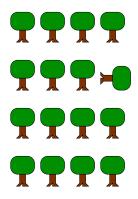
Sensor Networks and the Future of Networked Computation

James Aspnes Yale University

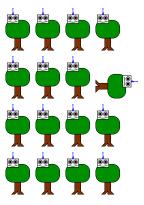
February 16th, 2006


ToNC workshop, February 16th, 2006 Sensor Networks and the Future of Networked Computation

・ 同 ト ・ ヨ ト ・ ヨ ト

Rationale Classical networks Sensor networks The present The future

Why wireless sensor networks?


• Question: If a tree falls in the forest, how do we hear it?

Rationale Classical networks Sensor networks The present The future

Why wireless sensor networks?

- Question: If a tree falls in the forest, how do we hear it?
- Answer: nail a sensor to every tree.

Rationale Classical networks Sensor networks The present The future

The central dogma of sensor networks

- Distributed sensing is necessary to detect rare, localized events.
- Abundant sensors must be cheap.
- Short-hop radio is the obvious communication mechanism.
- The more computation we can do in the network itself, the less communication we need.

Rationale Classical networks Sensor networks The present The future

Classical networks

Classical networks are made of big, expensive devices:

- Routers.
- Wires (or equivalent fixed point-to-point connections).
- Power cables running to the routers.
- Network administrators standing next to the routers.

Rationale Classical networks Sensor networks The present The future

Sensor networks are made of small, cheap devices:

- Sensors.
- Short-distance radio broadcast.
- Weak power sources: batteries, solar cells, RF antennas.
- No network administrators!

Rationale Classical networks Sensor networks The present The future

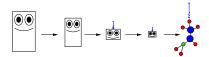
Sensor networks are made of small, cheap devices:

- Sensors.
- Short-distance radio broadcast.
- Weak power sources: batteries, solar cells, RF antennas.
- No network administrators!

Every feature of sensor networks is likely to become typical of most networked computing devices.

Rationale Classical networks Sensor networks The present The future

Where we are evolving from


- Existing sensor network applications.
 - Weather stations.
 - Networks of strain gauges on ships.
 - Ecological sensor networks.
 - B-52-launched tank detectors.
- Active RFID chips.
 - Mostly used for inventory tracking.
 - Many are writable.
 - Some already can record temperature extremes or sudden drops.
- New hardware technologies like **proximity interconnect** and **chip-based networks**.

- 4 同 6 4 日 6 4 日 6

Rationale Classical networks Sensor networks The present The future

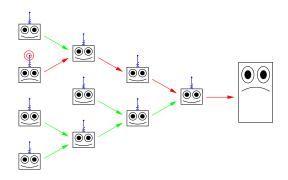
Where we are evolving to

- Sensors/RFID chips that talk to each other.
- Computers without wires.
- Cheap sensors everywhere.
- Long view: smart molecules?

(人間) (人) (人) (人)

Classic network problems revisited New problems New models

Classic network problems revisited

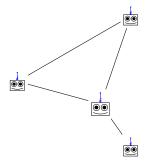

- Consensus, leader election, clock synchronization— with severe resource constraints.
- New geographical routing algorithms that require no external configuration and respect sensors' limitations.
- Internet-scale problems on much smaller scales.

- 4 同 6 4 日 6 4 日 6

Classic network problems revisited New problems New models

Data aggregation

- The central problem in sensor networks.
- Still an active area of research.



- 4 同 2 4 日 2 4 日 2

Classic network problems revisited New problems New models

Localization

- How do we know where our sensors are?
- Triangulation/trilateration.
- NP-hard in the worst case.
- Good algorithms for dense networks.
- Error propagation still needs work.

・ 同 ト ・ ヨ ト ・ ヨ ト

Classic network problems revisited New problems New models

- Controlled mobility creates a need for planning.
- Uncontrolled mobility requires tolerance of a rapidly-changing network structure (or maybe *no* consistent network structure).
- Details: see previous talk.

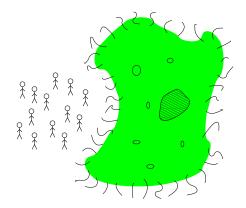
Classic network problems revisited New problems New models

How do we keep dumb sensors from being hijacked or misused?

- Controversy over adding RFID tags to US passports exemplifies issues of control.
- Most RFID and sensor network applications rely on physical distance to limit access.
- Such reliance may not be reasonable as sensors become ubiquitous.

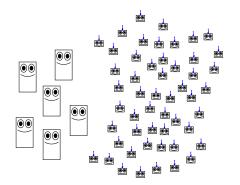
イロン 不同と 不同と 不同と

Classic network problems revisited New problems New models


New models

- **Population protocols** model collections of very weak devices using networks of finite-state automata.
 - Unstructured case is now very well understood.
 - Bounded-degree networks are in principle equivalent to LINSPACE Turing machines.
 - Speedy algorithms are still needed.
- Can we build continuous models that are good approximations to discrete physical systems?
- Battery life, geographical constraints, and sensor unreliability need to be incorporated into models at a fundamental level.

・ロン ・回と ・ヨン・


The future

- There are many more bacteria than people (even by weight).
- The same economics suggests we can expect many more tiny computers than big ones.
- Sensor networks are the vanguard of this revolution.

The future

- There are many more bacteria than people (even by weight).
- The same economics suggests we can expect many more tiny computers than big ones.
- Sensor networks are the vanguard of this revolution.

