
A Study on The Network as Economy

The Premise

- Modern technological networks are on a collision course with human organizations, both civilian and military:
 - conflicts arise in all stages: design, configuration, and operations
 - conflicts with regulatory and C2 constraints
 - competing financial and other incentives
- Time is ripe to integrate economic thought into networking
 - current technology isolated from human goals and constraints
 - we must manage and design networks in their broader contexts

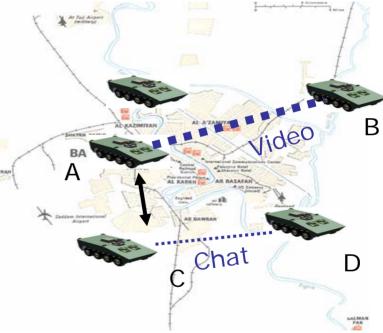
Network-centric Operations are at Risk

- Increasingly pervasive networking capability
- Network configuration complexity is increasing
- Network speed and pace-ofchange are increasing
- Traditional network management is expensive and inflexible:
 - significant % of soldiers in Iraq
 - overprovisioning
 - centralized control
 - need skilled people at the nodes
 - assume stable environment

Economic networking is a key enabler of network-centric operations

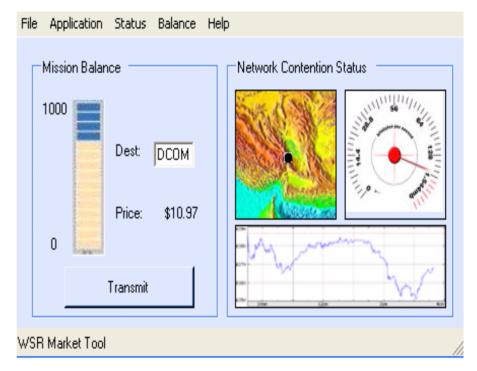
Modern Networks are Economic Systems (whether we like it or not)

- Highly decentralized and diverse
 - allocation of scarce resources; conflicting incentives
- Disparate network administrators operate by local incentives
 - network growth; peering agreements and SLAs
- Users may subvert/improvise for their own purposes
 - free-riding for shared resources (e.g. in peer-to-peer networks)
 - spam and DDoS as economic problems
- Regulatory environments for networking technology
 - for privacy and security concerns in the Internet
 - need more "knobs" for society-technology interface


Economic Principles Can Provide Guidance

- Markets for the exchange of standardized resources
 - goods & services
 - prices encode exchange rates, compress info
 - efficiency and equilibrium notions for performance measurement
- Game theory, competitive and cooperative
 - strategic behavior and the management of competing incentives
- Learning and adaptation in economic systems
 - different and broader than traditional machine learning
- Certain nontraditional topics in economic thought
 - behavioral and agent-based approaches
- Active research at the CS-economics boundary

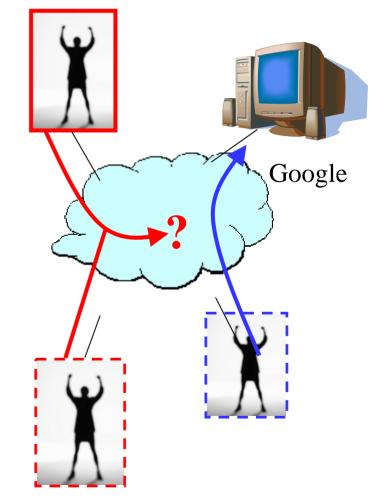
Two Illustrative Scenarios


Problem: Scarce Wireless Resources

- The Setting:
 - ad-hoc, wireless networking in tactical military environments
- The Problem:
 - resource allocation (e.g, bandwidth)
- How is it Solved Now?
 - priorities/constraints manually pre-assigned
 - traditional (centralized) optimization
- Why is it Economic?
 - scarce resources and multiple objectives
 - distributed, autonomous actors with competing/aligned incentives
 - human: commander-soldier
 - tech: video vs. chat
 - resolution should depend on situation
 - must balance individual incentives with collective mission

An Economic Solution: A Wireless Bandwidth Market

- Goods Being Exchanged:
 - local bandwidth: the right to transmit a certain volume at a certain place and time
- Currency:
 - a virtual currency paid in exchange for local bandwidth
- Allocations:
 - dynamic budgets for units and individuals
 - top-down assignment through military chain of command
- Pricing Mechanism:
 - local adjustment according to local supply and demand
- Human-System Interface:
 - communication devices showing current cost of transmission

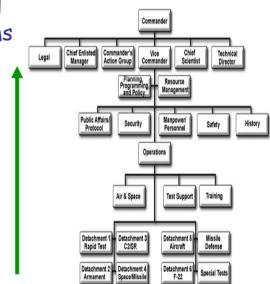


Problem: Network Troubleshooting

- The Setting:
 - large, distributed networks of autonomous systems
 - rich peering and customer-provider relationships
 - includes both the Internet and military networks
- The Problem:
 - rapid diagnosis & repair of performance, reliability, and security problems
 - acquiring global information to troubleshoot
- How is it Solved Now?
 - it isn't
 - phone calls between NW operators, ping and traceroute, CERT advisories
- Why is it Economic?
 - distributed actors with competing/aligned incentives
 - real economic incentives to learn external network status (e.g. improve security, performance)
 - disincentives to reveal local information "for free"

