Summary of Secure Mobile-Agent Computa-

tion

In this chapter, we propose a cryptographic primitive VDOT and present a concrete

design of VDOT. We showed that our design is correct and it protects both the

121

calculate
requests:
81.8 ms

verification:
248.2 ms

requests:
processing

161.4 ms

reconstruction:
1.6 ms

responses

requests

host servers

Figure 6.7: Overhead of VDOT ((n, t) = (6, 3))

receiver’s privacy and the sender’s privacy. It also has verifiability such that cheating

can be detected if servers cheat to change the receiver’s output. This work can be

viewed as an application of the secure multi-party computation techniques shown

in Chapter 2. However, we also use other techniques like consistency verification of

encrypted shares.

We apply VDOT to design a protocol for secure mobile-agent computation. Our

system partitions an agent into the general portion and the security-sensitive portion.

Our system protects the privacy of both the originator and the hosts, without using

any single trusted party. We have also implemented the key components of our

system. As far as we know, this is the first effort to implement a system that protects

the privacy of mobile agents. Our preliminary evaluation shows that protecting

mobile agents is not only possible, but also can be implemented efficiently.

122

Chapter 7

Incentives in Ad Hoc Networks

In previous chapters, I have considered problems of privacy and integrity in various

scenarios. In this chapter, I present joint work with Jiang Chen and Yang Richard

Yang [144], which studies the problem of incentives in mobile ad hoc networks. This

is an attempt to add incentive considerations to secure multi-party computation.

Specifically, in this work, we study how to stimulate cooperation among selfish mobile

nodes in an ad hoc network. We propose Sprite, a simple, cheat-proof, credit-based

system for stimulating cooperation among selfish nodes in mobile ad hoc networks.

Our system suppresses cheating behavior and provides incentive for mobile nodes to

cooperate and report actions honestly. Compared with previously proposed solutions

to this problem, our system does not require any tamper-proof hardware at any node.

Furthermore, we present a formal model of our system and prove its properties in

this model. Evaluations of a prototype implementation show that the overhead of

our system is small. Simulations and analysis show that mobile nodes can cooperate

and forward each other’s messages, unless the resource of each node is extremely low.

123

7.1 Background and Motivation

In recent years, mobile ad hoc networks have received much attention due to their

potential applications and the proliferation of mobile devices [115, 137]. Specifically,

mobile ad hoc networks refer to wireless multi-hop networks formed by a set of

mobile nodes without relying on a preexisting infrastructure. In order to make an ad

hoc network functional, the nodes are assumed to follow a self-organizing protocol,

and the intermediate nodes are expected to relay messages between two distant

nodes. Recent evaluations have shown that ad hoc networks not only are flexible

and robust, but also can have good performance in terms of throughput, delay and

power efficiency [72].

So far, applications of mobile ad hoc networks have been envisioned mainly for

emergency and military situations. In such applications, all the nodes of the network

belong to a single authority and therefore have a common objective. As a result,

cooperation among the nodes can be assumed. However, as observed by several

authors [93, 23, 24, 21, 22], it may soon be possible to deploy ad hoc networks

for civilian applications as well. In such emerging civilian applications, the nodes

typically do not belong to a single authority. Consequently, cooperation behaviors

such as forwarding each other’s messages, cannot be assumed directly.

We distinguish two types of uncooperative nodes: faulty/malicious nodes and

selfish nodes. Although the problems of faulty/malicious nodes can be important in

military applications, the focus of this work is on selfish nodes, which we expect will

be the dominant type of nodes in a civilian ad hoc network.1 Specifically, a selfish

node is an economically rational node whose objective is to maximize its own welfare,

1The problems of faulty/malicious nodes can be addressed from many layers, for example, using
spread-spectrum encoding to avoid interference over the communication channel; using a reputation
system to identify the faulty/malicious nodes and subsequently avoid or penalize such nodes [93];
and applying the techniques of secure multi-party computation to perform computation correctly
even in the presence of faulty/malicious nodes.

124

which is defined as the benefit of its actions minus the cost of its actions. Because

forwarding a message will incur a cost (of energy and other resources) to a node, a

selfish node will need incentive in order to forward others’ messages.

One possibility to provide incentive is to use a reputation system [93, 21, 22].

For example, in [93], Marti et al. proposed a reputation system for ad hoc networks.

In their system, a node monitors the transmission of a neighbor to make sure that

the neighbor forwards others’ traffic. If the neighbor does not forward others’ traffic,

it is considered as uncooperative, and this uncooperative reputation is propagated

throughout the network. In essence, we can consider such a reputation system as

a repeated game whose objective is to stimulate cooperation (e.g., see Chapter 8

of [110]). Such reputation systems, however, may have several issues. First, to the

best of our knowledge, there is no formal specification and analysis of the type of

incentive provided by such systems. Second, these systems have not considered the

possibility that even selfish nodes can collude with each other in order to maximize

their welfare. Third, some of the current systems depend on the broadcast nature of

wireless networks in order to monitor other nodes. Such monitoring, however, may

not always be possible due to asymmetric links when nodes use power control. Fur-

thermore, directional antennas [131, 140], which are gaining momentum in wireless

networks in order to improve capacity, will also make monitoring hard.

Another possibility to provide incentive is to use credit (or virtual currency).

Buttyan and Hubaux proposed a nice solution of this type in [23], and then presented

an improved result based on credit counters in [24]. For both proposals, a node

receives one unit of credit for forwarding a message of another node, and such credits

are deducted from the sender (or the destination). Besides other potential issues

that we will discuss in Section 7.2, both proposals require a piece of tamper-proof

hardware at each node so that the correct amount of credit is added or deducted from

125

the node. As a result of this requirement, although both proposals are interesting,

they may not find wide-spread acceptance.

In this work, we propose Sprite, a simple, cheat-proof, credit-based system for

mobile ad-hoc networks with selfish nodes. Similar to [23] and [24], our system also

uses credit to provide incentive to selfish nodes. However, one of the novel and

distinguishing features is that our system does not need any tamper-proof hardware

at any node.

At a high level, the basic scheme of our system can be described as follows. When

a node receives a message, the node keeps a receipt of the message. Later, when the

node has a fast connection to our Credit Clearance Service (CCS), it reports to the

CCS the messages that it has received/forwarded by uploading its receipts. The CCS

then determines the charge and credit to each node involved in the transmission of

a message, depending on all the reported receipts of a message.

There are two issues regarding the design of our system. First, because there is

no tamper-proof hardware at any node and the charge and credit are based on the

reports of the selfish nodes, a selfish node (or even a group of colluding node) may

attempt to cheat the system to maximize its expected welfare. As an example, a

selfish node may withhold its receipt, or collude with other nodes to fake receipts,

if such actions can maximize its welfare. This is the security perspective of our

system. Second, a node should receive enough credit for forwarding a message for

another node, so that it can send its own messages with the received credit, unless

the resource of the node itself is extremely low. This is the incentive perspective of

our system.

In summary, the contributions of this work are the following. First, we present

Sprite, a system to provide incentive to selfish mobile nodes to cooperate. Second,

our system determines charge and credit from a game-theoretic perspective, and

126

motivates each node to report its actions honestly, even when a collection of the selfish

nodes collude. Third, we model the essential component of our system as a game

and prove the correctness of our system under this model. As far as we know, this is

the first pure-software solution that has formal proofs of security. Our main result

works for message-forwarding, and we extend it to route discovery as well. Fourth,

we perform extensive evaluations and simulations of our system. Evaluations of a

prototype implementation show that the overhead of our system is small. Simulations

show that the nodes will cooperate and forward each other’s messages, unless the

resource of each node is extremely low.

The rest of this chapter is organized as follows. In Section 7.2, we discuss works

related to this problem. In Section 7.3, we present the overall architecture and

the intuitions behind our design. We then give the full specification our system in

Section 7.4. In Section 7.5, we present a formal model of our system and prove the

security properties under this model. In Section 7.6, we extend our work to route

discovery. In Section 7.7, we present evaluations of our solution. We summarize this

work in Section 7.8.

7.2 Related Work

There are three classes of work closely related to ours: reputation systems, stim-

ulation approaches from the Terminodes project, and game-theoretic research in

computer science.

7.2.1 Reputation-based Approaches

In [93], Marti et al. considered uncooperative nodes in general, including selfish and

malicious nodes. In order to cope with this problem, they proposed two tools: a

127

watchdog, which identifies misbehaving nodes, and a pathrater, which selects routes

that avoid the identified nodes. Their simulations showed that these two tools can

maintain the total throughput of an ad hoc network at an acceptable level even with

a large percentage of misbehaving nodes. In [21, 22], Buchegger and Le Boudec

proposed and evaluated their CONFIDENT protocol, which detects and isolates

misbehaving nodes. However, as we discussed in Section 7.1, there are several issues

that such reputation-based systems need to address.

In [84], Jakobsson, Wetzel, and Yener show that any routing algorithm in ad hoc

networks can be attacked with a certain cost. They also suggest to use reputation-

base control to immunize against these attacks.

7.2.2 Stimulation Approaches from Terminodes

In this subsection, we review several pieces of related work where all or some of the

authors are from the Terminodes project. General reviews of the Terminodes project,

and of the related security problems, can be found in [74, 76, 75].

In [23], Buttyan and Hubaux proposed a stimulation approach that is based on a

virtual currency, called nuglets, which are used as payments for packet forwarding.

Using nuglets, the authors proposed two payment models: the Packet Purse Model

and the Packet Trade Model. In the Packet Purse Model, the sender of a packet pays

by loading some nuglets in the packet before sending it. Intermediate nodes acquire

some nuglets from the packet when they forward it. If the packet runs out of nuglets,

then it is dropped. In the Packet Trade Model, the destination of a packet pays for

the packet. To implement the Packet Trade Model, each intermediate node buys a

packet from its previous node for some nuglets and sells it to the next node for more

nuglets. In this way each intermediate node earns some nuglets and the total cost of

forwarding the packet is covered by the destination. To implement either the Packet

128

Purse Model or the Packet Trade Model, a tamper-proof hardware is required at

each node to ensure that the correct amount of nuglets is deducted or credited at

each node.

