Exceptional Access Protocols

Alex Tong

Motivation

- "Crypto Wars"
- FBI vs. Apple
- What is the job of engineers?

"Requirements"

Government

- Decryption without notice to the user
- Ubiquitous international capability
- Decryption time of less than two hours
- Communications and Data at rest

Crypto Community

- Forward Security
- Well-defined technical requirements
- Low additional system complexity
- Decentralized targets

Existing Compromise Solutions

- "Clipper Chip" NSA (1993-1996)
- Key Escrow
 - "Oblivious Key Escrow" M. Blaze et al. (1996)
 - "Partial Key Escrow" A. Shamir (1995)
- Recent Work
 - "Key Recovery: Inert and Public" C. Boyd et al. (2016)
 - "DEcryption Contract ENforcement Tool (DECENT)" P. Linder (2016)

Key Escrow

Oblivious Key Escrow

- Threshold cryptography amongst a large number of servers
- Oblivious to who holds the key share to a particular key, preventing coercion
- Angry mob cryptanalysis

Criticism

- Parameter Tuning
- Difficult / Impossible to implement

Partial Key Escrow

- Escrow of part of private key
- Requires computational power to obtain a targeted key
- Prevents mass surveillance

Criticism

- Parameter Tuning
- Cost of recovering a key is unknown, unpredictable, decreasing, and potentially private

Recent Attempts: High level overview

DECENT

- Developed by Assured Enterprises
- Uses 2 of 3 threshold cryptography between User, Corporation, Escrow Agent
- Uses Blockchain to maintain accountability

Key Recovery: Inert and Public

- Based on recent cryptocurrency development (Ethereum)
- Revival of oblivious and partial key escrow
- Uses unrealized public cryptography scheme adaptable to proof-of-work

KEY STORAGE

DECENT

<u>® ह</u> (A) 0-

Concerns

- Security of Ks, Ke
- Contract correctness / Key Recovery
- Can the government coerce both Service Provider and Escrow Agent?

Boyd Key Recovery: Goals

Mimic physical world in the cryptographic world

- Inert Recovery cost should increase with the number of keys
- Public Attempted key recovery must be public
- Strong Keys Long lived keys
- Resistance to Sybil Vulnerability

Boyd Key Recovery

(1) Decentralised Oblivious Key Escrow

- Implemented Using Smart Contracts
 - Whitebox Execution
- Share sharded key to random selection of participating nodes

(2) Partial Key Escrow

- Use new POW scheme with 4 criteria based on public key encryption
- Unclear of how to measure the security under key length

Boyd Key Recovery

- (1) Decentralized Oblivious Key Escrow
- (2) Partial Key Escrow
- (3) Combination

Table 1. Comparison of main properties of the three proposals

	Partial	Oblivious	Prop. 1	Prop. 2	Prop. 3
	escrow	escrow			
Public	×	X	1	1	1
Inert	1	1	1	1	1
Future secure	×	1	1	×	1
Sign up not required	1	X	×	1	✓ ^a
Sybil resistant	1	X	×	1	1
Traffic analysis resistant	1	X	×	1	1
^a There is a requirement	for pre-re	egistration for	or the obl	livious pa	rt of the
key escrow.					

Boyd Key Recovery

- (1) Decentralized Oblivious Key Escrow
- (2) Partial Key Escrow
- (3) Combination

Table 1. Comparison of main properties of the three proposals

Assumptions

- No magic bullet for Exceptional Access
- Distributed attacks are legally difficult to prosecute
- Only concerned with data at rest
- Physical access to device

Main Idea

Extend physical premises analogy with locality

My Key Recovery: Goals

Mimic physical world in the cryptographic world

- Inert Recovery cost should increase with the number of keys
- Public Attempted key recovery must be public
- Strong Keys Long lived keys
- Resistance to Sybil Vulnerability
- Physically Centralized

"Requirements"

Government

- Decryption without notice to the user
- Ubiquitous international capability
- Decryption time of less than two hours
- Communications and **Data at rest**

Crypto Community

- Forward Security
- Well-defined technical requirements
- Low additional system complexity
- Decentralized targets

Proposal - Recovery Mode

Phone

- Recovery Mode enabled by key held by manufacturer
- Phone displays challenge based on private key and current time for T time
 - a. Bitcoin block mean propagation time ~12 seconds
- 3. If receives acceptable nonce where sha256(challenge, nonce) < difficulty

Recoverer

1. Attempts to find nonce where sha256(challenge, nonce) < difficulty

Legal framework

- Registration of sufficiently powerful data centers
- Government can request access to recovery mode key in exceptional circumstances

Proposal - Advantages

- Forces centralization of potential illegal access
- Uses encryption scheme where there is monetary incentive to exploit vulnerabilities
- Inert Preventing mass surveillance by other agencies
- Small number of adaptable parameters

Conclusions

- Purely technical solutions are insecure and insufficient
- Key recovery is not a single solution space
- Any solution can only guard against the default case

Questions

- Are these assumptions reasonable?
- Is it better to use a well known algorithm (sha256) or a more exotic one?