An Economic Solution: A Network Diagnostics Exchange

- Goods Being Exchanged:
 - local network status information
 - outputs of diagnostics
 - e.g. SNMP queries, output of SNORT rules, data feed subscriptions,...
- Currency:
 - real money (e.g. USD)
 - could also support barter exchange
- Allocations:
 - actual current assets (cash and info)
- Pricing Mechanism:
 - bid-ask limit order matching process
- Human-System Interface:
 - initially: human participants (e.g. NW operators) in an electronic market
 - eventually: protocols purchasing and acting on information


Other Network Problems Amenable to (or Requiring) Economic Approaches

- Dissemination of information:
 - situation awareness, sensor networks, target tracking,...
- Peering relationships in commercial networks
- Routing optimization based on multiple constraints
- Quality-of-Service
- Investment planning in networks:
 - using price signals to drive network growth

Research Challenges

Research Challenges for Economics

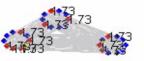
- Virtual currency and human incentives
 - need to design an interface between the two
 - military apps: tie virtual currency to org goals and reporting structure
 - allow deficit spending with accountability
 - bidirectional information flow via prices and allocations
- Practical market design
 - successful markets require infrastructure
 - · legal system, regulatory bodies, settlement clearinghouses,...
 - designing infrastructure for new markets is nontrivial
 - integration with existing technological and social systems
 - little guidance from traditional economics
- Complexities
 - creating liquidity (avoiding Optimark)
 - crashes, bubbles, and speculation
 - middlemen and aggregators (e.g. Akamai)
 - options, futures, and other derivatives

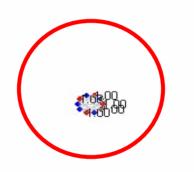
Practical Market Design

- Successful markets require infrastructure
 - legal system, regulatory bodies, settlement clearinghouses,...
- Designing infrastructure for new kinds of markets is nontrivial
 - integration with existing technological and social systems
 - little guidance from traditional economics
- Settlement mechanisms and penalties
 - WRM: tied to informal human processes, trust and authority reln's
 - NDX: traditional
- Quality control
 - NDX: verifiability/accuracy of information
 - commodity futures contracts
- Centralized inputs ("fed rates")
 - WRM: commander budget allocations
- Regulatory oversight
 - NDX: vetting of participants

Complexities

- Creating Liquidity (Avoiding Optimark)
 - WRM: demand not an issue; monopoly provider of supply
 - NDX: expect presence of (automated) market-makers
- Crashes, Bubbles and Speculation
 - WRM:
 - tight, centralized control of capital
 - bubbles more problematic than crashes; allow deficit spending
 - NDX:
 - not (initially) consumer investment vehicles; a private and controlled market
 - but may drive corporate speculation
- Middlemen and Aggregators
 - NDX:
 - expect potentially significant aggregation (e.g. Akamai);
 - may need mechanisms to control resale and piracy
- Options, Futures, and Other Derivatives
 - in NDX, for standard risk management/hedging practices
 - futures may also play role in WRM (guaranteed transmission)

