
Abstract
Foundations of Inter-Domain Routing

Vijay Ramachandran
2005

Inter-domain routing protocols establish best-effort connectivity between the indepen-

dently administered networks that form the Internet. Because of the scale, heterogeneity,

and autonomy of the Internet, inter-domain routes are computed using complex routing

policies provided locally at each network with little global coordination. The interaction

of these local policies has been shown to produce global routing anomalies, e.g., protocol

oscillations and nondeterministic routing. Understanding the interaction of local policies is

essential in improving Internet stability. Unfortunately, the current inter-domain routing

protocol for the Internet, the Border Gateway Protocol (BGP), allows wide latitude in con-

figuring local policies and has evolved without formal guarantees regarding its behavior.

This dissertation develops a theoretical framework for the design and analysis of path-

vector protocols, like BGP, used for inter-domain routing. It presents the path-vector pol-

icy system (PVPS), which is an abstract representation of the fundamental components

of an inter-domain routing protocol. The framework includes an explicit notion of policy

languages and global assumptions made about the network; it is shown that, while lo-

cal constraints on policies alone can prevent routing anomalies, implementation of these

constraints infringes on other desirable protocol properties. Thus, any design guarantee-

ing a reasonable combination of protocol properties requires a nontrivial global constraint

on the network. Applications of these design principles are explored, including several

constraint-enforcement mechanisms. Unlike many previous models of inter-domain rout-

ing, the PVPS framework can be extended to include the complexities of combining inter-

domain and intra-domain routing and to include policies that cannot be described as a

linear preference ordering on paths.

Foundations of Inter-Domain Routing

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Vijay Ramachandran

Dissertation Director: Joan Feigenbaum

December 2005

c© 2005 by Vijay Ramachandran
All rights reserved.

For My Parents

Contents

List of Figures vi

List of Tables vii

Acknowledgements viii

1 Introduction 1
1.1 Overview . 1
1.2 Summary of Results . 4

2 Background: Internet Routing 9
2.1 IP Forwarding . 11
2.2 IGPs and Intra-domain Routing . 13
2.3 EGPs and Inter-domain Routing . 14
2.4 The Border Gateway Protocol . 17

3 Review of Literature: Modeling BGP 20
3.1 Problems with eBGP . 21

3.1.1 Persistent Route Oscillation . 21
3.1.2 Nondeterministic Routing . 22

3.2 The Stable-Paths Problem . 23
3.2.1 Evaluation Digraphs and Convergence Properties 25
3.2.2 Dispute Wheels and Robust Convergence 28

3.3 Hierarchical BGP . 31
3.4 MED-Induced and iBGP Anomalies . 32

4 Path-Vector Policy Systems 36
4.1 The Design Space of Path-Vector Protocols 37
4.2 Definition of Path-Vector Policy Systems 42

4.2.1 Formal Definition of Path-Vector Systems 42
4.2.2 Policy Languages . 48
4.2.3 Instances of Path-Vector Systems 50
4.2.4 Realizable Path Descriptors . 51

iii

4.2.5 Path-Vector Solutions . 54
4.3 Examples . 55

4.3.1 Shortest-Paths Routing . 55
4.3.2 A Catalan Example . 56

4.4 Expressiveness . 60
4.4.1 Mapping Path-Vector Systems to SPP Instances 60
4.4.2 Definition of Expressive Power 64

4.5 Robustness . 66
4.5.1 Definition of Robustness . 66
4.5.2 A Natural Set of Robust Systems 66
4.5.3 Increasing Path-Vector Systems 69

4.6 Autonomy, Transparency, and Opaqueness 72
4.6.1 Autonomy . 73
4.6.2 Protocol Transparency . 75
4.6.3 A Design Trade-off . 76
4.6.4 Policy Opaqueness . 77

4.7 Global Constraints . 78

5 Path-Vector Algebras 80
5.1 Definition of Path-Vector Algebras . 81

5.1.1 Common Design-Space Properties 81
5.1.2 Framework Components . 81
5.1.3 Dynamics . 82
5.1.4 Algebra Properties . 82

5.2 Three Levels of Abstraction . 83
5.2.1 Example Protocols . 84
5.2.2 Algebras for Protocols . 86
5.2.3 Path-Vector Systems for Protocols 88
5.2.4 Discussion: Levels of Abstraction 89

5.3 Mapping Between Formalisms . 90
5.3.1 Intuition . 90
5.3.2 Algebra-Protocol Consistency . 92
5.3.3 Mapping an Algebra to a Path-Vector System 94
5.3.4 Describing a Path-Vector System with an Algebra 96

5.4 Equivalence of Design Guidelines . 98
5.4.1 Monotonicity and Robustness 99
5.4.2 Isotonicity and Optimality . 101

6 Class-Based Systems 106
6.1 The Class-Based Framework . 108

6.1.1 The Class-Based Path-Vector System 108
6.1.2 Class-Based Policy Languages . 109
6.1.3 Algebras and Class-Based Systems 114

iv

6.2 Class-Based Global Constraints . 117
6.2.1 Robustness and Dispute Wheels 117
6.2.2 Generating a Global Constraint 119

6.3 Centralized Dispute-Wheel Prevention 129
6.3.1 Cycle-Detection Algorithm . 129
6.3.2 Checking Next-Hop Preferences 130
6.3.3 Algorithms in Previous Work . 133

6.4 Distributed Dispute-Wheel Prevention 136
6.4.1 Distributed Cycle-Check . 137
6.4.2 Algorithms in Previous Work . 144

7 Generalized Path-Vector Systems and Independent Route Ranking 146
7.1 A Generalized Framework for Inter-Domain Routing 147

7.1.1 Route-Selection Functions and Independent Route Ranking 147
7.1.2 The Generalized Stable-Paths Problem 151
7.1.3 Generalized Path-Vector Policy Systems 153

7.2 Conditions for Generalized Protocol Convergence 156
7.2.1 Generalized Dispute Wheels . 157
7.2.2 Partially Ordered GSPPs and Generalized Dispute Digraphs 161
7.2.3 Example GSPPs and Dispute Digraphs 165

7.3 Applications to Protocol Design . 166
7.3.1 Multiple-Path Broadcast . 168
7.3.2 Compare All MEDs . 171
7.3.3 AS-Distinct Local-Preference Settings 172

8 Conclusions and Open Questions 173

Bibliography 178

v

List of Figures

2.1 Internetworking. 11
2.2 Dynamics of EGP best-route selection. 16

3.1 The routing configuration (SPP instance) BAD GADGET. 22
3.2 The routing configuration (SPP instance) DISAGREE. 23
3.3 Dispute wheel. 29

4.1 Design space for robust path-vector systems. 41
4.2 An example five-node network. 51
4.3 Example policy configurations in PLµbgp 52
4.4 SPP for PV µbgp running example. 64
4.5 The SPPs GOOD GADGET and BAD GADGET. 77

6.1 Diagram of class-assignment directions. 110
6.2 Active node v of a dispute wheel. 120

7.1 The GSPP MED-EVIL. 152
7.2 Generalized dispute wheel. 158
7.3 Generalized dispute digraph for MED-EVIL. 166
7.4 Generalized dispute digraph for DISAGREE. 167
7.5 Generalized dispute digraph for BAD GADGET. 167
7.6 Cycle in the evaluation digraph of MED-EVIL. 169

vi

List of Tables

4.1 Unique solution for PV µbgp running example. 55

5.1 Example protocols using the path data structure {cost, path length}. . . . 84
5.2 Algebras for protocols in Table 5.1. 86
5.3 Example path-vector systems using descriptor {cost, path length}. 88
5.4 Informal translation between path-vector systems and algebras. 91

vii

Acknowledgements

First and foremost, I would like to thank my advisor, Joan Feigenbaum. I enrolled in her

first class at Yale, a seminar on e-commerce research, and after giving a presentation on

traitor tracing that she must have liked, she asked me about my research interests. For

this I am forever grateful, because I apparently said the right things, and Joan magically

became my advisor. At the time, I didn’t realize exactly what that meant, but now I can

wholeheartedly say that, in any capacity, no student could ask for a better mentor.

Joan’s support for my research and career development has been truly generous. She

encouraged me, early on, to attend conferences and meet other researchers, but even here

she went miles beyond what I expected: I remember her taking the time to personally intro-

duce me to many of her colleagues. She has carefully read almost anything I have produced

and has given thoughtful feedback, whether it be conference papers or graduate-school

paperwork. She imparted other useful job skills: she taught me how to referee journal

submissions; she involved me in writing and assembling several grant proposals; and she

encouraged my participation in funding-agency workshops and reviews. I know few others

who had such a valuable opportunity to be so completely involved in the academic research

process as a student.

She approached my teaching fellowship in much the same way. Two weeks before class

began, she and I met to plan the class syllabus and to choose readings together. I was

involved in preparing almost all the sets of lecture slides and class notes, and she valued

viii

my input and skills while doing so. She and I together designed homework and exam

questions. And, among my favorite moments as a graduate student are the times she let me

give lectures—some of which I wholly prepared on my own.

But Joan’s guidance goes far beyond her exemplary role as a research and teaching ad-

visor. She has gone out of her way to help with my post-graduation plans, and is always

willing to discuss my concerns. She has given me personal support through frustrating

times, be they difficult health or conference rejections. And she has set an example for me

by inspiring research enthusiasm and collaboration.

I doubt that I can ever say enough to thank Joan for all that she has done for me, but I

will always be truly indebted to her for her care and wisdom.

Next, I want to thank Aaron Jaggard, my colleague or partner-in-crime, depending on

the situation. Aaron has worked with me through all of the papers that constitute this dis-

sertation, and none of the results would be possible without him. I will always remember

his stack of blank notecards rubber-banded together, always at reach, so that even while

gulping down New Haven pizza, we’re not far from recording a potentially good idea.

Through many long days (and some nights) in front of a blackboard or our respective

computers, we’ve managed to cobble together what I think is a nice set of results. I thank

him for fixing all the proofs that went wrong, for writing all the parts I couldn’t, and for

ignoring all the stupid things that come out of my mouth. (I also thank him for forcing me

to be more rigorous than I would have been otherwise; he is a mathematician, after all.) He

deserves equal credit for anything in this dissertation. I could never ask for a more devoted

collaborator, and I hope our collaboration will continue.

I am also deeply grateful to Tim Griffin, my other collaborator. He is a reservoir of

routing knowledge and, as our resident expert, has helped Aaron and me learn everything

ix

we know about BGP. Tim is responsible for taking our first results and expanding it into

a SIGCOMM paper; that was what finally gave me a dissertation topic. And through the

rest of the research, he was always willing to review our ideas, he encouraged us to develop

them, and he challenged us to make them better. Tim has been an inspiration—he is some-

one who knows how to really enjoy his work and convince others that it’s fun, too. He

reminds me that one is never too old to be a child, and that one is never too young to tackle

the next great problem.

There are many other people without whom this dissertation would not be possible. I

want to thank the faculty and my fellow graduate students in the Computer Science De-

partment at Yale for pitching in their thoughts, attending my talks, and always giving me

good feedback and support. I thank Jonathan Edwards College, which gave me a home

and a community for three years, and the Yale Glee Club, which kept me singing happily,

even when work was difficult. My friends and family deserve my sincere appreciation for

everything they have done, especially: my late grandfather, to whom I attribute any math-

ematical skills I have; my grandmother, whose love will always keep me smiling; and my

parents, to whom I owe everything.

Financial support for my research came from several sources that I would like to explic-

itly acknowledge here. During my tenure as a graduate student, I received a 2001–2004

National Defense Science and Engineering Graduate (NDSEG) Fellowship from the U.S.

Department of Defense (DoD) and a 2000–2001 CTInfoTech Scholarship from the State

of Connecticut. In my last year of graduate study, I was partially supported by National

Science Foundation (NSF) Grant ITR–0219018. My travel for research meetings and con-

ferences was supported by the DoD University Research Initiative (URI) program admin-

istered by the Office of Naval Research (ONR) through ONR Grant N00014–01–1–0795.

x

In fact, my first meetings with Tim and Aaron and the initial results inspiring this disserta-

tion are a result of telephone conversations among the PIs of this URI grant, during which

my task (as the helpful graduate student) was to keep written notes. I somehow showed

enough interest in one of the problems we had been discussing so that Joan and Andre

Scedrov, a professor at the University of Pennsylvania, suggested that Aaron and I work on

it off-line. We were then lucky enough to discover that our simple hypothesis, which later

became one of the foundational theorems in this dissertation, was true. What happened

next is in the following 180 pages.

Vijay Ramachandran
New Haven, CT, USA

May 2005

xi

Chapter 1

Introduction

1.1 Overview

The goal of this dissertation is the development of a rigorous theoretical framework for the

design and analysis of path-vector protocols, which are primarily used for inter-domain

routing on the Internet.

Packets sent across the Internet are directed by routers along a path from source to des-

tination. Some edges on this path occur within a single autonomous system (AS)—a net-

work managed under one administrative domain—while other edges occur between ASes.

In the case of intra-domain routing (routing within an AS), link-state protocols are used to

communicate the network information required to compute routes. These protocols flood

the domain with status information so that routers can learn the network topology’s current

state and locally calculate the optimal paths for packets. Because the routers in a domain are

managed by the same administrative authority, they presumably have a common routing

goal; thus, given the same network-status information, they can compute routes both con-

sistently and independently. In addition, domains are generally small enough that flooding

status information through the network does not generate an unreasonable amount of net-

work traffic. For these reasons, link-state protocols are efficient for intra-domain routing.

1

On the other hand, routing at the inter-domain level (between ASes) involves many in-

dependent entities across great distances. Flooding network-status information is neither

practical, because of the size of the Internet, nor desirable, because AS administrators are

often reluctant to share internal status information and, even if they did, are often choos-

ing routes based on different criteria. Therefore, a different type of protocol, a path-vector

protocol, is primarily used for inter-domain routing. In these protocols, the route to a given

destination is determined by a composition of decisions made by routers along potential

paths to that destination. Routers iteratively compute routes by first gathering informa-

tion from local destinations and destinations advertised by neighboring routers, then com-

puting a best route to each destination and sharing these routes with neighboring routers

(possibly causing updates to neighbors’ best routes) based on individual AS policies. Thus,

in contrast to link-state-protocol routing, path-vector-protocol routing is highly dependent

on the various independent policies throughout the Internet.