Besides the requirement for a tamper-proof hardware at each node, some other

issues also exist for the Packet Purse Model and the Packet Trade Model:

1. Both models require the clearance of nuglets in real-time. As a result, if the

system does not have enough nuglets circulating around, the performance of

their system may degrade.

2. Under both models, if a mobile node runs out of nuglets, its tamper-proof

hardware still has to contact with some central authority in order to “refill”

its credit. (Actually, the CSS introduced by our system is similar to such an

authority.)

3. A disadvantage of the Packet Trade Model is that it is vulnerable to network

overload, because the senders do not have to pay. For this reason, the authors

of [23] mainly studied the Packet Purse Model.

Besides the nuglet approach, Buttyan and Hubaux also proposed a scheme based

on credit counter [24]. In this new approach, each node keeps track of its remaining

battery and its remaining credit. The authors simulated four rules for a node to

determine when to forward others’ packets and when to send its own packets. Our

analysis shows that the first rule is actually optimal to achieve their given goals.

Although this new scheme is simple and elegant, it still requires a tamper-proof

hardware at each node so that the correct amount of credit is deducted or credited.

Furthermore, the first two issues we outlined in the previous paragraph exist for this

approach as well.

129

In [80], Jakobsson, Hubaux, and Buttyan study the incentive issue in both rout-

ing and packet forwarding in multi-hop cellular networks. Their solution is an in-

tegrated approach that avoids separation of routing and forwarding and encourages

nodes’ cooperation using micropayment. Their design not only detects and rewards

collaboration, but also detects and punishes various forms of abuse. Because they

use light-weight cryptographic techniques, their scheme is highly efficient. Compared

to our work, [80] is in a related-but-different scenario (hybrid cellular networks that

include base stations in addition to ad hoc networks, with multi-hop uplinks and

one-hop downlinks), and using a different approach (micropayment, not transaction

clearance at a CCS).

In [17], Ben Salem, Buttyan, Hubaux, and Jakobsson propose another very effi-

cient scheme for packet forwarding in multi-hop cellular networks (where both up-

links and downlinks are one-hop). This solution is session-based and independent of

routing. Thus, it can be used in combination with existing secure routing schemes.

7.2.3 Related Work in Algorithmic Mechanism Design and

Game Theory

Our approach is motivated by algorithmic mechanism design (see e.g., [106, 105, 112,

68, 45, 65, 44, 123]), which is an emerging active research area in the intersection

of computer science and mathematical economics. In particular, Feigenbaum et al.

have considered BGP-based mechanism design for lowest-cost unicast routing in the

Internet [44]. In [45], Feigenbaum et al. have considered cost sharing for multicast.

Golle et al. have analyzed the incentives in peer-to-peer networks [65]. However,

as far as we know, before [144] there was no previous proposed mechanism design

for ad hoc networks. Furthermore, although our design is motivated by algorith-

130

mic mechanism design, our problem does not fit exactly into the mechanism-design

framework. For example, in our game, the information held by each player is not

totally private, while in mechanism design, each player must have a private type.

Furthermore, algorithmic mechanism design only considers economic incentives and

does not address how to enforce the output of a mechanism. In contrast, our solution

enforces a payment scheme using a cryptographic technique.

Qiu, et al. [118] and Srinivasan, et al. [132] also study incentives in wireless ad

hoc networks. They focus on the economic perspective of the problem using game-

theoretic approaches and ignore how to enforce the mechanism they design.

7.3 Overview of our Approach

In this section, we present the overall architecture and the intuitions behind our

design; the formal results will be presented in Sections 7.4 and 7.5.

7.3.1 System Architecture

Figure 7.1 shows the overall architecture of our system, which consists of the Credit

Clearance Service (CCS) and a collection of mobile nodes. The nodes are equipped

with network interfaces that allow them to send and receive messages through a

wireless overlay network [133], e.g., using GPRS in a wide-area environment, while

switching to 802.11 or Bluetooth in an environment where high-bandwidth Internet

access is available. To identify each node, we assume that each node has a certificate

issued by a scalable certificate authority such as those proposed in [146, 91]. For

concreteness of presentation, we assume that the sender knows the full path from the

sender to the destination, using a secure ad hoc routing protocol based on DSR [85,

37, 73]. The incentive issues of route discovery will be investigated in Section 7.6.

131

Internet

Node 2

Node 1 Node 3

Node 4 Node 5

Wide −Area Wireless Network

Credit Clearance Service (CCS)

Figure 7.1: The architecture of Sprite.

When a node sends its own messages, the node (or the destination, see later) will

lose credit (or virtual money) to the network because other nodes incur a cost to

forward the messages. On the other hand, when a node forwards others’ messages,

it should gain credit and therefore be able to send its messages later.

There are two ways for a node to get more credit. First, a node can pay its debit

or buy more credit with real money, at a variable rate to the virtual money, based

on the current performance of the system. However, the preferred and dominant

way to get more credit is by forwarding others’ messages. In order to get credit for

forwarding others’ messages, a node needs to report to the CCS which messages it

has helped to forward. Although a node can save its reports in a local storage such

as CompactFlash card, in order to reduce storage, each mobile node should report to

the CCS whenever it switches to a fast connection and has backup power. A mobile

node can also use a desktop computer as a proxy to report to the CCS. In order

to save bandwidth and storage, instead of requiring the whole message as a report,

132

our system uses small receipts. Such receipts are derived from the content of the

messages but do not expose the exact content of the messages. Thus, although we

require that the CSS be trusted in terms of maintaining credit balance, the nodes do

not need to trust the CSS in terms of message confidentiality.

7.3.2 Who Pays Whom?

Before determining the amount of credit or charge to each node, we first discuss two

basic questions.

The first question is who pays whom. Considering the relay of a message from a

sender to a destination as a transaction, we need to decide who should be charged

for the message and who should receive credit for relaying the message.

Although we can charge the destination, we decide that charging the sender will

be a more robust and general approach. There are two reasons for charging the sender

only. First, charging the destination may allow other nodes to launch a denial-of-

service attack on the destination by sending it a large amount of traffic. Even sharing

the cost between the sender and the destination could have a similar problem, because

the sender could collude with the intermediate nodes, who could secretly return the

sender’s payment back, so that only the destination pays for the traffic. On the other

hand, if only the sender is charged, a node will not have incentive to send useless

messages. Second, if the destination benefits from the content of a message and thus

should pay for it, the sender can get compensation from the destination, for example,

through an application-layer payment protocol. Given these reasons, only the sender

will be charged in our system.

A closely related question is who will receive credit for forwarding a message.

Ideally, any node who has ever tried to forward a message should be compensated

because forwarding a message will incur a cost to the node, no matter successful

133

or not. However, a forwarded message may be corrupted on the link, and there

is no way to verify that the forwarding action does occur. Although some local

wireless networks such as IEEE 802.11 do provide link layer acknowledgments, such

acknowledgment schemes are not universal and we refrain from changing basic net-

work functions. Given this decision, the credit that a node receives will depend on

whether or not its forwarding action is successful — a forwarding is successful if and

only if the next node on the path receives the message. In other words, the CCS

believes that a node has forwarded a message if and only if there is a successor of

that node on the path reporting a valid receipt of the message.

7.3.3 Objectives of the Payment Scheme

The second basic question is about the objective of the payment scheme. After all,

the objectives of our payment scheme are to prevent cheating actions and to provide

incentive for the nodes to cooperate. Given such objectives, our system does not

target balanced payment; that is, we do not require that the total charge to the

sender be equal to the total credit received by other nodes for a message. In stead,

we require that the system be budget sufficient, which means that the overall charge

equals the total credit if nobody cheats, and that the overall charges is greater than

or equal to the total credit if some party cheats. In fact, in order to prevent one type

of cheating actions, when that type of cheating happens, our CCS charges the sender

more than it gives to the other nodes (see Subsection 7.3.6). In order to offset long-

term net outflow of credit from the mobile nodes to the CCS, if in a large network, the

CCS periodically returns the credit back to the mobile nodes uniformly; otherwise,

the CCS periodically gives each mobile node a fixed amount of credit. Note that

this return will not enable any cheating action or reduce the incentive of the nodes

to forward others’ messages.

134

7.3.4 Cheating Actions in the Receipt-Submission Game

Because the mobile nodes are selfish, without a proper payment scheme, they may

not forward others’ messages or they may try to cheat the system, if the cheating

can maximize their welfare. In particular, a selfish node can exhibit one of the three

selfish actions:

1. After receiving a message, the node saves a receipt but does not forward the

message;

2. The node has received a message but does not report the receipt;

3. The node does not receive a message but falsely claims that it has received the

message.

Note that any of the selfish actions above can be further complicated by collusion of

two or more nodes. We next progressively determine the requirements on our system

in order to prevent the above actions.

7.3.5 Motivating Nodes to Forward Messages

In order to motivate a selfish node to forward others’ messages, the CCS should give

more credit to a node who forwards a message than to a node who does not forward

a message. A basic scheme to achieve this objective is as follows. First, the CCS

determines the last node on the path that has ever received the message. Then the

CCS asks the sender to pay β to this node, and α to each of its predecessors, where

β < α. Note that the CCS does not ask the sender to pay anything to the successors

of the last node. Comparing this scheme with those in [23] and [24], we observe that

the approaches in [23] and [24] are just the special case that β is very small and α

is close to 1. Figure 7.2 illustrates the basic idea with an example. In this example,

135

only the first three intermediate nodes submit their receipts. Therefore, nodes 1 and

2 will each receive a payment of α, and node 3 a payment of β. Because node 4

and the destination do not submit any receipt, they do not receive any credit. The

sender pays a total of 2α + β.

sender node 1 node 2

αα β

destinationnode 3 node 4

0 0−(2α+β)

Figure 7.2: Illustration of our payment scheme (version 1).