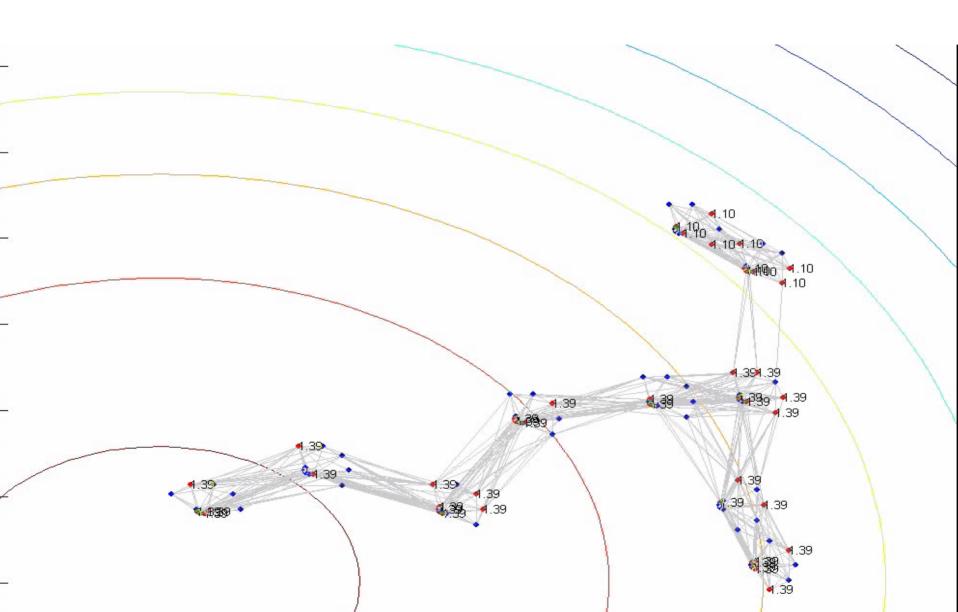

Learning, Adaptation and Robustness

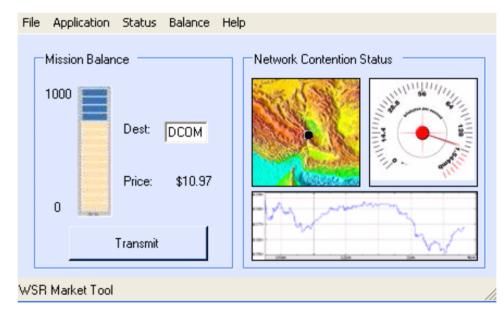

- Adaptation at all levels will be necessary and inevitable
- Networks will be more robust due to economic incentives
 - richer information availability
 - faster dissemination
 - alignment of technology and incentives
- Learning can be used to:
 - predict network properties and behavior (without buying the information)
 - change network behavior: routing, admission & congestion control, etc.
 - change economic behavior: what goods to buy and sell, at what prices
- Learning technology:
 - effective today for single-agent prediction problems
 - require significant research to extend to multi-agent adaptation
 - behavioral considerations
 - learning in games, price discovery/adjustment processes,...

Network Structure

- Overwhelming bulk of economic thought assumes complete connectivity
 - centralized markets and exchanges, open competition, global info
 - imply no variation in prices
- In wireless scenario, network structure will be
 - potentially sparse
 - determined by the physics of transmission, terrain, physical movement...
- How will this network structure influence
 - equilibrium & stability
 - adaptive behavior
 - prices and performance
 - robustness

- Distributed Allocation of Scarce Resources: Interaction of Movement and Prices
- -• units of 10 individuals
- sellers (red) and buyers of a resource (e.g. routing)
- can only buy/sell from nearby parties
- -• mission: secure a perimeter
- numbers are equilibrium prices

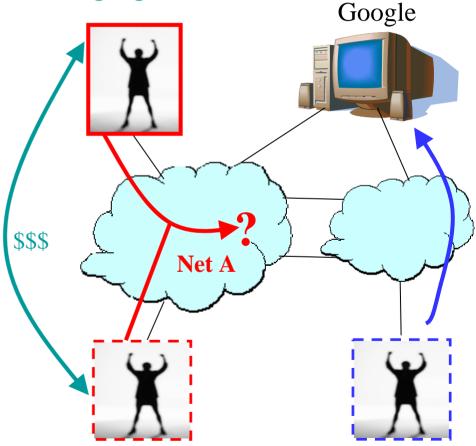



Distributed Allocation of Scarce Resources: Incorporating a Terrain Model

Challenge Problems

WRM Prototype

- System:
 - capacity market system & interface
 - resource allocation subsystem and protocols
- Experiments:
 - urban ops field test scenario in Ft Irwin
 - Drexel SWAT running FBCB2 SA, IP voice
- Participants:
 - units training for urban ops
- Metrics:
 - MOE: mission succeeds
 - MOE: sum RI-RP-RT
 - MOP: price volatility
- Goals:
 - RI-RP-RT within 20% of redteamed hypothetical optimum



NDX Prototype

System:

- peer-to-peer exchange
- pay to launch remote probes
- combine to identify root cause
- Experiments:
 - on-demand diagnosis
 - fault injection in an overlay
 - "in the wild" on the Internet
- Participants:
 - volunteer users
 - initially with virtual currency
- Metrics:
 - successful diagnosis
 - fast, accurate, and efficient
 - increasing # of participants
 - engagement of providers
- Goals:
 - live and active NDX market
 - liberating the diagnostic datestribution unlimitethrough AS A"

Why Now and Why DARPA?

- Networking/economics collision is happening and causing pain
 - must be addressed boldly and aggressively
 - DARPA has an opportunity that does not exist in commercial sector
 - both in scale and ability to implement "mixed" systems
- Military NW technology on bleeding edge where "traditional" approach may not even exist
 - e.g., hard power constraints
 - opportunity/need for systems mixing competitive & cooperative elements
- Relevant research has traction, is gaining momentum
 - algorithmic mechanism design and computational game theory
 - distributed optimization
 - strategic learning in multi-agent systems
 - engineering based on economic principles

Conclusions

- There are compelling arguments for the use of economic methods and viewpoints in the design of modern networks
- Resource-constrained military networks are especially promising targets for this approach
- Economic thought provides new methods and metrics
 - market efficiency
 - market liquidity
 - Price of Anarchy
 - GDP and fed rate for complex networks?
- There is important foundational work providing initial traction, but many open research and implementation issues