The standard inter-domain routing protocol for the Internet is the Border Gateway Pro-

tocol (BGP). The BGP specification [RL95] merely describes the low-level binary formats of

update messages sent between neighboring routers, the intended meaning of the fields in-

cluded in update messages, and the correct behavior of a BGP-speaking router in response

to those messages. Configuration of local policies, upon which the computation of routes

is so dependent, is left to individual router operators and their ability to program the router

hardware. Vendor-developed routing-policy languages have evolved through interactions

with network engineers to express the full set of semantically rich policies established by

ASes, but this language development has taken place in an environment lacking vendor-

independent standards. Router vendors typically provide hundreds of special commands

for use in the configuration of BGP. For example, RFC-1997 communities [CTL96] allow

2

policy writers to selectively attach tags to routes and use these to signal policy information

to other BGP-speaking routers. These routers can, in turn, use the presence or absence

of specific community values to determine the behavior of their policies. This allows net-

work operators to encode complex policies in order to address unforeseen situations and

has opened the door for a great deal of creativity and experimentation in routing policies.

This rich expressiveness has come at a cost: The interaction of locally defined routing

policies can lead to unexpected global routing anomalies, such as nondeterministic routing

and protocol divergence [GSW02, VGE00]. If the policies causing such anomalies are de-

fined in autonomously administered networks, then these problems can be very difficult to

debug and correct. For example, the setting of an attribute in one AS to implement “cold-

potato routing” can cause protocol divergence in a neighboring AS [Cis01,MGWR02]. Such

problems will probably become more common as BGP continues to evolve with richer pol-

icy expressiveness. For example, extended communities [STR05] provide an even more

flexible means of signaling information within and between ASes than RFC-1997 commu-

nities do. At the same time, applications of communities by network operators are evolving

to address complex issues of inter-domain traffic engineering [BQ03].

A better understanding of the effect of policy interactions on protocol behavior is essen-

tial for network stability. Ideally, we want to characterize a protocol and policies that are

robust, i.e., those that converge to a predictable set of consistent routes, even after link

and node failures. Initial work inspired by specific problems with BGP has motivated

the results in this dissertation, which better describe the behavior of path-vector proto-

cols without involving the details of particular network configurations or protocol-specific

implementations. As an early body of results in the emerging field of Internet algorithmics,

the formal model and Internet algorithms developed in this dissertation are used to prove,

3

e.g., that certain constraints guarantee good behavior, even in worst-case scenarios. This

rigorous treatment of protocol behavior is unfortunately not yet a common part of exist-

ing protocol-adoption standards; however, the results here, while abstract, suggest design

principles that can be applied to improve current routing protocols and to design new ones.

1.2 Summary of Results

Joint work with Timothy G. Griffin and Aaron D. Jaggard [GJR03] developed the foun-

dation for the results in this dissertation. Presented in Chapter 4, the Path-Vector Policy

System (PVPS) framework is an abstract representation of the components of a routing

system: the underlying message-passing system for route information (the protocol), the

languages for and constraints on routing-policy configuration (policy languages), and any

global conditions on the network assumed to be true for correct protocol behavior (the

global constraint). Separating and rigorously modeling the components allows us to:

1. identify different parts of the design process during which to include constraints to

guarantee good behavior;

2. rigorously define desirable protocol properties; and

3. prove inherent trade-offs in the protocol-design space.

Two of the most important protocol-design results we prove are:

1. A local condition (involving pairs of policy configurations) is enough to guarantee

that path-vector protocols converge robustly; and

2. In most cases, a reasonable combination of protocol-design goals, including robust

convergence, requires a nontrivial global constraint. (Implementing the above local

condition, therefore, infringes on some other desirable properties.)

4

Gao and Rexford [GR01] were the first to present a combination of local and global con-

straints that guarantee robust BGP convergence. Their solution takes into account basic In-

ternet economics, because they assume that a hierarchical structure based on business rela-

tionships underlies the AS-level network graph. Using the PVPS framework, we can show

that their constraints represent a point solution in a space of systems designed with similar

assumptions about node relationships; we call these systems class-based systems and study

them in Chapter 6.The results were originally presented in joint work with Aaron D. Jag-

gard [JR04]. Class-based systems can capture routing configurations as complex as BGP

or arbitrary policies based on the next-hop AS of paths. From a simple description of three

types of rules regarding policies—(1) consistency in the types of relationships allowed be-

tween neighboring ASes, (2) preference assigned to routes learned from different types of

neighbors, and (3) restrictions on sharing routes with different types of neighbors—we can

derive a global constraint that guarantees robustness. This constraint is the best known,

because networks violating the constraint can legally write policies that result in protocol

oscillation. We describe two constraint-enforcement algorithms:

1. a centralized algorithm that, given a network and routing-policy configurations in-

volving neighbor relationships, can detect a set of nodes whose relationships permit

policies that induce oscillation; and

2. a distributed algorithm that detects if a relationship between two specific nodes per-

mits policies that induce oscillation, given the other nodes’ policies in the network.

This algorithm maintains the privacy of nodes’ policies and the identity of the nodes

whose relationship is being tested.

Class-based systems are a good application of the PVPS framework, because the restric-

tion of policy languages to those involving neighbor relationships is both narrow enough

5

to require more tractable global constraints for robustness than in the general case and

broad enough to capture a spectrum of protocols and permitted routing-policy configura-

tions. Rather than providing just one solution for robustness, the results in Chapter 6 give

a protocol designer the ability to choose a balance between local-policy expressiveness and

global-constraint strength.

Before we present the class-based application of PVPSes, we first relate the framework

to path-vector algebras [Sob03], which is a similar framework for modeling path-vector pro-

tocols, in Chapter 5. We provide a translation between PVPSes and algebras and use it to

show that the convergence results are essentially equivalent. These results were originally

published as joint work with Aaron D. Jaggard [JR05a].

We show, through examples and formal relationships, that protocol specifications and

routing configurations can be described at three distinct levels of abstraction:

1. Individual networks and routing-policy configurations can be represented by in-

stances of the Stable-Paths Problem (SPP) [GSW02].

2. A protocol specification can be captured by a path-vector policy system, instances of

which are specific networks running the protocol.

3. A set of protocols with common route-selection criteria can be described by an alge-

bra. Protocols consistent with an algebra then correspond to PVPSes, which model

more implementation details than the criteria used to describe the algebra.

A benefit of the algebra is that it provides an even more abstract description of protocols

than a PVPS; the behavior of select parts of protocols’ route-selection procedures can be

studied apart from their specific implementations.

Our translation between frameworks adds important concepts to each that were not

originally discussed in the respective original papers [GJR03,Sob03]:

6

1. We add the notion of expressiveness to algebras, which allows a comparison of pro-

tocol specifications in the two frameworks based on the types of permitted routing

configurations.

2. We add the notion of optimal convergence to PVPSes and derive analogous condi-

tions at the PVPS level of abstraction that guarantee optimality.

We are also able to use the translation to discuss the basic constraints for robust conver-

gence originally presented for both frameworks.

The derivation of all of the above results (and much of the related work on model-

ing BGP) makes two assumptions about inter-domain routing that do not entirely hold in

practice:

1. The procedure for choosing a best route can be described by assigning a rank (in a

totally ordered set) to each route and choosing the route with minimal (or maximal)

rank; and

2. The network is the AS-level graph; i.e., each node represents one AS, each node has

a single routing policy that describes how all inter-domain routes within the AS are

established, and there is at most one edge between an AS and each of its neighbors.

Assumption 1 is called independent route ranking, because the rank of a path depends only

on the route itself. However, use of the Multi-Exit-Discriminator (MED) attribute in BGP,

which instructs ASes to perform “cold-potato routing,” violates this assumption. Assump-

tion 2 ignores iBGP sessions, which are intra-domain BGP sessions maintained to share

inter-domain routes between routers within an AS; most work modeling BGP only cap-

tures eBGP, which are the inter-domain BGP sessions between routers in different ASes.

7

The complexity of iBGP introduces additional types of routing anomalies that cannot be

analyzed with the basic PVPS or algebra frameworks [GW02a,GW02b].

In Chapter 7, we extend the PVPS framework by removing these assumptions, present-

ing results that have previously appeared in joint work with Aaron D. Jaggard [JR05b]. We

allow each node to specify as its route-selection procedure an arbitrary choice function on

sets of routes. Because this removes any notion of rank, convergence conditions from earlier

chapters no longer apply. However, we take first steps towards designing constraints in this

setting. We take as a semantic domain the Generalized Stable-Paths Problem [GW02a], which

does allow for arbitrary route-selection functions, and incorporate it as a new measure of

expressiveness. We then define two new relations on policies; using these, we expand the

notion of evaluation digraphs, dispute wheels, and dispute digraphs—structures used to analyze

convergence in the original work on SPP [GSW02]—and use them to state conditions for

robust convergence in the generalized case. We give examples that show how the extended

framework can be used to model the interaction between iBGP and eBGP sessions. We also

evaluate several proposals to eliminate oscillations induced by MED-attribute settings.

This dissertation begins with two chapters of background material. In Chapter 2, we

review the concepts behind Internet forwarding and route-signaling in order to motivate

our careful study of inter-domain routing. In Chapter 3, we discuss related work studying

policy interactions and their effects on BGP convergence. In doing so, we present some

important definitions and results that are incorporated into the development of the PVPS

framework.

8

Chapter 2

Background: Internet Routing

The Internet is made up of many heterogeneous networks. Hosts can be connected using

various physical media, each with its own method of carrying messages. Networks can

communicate with each other as long as the hosts and physical media connecting them

share a common interface to the Internet Protocol (IP), which is a standardized method of

identifying hosts and formatting messages. Any host speaking IP that is connected to some

physical network medium can send IP traffic to any other IP destination reachable from

that network medium. This universal compatibility of IP with different hosts and network

types is what gives the Internet its power and scale.

The most widely deployed version of IP is currently version 4 (IPv4) [Pos81a]. It as-

signs hosts unique 32-bit identifiers, known as IP addresses, and provides a format for pack-

ets, each of which contains an IP header with information used by IP to deliver messages

and a payload containing the message being sent. IP guarantees best-effort message de-

livery, i.e., there are no quality-of-service guarantees, including confirmation of delivery.

Traffic is normally broken up into multiple packets, because payload size is limited for

compatibility and efficiency reasons; no effort is made to guarantee that packets travel syn-

chronously along similar paths from source to destination. Transport-layer protocols that

run on top of IP at the end hosts, e.g., TCP [Pos81b] and UDP [Pos80], provide multiplex-

9

ing so that traffic from multiple applications on the same hosts are identified as separate

flows. TCP also provides some of the additional functionality mentioned above, including

ordering packets, controlling congestion, and providing a mechanism to confirm delivery.

Internet applications can then be designed to run on top of one of these protocols; the

delivery mechanism from end-to-end is assumed to be taken care of by IP.

Because Internet networks are arbitrarily connected, there are often multiple paths be-

tween any source-destination pair. Many of these paths traverse several networks (ASes),

and thus IP traffic must be directed intelligently. Although an individual network has var-

ious means to direct traffic between hosts directly connected to it, devices are needed to

connect networks to each other and direct traffic between them. These devices are called

routers; in order to communicate with different physical-network types, routers speak IP

and may have multiple interfaces to different physical networks. Routers perform two fun-

damental tasks referred to as two distinct planes: the forwarding plane, in which IP traffic is

directed to the next point on a path to its destination, and the signaling plane, in which infor-

mation about Internet destinations is communicated between routers in order to establish

paths. Because nodes can join or leave the Internet arbitrarily, and individual networks

have control over their topologies, there is no centralized control mechanism for routing

information. Routing is thus handled by distributed protocols, and routers are only able to

reach Internet destinations as information about potential paths becomes available through

routing-protocol messages.

Figure 2.1 shows an example of routers connecting various network types (subnet-

works) within a large corporate network and routers connecting networks together (and

to the rest of the Internet). Different physical network types are used to connect hosts

(shown using circles). Hosts on the same physical network can communicate directly, e.g.

10

Corporate

clients

Internet Service
Provider

Rest of the
Internet

network

Token ring

Ethernet subnetwork

PPP over
telephone
lines

Dial−up
server

To other subnetworks

802.11 wireless
 access point

Wi−Fi

Figure 2.1: Internetworking.

hosts on the ethernet, a broadcast network, communicate by broadcasting IP packets on

the physical medium so that the intended recipient can recognize the destination address

and obtain the messages. For other destinations, routers (shown using square boxes) for-

ward packets through an interface that they believe will eventually reach the destination;

packets to destinations outside the network eventually reach the network’s Internet Service

Provider (ISP) and are routed through the rest of the Internet (thick lines show connections

between routers in different networks).

2.1 IP Forwarding

The basic forwarding operation needs to be very fast in order to accommodate the high

volume and desired speed of Internet communication; thus, it consists of a simple table

lookup.

IP routers maintain a forwarding table; it can be thought of as a simple match between

11

two columns of data, IP-address prefixes and output interfaces. When an IP packet is re-

ceived, its header is examined for the destination IP address. The longest-prefix match for

the destination is then located in the forwarding table; this is the entry with the most bits

of the IP-address prefix (starting with most significant) in common with the destination

IP address. The packet is then forwarded along the physical-network interface in the for-

warding table corresponding to that match; this should be the physical link that carries the

packet closer to its destination.

Longest-prefix matching is natural, because blocks of consecutive IP addresses, called

Classless Inter-domain Routing (CIDR) blocks, are often delegated to a network to use for

addressing; consecutive addresses are often used for hosts in the same subnetwork, and a

hierarchy of networks corresponds to a hierarchy in addressing where deeper levels share

more less-significant bits of an IP address. Therefore, destination IP addresses can often

be aggregated into CIDR blocks, which can be represented by an IP-address prefix in the

forwarding table. For example, the prefix 12.45.68.* matches all IP addresses in the range

12.45.68.0–12.45.68.255; the prefix 12.45.* matches 12.45.0.0–12.45.255.255. If both prefixes

are present in a forwarding table, the more specific entry for the destination is used, which

corresponds to the longest-prefix match.

The job of routing protocols, then, is to populate the entries of this forwarding table.

The task is usually split up among two different types of protocols, depending on the sets

of destinations to which paths are being established.1 The networks that constitute the

Internet can be divided into domains, each of which contains networks that fall under the

same administrative authority; different issues of scale, autonomy, and privacy apply to

routing within a domain and routing between domains. Therefore, Interior Gateway Pro-

1In theory, a router can simultaneously run any number of routing protocols, but the task of coordinating
their results is nontrivial. As we discuss in Section 3.4, the interaction of the two most commonly used
protocols does not overwrite entries in the forwarding table but does create some routing anomalies.