7.3.6 Motivating Nodes to Report their Receipts

Obviously, each single node having received a message is motivated to report its

receipt, if β is greater than its cost of submitting a receipt, which, as we discussed

previously, should be low because a receipt is generally small.

Unfortunately, there is still a collusion that can work against the above design.

As an example, the last node (or in the general case, the last k nodes) ever received

the message can collude with the sender. In particular, if the last node does not

report its receipt, the sender saves α while the last node loses β. However, if the

sender gives the last node a behind-the-scene compensation of β + ε, where ε > 0,

the last node will be better-off while the sender still enjoys a net gain of α− (β + ε).

Thus, the colluding group gets a net benefit of α− β.

In order to prevent this cheating action, the CCS charges the sender an extra

amount of credit if the destination does not report the receipt for message. This

extra charge goes to the CCS instead of any nodes. The overall charge to the sender

(including payments to other nodes and the extra charge) should be kβ less than

the charge to the sender when the message arrives at the destination, where k is the

136

number of nodes not submitting receipts. Given such extra charge, even a colluding

group cannot benefit from this cheating action. Again consider the example in Fig-

ure 7.2. Figure 7.3 shows the revised amount paid by the sender, which is equal to

(4α + β)− 2β).

sender node 1 node 2

αα β

destinationnode 3 node 4

0 0−(4α−β)

Figure 7.3: Illustration of our payment scheme (version 2).

7.3.7 Preventing False Receipts

Next we consider a countermeasure to the third type of selfish actions. As we dis-

cussed before, in order to save bandwidth and storage, our system requires that the

nodes submit receipts instead of full messages. Given such a scheme for receipts, a

group of colluding nodes can try to attack our system in several ways. For example,

instead of forwarding the whole message, an intermediate node can forward only the

receipt of a message to its successor, which is sufficient for getting credit. Moreover,

the intermediate node can even wait until it has a fast connection to the successor

to forward the false receipt, thus further saving resource usage.

The key to prevent such attack depends on the destination. We distinguish two

cases: 1) the destination colludes with the intermediate nodes; or 2) the destination

does not collude with the intermediate nodes.

We first consider the case that the destination colludes with the intermediate

nodes, and therefore submits a receipt of a message even when it does not receive

the whole message. For this case, we argue that the intermediate nodes and the

destination should be paid as if no cheating had happened, because after all, the

137

message is for the destination and the destination does submit a receipt for the

message, indicating that it has received the message. If the sender needs to make sure

that the destination receives the whole message, a higher-layer protocol to validate

the receipt of the whole message by the destination can be easily implemented (see,

e.g., [127]).

We next consider the case that the destination does not collude with the inter-

mediate nodes. In this case, if the intermediate nodes forward only the receipt of

a message instead of the whole message, then the destination will not be able to

receive a valid message payload, and therefore will not submit a receipt for the mes-

sage. Based on this observation, we can prevent the potential cheating action of the

intermediate nodes by greatly reducing the amount of credit given to the interme-

diate nodes, if the message is not reported by the destination. With such reduction

of credit, the cheating nodes cannot get enough credit even to cover the minimum

expense needed for this type of cheating, i.e., the cost of forwarding a receipt. To

be more exact, if the destination does not report a receipt of a message, we multiply

the credit paid to each node by γ, where γ < 1 (the exact requirement on γ will

be presented in Section 7.5). Still consider the example in Figure 7.2. Figure 7.4

shows the revised amount of credit received by each node. In particular, comparing

Figure 7.4 with Figure 7.3, due to this revision, we reduce the charge to the sender

by γβ instead of β, for each node on the path who does not report a receipt.

sender node 1 node 2 destinationnode 3 node 4

γα γα γβ 0 0−(4α+β−2γβ)

Figure 7.4: Illustration of our payment scheme (final version).

138

7.4 Specification of the Message-Forwarding Pro-

tocol

In the following formal specification of our protocol, we denote the public/private

key pair of node ni by (PKi, SKi). Each node ni maintains a sequence-number

matrix seqi, where seqi(j, k) is the sequence number of messages from sender nj

to destination nk, observed by node ni. We assume that (signSK(), verifyPK()) is

a digital signature scheme. In practice, we can use the RSA or the elliptic curve

signature scheme.

7.4.1 Sending a Message

Suppose that node n0 is to send message payload m with sequence number seq0(0, d)

to destination nd, through path p. Node n0 first computes a signature, s, on

(MD(m), p, seq0(0, d)), where MD() is a message digest function such as MD5 [120]

or SHA-1 [107]. Then, n0 transfers (m, p, seq0(0, d), s) to the next hop and increases

seq0(0, d) by 1. Figure 7.5 specifies the complete protocol steps.

. m is the message payload.

. n0 is the sender, nd the destination, and p the path.

s ← signSK0(MD(m), p, seq0(0, d))
send (m, p, seq0(0, d), s) to the next node
seq0(0, d) + +

Figure 7.5: Node n0 sends a message to nd.

7.4.2 Receiving a Message

Suppose that node ni receives (m, p, seq, s). It first checks three conditions: 1) ni is

on the path; 2) the message has a sequence number greater than seqi(0, d); and 3) the

139

signature is valid. If any of the conditions is not satisfied, the message is dropped.

Otherwise, it saves (MD(m), p, seq, s) as a receipt. If ni is not the destination and

decides to forward the message, it sends (m, p, seq, s) to the next hop. Figure 7.6

specifies the protocol steps.

. (m, p, seq, s) is the received message.

. n0 is the sender, nd the destination.

if ((ni not in p) || (seq ≤ seqi(0, d))
|| (verifyPK0((MD(m), p, seq), s) 6= TRUE))

drop the message
else

seqi(0, d) ← seq
save (MD(m), p, seq, s) as a receipt
if (ni is not the destination and decides to forward)

send (m, p, seq, s) to next hop
else

drop the message

Figure 7.6: Node ni receives (m, p, seq, s).

7.4.3 Computing Payments

A receipt (D, p, seq, s) submitted by node ni is regarded as valid if

verifyPK0((D, p, seq), s) = TRUE,

where PK0 is the public key of the sender.

Without loss of generality, we assume that p = (n0, n1, . . . , ne, . . . , nd), where ne

is the last node on path p that submits a valid receipt with sequence number seq.

Then the CCS charges C from node n0, and pays Pi to node ni, where

C = (d− 1)α + β − (d− e)γβ,

140

Pi =





α if i < e = d

β if i = e = d

γα if i < e < d

γβ if i = e < d.

Note that in implementation, the CCS will issue credit gradually. For example, when

the last intermediate node submits its receipt for a message but the destination has

not submitted its receipt yet, the last intermediate node will get γβ. Later, when

the destination submits its receipt, the node will get its full credit of α.

7.5 Formal Model and Analysis of the Message-

Forwarding Protocol

7.5.1 A Model of the Receipt-Submission Game

For convenience of analysis, we model the submissions of receipts regarding a given

message m as a one-round game. Note that the whole system can also be viewed as

a game, which is much more complicated. However, here we focus on the component

of receipt submissions, so that we can have a thorough analysis.

Players. This game has d + 1 players, n0, n1, . . . , nd, from the sender to the desti-

nation.2

Players’ Information. Let Ti be the information held by player ni that is un-

known to the CCS. For i > 0, Ti = TRUE if node ni has ever received message m;

Ti = FALSE otherwise. Obviously, the sender n0 and the set of nodes that have

2Recall that each receipt contains the signed path. Therefore, nodes not on the path are easily
excluded from this game.

141

ever received message m constitute a prefix of the path. Therefore,

Ti =





TRUE if 0 < i ≤ e′

FALSE if e′ < i ≤ d,

where e′ is the index of the last node that has ever received message m. Note that e′

is secret to the CCS when the game starts. Also note that a player has some partial

information about e′, i.e., the information inferred from its own information. For

completeness, we define T0 = TRUE.

Actions. Each player, ni (i > 0), has two possible actions: reporting that it has

ever received message m (by submitting a valid receipt), or withholding its report.

We denote the action of ni by Ai. Then Ai is either TRUE or FALSE. The

only exception is n0, which has no choice of action. We define A0 = TRUE, for

completeness of our model.

Cost of Actions. We denote the cost of ni’s action by Ui. As discussed before,

in general, the cost of sending a receipt to the CCS is very low. However, if player

ni does not receive message m but can successfully claim that it has received the

message, then a colluding node must have forwarded ni a copy of the receipt. Let δ

be the cost of forwarding a receipt from one mobile node to another node. Then the

colluding node incurs a cost of δ and ni must compensate the colluding node with δ.

Counting this cost on ni, we have

Ui =





δ if Ti = FALSE and Ai = TRUE

0 otherwise.

142

Payment. Recall that the system’s payment to ni (i > 0) is

Pi =





α if i < e = d

β if i = e = d

γα if i < e < d

γβ if i = e < d.

For n0, the charge of C can be viewed as a negative payment

P0 = −C = −((d− 1)α + β − (d− e)γβ).

Welfare. For player ni, deducting its cost from its received payment, the node has

a welfare of

Wi = Pi − Ui.

7.5.2 Security Analysis of the Receipt-Submission Game

If Ai = Ti, then we say that ni tells the truth. Otherwise, we say that ni cheats. The

strategy of ni can be truth-telling, cheating, or a probability distribution over these

two choices. The strategy profile of a group of players refers to the ordered set of the

strategies of these players.