12

tocols (IGPs) are used for intra-domain routing, but Exterior Gateway Protocols (EGPs) are

used for inter-domain routing. In the next two sections, we review the concepts behind

these; both are important for our ultimate task of analyzing inter-domain routing because

inter-domain routes are often dependent on intra-domain connectivity and configuration.

2.2 IGPs and Intra-domain Routing

The goal of an IGP is to establish a set of consistent, best routes at every router to each intra-

domain destination. By consistent, we mean that every subpath of a chosen best route is also

a chosen best route. (Inconsistency can lead to IP-forwarding loops.) Because domains

operate under the same administrative authority, the following assumptions usually apply

to running an IGP:

1. Domains are usually small enough that status information about network links can be

flooded throughout, giving each router the ability to compute the network topology.

2. Domains usually have the same notion of “best,” which is often shortest (fewest

number of hops) or lowest-cost (assuming that edges can be assigned a transit cost,

e.g., corresponding to congestion or distance).

For these reasons, most common IGPs, e.g., OSPF, are link-state protocols. In these pro-

tocols, routers send out link-state packets containing the status of links to neighboring

routers; as these are received, routers can update their view of the network topology, which

can be represented as a weighted graph. A simple lowest-cost-paths calculation, e.g., using

Dijkstra’s algorithm, will establish a set of consistent routes to each intra-domain desti-

nation; as these are computed, the next hop (or neighboring router) on the path to the

destination is used to populate the forwarding-table entry for that destination. Changes to

13

the network topology trigger new link-state packets, which in turn trigger re-computations

of the network topology and best routes.

In Figure 2.1, intra-domain links are shown using thin lines connecting routers and

hosts. Each subnetwork has a corresponding router that is responsible for that subnet-

work’s connectivity to the rest of the domain; this router is often called the default gateway

for the subnetwork. Within the corporate network or within the ISP, an IGP would be

used to calculate best paths between routers for traffic with destinations inside the respec-

tive domains. It is important to note that the scope of link-state information only covers

intra-domain routers and thus intra-domain destinations; even though traffic destined for

hosts outside the domain may traverse intra-domain links, the IGP does not carry informa-

tion about these destinations.

2.3 EGPs and Inter-domain Routing

Routing at the inter-domain level is more complex because of the scale of the Internet graph

and the autonomy desired by domain administrators in configuring routes—in the inter-

domain case, we cannot assume that all routers have the same definition of “best” route.

Once a packet is forwarded to another domain, that domain has total control over it and its

future path. This is unlike intra-domain routing, in which paths are wholly contained in

networks under the same administrative authority, and the behavior of neighboring routers

is known. In the IP-forwarding model, destination reachability always depends on the

paths chosen by neighboring routers; but, in the case of inter-domain routing, all the in-

formation received about destinations comes from neighboring routers and their choices

of routes. The Internet is simply too big, and there are too many routes; so, sharing more

than potentially consistent routes through immediate neighbors is inefficient.

14

Therefore, EGPs are usually path-vector protocols, the name of which comes from the

mechanism used to prevent loops: In the information shared about potential routes, the

entire path (called the path vector) is included; nodes can then check whether they already

appear in the path vector and, if so, discard that route option. Paths are maintained at the

autonomous-system (AS)—or domain—level. This is because the EGP assumes that destina-

tion and transit domains can appropriately route traffic within the domain using the IGP;

therefore, EGP messages do not contain information about paths used within a domain.

This allows a domain to preserve its autonomy over internal routes and keep its network

topology private from others. Therefore, an abstract model of an EGP network is a graph

where each node, an AS, represents one domain, and each edge represents an inter-domain

connection.

Each router maintains a routing table with AS paths to various IP prefixes; the actual

network next-hop associated with a path is used to populate the forwarding-table entry for

the IP prefix. (IP forwarding does not occur at the AS level.) When more than one route

to a destination is available, the choice of best route depends on the router’s local-policy

configuration; the types of policies depend on the specific protocol and hardware and are

often quite expressive, constrained only by the configuration language provided by router

vendors. Local policies influence the setting of attribute values—information about a route

stored in its routing-table entry—when routes are learned and shared with neighbors; the

attribute values are directly involved in the computation of best routes.

The EGP route-selection procedure is depicted in Figure 2.2. Knowledge about destina-

tions is learned through advertisements from neighboring routers; once a path to another AS

is established, an AS will share that reachability information with its neighbors so that they

gain knowledge of the destination as well. Assuming that initial paths are first originated by

15

Populate IP

filter routes and
tweak attributes

Apply policy =
filter routes and
tweak attributes

neighboring nodes
Repeat at

Routing
Table

Best Route
Selection

Apply Export
Policies

Apply Import
Policies

Store
attribute values
Based on

routes
Receive
updates

Transmit
updates

Approaches open−ended programming:
constrained only by router−vendors’ programming language

Forwarding Table

Apply policy =

Figure 2.2: Dynamics of EGP best-route selection.

the EGP routers responsible for the corresponding destinations, paths are established by

repeating the following three-step process:

Import Information about established routes through neighboring routers is collected,

called importing routes. The route data stored in the local routing table depends on

the route information in the update message and the import policy; the policy may

filter routes entirely, i.e., remove them from consideration.

Selection For each destination, the protocol’s best-route selection procedure is used to

choose best routes from the local routing table. Best routes are then used to populate

the forwarding table for these destinations.

Export Best routes are advertised to neighboring routers through update messages, a

process called exporting. Update-message information about these routes is influ-

enced by export policy, which may also filter routes.

The routers exchanging this information with inter-AS connections are border routers; how-

ever, to establish connectivity for all hosts in an AS, non-border routers must learn how to

16

reach external destinations as well. Because its update messages can carry inter-domain

route information, the inter-domain protocol is also used to share external destinations

with internal routers. As a result, EGPs accomplish two inter-domain routing tasks:

1. establishing connectivity and sharing reachability information across inter-domain

links; and

2. distributing knowledge of inter-domain routes to non-border routers.

Therefore, even though the abstract model of an EGP network hides intra-domain paths

at the AS level, the intra-domain structure of an AS is a component of establishing inter-

domain routes in that AS. (It is interesting to note that inter-domain routing protocols are

themselves built on top of IP; therefore, in order for the EGP to function, it is expected that

intra-domain IP forwarding can take place based on computations of the IGP. Forwarding

across inter-domain links to permit EGP sessions is usually accomplished by hard-coding

entries into routers’ forwarding tables.)

2.4 The Border Gateway Protocol

The standard Internet EGP is the Border Gateway Protocol (BGP) [RL95]. A BGP session

is maintained between neighboring routers: eBGP sessions are used between different ASes’

border routers; iBGP sessions are used between routers in a single AS. Originally, BGP

required all routers in an AS to maintain iBGP sessions with each other, called a full mesh—

this ensured that all inter-domain routes would be available to each router. For purposes

of scalability, BGP has been modified to allow a smaller full mesh of select routers, called

route reflectors, each of which maintains iBGP sessions with a set of clients that do not learn

all inter-domain routes, but only those best routes chosen by the route reflectors [BCC00].

17

The BGP specification documents the low-level binary formats of messages used to

communicate route information and the intended meaning of message fields; the specifi-

cation does not explicitly constrain routing policies used to set attribute values on route

import and export. Several attributes play a role in the best-route selection procedure,

which we now describe. Some attributes are not relevant when we consider only eBGP and

assume that the network is simply the AS-level graph.

When a route is imported, it is given a local-preference value based on import policy; this

is the main criterion for determining the preference of a route. The Multi-Exit Discrimi-

nator (MED) attribute is set by the exporting AS to indicate its preference among multiple

inter-AS connections. Path length and (for iBGP) IGP distance to the border router are

also attributes involved in best-route computation, but these are not set by local-policy

configuration. The full best-path selection procedure for BGP is as follows:

1. Routes with the largest local preference are chosen as best.

2. In the case of a tie, routes with the shortest AS-path length are chosen.

3. In the case of a tie, if there are multiple paths through the same AS, then for each next-

hop AS, choose the path with the lowest MED value. MED values are only compared

among paths through the same AS; therefore, this step may leave multiple paths for

consideration (but at most one path will remain through any given next-hop AS).

4. If there remains a tie because there are paths through multiple ASes, choose routes

learned from eBGP sessions over those learned from iBGP sessions.

5. If multiple paths remain, choose the path with the shortest IGP distance to its egress

point, or first border router.

18

The importing AS has ultimate authority by setting local-preference values, but these are

often set to the same value for all routes through the same next-hop AS, even across differ-

ent inter-AS links. (This practice is consistent with having AS-level policies.) In practice,

this allows a neighboring AS to influence the decision between multiple inter-AS links us-

ing the MED attribute.

One typical example of MED usage is cold-potato routing. Assuming MEDs are not used

(i.e., ignoring step 3), the route-selection procedure above (via step 4 and 5) breaks ties

based on closest egress point (minimal IGP distance). This is known as hot-potato routing.

Depending on the destination prefix, a neighboring AS may specify alternate preferences

for ingress points using the MED attribute, e.g., to avoid using expensive intra-domain

links. Consider two inter-AS connections: one in San Francisco and one in New York. A

small customer network may have high costs sending traffic across its internal links. When

advertising destinations to its Internet provider, the customer can attach appropriate MED

values to the destinations so that the provider chooses the egress point that closest to the

destination, minimizing the use of the customer’s internal links. If the provider instead

used basic hot-potato routing, the closest egress point in the provider network would be

chosen, possibly causing the customer to handle transcontinental traffic.

Most previous work modeling path-vector-protocol behavior (reviewed in Chapter 3)

and the results we present in Chapters 4–6 apply to networks at the AS level, modeling

only eBGP and ignoring iBGP. In Chapter 7, our model is generalized to capture network

configurations describing both eBGP and iBGP sessions and use of the MED attribute.

19

Chapter 3

Review of Literature: Modeling BGP∗

Having seen the complexity of BGP’s route-selection procedure, it is clear that understand-

ing its behavior, which is determined in part by the independently configured routing

policies in autonomous networks, is difficult. As discussed in Chapter 1, policy-induced

global routing anomalies have been documented in BGP. In this chapter, we review the

development of existing theoretical models of BGP and path-vector protocols. They were

motivated by a desire to rigorously analyze the cause of routing anomalies. In doing so,

we provide simple characterizations of the problems with inter-domain routing that we

attempt to remedy in later chapters.

The results in this dissertation are strongly motivated by the previous work discussed

in this chapter; many of the results are directly incorporated into the larger protocol-design

framework developed by this dissertation. Of particular importance are the definitions and

theorems in Section 3.2, which were originally presented in [GSW02].

∗Portions of the text in this chapter have previously appeared in joint works with Aaron D. Jag-
gard [JR05b, JR05c].

20

3.1 Problems with eBGP

As network nodes write their routing policies and share data using BGP, the interaction

among these policies can have undesirable effects. These can be generally classified into two

types of routing anomalies: persistent route oscillation, in which the protocol never settles on

a stable set of routes; and nondeterministic routing, in which the protocol may eventually

settle on a stable set of routes, but convergence is not guaranteed, and the set of routes is

not predictable. Below, we trace the characterization of these anomalies in previous work.

3.1.1 Persistent Route Oscillation

Varadhan, Govindan, and Estrin [VGE00] were first to outline a basic view of routing dy-

namics and used this to characterize the timing-independent oscillations that could occur

in simple classes of network topologies. An example of this is shown in Figure 3.1. We call

this BAD GADGET, adopting the name of a similar example given in [GSW02]. It consists of

a small network in which nodes 1, 2, and 3 try to select routes to node 0; every pair of nodes

in this network is connected by a link. Next to each node in Figure 3.1 are the permitted paths

that each node will consider, listed in order of preference: node 1 prefers the path through

node 2 to node 0 over the path directly from node 1 to node 0; these paths are denoted

120 and 10, respectively. We assume that node 1 does not learn about other routes because

of routing policies (e.g., node 3 might not share route information with node 1, and paths

containing loops are filtered out). Similarly, nodes 2 and 3 prefer routes through nodes 3

and 1, respectively, over their direct routes to node 0. Assume that these nodes also do not

learn other routes.

If no links fail, the direct paths to node 0 are always known. Suppose that these direct

paths are chosen at nodes 1–3. Following BGP dynamics (Section 2.4), these choices are

21

30

10 1 2
230
20

0

3
310

120

Figure 3.1: The routing configuration (SPP instance) BAD GADGET.

advertised to neighbors, making available the more preferred, indirect paths. Once the

indirect paths are chosen, the direct paths are no longer advertised; withdrawal of these

routes makes the indirect paths unavailable, and all nodes choose the direct paths again.

This process repeats ad infinitum, never converging to a choice of routes.

As shown in [VGE00], this oscillation of path selections does not depend on timing in

the network. Note that, if any one of the outer nodes’ policies were changed to prefer the

direct path to node 0, this oscillation would not occur, and the nodes would have a stable

set of consistent routes.

3.1.2 Nondeterministic Routing

We call a stable set of consistent route choices a solution. In a solution, every node is as-

signed a path such that (1) all paths are valid extensions of neighbors’ paths, and (2) no

node is able to choose a more preferred path given its neighbors’ choices. (This resembles

a Nash-equilibrium condition.) A solution may or may not be unique in a given network.

The routing configuration shown in Figure 3.2, originally given in [GSW02] and called

DISAGREE, has two solutions: (1) 10 and 210; and (2) 20 and 120. Either set of routes

remains stable because no node can learn of a more preferred route. Unfortunately, the

protocol does not have to converge to either of these solutions. In an oscillation similar

to that of BAD GADGET, if both nodes 1 and 2 begin by choosing the direct routes 10 and

22

2010

0

1 2
210120

Figure 3.2: The routing configuration (SPP instance) DISAGREE.

20 and advertising those to the other, the protocol can oscillate indefinitely, although this

depends upon the timing of various router operations (unlike the persistent oscillation of

BAD GADGET).

Routing configurations with multiple solutions are not predictable: Delays in sending

BGP update messages or different orderings of link failures and recoveries can result in

different choices of routes for the same set of routing policies. In these cases, routing might

appear nondeterministic to network operators, making problem diagnosis difficult.

3.2 The Stable-Paths Problem

Griffin, Shepherd, and Wilfong [GSW02] gave a more detailed formal model for networks

running path-vector protocols and proposed the Stable Paths Problem (SPP) as the underly-

ing problem that BGP solves. An instance of SPP contains essentially the information given

in Figures 3.1–3.2 above: a graph corresponding to the network and a set of permitted paths

at each node, each of which is assigned a positive rank by the node at which it is permitted

corresponding to that node’s level of preference for the path. (The rank of a path must be

determined independently; when this is not the case, as with BGP’s MED attribute, the

modeling and analysis of protocols becomes much more difficult; see Section 3.4 below.)

Which paths are permitted and path-rank values result from interactions between routing

policies across the network being modeled; thus, an SPP essentially captures the static se-

mantics of a network’s routing-policy configuration. A solution to an instance corresponds

23

to a stable set of consistent routes, as we described earlier. Formally, we have the following

definitions.

Definition 3.2.1. The quadruple

S = (G, v0, P, Λ)

is an instance of the Stable Paths Problem (SPP) if G = (V, E) is a finite undirected graph,

v0 ∈ V (called the origin),P is a set of simple paths inG terminating at v0, and the mapping

Λ takes nodes v ∈ V to a path ranking function λv = Λ(v). Each λv is a function that takes

a path in Pv = {P ∈ P | P is a path starting at v} to its rank in N. If W ⊆ Pv, then the

subset of “best paths” in W , min(λv, W) ⊆ W , is defined as the set

{P ∈W | for every P ′ ∈W, λv(P) ≤ λv(P ′)}.

Definition 3.2.2. A path assignment for an SPP-instance S is any mapping π from V to

subsets of P such that π(v) ⊆ Pv. The set candidates(u, π) consists of all permitted paths

at u that can be formed by extending the paths assigned to neighbors of u. For u = v0,

candidates(u, π) = {(u)}, and for u �= v0,

candidates(u, π) = {uQ ∈ Pu | {v, u} ∈ E and Q = π(v)}.

A path assignment π is a solution for an SPP if, for every node u, we have

π(u) = min(λu, candidates(u, π)).

That is, if F is a functional that takes path assignments π to path assignments F (π), de-

fined as F (π)(u) = min(λu, candidates(u, π)), then the solutions of the SPP are exactly

the fixed points of F (for any solution π we have F (π) = π, and F (π) = π implies π is a

solution).

24

A convenient abbreviation for the best path at u under π is defined to be

best(u, π) = min(λu, candidates(u, π)).

Then π is a solution if π(u) = best(u, π) at each node u.

Remark 3.2.3. The definition for SPP given here is a bit more general than that of [GSW02]

in that we do not require “strictness,” which guarantees that |π(v)| ≤ 1 for every solution

π. In addition, we have changed the order of the ranking to prefer paths with smaller (not

larger) rank. Finally, we have allowed any node v0 ∈ V to be the origin.

This rigorous definition of the routing problem led to several insights in [GSW02].

First, it was shown that solving the routing problem—i.e., determining whether or not a

routing configuration has at least one solution—is NP-complete. Checking a specific set

of routing policies for a stable route assignment is thus believed to be impractical. Varad-

han et al. [VGE00] suggested that shortest-path routing—in which each node prefers the

route with the fewest hops—might be the only provably safe routing in arbitrary network

topologies. (Note that the instances BAD GADGET and DISAGREE are inconsistent with

shortest-paths routing.) Griffin et al. [GSW02] did show that this suggestion works: in

general topologies, if routers choose paths with the fewest hops, then a solution is reached.

However, using their formalism, they could also prove much broader sufficient conditions

on network policies that guarantee good behavior.

3.2.1 Evaluation Digraphs and Convergence Properties

We are not only interested in whether policies interact such that there is a stable path as-

signment, i.e., whether or not an SPP has a solution, but also in how EGPs can reach that

assignment. Given an SPP, there is a naturally corresponding structure that describes the

execution of path-vector protocols on the SPP instance, called the evaluation digraph.

25

Definition 3.2.4. The evaluation digraph of an SPP instance S is a directed graph T (S) =

(VT , ET), in which the nodes represent protocol selection states, and the edges represent tran-

sitions between states. A selection state is a path assignment π ∈
(∏

v∈V Pv
)
; if α ∈ VT ,

then we write the path assignment corresponding to this node as πα. The start state is the

node corresponding to the empty path assignment, in which π(v0) = (v0), and, for u �= v0,

π(u) = ε, the empty path. The directed edge (α, β) is present in ET iff for all u �= v0 ∈ V ,

πβ(u) = best(u, πα), i.e., given that nodes select the paths πα and then broadcast these

selections to their neighbors through asynchronous FIFO links, nodes might next select

the paths πβ. Note that there may already be path data in the links that have been delayed

in transit, so that πα(v) = P and πβ(v) = P ′ but, for a neighbor u, πα(u) = Q and

πβ(u) = uP . (Therefore, states may not be consistent; these states are not acceptable as

solutions.)

We can follow the execution of a path-vector protocol on an SPP instance by its trace,

which corresponds to a directed path in the evaluation digraph beginning at the start state.

Traces can either end at sink states, i.e., nodes whose only outgoing edges are loop edges,

or cycle through states indefinitely. Because the evaluation digraph is finite, if all traces are

acyclic (ignoring loop edges), then all protocol runs will converge. Conversely, it is clear

that if the network can dynamically oscillate during route selection, then there is a cycle in

the corresponding evaluation digraph; each of the paths among which a node oscillates will

appear in at least one of the states in the corresponding cycle.

Proposition 3.2.5. A path assignment corresponds to a sink state iff it is a solution.

Proof. A solution is a stable set of consistent routes. Suppose πα is a solution; then by

Definition 3.2.2, for all u �= v0 ∈ V , πα(u) = best(u, πα). By Definition 3.2.4, this is

equivalent to α having no outgoing edges in the evaluation digraph other than loop edges,

26

meaning that α is a sink state.

Therefore, we can define protocol-convergence properties in terms of the structure of

the corresponding evaluation digraph. The following combinations of the existence of so-

lutions and the ability of protocols to reach those solutions are of interest to us.

Definition 3.2.6. The following are convergence properties of SPP instances.

Solvability An SPP is solvable if there exists at least one path assignment that is a solu-

tion; i.e., the evaluation digraph of the SPP has at least one sink state.

Unique Solvability (Predictability) A routing configuration is uniquely solvable if

there exists exactly one SPP path assignment that is a solution; i.e., the evaluation

digraph contains exactly one sink state.

Safety A routing configuration is safe if a path-vector protocol is able to converge to a

solution; i.e., all traces in the SPP’s evaluation digraph are acyclic. The existence of a

solution does not determine safety.

Robustness A routing configuration is robust if it and all sub-instances (resulting from

node or link failures) are uniquely solvable and safe; i.e., all traces in the SPP evalua-

tion digraph are acyclic and end at the same sink state.

Remark 3.2.7. Note that the definition of robustness, while requiring all sub-instances to

be predictable and safe, requires only that all traces in the original SPP’s evaluation digraph

are acyclic and end at the same sink. This is because sub-instances have evaluation digraphs

that are subgraphs of the original instance’s evaluation digraph (with some paths no longer

possible because of failures); the property of acyclicity holds on subgraphs.

27

We are interested in robust path-vector protocols, because these avoid nondeterminism

and divergence, which are problems that are difficult for network operators to understand

and debug when they occur at the inter-domain level.

3.2.2 Dispute Wheels and Robust Convergence

We begin broadening conditions for convergence by generalizing shortest-paths routing.

In the first logical step, let each network link be assigned an arbitrary positive cost; the

cost of a path is then the sum of the costs of its component edges. Lowest-cost routing

(choosing the cheapest path) is thus analogous to shortest-paths routing and, indeed, al-

ways converges to a routing solution. Griffin et al. [GSW02] directly proved an even more

general condition, showing the sufficiency of coherent cost assignments for robustness. In a

coherent assignment, edges may have negative costs, so long as every cycle in the graph has

a positive cost (i.e., the sum of edge costs around any cycle is positive). Intuitively, the po-

tential problem with negative edge costs is that a path can traverse a cycle of negative-cost

edges multiple times, artificially reducing total path cost; however, preventing non-positive

cycles makes this impossible. Coherence also precludes the divergent examples from above.

However, the authors of [GSW02] gave an example of a convergent routing configuration

in which policies are not consistent with coherent costs, suggesting that one might write a

broader sufficient condition.

Proving the coherence result involved characterizing a necessary condition for diver-

gence. Using SPP’s abstract model of a network configuration, Griffin et al. showed that

a generalization of BAD GADGET, called a dispute wheel, captures this condition. In par-

ticular, they described a procedure that attempts to construct a routing solution given an

SPP; an unsuccessful attempt implied the existence of a dispute wheel in the SPP. They also

showed that multiple routing solutions implied the existence of a dispute wheel. Thus, an

28

0

v w

QQ

Q

R R

i

i i+1

i+1

i−1

u x

vi

vi+1

v

i−1

Figure 3.3: Dispute wheel.

SPP without a dispute wheel is robust; this observation was central to the coherence result

and motivates the results in Chapters 4–7. We provide a formal statement of these results

below.

A generic dispute wheel is shown in Figure 3.3. It comprises a rim and spokes, which

are paths in the network graph such that routing policies at the active nodes—where spokes

connect to the rim—conflict, allowing bad routing behavior. (Nodes and edges may appear

multiple times in a single wheel.) In particular, each of these nodes vi learns a path Qi

to the destination from its neighbor w down the spoke but would prefer to use the path

along Ri that follows the rim clockwise through u to vi−1 and then goes down the next

spokeQi−1. (It is easy to see that a three-node version of this network configuration is BAD

GADGET.)

Definition 3.2.8. A dispute wheel (see Figure 3.3) is a cycle of active nodes

v1, v2, . . . , vk, vk+1 = v1

in an SPP instance such that there exist paths

R1, R2, . . . , Rk, Rk+1 = R1 and Q1, Q2, . . . , Qk, Qk+1 = Q1

29

such that Qi ∈ Pvi , Ri+1Qi+1 ∈ Pvi , and λvi(Ri+1Qi+1) < λvi(Qi). The nodes and paths

Ri are on the rim of the dispute wheel, while the pathsQi are called the spokes of the wheel.

Suppose all active nodes start by only knowing (and thus selecting) spoke paths. As

time progresses, extensions of these routes may be further propagated through the network

so that at each active node, a path counterclockwise through the rim to the next active node

and then down that node’s spoke becomes available. Because these routes are preferred,

they will all be selected. Once this happens, active nodes can no longer advertise their

spoke paths because they are not selected, and the spoke paths will be withdrawn. This

eventually makes the extended paths through the rim unavailable, reverting all choices back

to the direct spoke paths, at which point this sequence can start again.

While such an oscillation is not guaranteed to occur if a network contains a dispute

wheel—there may be other paths preferred over all of the paths in the wheel—a dispute-

wheel-free network cannot produce this type of oscillation.

Theorem 3.2.9 (Section V, [GSW02]). If an SPP instance contains no dispute wheel, then it is

robust.

Proof. In [GSW02], Theorem V.3 states that a dispute-wheel-free S has a solution, The-

orem V.4 states that it has a unique solution, Theorem V.9 guarantees that a path-vector

protocol will converge to a solution for S, and Theorem V.10 guarantees that a unique

solution can be found in the presence of link and node failures.

The condition of dispute-wheel-freeness is not a local condition but instead a restriction

on how the local routing decisions of nodes may interact globally. This global condition

forms the basis for many of the results in Chapters 4–7.

30

3.3 Hierarchical BGP

Gao and Rexford [GR01] were the first to discuss the role of local constraints defined in

terms other than cost increments assigned to links. They showed that an assumption about

the Internet AS-graph structure and a combination of simple rules for nodes’ policies are

enough to guarantee BGP’s convergence. Fortunately, these rules and assumptions are

consistent with, and are naturally enforced by, common Internet economics.

Two connected ASes usually view their relationship either as between a customer and a

provider of network connectivity or as between two equals; in the second case, these “peers”

may use their connection to provide backup connectivity, to connect their customers, or to

short-cut expensive or longer routes through provider links. In this “Hierarchical BGP”

(HBGP) model, every AS assigns one of the labels “customer,” “provider,” or “peer” to

each of its neighbors such that this view is consistent with that of other ASes (e.g., an AS’s

customers view it as a provider).

HBGP then requires that nodes’ routing policies satisfy certain restrictions, defined in

terms of these labels, on the relative ranking of routes and with whom routes are shared;

these restrictions are natural given the traffic agreements usually made with the three types

of neighbors. (For example, routes learned from customers must be preferred to routes

learned from providers, and the latter are shared only with customers, not peers or other

providers.) Finally, it is assumed that no “customer/provider” cycles exist, i.e., no AS is an

indirect customer of itself. This last restriction is also natural in that it is very unlikely that

a local ISP would sell network connectivity to a top-level network.

The initial results for HBGP convergence were proven directly. Gao, Griffin, and Rex-

ford [GGR01] later generalized this work by adding back-up routes to HBGP, and proved

their convergence results by using machinery from [GSW02]: They showed that networks

31

satisfying generalizations of the conditions from [GR01] avoid dispute wheels and are thus

robust.

Although this work provides one solution that offers a combination of local and global

constraints that guarantee robust convergence of a protocol, our results in Chapter 6 gen-

eralize these constraints by characterizing sets of protocols and constraints that do so.

The major result of [GGR01,GR01] is that, because the required global condition is nat-

urally enforced, stable Internet routes can be achieved by modifying local policies without

real global coordination. This balance between local and global constraints underlies the

main approach of this dissertation. In Chapter 4, we show that local constraints can guar-

antee robust convergence with no global assumption at all, but that other desirable protocol

properties are lost when these constraints are implemented.

3.4 MED-Induced and iBGP Anomalies

The modeling work described so far only applies to a specific type of path-vector protocol—

those in which the best-route selection procedure can be modeled by mapping paths under

consideration to a rank, or weight, in some totally ordered set and choosing the path of

minimum (or maximum) rank. This property is called independent route ranking (IRR)

because the rank of a path can be determined from the attributes of that path’s data struc-

ture, which, in turn, can be used to compare it to any other path for best-route selection

(assumption 1, Section 2.2). However, BGP’s full route-selection procedure (Section 2.4)

cannot be modeled in this way. In particular, use of the multi-exit discriminator (MED)

attribute, which is common when two ASes share multiple inter-connections and want to

perform cold-potato routing, violates IRR.

32

MED-induced oscillations are a well-known problem of BGP [Cis01, DS98, MGWR02],

and it has been conjectured that the violation of IRR is the major reason. These oscillations

are especially difficult to analyze and debug on a real network because they are a product of

not only BGP policy settings—involving attributes set in separately configured, indepen-

dent ASes—but also internal distance settings within an AS (determined by an IGP; see

Section 2.2).