Definition 37 For a player, an optimal strategy3 is a strategy that brings the max-

imum expected welfare to it, regardless of the strategies of all the other nodes.

Theorem 38 In the receipt-submission game, truth-telling is an optimal strategy for

every node ni, if δ ≥ γβ, and nd does not cheat in case of Td = FALSE.

3Note that an optimal strategy is not necessary a dominant strategy. See, e.g., [110] for the
definition of dominant strategy.

143

Proof: Consider a strategy profile of all of the rest players, in which each player, nj

(j 6= i), tells the truth with probability xj. We distinguish four cases here.

• Case A. i = 0. Because Ai = Ti = TRUE is the only possible strategy, it is

also the best response.

• Case B. 0 < i < e′. Recall that e′ is the index of the last node that has ever

received the message. If ni tells the truth, its expected welfare EW+
i = EP+

i

is





(1−∏e′
j=i+1(1− xj)

∏d−1
j=e′+1 xj)γα

+
∏e′

j=i+1(1− xj)
∏d−1

j=e′+1 xjγβ

if e′ < d

xdα + (1− xd)((1−∏e′−1
j=i+1(1− xj))γα

+
∏e′−1

j=i+1(1− xj)γβ)

if e′ = d;

if ni cheats, its expected welfare EW−
i = EP−

i is





(1−∏e′
j=i+1(1− xj)

∏d−1
j=e′+1 xj)γα

if e′ < d

xdα + (1− xd)(1−∏e′−1
j=i+1(1− xj))γα

if e′ = d.

Therefore, we always have EW+
i ≥ EW−

i , which implies that telling the truth

with probability 1 will bring the maximum expected welfare to ni.

144

• Case C. i = e′. If ni tells the truth, its expected welfare EW+
i = EP+

i is





(1−∏d−1
j=i+1 xj)γα +

∏d−1
j=i+1 xjγβ

if e′ < d

β if e′ = d;

if ni cheats, its expected welfare EW−
i = EP−

i is





(1−∏d−1
j=i+1 xj)γα if e′ < d

0 if e′ = d.

As in the previous case, we always have EW+
i ≥ EW−

i , which implies that

telling the truth with probability 1 will bring the maximum expected welfare

to ni.

• Case D. e′ < i ≤ d. Note that Td = FALSE here, which implies that ni always

tells the truth in case of i = d. So we only need to consider the case of i < d.

If ni tells the truth, the expected welfare is

EW+
i = EP+

i = (1−
d−1∏

j=i+1

xj)γα.

If ni cheats, it gets an expected payment of

EP−
i = (1−

d−1∏

j=i+1

xj)γα +
d−1∏

j=i+1

xjγβ,

while its gets a cost of

U−
i = δ.

145

So its expected welfare is

EW−
i = EP−

i − U−
i = (1−

d−1∏

j=i+1

xj)γα +
d−1∏

j=i+1

xjγβ − δ.

As in Cases B and C, we always have EW+
i ≥ EW−

i , which implies that telling

the truth with probability 1 will bring the maximum expected welfare to ni.

Besides individual cheating, we further consider the possibility of collusion.

Definition 39 A game is collusion-resistant, if any group of colluding players can-

not increase the expected sum of their welfare by using any strategy profile other than

that in which everybody tells the truth.

Theorem 40 The receipt-submission game is collusion-resistant, if δ ≥ (d − 1)γα,

and nd does not cheat in case of Td = FALSE.

Proof: Consider strategizing group G that uses a strategy profile other than ev-

erybody telling the truth. Suppose that each player ni ∈ G tells the truth with

probability xi. The expected sum of welfares of G is

EWG =
∑

L⊆G

∏

i∈L

(1− xi)
∏

i∈G−L

xiWG(L),

where WG(L) denotes the sum of welfares of G in case that the set of lying players

is L. Our goal is to show

EWG ≤ WG(φ).

Obviously, we only need to prove

∀L ⊆ G,WG(L) ≤ WG(φ).

146

We distinguish two cases here. (Hereafter, we use]G(u, v) to denote |{i|u ≤ i ≤
v ∧ ni ∈ G}|.)

• Case A. n0 6∈ G. By considering the indices of players in L, we further distin-

guish three subcases.

– Subcase A-A. ∀ni ∈ L, i < e′. Then trivially we have

WG(L) = WG(φ).

– Subcase A-B. ∀ni ∈ L, i ≤ e′, and ne′ ∈ L. Then WG(L) is equal to





WG(φ)− ((e′ − 1)γα + γβ))

if e′ < d and ∀i ≤ e′, ni ∈ L

WG(φ)− ((e′ − 1)α + β)

if e′ = d and ∀i ≤ e′, ni ∈ L

WG(φ)− (]G(e, e)(γα− γβ)

+]G(e + 1, e′ − 1)γα + γβ)

if e′ < d and ∃i ≤ e′, ni 6∈ L

WG(φ)− (]G(1, e− 1)(1− γ)α

+]G(e, e)(α− γβ) +]G(e + 1, e′ − 1)α + β)

if e′ = d and ∃i ≤ e′, ni 6∈ L,

where e = maxi≤e′,ni 6∈L i. Therefore,

WG(L) ≤ WG(φ).

147

– Subcase A-C. ∃ni ∈ L, i > e′. Then

WG(L) = WG(φ) +]G(e′, e′)(γα− γβ)

+]G(e′ + 1, e− 1)γα + γβ − δ,

where e = maxe′<i<d,ni∈L i. It’s easy to see

WG(L) ≤ WG(φ) + (e− e′)γα− δ

≤ WG(φ) + (d− 1)γα− δ

≤ WG(φ).

• Case B. no ∈ G. As in Case A, we further distinguish three subcases.

– Subcase B-A. ∀ni ∈ L, i < e′. Trivially, we have

WG(L) = WG(φ).

148

– Subcase B-B. ∀ni ∈ L, i ≤ e′, and ne′ ∈ L. Then WG(L) is equal to





WG(φ) + e′γβ − ((e′ − 1)γα + γβ))

if e′ < d and ∀i ≤ e′, ni ∈ L

WG(φ) + e′γβ − ((e′ − 1)α + β)

if e′ = d and ∀i ≤ e′, ni ∈ L

WG(φ) + (e′ − e)γβ − (]G(e, e)(γα− γβ)

+]G(e + 1, e′ − 1)γα + γβ)

if e′ < d and ∃i ≤ e′, ni 6∈ L

WG(φ) + (e′ − e)γβ − (]G(1, e− 1)

·(1− γ)α +]G(e, e)(α− γβ)

+]G(e + 1, e′ − 1)α + β)

if e′ = d and ∃i ≤ e′, ni 6∈ L,

where e = maxi≤e′,ni 6∈L i. Because γβ < β < α and γβ < γα, it is easy to

see

WG(L) ≤ WG(φ).

– Subcase B-C. ∃ni ∈ L, i > e′. Then

WG(L) = WG(φ)− (e− e′)γβ +]G(e′, e′)

·(γα− γβ) +]G(e′ + 1, e− 1)γα

+γβ − δ,

149

where e = maxe′<i<d,ni∈L i. It’s easy to see

WG(L) ≤ WG(φ) + (e− e′)γα− δ

≤ WG(φ) + (d− 1)γα− δ

≤ WG(φ).

Definition 41 A game is cheat-proof, if truth-telling is an optimal strategy for every

player and the game is collusion-resistant.

Theorem 42 The receipt-submission game is cheat-proof, if δ ≥ max(γβ, (d−1)γα),

and nd does not cheat in case of Td = FALSE.

7.5.3 Incentive Analysis of Performance

In the above proofs, we have essentially shown that each selfish node should report

faithfully to the CCS. With this knowledge in mind, comparing the expected gain

of credit from forwarding a message with that of not forwarding the message, an

intermediate node can expect a net gain of p2α + (p1 − p2)γα + (1 − p1)γβ − γβ,

where p1 is the probability that the message arrives at the next node, and p2 the

probability that the message arrives at the destination. Simplifying, we have p2(1−
γ)α + p1γ(α− β). Note that this payment gain is always greater than 0 because γ is

small, and α > β. If this payment gain is sufficient to cover the cost of forwarding a

message, the node has incentive to forward the message.

150

7.6 Stimulating Cooperation in Route Discovery

Because route discovery uses broadcasts, the approach we have presented cannot be

applied directly. In this section, we propose a slightly different approach, which is

a bit more expensive. But because route discovery is performed less frequently, this

approach is affordable in general. This approach is based on DSR, and essentially

we will show how to improve DSR to stimulate cooperation in route discovery. Note

that the reply to ROUTE REQUEST can be sent as a regular message. Therefore

we only need to stimulate the re-broadcasting of ROUTE REQUEST.

7.6.1 Sending a ROUTE REQUEST

In general, when a node starts to broadcast a ROUTE REQUEST, the message

includes the source address and a sequence number. Then the node signs and broad-

casts the message, and increases its sequence number counter by 1.

7.6.2 Receiving a ROUTE REQUEST

Suppose that a node receives a ROUTE REQUEST. It first decides whether the

message is a replay by looking at the sequence number. The node saves the received

ROUTE REQUEST for getting payment in the future. When the node decides to

rebroadcast the ROUTE REQUEST, it appends its own address to the ROUTE

REQUEST and signs the extended message.

7.6.3 Computing Payment

When the CCS computes payment, a ROUTE REQUEST is rejected if any signature

in the message is invalid. Furthermore, if a ROUTE REQUEST submitted by a node

is a part of another ROUTE REQUEST submitted by the same node, then the former

151

message is rejected. Finally, the CCS builds a tree based on the accepted ROUTE

REQUEST messages. The sender pays α to each non-leaf node of the tree, and β to

each leaf of the tree. For each node outside the tree, the sender node pays α− β to

the CCS.