In addition to this complexity of iBGP, the use of route reflectors (see Section 2.4)

introduces additional anomalies that mirror the oscillation and nondeterminism examples

for eBGP. These were rigorously characterized in [GW02b], and numerous examples of

iBGP anomalies not involving the use of MEDs were given. These fall into two major

categories:

1. signaling anomalies, in which configuration of iBGP sessions prevents convergence to

a stable, consistent set of inter-domain routes; and

2. forwarding anomalies, in which a conflict between IGP-determined forwarding and

iBGP-assigned egress points, while undetected in the signaling plane, causes traffic

to be forwarded in loops or to be deflected—taking an unintended intra-domain path

to an egress point.

We note that much of the related work we discuss below on the MED-oscillation prob-

lem also refers to iBGP anomalies and misconfiguration in general. In this dissertation,

we focus on MED-induced anomalies because modeling MEDs (and, more generally, any

route-selection procedure violating IRR) requires an interesting extension to existing work

that we present in Chapter 7. In addition, the principles derived in Chapters 4–6, when

combined with the model in Chapter 7, can be used to model and study iBGP anomalies in

general.

33

There has been some theoretical work on the consequences of using the MED attribute,

but the results have not been as complete as those derived from modeling eBGP alone.

Basu et al. [BOR+02] and Musunuri and Cobb [MC04] proved that including in adver-

tisements routes not chosen as best prevents MED-induced oscillations, but this change

to BGP would increase the size of routing tables and the number or size of update mes-

sages. (We note that the solution proposed in [MC04], as opposed to that of [BOR+02],

uses changes to BGP update messages between route reflectors and their clients to avert

iBGP forwarding anomalies, in addition to iBGP and MED-induced signaling anomalies.)

In Section 7.3.1, we suggest an improvement that requires fewer additional routes to be

broadcast.

Griffin and Wilfong [GW02a] enumerated canonical examples of MED-induced oscil-

lations and described them using an extension to their SPP model, called the Generalized

Stable-Paths Problem (GSPP). Instances of GSPP contain nodes with arbitrary choice func-

tions on sets of routes that describe their route-selection procedures, rather than an IRR-

compliant, linear preference ordering on permitted paths as in the original SPP. This work,

however, did not propose broad configuration suggestions for using the MED attribute nor

a robustness constraint analogous to that given for the original SPP model. It was shown

that in the particular case of MEDs, GSPP instances could be translated to an SPP instance

containing proxy nodes. These instances could be tested for policy-induced anomalies us-

ing the SPP conditions described in [GSW02], but those conditions do not easily translate

to conditions on GSPP instances. In Chapter 7, we incorporate GSPP into our framework

to accommodate IRR-violating route-selection procedures; however, unlike [GW02a], we

are able to provide analogous convergence constraints. We defer the definition of GSPP to

Chapter 7 in order to avoid complicating the derivation of results in Chapters 4–6, which

34

only rely on the original version of SPP.

Other suggestions to solve the MED-oscillation problem affect the use of route reflec-

tors and configuration of iBGP sessions within an AS [WCRS02] or require changing the

interpretation of attributes [MGWR02]. In Section 7.3, we use our framework to prove that

some of these conjectured solutions do indeed prevent MED-induced oscillations.

35

Chapter 4

Path-Vector Policy Systems∗

In this chapter, we introduce the Path-Vector Policy System (PVPS) framework. The mo-

tivation for developing this framework is that a root cause of configuration problems is a

lack of design for the policy languages that are used to configure protocols. BGP policy

languages have evolved in a rather organic fashion with little or no effort made to avoid

policy-interaction problems. We believe that researchers should start to consider how to

design policy languages and path-vector protocols that together avoid such risks and yet

retain other desirable features. We take a few steps in this direction by identifying the

important dimensions of this design space and characterizing some of the inherent design

trade-offs. We do this in a general way that is not constrained by the details of BGP. As a

result, our framework may offer guidance not only in the analysis of proposals to correct or

extend BGP but also in the analysis of other BGP-like protocols such as a version of BGP

supporting Virtual Private Networks [RR99], Telephony Routing over IP (TRIP) [RSS02],

and of various proposals for interdomain routing of optical paths [RLA04,XBX03].

∗This chapter has previously appeared in joint work with Timothy G. Griffin and Aaron D. Jag-
gard [GJR03].

36

4.1 The Design Space of Path-Vector Protocols

We identify six important design goals for any path-vector protocol and policy language:

Expressiveness From the perspective of a network operator, we desire policy languages

that are as expressive as possible. For example, shortest-path routing is not expressive

enough for the requirements of current interdomain routing because it is unable to capture

the “natural” routing conditions arising from the pervasive economic roles of customer,

provider, and peer [Hus99a, Hus99b]. The challenge then is to design policy languages

that are as expressive as possible, and yet not so expressive that other design goals are sac-

rificed.

Robustness We require predictability, i.e., that any non-determinism in routing poli-

cies is not the result of unwanted policy interactions, and the existence of a routing solution

that is always found by the protocol (this prevents protocol divergence). Furthermore, we

insist that the same is true of any configuration that results from any combination of link

and node failures in the network. The goal of robustness is the primary constraint on the

expressive power of a policy language; we are generally uninterested in non-robust policies.

Autonomy Network operators often require a high degree of autonomy when defining

routing policies. We may have a good intuition about what this means—that policy writ-

ers are given wide latitude in defining policies that reflect their own interests and not the

interests of their neighbors. Here, generalized autonomy will mean the ability to define a

partition on routes and then rank the partition classes arbitrarily. Operationally, auton-

omy is important because it isolates an autonomous system from policy changes occurring

in other (neighboring or distant) autonomous systems. Without a high degree of auton-

37

omy, network operators would have to continually “tweak” their policies to compensate for

unseen changes made to policies elsewhere.

In addition to a generalized definition, we present one notion of autonomy important

for BGP—autonomy of neighbor ranking—that allows policy writers to classify neighbors and

set route preferences in accordance with this classification. This type of autonomy is re-

quired for a BGP policy language to support policies compatible with present-day com-

mercial realities of the Internet.

Protocol Transparency Many “obvious” approaches to achieving very expressive

and robust systems involve a high cost; they add machinery that is invisible to policy writ-

ers to the underlying path-vector system. What is lost is protocol transparency—the ability

of network operators to understand the semantics of policies they write. If the protocol

itself is allowed to dynamically modify the input policies (in order to ensure robustness,

for example), then it may become very difficult, if not impossible, to maintain and debug

routing policies.

Global Consistency One way to achieve robustness is to implement a mechanism en-

forcing a global-consistency constraint that guarantees robustness. This constraint could

be enforced in any number of ways, including an additional protocol or set of protocols, by

convention, by regulation, by economic incentives, or by some combination of methods.

Of course, the easier such a constraint is to check, the better. We note that in the current

Internet, there is no global-consistency checking of BGP policies.

Policy Opaqueness This design goal measures the degree to which details of routing

policies are to be kept private or hidden from those outside of a routing domain (the term

is from Geoff Huston [Hus01]). Full policy opaqueness is, of course, in direct conflict with

38

any sort of global-consistency enforcement. Therefore, the design challenge is to find a

happy medium that allows for the exposure of just enough information to ensure robust-

ness while at the same time allowing for a sufficient amount of information hiding to satisfy

policy writers.

Our formalization starts with defining three distinct components of any path-vector

protocol: the underlying path-vector system, the policy language, and any global consis-

tency assumptions about the network. The path-vector system should be thought of as

the low-level means of carrying messages between systems, much like RFC 1771 [RL95].

Section 4.2 presents a definition for path-vector systems that formalizes the information

that nodes exchange, various restrictions on nodes’ behavior, and the way that protocols

mediate interactions between nodes. As we define various components, we illustrate them

with a running example that models BGP. Additional examples are given in Section 4.3.

We separate the definition of a path-vector system from the definition of a policy lan-

guage: a policy language is a high-level declaration of how the attributes describing a route

change when the route is exchanged between neighbors. Section 4.2.2 defines the intended

role of policy languages in path-vector-system configuration.

The notions of expressiveness and robustness are formalized in Sections 4.4 and 4.5. For

both we employ the Stable Paths Problem (SPP) [GSW02] as a semantic model of path-

vector systems. We identify one class of robust systems as our target for expressiveness

(Definition 4.5.4 and Theorem 4.5.9). Autonomy and transparency are formalized in Sec-

tions 4.6.1 and 4.6.2. Policy opaqueness is briefly discussed in Section 4.6.4, while global

constraints are considered in Section 4.7.

Besides the more obvious trade-offs already mentioned, we identify several more subtle

ones:

39

1. Any system with a policy language that is maximally expressive but has no global

constraint must give up either autonomy of neighbor ranking or transparency (or

both) (Theorem 4.6.9).

2. Any autonomous, transparent, and robust system with a policy language at least as

expressive as shortest-path routing must have a non-trivial global constraint (Theo-

rem 4.7.4).

These results tell us that, if we seek to design expressive policy languages that are transpar-

ent, autonomous, and robust, then we must consider the global constraint as an integral

part of the design. Indeed, current path-vector protocols may succeed in part because of

assumptions about the global network; our framework highlights the importance of this

component of design.

Figure 4.1 illustrates the design space for robust and transparent path-vector policy sys-

tems. (This figure is meant to aid in developing intuitions, and should not be taken too

literally.) The x-axis represents the expressive power of systems, and the y-axis represents

the relative difficulty of checking the global constraint. Combinations of path-vector sys-

tems and policy languages which fall close to the bottom right of Figure 4.1 are generally

desirable.

Some points in the space deserve attention. On the bottom horizontal line lie systems

that require no global constraint to be robust. In this paper, we assume “minimal” ex-

pressiveness is “Shortest-Paths” routing; a simple extension to this is “Shortest-Available

Paths,” which allows routes to be filtered (even if they are the shortest) and chooses the

shortest path from the remaining routes. (Both examples are given in Section 4.3.) We take

“maximal” expressiveness to be the expressive power of a natural class of robust systems

that we define in Section 4.5.3. Two possible systems which possess the property “Globally

40

customer/provider
relationships

acyclic

Minimal Maximal

Maximal Global

Expressive
Power

Not Tractable

Tractable

cust. & prov.
consistency

cust., prov., peer
consistency

Constraints

 Shortest Paths

 Shortest Available Paths

CP+BU

CP

HBGP

HBGP+BU

}+

Globally Increasing
Path RankingExpressive

Power

Constraints
No Global

Robust BGP

Figure 4.1: Design space for robust path-vector systems.

Increasing Path Ranking” are discussed in Section 4.6.3; while these achieve maximal ex-

pressiveness with no global constraint, they sacrifice other design goals in the process. The

final extreme point, “Robust BGP,” is a system in which all BGP policies are collected and

verified not to contain conflicting policies. One might use the Routing Policy Specification

Language (RPSL) [ABG+98] in the manner suggested in [GAE+99] to accomplish this.

Many practical issues make this scenario unlikely; furthermore, it was shown in [GSW02]

that, in the worst case, checking various global-consistency constraints is NP-hard.

Hierarchical BGP systems (inspired by [GR01,GGR01]) provide examples from today’s

commercial Internet. Figure 4.1 includes the system CP, a BGP-like system in which the

policy language allows nodes to classify neighbors as customers and providers and to rank

routes consistent with those relationships; CP is robust if there are no cycles in the cus-

tomer/provider graph and if classifications of neighbors are consistent. We might increase

the expressiveness of this system in two ways: (1) allow an additional classification of

41

neighbors as peers, in which case we must modify the global constraint to additionally

check the consistency of peer classifications (the system HBGP); or (2) modify the policy

language to permit marking routes for backup use (the system CP+BU). Combining both

approaches achieves the expressiveness of the system HBGP+BU. These types of systems

are discussed fully in Chapter 6. Note that in the real world, there are no existing meth-

ods to enforce either the local or global constraints, although Internet economics seems to

ensure that networks behave in close approximation to the rules described by the above-

mentioned robustness conditions.

4.2 Definition of Path-Vector Policy Systems

In this section, we define the “protocol part” of our framework: the underlying exchange

system for route information. We sketch the components independent of any particular

system or instance of a system. Using the definitions presented here, we can rigorously

explore the protocol design space in later sections.

4.2.1 Formal Definition of Path-Vector Systems

As we develop our framework, we will use a simplified model of BGP as a running exam-

ple. This example model assumes that each node (router) represents an entire autonomous

system and thus treats only External BGP (not Internal BGP). It also ignores most BGP

attributes and simplifies others. We will adorn the elements of this example system with

the subscript µbgp.

Route Information

A path descriptor is a data record about a path that contains enough information (e.g., the

routing destination, the sequence of AS numbers along the entire path, routers’ preference

42

values for the path, transmission cost, etc.) for a router to compare it to other paths and to

inform its neighbors about the path so that they can do the same. A router learns of paths

by receiving descriptors from neighbors and preserves knowledge of potential best routes

by storing descriptors for paths to all known destinations.

The path-vector-system specification includes a description of the components in a path

descriptor and a map that ranks them using values from a totally ordered set. This ranking

permits routers to determine best routes based on just the information contained in the

available descriptors to a destination; in particular, the rank of a descriptor depends only on

that descriptor. Determining rank normally involves some components of path descriptors

that can be transformed by both locally configured policies and the underlying message-

exchange protocol itself.

Definition 4.2.1. Let the quadruple

I = (D, R, U , ω)

be the route-information portion of the path-vector-system specification. The components

are defined as follows:

D is the set of possible routing destinations;

R is the set of path descriptors, such that to every r ∈ R there must be associated a unique

dest(r) ∈ D;

U is a set totally ordered by≤; and

ω is a function (the ranking function) from R to U that determines how path descriptors

are ranked (thus, the role of path-descriptor attributes in choosing routes).

43

Remark 4.2.2. Although the mechanics of determining “best” routes will be discussed in

Section 4.2.5, we observe the convention that the ranking function will map more preferred

paths to smaller elements of U .

Running Example, Part 1. In our example system, let D be the set of all IPv4 CIDR

blocks. Let the set of path descriptors be

Rµbgp = Dµbgp × N× Seq(N)× N× 2C,

where N is the set of natural numbers, Seq(N) is the set of finite sequences of natural

numbers, and C is the set {red, blue, green}. If r = (d, l, P, n, S) ∈ Rµbgp , then

d is the destination of r, l is the local preference, P is the AS path, n is the next hop, and

the elements of S are the colors of r. Colors are meant to be a very simple model of BGP

communities [CTL96].