7.7 Evaluations

7.7.1 Overhead

We first evaluate the overhead of our system. In order to measure the overhead,

we have implemented a prototype of our system using the Crypto++4.0 library [38].

The implementation can run over a wide range of platforms such as Linux and Win32.

In the evaluations below, our mobile node is a Laptop with an Intel Mobile

Pentium III processor at 866MHz. The OS of the mobile node is Windows XP.

The length of a message payload is 1000 bytes. The message digest function is MD5.

We consider two digital signature schemes: RSA with a modulus of 1024 bits, and

ECNR over GF(p) 168 [77]. We assume that the average path length is 8 hops.

send forward authentication receipt
(ms) (ms) header (bytes) (bytes)

RSA 1024 10.4 0.3 128 180
ECNR over GF(p) 168 7.3 13.2 42 94
ECNR over GF(p) 168 (precomputation) 3.7 6.1 42 94

Table 7.1: CPU processing time; sizes of authentication header and receipts.

We first evaluate the CPU processing time on a mobile node. In our system,

the major online processing overhead is the signing operation by the sender and the

verification operation by the intermediate nodes. The second and third columns of

Table I show the CPU processing time of the sender to send a message and that of

152

an intermediate node to forward a message, respectively. We observe that RSA has

a much smaller forwarding overhead. Thus, if reducing forwarding overhead is the

major objective, RSA is a better implementation choice. However, for both schemes,

we observe that the CPU processing time is acceptable, if the nodes do not send a

large number of messages, which is the expected case when the mobile nodes have

limited bandwidth and energy.

We next evaluate the bandwidth and storage requirement. Compared with a

message using DSR as the routing protocol but without message authentication, the

major increased overhead is the digital signature for message authentication. For

RSA with a modulus of 1024 bits, the authentication header is about 128 bytes;

for ECNR GF(p) with 168 bits, the header is about 42 bytes. In terms of storage

requirement for the receipts, for RSA 1024, the total storage of a receipt is 180 bytes,

and for the Elliptic Curve based ECNR, it is 94 bytes. Comparing RSA with ECNR,

we observe that ECNR has a much smaller bandwidth and storage requirement.

7.7.2 System Performance vs. Network Resources

We next evaluate the performance of our system. One major metric of the perfor-

mance of our system is the message success rate, i.e., the percentage of messages

that are successfully relayed from the sender to the destination. For the purpose of

this evaluation, we ignore message drops due to channel errors.

We first note that this success rate will depend on the sending/forwarding strategy

of the mobile nodes. As we have discussed in Section 7.3, although our system

provides incentive for cooperation by giving more credit for forwarding a message,

whether or not to forward a specific message will depend on the objectives and the

status of a node. To demonstrate the generality of our system, for the purpose of

this evaluation, we consider a special class of mobile nodes, namely the power-and-

153

credit-conservative nodes. Specifically, a node is power-conservative if its remaining

power allows it to send (and forward) only a limited amount of messages; a node

is credit-conservative if it refrains from sending any new message when its credit

balance is insufficient to cover the charge for sending a message. For this type of

nodes, we consider the following strategy: when it receives a transient message, if

the number of messages allowed to be sent by its estimated credit balance is smaller

than the number of messages allowed to be sent by its remaining battery, forward

the transient message and increase its estimated credit balance by pα, where p is the

probability that the forwarded message will arrive at its destination; otherwise, drop

the message. In summary, let c and b denote the estimated credit balance and the

number of messages allowed to be transmitted by the remaining battery of a node,

respectively. Assume that each message takes an average of L hops. Then the policy

of such a node is the following: if c
L

< b, forward a transient message; otherwise,

drop the message. Given the strategy above, we next evaluate the message success

rate of our system.

We first evaluate the message success rate under different configurations of net-

work resources. Figure 7.7 shows the message success rates for two ad hoc networks:

one network with 70 nodes uniformly distributed in an area of 1000 by 1000, and an-

other network with 200 nodes uniformly distributed in an area of 2000 by 2000. The

communication radius of each node is 250. In this experiment, because the nodes

are power-and-credit-conservative, their estimated credit balance c is close to 0 and

we choose their initial credit to be uniformly distributed in [0, C], where C = 10. To

observe the effect of the amount of node resource on the overall message success rate,

for each node, we choose its b, the number of messages that can be sent/forwarded

by the remaining battery of the node, uniformly from [0, B], where B is from 30 to

640. Note that even the maximum number of 640 is very conservative [137]. To

154

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700

M
es

sa
ge

 s
uc

ce
ss

 r
at

e

B

Effects of battery on message transmission

simulation: number of nodes=70
simulation: number of nodes=200

analysis: L=3

Figure 7.7: Message success rate vs. network battery resources.

control the number of experiments for each configuration, we repeat the experiment

of a configuration with a different random seed until the 5% confidence interval is

narrower than 5% of the mean value. From Figure 7.7, we observe clearly that with

increasing resources, the nodes are more willing to forward others’ messages, and

therefore the message success rate is very close to 1.

We next evaluate the dynamics of message success rate; that is, how message

success rate evolves as the nodes send more messages. Figure 7.8 shows the result.

Under this experiment, the initial credit of each node is 3, and the initial battery of

each node is B, where B = 100 or 500. The value of B = 100 is in the very low end,

and the objective is to observe message drops. The x-axis of Figure 7.8 is the index

of the number of messages generated by the mobile nodes, and the y-axis shows the

message success rate. From this figure, we observe that as system evolves and no

new node joins, the batteries of the nodes are consumed and the nodes tend to be

155

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500

M
es

sa
ge

 s
uc

ce
ss

 r
at

e

#generated packets

Message transmission dynamics

B=100
B=500

Figure 7.8: Dynamics of message success rate.

more conservative. However, we observe that, even in a low battery configuration,

considerable number of messages will be generated before the message success rate

decreases.

7.8 Summary of the Work on Incentives in Mobile

Ad hoc Networks

In this chapter, we present Sprite, a system to provide incentive to mobile nodes

to cooperate. Our system determines payments and charges from a game-theoretic

perspective, and we show that our system motivates each node to report its behavior

honestly, even when a collection of the selfish nodes collude. We also model the essen-

tial component of our system as the receipt-submission game, and prove the correct-

ness of our system under this model. Our main result works for packet-forwarding,

156

and we extend it to route discovery as well. We also implement a prototype of our

system and show the overhead of our system is insignificant. Simulations and anal-

ysis of the power-and-credit-conservative nodes show that the nodes can cooperate

and forward each other’s messages, unless the resources of the nodes are extremely

low.

157

Chapter 8

Conclusion

In this dissertation, I have studied privacy, integrity, and incentive compatibility in

computation with untrusted parties. All these are important security issues that

need to be addressed in various scenarios, from different perspectives, and with high

efficiency. As mentioned in Chapter 1, the problems of privacy and integrity belong

to more traditional research of secure multi-party computation, while the study of

incentive compatibility is a natural extension of secure multi-party computation to

selfish, or economically rational, parties.

The technical contents of this dissertation can be divided into three parts: Chap-

ter 2 presents definitions and frequently used techniques; Chapters 3 through 6 solve

practical problems of privacy and integrity in various scenarios, using the techniques

from Chapter 2 plus some other techniques specifically designed for these problems;

Chapter 7 is a first attempt to add incentive considerations to multi-party compu-

tation problems. On the one hand, the work presented in Chapters 3 through 7 is

an illustration of the general methodology of applying mathematical (e.g., crypto-

graphic and game theoretic) techniques to solve the security problems that arise in

practice. On the other hand, the concrete problems studied are of significant impor-

158

tance on their own in practice. I hope that this dissertation will be a good start of

my research on information and network security.

159

Bibliography

[1] M. Abe. Universally Verifiable Mix-Net with Verification Work Independent

of the Number of Mix-Servers. In Advances in Cryptology - Proceedings of

EUROCRYPT 98, volume 1403 of Lecture Notes in Computer Science, pp.

437–447. Springer-Verlag, 1998.

[2] M. Abe. Mix-Networks on Permutation Networks. In Advances in Cryptology

- - ASIACRYPT ’99, volume 1706 of Lecture Notes in Computer Science, pp.

258–273. Springer-Verlag, 1999.

[3] M. Abe and F. Hoshino. Remarks on Mix-Networks based on Permutation Net-

works. In Proceedings of PKC’01, volume 1992 of Lecture Notes in Computer

Science, pp. 317–324. Springer-Verlag, 2001.

[4] D. Agrawal and C. C. Agrawal. On the Design and Quantification of Privacy

Preserving Data Mining Algorithms. In Proceedings of 12th ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 247–

255. ACM, 2001.

[5] D. Agrawal and R. Srikant. Privacy Preserving Mining. In Proceedings of the

2000 ACM SIGMOD Conference on Management of Data, pp. 439–450. ACM,

2000.

160

[6] R. Agrawal and R. Srikant. Fast Algorithm for Mining Association Rules. In

Proceedings of 20th International Conference on Very Large Data Bases, pp.

487–499. Morgan Kaufmann, 1994.

[7] W. Aiello, Y. Ishai, and O. Reingold. Priced Oblivious Transfer: How to Sell

Digital Goods. In Advances in Cryptology - Proceedings of EUROCRYPT 2001,

volume 2045 of Lecture Notes in Computer Science, pp. 119–135. Springer-

Verlag, 2001.

[8] J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. Cryptographic

Security for Mobile Code. In IEEE Symposium on Security and Privacy, pp.

2–11. IEEE, 2001.

[9] R. J. Anderson. The Eternity Service. In Proceedings of Pragocrypt 96, pp.

242–252. CTU, 1996.

[10] J. Aspnes, J. Feigenbaum, A. Yampolskiy, and S. Zhong. Towards a Theory

of Entanglement. In Proceedings of ESORICS’04, Lecture Notes in Computer

Science. Springer-Verlag, to appear.

[11] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan,

and K. Yang. On the (Im)possibility of Obfuscating Programs. In Advances in

Cryptology - Proceedings of CRYPTO 2001, pp. 1–18. Springer-Verlag, 2001.

[12] D. Beaver, S. Micali, and P. Rogaway. The Round Complexity of Secure Pro-

tocols. In Proceedings of the 22th Annual ACM Symposium on the Theory of

Computing, pp. 503–513. ACM, 1990.

[13] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among No-

tions of Security for Public-Key Encryption Schemes. In Advances in Cryptol-

ogy - Proceedings of CRYPTO 98, pp. 26–45. Springer-Verlag, 1998.

161

[14] M. Bellare and S. Micali. Non-Interactive Oblivious Transfer and Applications.

In Advances in Cryptology - Proceedings of CRYPTO 89, volume 435 of Lecture

Notes in Computer Science, pp. 547–557. Springer-Verlag, 1990.

[15] M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for

Designing Efficient Protocols. In Proc. First Annual Conference on Computer

and Communications Security, pp. 62–73. ACM, 1993.

[16] M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness Theorems for

Non-Cryptographic Fault-Tolerant Distributed Computation. In Proceedings

of the 20th Annual ACM Symposium on the Theory of Computing, pp. 1–10.

ACM, 1988.

[17] N. Ben Salem, L. Buttyan, J. P. Hubaux, and M. Jakobsson. A Charging and

Rewarding Scheme for Packet Forwarding in Multi-hop Cellular Networks. In

Proceedings of MobiHoc’03, pp. 13–24. ACM, 2003.

[18] D. Boneh. The Decision Diffie-Hellman Problem. In ANTS-III, volume 1423

of Lecture Notes in Computer Science, pp. 48–63. Springer-Verlag, 1998.

[19] D. Boneh and M. Franklin. Efficient Generation of Shared RSA Keys. In

Advances in Cryptology - Proceedings of CRYPTO 97, volume 1294 of Lecture

Notes in Computer Science, pp. 425–439. Springer-Verlag, 1997.

[20] G. Brassard, C. Crepeau, and J.-M. Robert. All-or-Nothing Disclosure of Se-

crets. In Advances in Cryptology - Proceedings of CRYPTO 86, volume 263 of

Lecture Notes in Computer Science, pp. 234–238. Springer-Verlag, 1986.

[21] S. Buchegger and J.-Y. L. Boudec. Nodes Bearing Grudges: Towards Routing

Security, Fairness, and Robustness in Mobile Ad Hoc Networks. In 10th Eu-

162

romicro Workshop on Parallel, Distributed and Network-based Processing, pp.

403–410. IEEE, 2002.

[22] S. Buchegger and J.-Y. L. Boudec. Performance Analysis of the CONFIDANT

Protocol: Cooperation Of Nodes - Fairness In Dynamic Ad-hoc NeTworks.

In Proceedings of IEEE/ACM Workshop on Mobile Ad Hoc Networking and

Computing (MobiHOC), pp. 226–236. IEEE, 2002.

[23] L. Buttyan and J. P. Hubaux. Enforcing Service Availability in Mobile Ad-

Hoc WANs. In IEEE/ACM Workshop on Mobile Ad Hoc Networking and

Computing (MobiHOC), pp. 87–96. ACM, 2000.

[24] L. Buttyan and J. P. Hubaux. Stimulating Cooperation in Self-Organizing Mo-

bile Ad Hoc Networks. Mobile Networks and Applications (MONET), special

issue on Mobile Ad Hoc Networks, 8(2003), pp. 579–592.

[25] C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-Round Secure Compu-

tation and Secure Autonomous Mobile Agents. In Automata, Languages and

Programming, 27th International Colloquium,, volume 1853 of Lecture Notes

in Computer Science, pp. 512–523. Springer-Verlag, 2000.

[26] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-

Resilient Functions and All-or-Nothing Transforms. In Advances in Cryptology

- Proceedings of EUROCRYPT 2000, volume 1807 of Lecture Notes in Com-

puter Science, pp. 453–469. Springer-Verlag, 2000.

[27] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In Proceedings

of the 3rd Symposium on Operating Systems Design and Implementation, pp.

173–186. ACM, 1999.

163

[28] D. Chaum. Untraceable Electronic Mail, Return Address and Digital

Pseudonyms. Communications of the ACM, 24(1981), pp. 84–88.

[29] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty Unconditionally Secure

Protocols. In Proceedings of the 20th Annual ACM Symposium on the Theory

of Computing, pp. 11–19. ACM, 1988.

[30] D. Chaum and T. Pedersen. Wallet Databases with Observers. In Advances

in Cryptology - Proceedings of CRYPTO 92, volume 740 of Lecture Notes in

Computer Science, pp. 89–105. Springer-Verlag, 1993.

[31] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private Information

Retrieval. Journal of the ACM, 45(1998), pp. 965–982.

[32] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: a Distributed In-

formation Storage and Retrieval System. In Designing Privacy Enhancing

Technologies: International Workshop on Design Issues in Anonymity and Un-

observability, volume 2009 of Lecture Notes in Computer Science, pp. 46–66.

Springer-Verlag, 2000.

[33] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of Partial Knowledge

and Simplified Design of Witness Hiding Protocols. In Advances in Cryptology -

Proceedings of CRYPTO 94, volume 839 of Lecture Notes in Computer Science,

pp. 174–187. Springer-Verlag, 1994.

[34] R. Cramer and I. Damg̊ard. Secure Distributed Linear Algebra in a Constant

Number of Rounds. In Advances in Cryptology - Proceedings of CRYPTO 2001,

volume 2139 of Lecture Notes in Computer Science, pp. 119–136. Springer-

Verlag, 2001.

164

[35] R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty Computation from

Threshold Homomorphic Encryption. In Advances in Cryptology - Proceedings

of EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science,

pp. 280–299. Springer-Verlag, 2001.

[36] G. D. Crescenzo, T. Malkin, and R. Ostrovsky. Single Database Private In-

formation Retrieval Implies Oblivious Transfer. In Advances in Cryptology -

Proceedings of EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer

Science, pp. 122–138. Springer-Verlag, 2000.

[37] B. Dahill, B. N. Levine, E. Royer, and C. Shields. A Secure Routing Protocol for

Ad Hoc Networks. Technical report, University of Massachusetts at Amherst,

2001.

[38] W. Dai. Crypto++4.0. Available at http://www.eskimo.com/ wei-

dai/cryptlib.html.

[39] E. Dasseni, V. S. Verykios, A. K. Elmagarmid, and E. Bertino. Hiding As-

sociation Rules by Using Confidence and Support. In Information Hiding

Workshop, volume 2137 of Lecture Notes in Computer Science, pp. 369–383.

Springer-Verlag, 2001.

[40] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Advances in Cryp-

tology - Proceedings of CRYPTO 89, volume 435 of Lecture Notes in Computer

Science, pp. 307–315. Springer-Verlag, 1990.

[41] W. Du and M. J. Atallah. Secure Multi-Party Computation Problems and

their Applications: a Review and Open Problems. In New Security Paradigms

Workshop, pp. 11–20. ACM, 2001.

165

[42] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for Signing

Contracts. Communications of the ACM, 28(1985), pp. 637–647.

[43] A. Evfimievski, R. Srikant, D. Agrawal, and J. Gehrke. Privacy Preserving

Mining of Association Rules. In Proceedings of the eighth ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining, pp. 217–228.

ACM, 2002.

[44] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. A BGP-based

Mechanism for Lowest-Cost Routing. In Proceedings of the 2002 ACM Sympo-

sium on Principles of Distributed Computing., pp. 173–182. ACM, 2002.

[45] J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the Cost of Multi-

cast Transmissions. Journal of Computer and System Sciences (Special issue

on Internet Algorithms.), 63(2001), pp. 21–41.

[46] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identi-

fication and Signature Problems. In Advances in Cryptology - Proceedings of

CRYPTO 86, volume 263 of Lecture Notes in Computer Science, pp. 186–194.

Springer-Verlag, 1987.

[47] M. Franklin and M. Yung. Communiation Complexity of Secure Computa-

tion. In Proceedings of the 24th Annual ACM Symposium on the Theory of

Computing, pp. 699–710. ACM, 1992.

[48] K. Fu, F. Kaashoek, and D. Mazieres. Fast and Secure Distributed Read-Only

File System. In Proceedings of the 4th Symposium on Operating Systems Design

and Implementation, pp. 181–196, 2000.

[49] J. Furukawa, H. Miyauchi, K. Mori, S. Obana, and K. Sako. An Implementa-

tion of a Universally Verifiable Electronic Voting Scheme based on Shuffling.

166

In Financial Cryptography 2002, volume 2357 of Lecture Notes in Computer

Science, pp. 16–30. Springer-Verlag, 2002.

[50] J. Furukawa and K. Sako. An Efficient Scheme for Proving a Shuffle. In

Advances in Cryptology - Proceedings of CRYPTO 2001, volume 2139 of Lecture

Notes in Computer Science, pp. 368–387. Springer-Verlag, 2001.

[51] E. Gabber, P. Gibbons, Y. Matias, and A. Mayer. How to Make Personalized

Web Browsing Simple, Secure and Anonymous. In Proceedings of Financial

Cryptography’97, pp. 17–31. Springer-Verlag, 1997.

[52] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed Key

Generation for Discrete-Log Based Cryptosystems. In Advances in Cryptology

- Proceedings of EUROCRYPT 99, volume 1592 of Lecture Notes in Computer

Science, pp. 295–310. Springer-Verlag, 1999.

[53] R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS and Fast-track Multi-

party Computations with Applications to Threshold Cryptography. In PODC:

17th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-

puting, pp. 101–111. ACM, 1998.