Let Uµbgp = N×N×N and ω((d, l, P, n, S)) = (l, |P |, n), with the ordering≤µbgp

on Uµbgp given by (l, m, n) ≤µbgp (l′, m′, n′) if and only if:

1. l > l′; or

2. l = l′ and m < m′; or

3. l = l′, m = m′, and n ≤ n′.

The combination of ≤µbgp and ωµbgp prefers higher local preference, with ties broken by

preferring smaller AS-path length and then smaller value of the next hop.

Import and Export Policies

Path-vector systems explicitly include operations for importing routes from neighbors and

exporting routes to neighbors. Router operators provide separate import and export con-

figuration policies to describe router behavior when exchanging route information, e.g., to

44

change path-descriptor attributes for a route affecting its rank or to filter out routes alto-

gether. The set of node policies across the network would therefore be a component of a

specific instance of the path-vector system. On a low level, the import and export policies

are per-neighbor functions on path descriptors that transform their components to make

preference changes in accordance with local policy. We expect that policies will usually be

written in a higher-level policy language, which motivates the policy-language component

of design.

A path-vector system includes local-policy constraints on what import and export policies

are allowed. These limits on the expressiveness of local policies can help guarantee robust-

ness and can help ensure that a protocol achieves its goals; e.g., if policies can only add

a positive value to a path-cost attribute that alone determines path rank, the path-vector

system implements lowest-cost-path routing.

Formally, let elements of the function space 2R → 2R be called policy functions (these

are functions on sets of path descriptors, thus describing transformations on them). We

then define local-policy constraints in the following way.

Definition 4.2.3. Let the triple

C = (L
in , L

out , O)

be the local-constraints portion of the path-vector-system specification. Lin and Lout are

predicates on import and export policy functions, respectively. If Lin(f) or Lout(f) holds,

then f is a legal local-policy function. Furthermore, we assume that if either Lin(f) or

Lout(f) holds, then f satisfies:

(1) for each X ⊆ R, if |X| = 1 then |f(X)| ≤ 1;

(2) for each X ⊆ R, f(X) =
⋃
r∈X f({r}); and

45

(3) for each r1, r2 ∈ R, if f({r1}) = {r2}, then dest(r1) = dest(r2).

O is a predicate defined on subsets ofR used to define what sets of path descriptors can be

originated at a node. A node can only advertise newly originated destinations described by

X ⊆ R if O(X) holds.

Running Example, Part 2. In our simplified-BGP example, we want policies to affect

only the local-preference and colors (communities) attributes of path descriptors. We let

Lin
µbgp(f) and Lout

µbgp(f) hold if and only if f satisfies conditions (1)–(3) above as well as

(4) f((d, l, P, n, S)) = {(d′, l′, P ′, n′, S ′)} implies d′ = d, P ′ = P , and n′ = n.

Additionally, the only path descriptors which may be originated by nodes are those with

an AS path containing the AS alone (because the destination should be in the originating

AS’s domain) and a default local preference of 0, so we let Oµbgp(X) be true if and only if

(d, l, P, n, S) ∈ X implies l = 0 and P = v where v is the originating AS.

Application of Policies

Although import and export policies allow router operators to configure their routers, we

must recognize that it is the router (or the protocol itself) actually applies those policies to

path descriptors encountered while running the protocol. Therefore, path-vector-system

specifications include a policy-application function for both the import and export opera-

tions. These functions describe the transformations used by the protocol to apply operator-

provided policies to path descriptors. This allows the application of policies to be consistent

with the goals of the protocol, e.g., routers may only apply policies when they satisfy a lo-

cal condition guaranteeing robustness. These functions are often used to make changes to

path descriptors uniformly throughout all information exchanges in addition to applying

the operator-provided configuration policy (e.g., appending a node name to the described

46

path or hiding certain attributes when they contain private information). Formally, we

have the following.

Definition 4.2.4. Let the pair

T = (tin , tout)

be the protocol-transformation portion of the path-vector-system specification. Both tin and

tout are functions of type (N× N× (2R → 2R)× 2R) → 2R; the first two arguments are

node names, the third is the policy function to apply, the fourth is the target set of path

descriptors.

Running Example, Part 3. We now give the protocol transformations for our model of

BGP. If u and v are nodes, f is a policy function (expected to be u’s export policy function

for v), and X is a set of path descriptors (expected to be known to u), then

tout
µbgp(u, v, f, X) = {(d, 0, vP, u, S) | (d, m, P, w, S) ∈ f(X)} .

The protocol applies the (export) policy function (which may change local preference and

colors) and then updates the AS-path and next-hop values to reflect the edge {u, v} in

the extended path. It also sets the local preference value to 0, hiding this value from the

node receiving information about this path. If Y is a set of path descriptors (expected to be

tout
µbgp(u, v, f, X)) and g is v’s import policy function for u, then we let

tinµbgp(v, u, g, Y) = {g(r) | r ∈ Y, r describes a simple path} .

The protocol thus takes care of filtering any paths which contain loops.

Path-Vector System

Definition 4.2.5. A path-vector system is a triple of the form

PV = (I, C, T)

47

where the components are as defined in Definitions 4.2.1–4.2.4.

4.2.2 Policy Languages

Of course, policy writers do not actually write mathematical functions, but rather write

specifications in a path-vector policy language. We expect that such languages can be given a

rigorous semantics so that policies written in the language can be treated as specifications

for functions on path descriptors. A policy language essentially is a local constraint on the

policy functions that can be written for a path-vector system. Policy-language designers

must ensure that legal policy specifications are guaranteed to have semantics that conform

to the constraints of the target path-vector system(s). In practice, this may involve some

type of compilation to low-level, vendor-specific configuration commands—a transforma-

tion that may be rather complex. However, separating the definition of a policy language

from the definition of a path-vector system allows us to consider multiple policy languages

for the same path-vector system. We can also discuss using different path-vector systems

to implement the same policy language.

Definition 4.2.6. A policy language PL for a path-vector system is a language and a seman-

tic functionM that maps each policy configuration p written in this language to a triple

M(p) = (min , mout , morig)

of partial functions of types

min , mout : V × V → (2R → 2R)

morig : V → 2R

If u and v are node identifiers, then min(v, u) and min(v, u) are called the import and

export policy functions at v for u, respectively, and Lin(min(v, u)) and Lout(mout(v, u)) hold

48

whenever these policy functions are defined. These functions transform sets of path de-

scriptors. Finally, the function morig maps node identifiers v to finite subsets of R such

that O(morig(v)) holds whenever morig(v) is defined.

We take policy configurations to be the language-specific definitions of policies for one

or more nodes; the set of valid policy configurations is part of the language PL.

Running Example, Part 4. We define a simple policy language PLµbgp . A policy config-

uration in this language is a list of declarations, each having one of the forms:

1. export from v to W : rule

2. import at v from W : rule

3. originate from v : (d, 0, ε, v, S)

The first and second type declare export and import policies, respectively, and the third type

declares routes to be originated from a node. The sets W represent all of the neighboring

nodes to which a given declaration is applied. Each rule is a transformation of objects in

Rµbgp defined by a list of clauses:

C1 =⇒ A1

C2 =⇒ A2

...
...

...

Cn =⇒ An

where each Ci is a boolean predicate over path descriptors and each Ai is an action to be

taken on the input path descriptor. The actions are either of the form reject, or they are

statements that modify the local preference or colors of a path descriptor. For each path

49

descriptor r input to such a rule, the action associated with the first predicate that evaluates

to true is performed on r. If no clause matches, the empty set is returned. MPLµbgp
(p)

is easy to determine given the form of policy configurations in PLµbgp; see part 5 of the

running example in the following subsection.

4.2.3 Instances of Path-Vector Systems

Definition 4.2.7. An instance of a path-vector system PV with respect to a policy language

PL (or an instance of (PV , PL)) is a pair

I = (G, P),

where G = (V, E) is an undirected graph, called the signaling graph, and the configuration

function P maps nodes v ∈ V to policy configurations P (v) = pv in the policy language

PL so that M(pv) = (F in
v , F out

v , F orig
v). We require that F orig

v (v) is defined and that, for

every {v, u} ∈ E, both F in
v (v, u) and F out

v (v, u) are defined. We will assume that the

vertex set V is a subset of N.

Let F (I) = (F in , F out , F orig) where

F in(v, u) = F in
v (v, u)

F out(v, u) = F out
v (v, u)

F orig(v) =
⋃
w∈V

F orig
w (v)

F is a summary configuration function for the instance that represents the collection of

policy configurations provided by nodes in the instance. However, F technically describes

transformations on path descriptors, and thus is a somewhat “compiled” or “lower-level”

version of the policies for the instance, independent of the policy language used to specify

them.

50

4

1

2 3

5

Figure 4.2: An example five-node network.

Remark 4.2.8. In most cases, nodes will not originate descriptors on behalf of other nodes,

i.e., F orig
w (v) = ∅ for w �= v, and nodes will not have policies for non-incident edges, i.e.,

F in
w (v, u),F out

w (v, u) are not defined for w �= v. In addition, we suggest and often assume

that the origination constraint includes a clause to check that nodes only originate path

descriptors for destinations they represent or contain, i.e.,

O(X) ⇒
[
r ∈ X ⇒

(
dest(r) = v ⇒ r ∈ F orig

v (v)
)]

Definition 4.2.9. Given two instances I = (G, P) and I ′ = (G′, P ′) of (PV , PL), the

instance I ′ is said to be a sub-instance of I if G′ is a subgraph of G and the configuration

function P ′ is equal to P when restricted to G′. For example, given any instance I =

(G, P) and G′, a subgraph of G, the instance I ′ = (G′, P) is a sub-instance of I.

Running Example, Part 5. One instance of (PV µbgp , PLµbgp) consists of the five-vertex

graph shown in Figure 4.2 and policy configurations in Figure 4.3.

4.2.4 Realizable Path Descriptors

We are particularly interested in the path descriptors that arise as the result of first originat-

ing a path descriptor at some node and then forwarding it along some path in the network,

applying the appropriate export, import, and protocol transform functions along the way.

We call these realizable path descriptors. Because we do not usually make use of the path de-

51

originate from 1 : (d, 0, (1), 1, ∅)
export from 1 to {2} :

true =⇒ r.colors := {red}
export from 1 to {3, 4} :

true =⇒ r.colors := {blue}
export from 1 to 5 :

true =⇒ r.colors := {green}

import at 2 from {1, 3, 5} :
blue ∈ r.colors =⇒ r.local-preference := 100
red ∈ r.colors =⇒ r.local-preference := 50
green ∈ r.colors =⇒ r.local-preference := 10

export from 2 to {3, 5} :
true =⇒ r

import at 3 from {1} :
true =⇒ r.local-preference := 100

import at 3 from {2, 4} :
green ∈ r.colors =⇒ r.local-preference := 1000
blue ∈ r.colors =⇒ r.local-preference := 500

export from 3 to {2, 4} :
true =⇒ r

import at 4 from {1} :
true =⇒ r.local-preference := 10

import at 4 from {3, 5} :
green ∈ r.colors =⇒ r.local-preference := 50
blue ∈ r.colors =⇒ r.local-preference := 25

export from 4 to {3, 5} :
true =⇒ r

import at 5 from {1, 2, 4} :
green ∈ r.colors =⇒ r.local-preference := 2
red ∈ r.colors =⇒ r.local-preference := 1

export from 5 to {2, 4} :
true =⇒ r

Figure 4.3: Example policy configurations in PLµbgp .

52

scriptors that arise after applying an export transform but before applying the correspond-

ing input transform, we combine these functions into arc policy functions for convenience.

Definition 4.2.10. Let I be an instance of (PL, PV) with signaling graph G = (V, E);

let {v, u} ∈ E be any edge. Then the arc policy function F(v,u) is the function which takes

the path descriptors at u and produces the path descriptors that v has after import from u.

Thus, for X ⊆ R,

F(v,u)(X) = tin
(
v, u, F in(v, u), tout(u, v, F out(u, v), X)

)
.

Note that it may be the case that F(v,u)(X) = ∅ for some X �= ∅. In this case we say that

the path descriptors of X have been filtered out by F(v,u).

Conditions (1)–(3) given in Definition 4.2.3 only need to hold for the functions {F(v, u) |

{v, u} ∈ E}; however, because tout and tin are specified separately from the policies F out

and F in , it may be easier for those designing the protocol transformations tin and tout to

assume that all policies satisfying Lout or Lin also satisfy these conditions (and for the com-

pilers of policies into functions to know that it suffices to satisfy these conditions).

Suppose that the path P is a simple path in G from a node v to node w; we write this

as a sequence P = vx1 . . . xkw of distinct nodes starting with v and ending with w. If

rw ∈ F orig(w), then we let r(P, rw) ⊆ R be the result of passing rw along P and applying

the corresponding arc policies. Formally, if P = w, set r(w, rw) = {rw}. If v �= w then

write P = vx1 . . . xkw = vP ′ and let r(vP ′, rw) = F(v,x1)(r(P
′, rw)).

Definition 4.2.11. The set of path descriptors realizable at u in I is the set Ru
I of descrip-

tors which may be originated at u or which may be obtained by (legally) originating a

descriptor elsewhere and passing it along a network path, successively transforming it with

53

the appropriate arc policies:

Ru
I = F orig(u) ∪

{
r′ ∈ r(P, rw) | w ∈ V, rw ∈ F orig(w), and P is a path from u to w

}
.

4.2.5 Path-Vector Solutions

A solution for an instance of a path-vector system is an assignment of path descriptors to

nodes which is both realizable and which satisfies each node’s preferences to as great an

extent as possible given the assignments to the surrounding nodes.

Definition 4.2.12. A path assignment ρ is a mapping from V to 2R. Given a path assign-

ment ρ, define the set of candidates at node v to be

C (ρ, v) = F orig(v) ∪
{
r ∈ R | ({v, u} ∈ E) ∧

(
r ∈ F(v, u)(ρ(u))

)}
,

i.e., those path descriptors which are either originated at v or which are the result of im-

porting descriptors assigned by ρ to v’s neighbors.

Definition 4.2.13. For X ⊆ R, let the set min(X) be the set of descriptors in X (for all

destinations) which are minimally ranked among the descriptors with the same destination,

i.e., define

min(X) = {r ∈ X | ∀ r′ dest(r′) = dest(r) ⇒ ω(r) ≤ ω(r′)} .

The assignment ρ is a solution for I if for each v ∈ V we have (1) ρ(v) ⊆ Rv
I and (2)

ρ(v) = min(C (ρ, v)).

For the instance I, let sol(I) be set of solutions for I. Note that it may be the case that

sol(I) = ∅.