[54] Y. Gertner, S. Goldwasser, and T. Malkin. A Random Server Model for Pri-

vate Information Retrieval. In RANDOM’98, volume 1518 of Lecture Notes in

Computer Science, pp. 200–217. Springer-Verlag, 1998.

[55] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting Data Privacy

in Private Information Retrieval Schemes. In Proceedings of the 30th Annual

ACM Symposium on the Theory of Computing, pp. 151–160. ACM, 1998.

[56] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff,

167

C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A Cost-Effective, High-

Bandwidth Storage Architecture. In Proceedings of the 8th International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, pp. 92–103. ACM, 1998.

[57] E. Goh, H. Shacham, N. Mdadugu, and D. Boneh. SiRiUS: Securing Remote

Untrusted Storage. In Proceedings of the ISOC Network and Distributed System

Security Symposium (NDSS), pp. 131–145. ISOC, 2003.

[58] A. Goldberg and P. Yianilos. Towards an Archival Intermemory. In Proceedings

of the IEEE International Forum on Research and Technology, Advances in

Digital Libraries (ADL ’98), pp. 147–156. IEEE, 1998.

[59] O. Goldreich. Secure Multi-Party Computation. Working Draft Version 1.1,

1998.

[60] O. Goldreich, S. Micali, and A. Wigderson. How to Play ANY Mental Game. In

Proceedings of the 19th Annual ACM Symposium on the Theory of Computing,

pp. 218–229. ACM, 1987.

[61] O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing but

Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems.

Journal of the Association for Computing Machinery, 38(1991), pp. 691–729.

[62] S. Goldwasser. Multi-party Computations: Past and Present. In Proceedings of

the sixteenth annual ACM symposium on Principles of Distributed Computing,

pp. 1–6. ACM, 1997.

[63] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer

and System Sciences, 28(1984), pp. 270–299.

168

[64] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Se-

cure against Adaptive Chosen Message Attack. SIAM Journal on Computing,

17(1988), pp. 281–308.

[65] P. Golle, K. Leyton-Brown, and I. Mironov. Incentives in Peer-to-Peer File

Sharing. In Proceedings of the ACM Symposium on Electronic Commerce 2001

(EC’ 01), pp. 264–267. ACM, 2001.

[66] P. Golle, S. Zhong, D. Boneh, M. Jakobsson, and A. Juels. Optimistic Mixing

for Exit-Polls. In Advances in Cryptology - ASIACRYPT 2002, volume 2501

of Lecture Notes in Computer Science, pp. 451–465. Springer-Verlag, 2002.

[67] L. Gong. Java Security Architecture (JDK1.2). Technical report, Sun Mi-

crosystems, 1998.

[68] J. Hershberger and S. Suri. Vickrey Prices and Shortest Paths: What is an

Edge Worth. In Proceedings of the 42nd Annual Symposium on Foudations of

Computer Science 2001, pp. 252–259. IEEE, 2001.

[69] M. Hirt and U. Maurer. Robustness for Free in Unconditional Multi-party

Computation. In Advances in Cryptology - Proceedings of CRYPTO 2001,

volume 2139 of Lecture Notes in Computer Science, pp. 101–118. Springer-

Verlag, 2001.

[70] M. Hirt, U. Maurer, and B. Prztdatek. Efficient Secure Multi-party Computa-

tion. In Advances in Cryptology - ASIACRYPT 2000, volume 1976 of Lecture

Notes in Computer Science, pp. 143–161. Springer-Verlag, 2000.

[71] M. Hirt and K. Sako. Efficient Receipt-Free Voting Based on Homomorphic

Encryption. In Advances in Cryptology - Proceedings of EUROCRYPT 2000,

169

volume 1807 of Lecture Notes in Computer Science, pp. 539–556. Springer-

Verlag, 2000.

[72] H.-Y. Hsieh and R. Sivakumar. Performance Comparison of Cellular and Multi-

hop Wireless Networks: A Quantitative Study. In Joint International Confer-

ence on Measurement and Modeling of Computer Systems (SIGMETRICS)

2001, pp. 113–122. ACM, 2001.

[73] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: A Secure On-Demand Rout-

ing Protocol for Ad Hoc Networks. Technical Report TR01-384, Department

of Computer Science, Rice University, December 2001.

[74] J. P. Hubaux, J. Y. L. Boudec, S. Giordano, M. Hamdi, L. Blazevic, L. Buttyan,

and M. Vojnovic. Towards Mobile Ad-Hoc WANs: Terminodes. In Proceedings

of the IEEE Wireless Communications and Networking Conference (WCNC),

pp. 1052–1059. IEEE, 2000.

[75] J. P. Hubaux, L. Buttyan, and S. Capkun. The Quest for Security in Mobile

Ad Hoc Networks. In Proceedings of ACM Symposium on Mobile Ad Hoc

Networking and Computing (MobiHOC), pp. 146–155. ACM, October 2001.

[76] J. P. Hubaux, T. Gross, J. Y. L. Boudec, and M. Vetterli. Towards self-

organized mobile ad hoc networks: the Terminodes project. IEEE Communi-

cations Magazine, 39(2001), pp. 118–124.

[77] IEEE P1363 Group. IEEE P1363 Standard. Available at

http://grouper.ieee.org/groups/1363/index.html.

[78] M. Jakobsson. A Practical Mix. In Advances in Cryptology - Proceedings of

EUROCRYPT 98, volume 1403 of Lecture Notes in Computer Science, pp.

448–461. Springer-Verlag, 1998.

170

[79] M. Jakobsson. Flash Mixing. In Proceedings of the Eighteenth Annual ACM

Symposium on Principles of Distributed Computing, pp. 83–89. ACM, 1999.

[80] M. Jakobsson, J. P. Hubaux, and L. Buttyan. A Micropayment Scheme En-

couraging Collaboration in Multi-Hop Cellular Networks. In Proceedings of

Financial Crypto 2003, volume 2742 of Lecture Notes in Computer Science,

pp. 15–33. Springer-Verlag, 2003.

[81] M. Jakobsson and A. Juels. Millimix: Mixing in Small Batches. Technical

Report 99-33, DIMACS, 1999.

[82] M. Jakobsson and A. Juels. An Optimally Robust Hybrid Mix Network. In

Proceedings of the Twentieth Annual ACM Symposium on Principles of Dis-

tributed Computing, pp. 284–292. ACM, 2001.

[83] M. Jakobsson and D. M. Rayhi. Mix-based Electronic Payments. In Proceedings

of SAC98, volume 1556 of Lecture Notes in Computer Science, pp. 157–173.

Springer-Verlag, 1998.

[84] M. Jakobsson, S. Wetzel, and B. Yener. Stealth Attacks on Ad Hoc Wireless

Networks. In Proceedings of IEEE VTC’03, pp. 2103–2111. IEEE, 2003.

[85] D. B. Johnson and D. A. Malt. Mobile Computing (Tomasz Imielinski and Hank

Korth, eds.), chapter Dynamic Source Routing in Ad Hoc Wireless Networks.

Kluwer Academic Publishers, 1996.

[86] M. Kantarcioglu and C. Clifton. Privacy Preserving Distributed Mining of As-

sociation Rules on Horizontally Partitioned Data. In ACM SIGMOD Workshop

on Research Issues in Data Mining and Knowledge Discovery, pp. 639–644.

ACM, 2002.

171

[87] M. Kantarcioglu and C. Clifton. Privacy Preserving Distributed Mining of

Association Rules on Horizontally Partitioned Data. IEEE Transactions of

Knowledge and Data Engineering, (to appear).

[88] A. Kiayias and M. Yung. Self-Tallying Elections and Perfect Ballot Secrecy.

In Proc. of PKC’02, volume 2274 of Lecture Notes in Computer Science, pp.

141–158. Springer-Verlag, 2002.

[89] E. Kushilevitz and R. Ostrovsky. Replication is NOT Needed: SINGLE

Database, Computationally-Private Information Retrieval. In Proceedings of

the 38th IEEE Symposium on Foundations of Computer Science, pp. 364–373.

IEEE, 1997.

[90] Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. In Advances in

Cryptology - Proceedings of CRYPTO 2000, volume 1880 of Lecture Notes in

Computer Science, pp. 36–54. Springer-Verlag, 2000.

[91] H. Luo, P. Zerfos, J. Kong, S. Lu, and L. Zhang. Self-Securing Ad-Hoc Wireless

Networks. In IEEE Symposium on Computers and Communications, pp. 567–

574. IEEE, 2002.

[92] U. Maheshwari and R. Vingralek. How to Build a Trusted Database System on

Untrusted Storage. In Proceedings of the 4th Symposium on Operating Systems

Design and Implementation, pp. 135–150. ACM, 2000.

[93] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating Routing Misbehavior

in Mobile Ad Hoc Networks. In Proceedings of The Seventh International

Conference on Mobile Computing and Networking, pp. 255–265. ACM, 2000.

[94] D. Mazieres and D. Shasha. Don’t Trust Your File Server. In Proceedings of the

172

8th IEEE Workshop on Hot Topics in Operating Systems, pp. 99–104. IEEE,

2001.

[95] D. Mazieres and D. Shasha. Building Secure File Systems out of Byantine Stor-

age. In Proceedings of the Twenty-First Annual ACM Symposium on Principles

of Distributed Computing, pp. 108–117. ACM, 2002.

[96] D. Mazieres and M. Waldman. Tangler - a censorship-resistant publishing

system based on document entanglements. In Proceedings of the 8th ACM

Conference on Computer and Communications Security, pp. 126–135. ACM,

2001.

[97] R. Merkle. Protocols for Public Key Cryptosystems. In IEEE Symposium on

Security and Privacy, pp. 122–134. IEEE, 1980.

[98] M. Mitomo and K. Kurosawa. Attack for Flash Mix. In Advances in Cryptology

- ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pp.