Running Example, Part 6. The unique solution ρµbgp to the instance from part 5 of our

running example is shown in Table 4.1. Note that the sub-instance obtained by deleting

the edge {1, 5} from the graph has two solutions; so, this instance is not robust.

54

v ρµbgp(v)
1 {(d, 0, (1), 1, ∅)}
2 {(d, 50, (2, 1), 1, {red})}
3 {(d, 1000, (3, 4, 5, 1), 4, {green})}
4 {(d, 50, (4, 5, 1), 5, {green})}
5 {(d, 2, (5, 1), 1, {green})}

Table 4.1: Unique solution for PV µbgp running example.

4.3 Examples

We first discuss two points in the design space that were mentioned in the overview and

then present an additional, more complex example.

4.3.1 Shortest-Paths Routing

Example 4.3.1 (Shortest Paths). LetRsp = Dsp ×N× Seq(N). The second component of

r ∈ Rsp is a non-negative length associated with the path in the third component of r; this

length is the sole factor in path ranking, with shorter paths preferred. We permit nodes to

increment the length of a path on import or export, so that Lin = Lout = Lsp where Lsp(f)

holds iff there exists a positive integer n such that for all d ∈ Dsp , m ∈ N, P ∈ Seq(N),

we have f({(d, m, P)}) = {(d, m+ n, P)}.

We define the export policy-application function tout
sp (u, v, f, X) to produce the set

{(d, m, uP) | (d, m, P) ∈ f(X)} .

That is, tout
sp merely extends the path P with the node u. We define the import policy-

application function tinsp(u, v, f, X) to produce the set

f ({r | r = (d, l, P) ∈ X where P is a simple path}) .

That is tinsp eliminates path descriptors with a loop, and then applies the import policy.

55

Remark 4.3.2. Note that by replacing Seq(N) with N we could model “distance vector”

protocols similar to RIP [Hen88]. However, we will restrict our attention to those systems

that do not allow signaling paths of arbitrary length.

Example 4.3.3 (Shortest-Available Paths). This system is a slight extension of Shortest

Paths in which path descriptors can be filtered out, both on import and export. We simply

modify the local constraints Lin and Lout to allow filtering, leaving all other definitions

unchanged. The new constraint Lsap(f) holds iff there exists a positive integer n such that

for all d ∈ Dsp , m ∈ N, P ∈ Seq(N), either f({(d, m, P)}) = ∅ or f({(d, m, P)}) =

{(d, m+ n, P)}.

4.3.2 A Catalan Example

We now give an example that is rather unlike traditional routing problems and suggests the

broad applicability of the framework we have presented. The policy-application functions

of this path-vector system ensure that the path descriptors which are passed between nodes

are those whose paths are subpaths of lattice paths related to the famous Catalan numbers.

We thus denote this path vector system by PV cat . The setUcat includes∞, and the ranking

function ωcat is constructed so that exactly the desired lattice paths are given finite rank;

subpaths of the desired paths are not filtered but instead given infinite rank.

The policies written by nodes in an instance of this system do not affect which paths

are imported and exported; they only determine the rank of the path descriptors which

are constrained by PV cat to have finite rank. Given the myriad of combinatorial interpre-

tations of the Catalan numbers, there are many ways that nodes in an instance of PV cat

can interpret and then “naturally” order the path descriptors that they receive from their

neighbors. We suggest a few such policies below.

56

The Path Vector System PVcat

We assume that each node in an instance of PV cat has a neighbor one step to the north and

one step to the east (as though points with integer coordinates in R2) and that the protocol

knows the spatial relationship between neighbors.

Let Seq(0, 1) be the set of all finite 0–1 sequences, and let

Rcat = Dcat × N× N× N× Seq(0, 1).

We then make the following definitions.

Ucat = N ∪ {∞}

destcat(d, x, y, z, P) = d

ωcat(d, x, y, z, P) =

{
z, x = y

∞, otherwise

In r = {d, x, y, z, P}, we use P to encode the corresponding path (using 0 for east steps

and 1 for north steps) and x and y to store the number of east and north steps in the path.

We let Ocat(X) hold if and only if r ∈ X ⇒ r = (d, 0, 0, m, ε), where ε is the

empty sequence. Let Lcat(f) hold if and only if for every r = (d, x, y, z, P) ∈ Rcat ,

f({r}) = {(d, x, y, z′, P)}, so that f may only change the fourth element of the path

descriptor. We take Lcat to be the constraint on both import and export functions.

L
in
cat(f) = Lcat(f)

L
out
cat (f) = Lcat(f)

Remark 4.3.4. Note that Lcat ensures that policies do not filter paths as in Shortest Paths

(Example 4.3.1). This could be changed to allow filtering as in Shortest-Available Paths

(Example 4.3.3).

57

We define the export policy-application function tout
cat (u, v, f, X) to be the set

{(d, x+ 1, y, z, 0P) | (d, x, y, z, P) ∈ f(X)}

if v is 1 step east of u, the set

{(d, x, y + 1, z, 1P) | (d, x, y, z, P) ∈ f(X)}

if v is 1 step north of u, and ∅ otherwise. Thus tout
cat restricts the export of descriptors to

those neighbors which are one step east or north from the exporting node. It also updates

the path P , prepending a 0 or 1, depending on whether this export is to the east or north,

and the total number of east (x) and north (y) steps in P . Note that we do not make

assumptions about the labels of the nodes (although we could express these restrictions

using node labels from N× N). We define tincat(u, v, f, X) to be the set

f({(d, x, y, z, P) ∈ X | y ≥ x}).

The combination of tout
cat and tincat ensures that the path descriptors which have not been

filtered correspond to paths with north and east steps and that, starting at the destination,

have never made more east steps than north steps as they are forwarded. It is well known

that the number of such paths with exactly n steps north and n steps east is the nth Catalan

number 1
n+1

(
2n
n

)
. The definition of ωcat means that the path descriptors which have finite

rank are exactly those which have passed along equally many north and east steps. While

PV cat determines the set of descriptors which are assigned finite rank at each node, it has

no impact on the ordering of the descriptors in this set. These rankings will be determined

by the policies of nodes in an instance of PV cat and may correspond to natural orderings

on some of the many families of objects counted by the Catalan numbers (66 examples of

which are given in Exercise 6.19 of [Sta99]).

58

Policies for PVcat

Assume that we have some policy language PLcat for PVcat in which a node can describe:

a family of objects counted by the Catalan numbers; a ranking of these objects; and an

appropriate bijection between the objects and Catalan sequences. (A Catalan sequence of

size n is an element of Seq(0, 1) with n 0s and n 1s, such that no initial subsequence has

more 0s than 1s.) We now consider different policy functions, compiled from policies

written in PLcat and which satisfy Lcat , which may arise in PVcat . These functions must

be of the form

f({d, x, y, z, P}) = {(d, x, y, z′, P)},

so we will define the functions below by defining z′ in each instance.

The first two examples use as objects lattice paths (i.e., composed of the steps (1, 0)

and (0, 1)) from (0, 0) to (n, n) which never fall below the diagonal y = x. They also

use the bijection described in the definition of PV cat in which a 1 appearing in an element

of Seq(0, 1) corresponds to a step of (0, 1) in a lattice path. For the first example, let the

ranking of a path be its area, i.e., the number of whole squares below the path and above the

diagonal y = x. The import function then sets z′ to be the area of the path corresponding

to P . For our second example, we prefer shorter paths to longer ones, and given two paths

of the same length, we prefer the one which has the (1, 0) step at the first step where they

differ. For a sequence P of length 2n, the import function then sets z′ to be
∑n−1

i=1

(
2i
i

)
/(i+

1) plus the number of paths of length 2n that have a (1, 0) step in the first place where they

differ from P .

Among all paths of length 2n, the path along the diagonal (alternating north and east

steps) will be the most preferred using both of these policies, while the path consisting of

n steps north followed by n steps east will be the least preferred. However, the first policy

59

will prefer any path along the diagonal to any other path, regardless of the lengths of the

two paths, in contrast to the second policy. They will also disagree on the relative rankings

of the two paths encoded by P1 = 1011111 . . . 00000 . . . and P2 = 110010101010

Policies might also be written which view the object encoded by a sequence P of length

2n as an ordering π of {1, . . . , n} which does not have three (possibly non-adjacent) ele-

ments in decreasing order (a 321-avoiding permutation). (See [Sta99] for a bijection to

the lattice paths we have been considering.) The import function could assign to z′ any

number of values, including various permutation statistics (e.g., descents, inversions) eval-

uated on π. Once the path P is viewed as a permutation, there are a wide variety of ways to

define z.

4.4 Expressiveness

To rigorously capture the expressive power of path-vector systems, we use the Stable-Paths

Problem (SPP) [GSW02] as a sematic domain. In this section, we show how to map path-

vector instances to equivalence classes of SPP instances and use this to compare the expres-

siveness of path-vector policy systems.

4.4.1 Mapping Path-Vector Systems to SPP Instances

Suppose that I = (G(V,E), F) is an instance of some (PV , PL). We may represent I as a

set of instances of the Stable-Paths Problem (SPP). For eachw ∈ V and each rw ∈ F orig(w)

we construct an SPP instance S(I,w,rw).

Definition 4.4.1. Define I(w, rw) to be a restriction of instance I where the only descriptor

originated is rw at nodew. Given I(w, rw), define the corresponding SPP instance S(I,w,rw)

60

as described below, and let

S(I) = {I(w, rw) | w ∈ V, rw ∈ F orig(w)}

be the set of all SPP instances which correspond to a restriction of I.

Let the set of permitted paths in S(I,w,rw) be P(I,w,rw) = {P | r(P, rw) �= ∅}. For

each v ∈ V , set the values of the ranking function λv(I,w,rw) such that the following holds:

λv(I,w,rw)(P1) ≤ λv(I,w,rw)(P2) if and only if {r1} = r(P1, rw), {r2} = r(P2, rw), and

ω(r1) ≤ ω(r2).

It may be that λv(I,w,rw)(P1) = λv(I,w,rw)(P2) for paths P1 �= P2. This can happen in

one of two ways. First, it may be the case that r(P1, rw) = r(P2, rw). That is, two

distinct signaling paths may result in the same path descriptor. Or, it may be the case that

r1 = r(P1, rw) �= r(P2, rw) = r2, but ω(r1) = ω(r2).

There is an exact correspondence between the set of solutions for I and the set of solu-

tions for S(I) as shown by the following theorems.

Theorem 4.4.2. If π is a solution for S(I,w,rw), then

ρπ(v) =
⋃

P∈π(v)

r(P, rw)

is a solution for I(w, rw).

Proof. It is clear that for each v, all path descriptors in ρπ(v) are realizable. We must show

that for each v, ρπ(v) = min(C (ρπ, v)). If v = w, then ρπ(w) = {(w)} = min(C (ρπ, w))

by definition. Suppose that v �= w. We first note that for any Y ⊆ Pv,

A =
⋃

P∈min(λv , Y)

r(P, rw)

= min

(⋃
P∈Y

r(P, rw)

)

= B,

61

because

r ∈ A ⇐⇒ ∃P ∈ min(λv, Y) : {r} = r(P, rw)

⇐⇒ ∃P ∈ Y, {r} = r(P, rw) : ∀P ′ ∈ Y, λv(I, w, rw)(P) ≤ λv(I, w, rw)(P
′)

⇐⇒ ∃P ∈ Y : ∀P ′ ∈ Y, {r} = r(P, rw), {r′} = r(P, rw), andω(r) ≤ ω(r′)

⇐⇒ ∀ r′ ∈
(⋃
P∈Y

r(P, rw)

)
, ω(r) ≤ ω(r′)

⇐⇒ r ∈ B.

Let Y = {(vQ ∈ Pv | {v, u} ∈ E and Q = π(u)}. Because π is a solution we have

π(v) = min(λv, Y) and

ρπ(v) =
⋃

P∈π(v)

r(P, rw) =
⋃

P∈min(λv , Y)

r(P, rw) = min

(⋃
P∈Y

r(P, rw)

)

= min {r ∈ R | ∃P ∈ Y : r ∈ r(P, rw)}

= min {r ∈ R | ∃P ∈ {vQ ∈ Pv | {v, u} ∈ E, Q = π(u)} : r ∈ r(P, rw)}

= min

⎧⎨
⎩r ∈ R | {v, u} ∈ E and r ∈

⋃
Q∈π(u)

r(vQ, rw)

⎫⎬
⎭

= min

⎧⎨
⎩r ∈ R | {v, u} ∈ E and r ∈

⋃
Q∈π(u)

F(v, u)(r(Q, rw))

⎫⎬
⎭

= min

⎧⎨
⎩r ∈ R | {v, u} ∈ E and r ∈ F(v, u)

⎛
⎝ ⋃
Q∈π(u)

r(Q, rw)

⎞
⎠
⎫⎬
⎭

= min
{
r ∈ R | {v, u} ∈ E and r ∈ F(v, u)(ρπ(u))

}
= minC (ρπ, v),

which completes the proof.

Theorem 4.4.3. If ρ is a solution for I(w, rw), then πρ(v) = {P ∈ Pv | r(P, rw) ⊆ ρ(v)}

is a solution for S(I,w,rw).

62

Proof. We need to show that for each v we have πρ(v) = min(λv, candidates(v, πρ)).

Because ρ is a solution for I(w, rw), we know that ρ(v) = C (ρ, v) = min(F orig(v) ∪ Y),

where

Y = {r ∈ R | {v, u} ∈ E and r ∈ F(v, u)(ρ(u))}.

It is easy to show that for anyX we have

{P ∈ Pv | r(P, rw) ⊆ min(X)} = min(λv, {P ∈ Pv | r(P, rw) ⊆ X}).

When v �= w, then

πρ(v) = {P ∈ Pv | r(P, rw) ⊆ ρ(v)}

= {P ∈ Pv | r(P, rw) ⊆ min(Y)}

= min(λv, {P ∈ Pv | r(P, rw) ⊆ {r ∈ R | {v, u} ∈ E and r ∈ F(v,u)(ρ(u))}})

= min(λv, {(vQ ∈ Pv | {v, u} ∈ E and Q = {P ′ ∈ Pv | r(P ′, rw) ⊆ ρ(u)}})

= min(λv, {(vQ ∈ Pv | {v, u} ∈ E and Q = πρ(u)})

= min(λv, candidates(v, πρ))

When v = w, note that ρ(v) = {rw}, so we have

πρ(v) = {P ∈ Pv | r(P, rw) ⊆ {rw}} = {(w)} = min(λv, candidates(v, πρ)).

Theorem 4.4.4. πρπ = π and ρπρ = ρ.

Proof.