192–204. Springer-Verlag, 2000.

[99] Mojo Nation. Technology Overview, 2000.

[100] M. Naor and B. Pinkas. Oblivious Transfer and Polynomial Evaluation. In

Proceedings of the 31st Annual ACM Symposium on the Theory of Computing,

pp. 245–254. ACM, 1999.

[101] M. Naor and B. Pinkas. Oblivious Transfer with Adaptive Queries. In Advances

in Cryptology - Proceedings of CRYPTO 99, volume 1666 of Lecture Notes in

Computer Science, pp. 573–590. Springer-Verlag, 1999.

[102] M. Naor and B. Pinkas. Distributed Oblivious Transfer. In Advances in Cryp-

173

tology - ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science,

pp. 205–219. Springer-Verlag, 2000.

[103] G. C. Necula and P. Lee. Safe, Untrusted Agents Using Proof-Carrying Code.

In Mobile Agents and Security, volume 1419 of Lecture Notes in Computer

Science, pp. 61–91. Springer-Verlag, 1998.

[104] A. Neff. A Verifiable Secret Shuffle and its Application to E-Voting. In Proceed-

ings of the 8th ACM Conference on Computer and Communications Security,

pp. 116–125. ACM, 2001.

[105] N. Nisan. Algorithms for Selfish Agents. In 16th Annual Symposium on Theo-

retical Aspects of Computer Science, volume 1563 of Lecture Notes in Computer

Science, pp. 1–15. Springer-Verlag, 1999.

[106] N. Nisan and A. Ronen. Algorithmic Mechanism Design. Games and Economic

Behavior, 35(2001), pp. 166–196.

[107] NIST. Secure hash standard. Federal Information Processing Standards Pub-

lication 180-1, 1995.

[108] W. Ogata, K. Kurosawa, K. Sako, and K. Takatani. Fault Tolerant Anonymous

Channel. In Information and Communication Security, First International

Conference, volume 1334 of Lecture Notes in Computer Science, pp. 440–444.

Springer-Verlag, 1997.

[109] S. R. M. Oliveira and O. R. Zaiane. Privacy Preserving Frequent Itemset Min-

ing. In IEEE International Conference on Data Mining Workshop on Privacy,

Security and Data Mining, volume 14, pp. 43–54. IEEE, 2002.

174

[110] M. J. Osborne and A. Rubenstein. A Course in Game Theory. The MIT Press,

1994.

[111] P. Paillier. Public-Key Cryptosystems based on Composite Degree Residuosity

Classes. In Advances in Cryptology - Proceedings of EUROCRYPT 99, volume

1592 of Lecture Notes in Computer Science, pp. 223–238. Springer-Verlag, 1999.

[112] C. H. Papadimitriou. Algorithms, Games, and the Internet. In Proceedings of

the 33th Annual ACM Symposium on the Theory of Computing, pp. 749–753.

ACM, 2001.

[113] C. Park, K. Itoh, and K. Kurosawa. Efficient Anonymous Channel and

All/Nothing Election Scheme. In Advances in Cryptology - Proceedings of EU-

ROCRYPT 93, volume 765 of LNCS, pp. 248–259. Springer-Verlag, 1993.

[114] T. Pedersen. A Threshold Cryptosystem without a Trusted Third Party. In Ad-

vances in Cryptology - Proceedings of EUROCRYPT 91, volume 547 of Lecture

Notes in Computer Science, pp. 522–526. Springer-Verlag, 1991.

[115] C. Perkins. Ad Hoc Networking. Addison-Wesley, 2000.

[116] B. Pfitzmann. Breaking an Efficient Anonymous Channel. In Advances in

Cryptology - Proceedings of EUROCRYPT 94, volume 950 of Lecture Notes in

Computer Science, pp. 339–348. Springer-Verlag, 1995.

[117] B. Pfitzmann and A. Pfitzmann. How to Break the Direct RSA-Implementation

of Mixes. In Advances in Cryptology - Proceedings of EUROCRYPT 89, volume

434 of Lecture Notes in Computer Science, pp. 373–381. Springer-Verlag, 1989.

[118] Y. Qiu and P. Marbach. Bandwidth Allocation in Wireless Ad Hoc Networks:

175

A Price-Based Approach. In Proceedings of IEEE INFOCOM 2003, pp. 797–

807. IEEE, 2003.

[119] M. Rabin. How to Exchange Secrets by Oblivious Transfer. Technical Report

TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[120] R. Rivest. The MD5 Message-Digest Algorithm. IETF NetworkWorking

Group, RFC 1321, 1992.

[121] R. Rivest. All-or-Nothing Encryption and the Package Transform. In Fast

Software Encryption, volume 1267 of Lecture Notes in Computer Science, pp.

210–218. Springer-Verlag, 1997.

[122] S. J. Rizvi and J. R. Haritsa. Maintaining Data Privacy in Association Rule

Mining. In Proceedings of 28th International Conference on Very Large Data

Bases, pp. 682–693. Morgan Kaufmann, 2002.

[123] T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the

Association for Computing Machinery, 49(2002), pp. 236–259.

[124] K. Sako and J. Kilian. Receipt-Free Mix-Type Voting Schemes — a Practical

Solution to the Implementation of a Voting Booth. In Advances in Cryptology

- Proceedings of EUROCRYPT 95, volume 921 of Lecture Notes in Computer

Science, pp. 393–403. Springer-Verlag, 1995.

[125] T. Sander and C. Tschudin. Protecting Mobile Agents against Malicious Hosts.

In Mobile Agents and Security, volume 1419 of Lecture Notes in Computer

Science, pp. 44–60. Springer-Verlag, 1998.

[126] T. Sander, A. Young, and M. Yung. Non-Interactive CryptoComputing for

176

NC1. In Proceedings of the 40th IEEE Symposium on Foundations of Computer

Science, pp. 554–567. IEEE, 1998.

[127] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP Congestion

Control with a Misbehaving Receiver. ACM Computer Communication Review,

29(1999), pp. 71–78.

[128] Y. Saygin, V. S. Verykios, and A. K. Elmagarmid. Privacy Preserving As-

sociation Rule Mining. In Research Issues in Data Engineering (RIDE), pp.

151–158. IEEE, 2002.

[129] C. Schnorr. Efficient Signature Generation for Smart Cards. Journal of Cryp-

tology, 4(1991), pp. 161–174.

[130] A. Shamir. How to Share a Secret. Communications of the ACM, 22(1979),

pp. 612–613.

[131] A. Spyropoulos and C. Raghavendra. Energy Efficient Communications in Ad

Hoc Networks Using Directional Antennas. In Proceedings of IEEE INFOCOM

’02, pp. 220–228. IEEE, 2002.

[132] V. Srinivasan, P. Nuggehalli, C.-F. Chiasserini, and R. Rao. Cooperation in

Wireless Ad Hoc Networks. In Proceedings of IEEE INFOCOM 2003, pp.

808–817. IEEE, 2003.

[133] M. Stemm and R. H. Katz. Vertical Handoffs in Wireless Overlay Networks.

Mobile Networks and Applications, 3(1998), pp. 335–350.

[134] D. Stinson and T. Trung. Some New Results on Key Distribution Patterns

and Broadcast Encryption. Designs, Codes and Cryptography, 14(1998), pp.

261–279.

177

[135] J. Strunk, G. Goodson, M. Scheinholtz, C. Soules, and G. Ganger. Self-Securing

Storage: Protecting Data in Compromised Systems. In Proceedings of the 4th

Symposium on Operating Systems Design and Implementation, pp. 165–180.

ACM, 2000.

[136] A. Stubblefield and D. S. Wallach. Dagster: Censorship-Resistant Publishing

without Replication. Technical Report TR01-380, Rice University, 2001.

[137] C.-K. Toh. Ad Hoc Mobile Wireless Networks: Protocols and Systems. Prentice

Hall, 2001.

[138] J. Vaidya and C. Clifton. Privacy Preserving Association Rule Mining in Ver-

tically Partitioned Data. In Proceedings of the Eighth ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pp. 639–644.

ACM, 2002.

[139] M. Waldman, A. Rubin, and L. Cranor. Publius: A Robust, Tamper-Evident,

Censorship-Resistant, Web Publishing System. In Proceedings of 9th USENIX

Security Symposium, pp. 59–72. USENIX, 2000.

[140] J. E. Wieselthier, G. Nguyen, and A. Ephremides. Energy-Limited Wireless

Networking with Directional Antennas: The Case of Session-Based Multicast-

ing. In Proceedings of IEEE INFOCOM ’02, pp. 190–199. IEEE, 2002.

[141] D. Wikström. How to Break, Fix, and Optimize “Optimistic Mix for Exit-

Polls”. Technical Report T2002-24, Swedish Institute of Computer Science,

2002.

[142] A. Yao. How to generate and exchange secrets. In Proceedings of the 27th

IEEE Symposium on Foundations of Computer Science, pp. 162–167. IEEE,

1986.

178

[143] S. Zhong. Privacy-Preserving Algorithms for Distributed Mining of Frequent

Itemsets. Technical Report Yale DCS/TR1255, Yale University, 2003.

[144] S. Zhong, J. Chen, and Y. R. Yang. Sprite: a Simple, Cheat-Proof, Credit-

based System for Mobile Ad Hoc Networks. In Proceedings of IEEE INFOCOM

2003, pp. 1987–1997. IEEE, 2003.

[145] S. Zhong and Y. R. Yang. Verifiable Distributed Oblivious Transfer and Mo-

bile Agent Security. In Proceedings of the DIALM-POMC Joint Workshop on

Foundations of Mobile Computing, pp. 12–21. ACM, 2003.

[146] L. Zhou and Z. J. Haas. Securing Ad Hoc Networks. IEEE Network Magazine,

13(1999), pp. 24–30.

179