π(v) =

⎧⎨
⎩P ∈ Pv | ∅ �= r(P, rw) ⊆

⋃
Q∈π(v)

r(Q, rw)

⎫⎬
⎭

= {P ∈ Pv | ∅ �= r(P, rw) ⊆ ρπ(v)}

= πρπ(v).

63

ρ(v) =
⋃

P∈({P∈Pv|∅�=r(P, rw)⊆ρ(v)})

r(P, rw)

=
⋃

P∈πρ(v)

r(P, rw)

= ρπρ(v).

Running Example, Part 7. An SPP corresponding to our running example is presented

in Figure 4.4. Node 1 is the origin. Next to each node are the permitted paths of that node

listed in order of preference, starting with the most preferred at the top. Note that the

actual values of the ranking function are not important, only the relative preference of each

permitted path at each node; this figure can be taken to represent an entire equivalence

class of SPPs with different values for each λv but the same orderings on each set Pv.

5 1
5 2 1

2 3 1
2 3 4 1
2 1
2 5 1
2 3 4 5 1

4 5 1
4 3 2 5 1
4 3 1
4 1

3 2 5 1
3 4 5 1
3 4 1
3 1

4

1

2 3

5

1

Figure 4.4: SPP for PV µbgp running example.

4.4.2 Definition of Expressive Power

Two distinct SPPs can represent the same set of solutions because the specific values in

N that a ranking function λv takes on are not really important—what is important is the

relationship between the rankings of permitted paths at a given node v.

For any SPP instance S, define two relations,�S and �S , on permitted paths P . First,

P1 �S P2 if and only if P1, P2 ∈ P and P1 is a subpath of P2, i.e., there exists a path

Q (possibly ε, the empty path) such that QP1 = P2. Note that �S is a partial order on

64

permitted paths. Second, P1�SP2 if and only if there is a v ∈ V such that P1, P2 ∈ Pv and

λv(P1) ≤ λv(P2). Define relation�S to be the transitive closure of the relation�S ∪ �S .

Definition 4.4.5. We say that two SPPs S1 and S2 are equivalent if they are defined on the

same graph, have the same set of permitted paths, and �S1 = �S2 . Define the set E(S) to

be the set of all SPPs equivalent to S.

Definition 4.4.6. We define the expressive power of a path-vector policy system (PV , PL)

as the set

M(PV , PL) = {E(S) | S ∈ S(I) for some (PV , PL)-instance I}.

M(PV) means the maximal expressive power of PV when it is not constrained by a pol-

icy language, i.e., the maximal expressive power of PV with respect to a policy language

allowing all legal policy functions to be expressed.

Remark 4.4.7. We note that

M(PV sp) � M(PV sap) � M(PV µbgp).

Shortest-Available Paths (PV sap) allows nodes to filter routes while Shortest Paths (PV sp)

does not. Any routing configuration in PV sp is captured by PV sap . But, given any config-

uration permitted in PV sp , we can filter one of the routes and obtain a new configuration

where the policies are permitted by PV sap but not PV sp; thus, M(PV sp) � M(PV sap).

Likewise, because PV µbgp essentially allows nodes to rank routes in any order, it permits

a routing configuration where a node prefers a longer path to a shorter one. Therefore its

expressive power is more than that of PV sap .

65

4.5 Robustness

We first define robustness using SPP semantics and then present a natural class of expres-

sive, robust SPPs, characterizing this class in the path-vector framework.

4.5.1 Definition of Robustness

Definition 4.5.1. An instance I over (PV , PL) is said to be robust if it has a unique

solution and every sub-instance of I has a unique solution. If every instance of a path-

vector policy system (PV , PL) is robust, then (PV , PL) is said to be robust.

Definition 4.5.2. In a similar manner, we can define robustness of SPP instances. Define

the set

RSPP = {E(S) | S is a robust SPP instance}.

Given the results of the previous section, we then see that a path-vector policy system

(PV , PL) is robust if and only if

M(PV , PL) ⊆ RSPP.

We are interested in the design space of robust path-vector policy systems.

Conjecture 4.5.3. For every (PV , PL), if M(PV , PL) ⊆ RSPP , then there exists an

E(S) ∈ RSPP such that E(S) �∈ M(PV , PL). In other words, no path-vector policy system

can capture exactly all robust systems.

4.5.2 A Natural Set of Robust Systems

Definition 4.5.4. The SPP S is almost-partially ordered if �S is reflexive, transitive, and

obeys the following rule:

Rule 4.5.5. P1 �S P2 and P2 �S P1 implies that P1 = P2 or ∃ v such that P1, P2 ∈ Pv.

66

(Traditional notions of antisymmetry and partial ordering for�S do not allow permit-

ted paths of equal rank at any node; thus, we use the slightly modified notion given above.)

Then let

APOSPP = {E(S) | S is almost-partially ordered}

be the set of all almost-partially ordered equivalence classes of SPPs.

If the SPP S is almost-partially ordered, then we will write P1 ≤ P2 for P1 �S P2, and

we will write P1 < P2 if P1 �S P2 but P2 ��SP1.

Theorem 4.5.6. If an SPP instance S is almost-partially ordered, then it is robust.

The following lemma connects dispute wheels and Definition 4.5.4, and will be useful

in proving Theorem 4.5.6.

Lemma 4.5.7. The SPP S is almost-partially ordered if and only if it has no dispute wheel.

Proof. First, suppose that S is almost-partially ordered. Furthermore, suppose that S has a

dispute wheel with Ri, Qi as in Definition 3.2.1 Because λui(Qi−1) ≤ λui(RiQi), we know

that RiQi ≤ Qi−1 because ≤ subsumes relation �S . And because Qi is a subpath of RiQi,

we know that Qi < RiQi. Therefore, Qi < Qi−1. Following this chain of inequalities

around the dispute wheel yields the contradiction Qi < Qi. Therefore, S has no dispute

wheel.

For the other direction, suppose that S has no dispute wheel and also assume that S

is not almost-partially ordered. If S is not almost-partially ordered, then there must exist

paths P1 and P2 that violate Rule 4.5.5 because the relation �S is inherently reflexive and

transitive; i.e.,

67

∃P1 �= P2 such that

(i) P1 �S P2,

(ii) P2 �S P1, and

(iii) ∀v∈V : {P1, P2} �⊂ Pv

Conditions (i) and (ii) imply that there exist sets of paths {Yi} and {Zj}, not necessarily

distinct, such that

P1 = Y1 �S Y2 �S · · · �S Yn−1 �S Yn = P2

and

P2 = Z1 �S Z2 �S · · · �S Zn−1 �S Zn = P1,

respectively. From (iii) we know that it is not the case that P1 �S P2 or that P2 �S P1; if

P1 �S P2 and P2 �S P1 then P1 = P2, which is not possible if P1 and P2 violate Rule 4.5.5.

Therefore, there must be intervening distinct paths in the cycle of relationships above, i.e.,

({Yi} ∪ {Zj}) \ {P1, P2} �= ∅. Using the “cycle of paths” in {Yi} ∪ {Zj}, we can build a

dispute wheel: ifX1 �S X2 forX1, X2 ∈ {Yi} ∪ {Zj}, thenX1 is a subpath ofX2 andX1

can be a spoke path while X2 can be the spoke path X1 exported to a rim neighbor; then

X2 �S X3 and X2 is the rim path preferred to the spoke pathX3, etc.

The existence of a dispute wheel in S is a contradiction; thus S is almost-partially

ordered.

With Lemma 4.5.7 in hand and a result from [GSW02], we can proceed with the proof

of Theorem 4.5.6.

Proof. If S is almost-partially ordered, then by Lemma 4.5.7 it has no dispute wheel. Then

by Theorem 3.2.9, S is robust.

68

Remark 4.5.8. An alternative proof may be possible using fixed point theory. As remarked

in Definition 3.2.2, the solutions of the SPP are exactly the fixed points of F , because

F (π) = π implies π is a solution, and for any solution π we have F (π) = π. Perhaps there

is some relation that we can impose on the function space of path assignments so that if S is

almost partially ordered, then: (1) this relation is partially ordered; (2) F is monotonically

increasing; and (3) F is continuous with respect to this order. Then the above proof could

dispense with dispute wheels and instead use standard fixed point theorems.

Theorem 4.5.9. IfM(PV ,PL) ⊆ APOSPP , then the path-vector policy system (PV ,PL)

is robust.

Proof. This follows from Theorem 4.5.6.

4.5.3 Increasing Path-Vector Systems

Definition 4.5.10. The SPP instance S is increasing if

λu(Q) < λv(vQ)

for all edges {u, v} with path Q permitted at u and path vQ permitted at v. (We are com-

paring the rankings assigned by different nodes; these values have no a priori relationship.)

Let

ISPP = {E(S) | S is increasing}

be the set of all increasing equivalence classes of SPPs.

Lemma 4.5.11. If S ∈ APOSPP , then there exists an SPP instance S ′ ∈ ISPP such that

S ′ ∈ E(S).

Proof. We give an iterative process that will converge to a path-ranking function Λ that is

increasing.

69

Define the path-rank function for node v at step k to be λvk. For all v ∈ V and P ∈ Pv,

let λvk(P) = ∞ for all k ≤ 0. For k > 0, define λvk as follows: At every node v �= v0,

consider exactly the paths permitted at v, Pv, which have the form vuP ′, where either

u = v0 and P ′ = ε or u �= v0 and uP ′ ∈ Pu. List these in decreasing order of preference as

P1 = vu1P
′
1, P2 = vu2P

′
2, . . . , Pi = vuiP

′
i . (Ties can be broken arbitrarily.) If u1 = v0,

then let

λvk+1(P1) = 1,

and if u1 �= v0 let

λvk+1(P1) = λu1
k (P ′

1) + 1.

For the less preferred paths Pj , 2 ≤ j ≤ i, if uj = v0, let

λvk+1(Pj) = λvk(Pj−1) + 1,

and for uj �= v0 let

λvk+1(Pj) = max
{
λ
uj

k (P ′
j), λ

v
k+1(Pj−1)

}
+ 1.

Assume that all undefined values of λ are∞ in the above.

Assuming that the set of permitted paths is closed under the taking of subpaths, if the

longest permitted path in the SPP has k edges, then for all v ∈ V and for all P ∈ Pv,

λvk′(P) �= ∞ for every k′ ≥ k. The path-rank functions will stabilize over iterations if the

SPP S is almost-partially ordered, so in S ′, let

Λ(v) = lim
k→∞

λvk.

Note that in using the above iterative process, ranks are always set higher than neigh-

boring ranks because of the increment used in defining λvk. Indeed, λv(vuP) > λu(uP)

after convergence, thus Λ and S ′ are increasing.

70

Finally, it is clear that S ′ ∈ E(S), because the ranking given by the converging import

functions is consistent with the SPP preference list at every node.

Remark 4.5.12. Any almost-partially ordered SPP can be convered to an increasing SPP

using the method described above. It can also be shown that an SPP which cannot converge

with respect to the above process (i.e., for some P ∈ Pv, there does not exist any integer

k′ such that λvk(P) �= ∞ for k ≥ k′) must have a dispute wheel and thus is not almost-

partially ordered.

Theorem 4.5.13. APOSPP = ISPP .

Proof. Clearly ISPP ⊆ APOSPP because if the SPP S is increasing, its preferences are

already consistent with the subpath relation so that �S is an almost-partial order; so, we

only need to show thatAPOSPP ⊆ ISPP . If S is an SPP such that E(S) ∈ APOSPP ,

then we can topologically sort the permitted paths of S, as in Lemma 4.5.11. We can then cre-

ate a new SPP S ′ by creating a new ranking function λ′ which both respects this topological

order (so that the system is increasing) and which has the same relative preferences as λ.

Clearly E(S) = E(S ′); as S ′ is increasing, E(S) ∈ ISPP .

Ideally, we would like to construct a (PV , PL) pair such thatM(PV , PL) = ISPP ,

thus obtaining expressiveness and robustness. We now examine two ways to modify the

running-example system PV µbgp so that the result is an increasing path-vector system. As

we see in the next section, each of these systems lacks some desirable property, a conflict

which is in fact unavoidable (Theorem 4.6.9).

Example 4.5.14. System PV up shares local preferences between nodes (therefore, it is not

policy-opaque) and has local policy constraints that enforce increasing rank between neigh-

bors. Modify the definition of tout so that the local-preference value is passed between

71

neighbors:

tout
up (u, v, f, X) = {(d, m, uP, u) | (d, m, P, x) ∈ f(X)}.

Let the export constraint be

L
out
up (f) ⇔ ∀ r, ω({r}) ≤ ω(f({r}))

and let the import constraint be

L
in
up(f) ⇔ ∀ r, ω({r}) < ω(f({r})).

That is, we constrain the legal policies to be those that increase path rank; in theory, such

policies can be written because nodes have access to neighbors’ local-preference values.

Example 4.5.15. System PV force modifies both protocol transformations so that they filter

out descriptors whose rank does not increase under the application of the policy function in

question. If r = (d, l, P, n) ∈ X, define h(r) = (d, 0, P, n). Then let tinforce(u, v, f, X)

be the set

{f({h(r)}) | r ∈ X describes a simple path and ω({r}) < ω(f({h(r)}))}

and let tout
force(u, v, f, X) be the set

{(d, l, uP, u) | r = (d, l, P, x) ∈ f(X) and ω({r}) ≤ ω(f({r}))}.

Remark 4.5.16. Note thatM(PV up) = M(PV force) = ISPP .

4.6 Autonomy, Transparency, and Opaqueness

The systems in Examples 4.5.14 and 4.5.15, while robust and expressive, each lack one of the

desirable properties defined in this section. These drawbacks are just examples of a more

general design trade-off presented below.

72

4.6.1 Autonomy

Network operators often require a high degree of autonomy when defining routing policies,

i.e., they want wide latitude to write policies that reflect their own interests.

We first define a general notion of autonomy. A collection of predicates on path de-

scriptors, such that exactly one predicate holds for each descriptor inR, induces a partition

Π of R. A partial order on these predicates induces a partial order on R. A path-vector

policy system is autonomous with respect to (Π,≤Π) if there exists a legal policy that ranks

routes consistent with the partial order on Π induced by≤Π.

For example, a policy writer may wish to rank routes solely as a function of the value

of one particular attribute of descriptors in the system. If he or she is to do so with full

freedom, the system must be autonomous with respect to every partial ordering of the col-

lection of predicates which test the value of that attribute. A system without this autonomy

may have local-policy constraints preventing the desired policy configuration.) We can say

that the space of ordered partitions given which a path-vector policy system is autonomous

represents the autonomy of the system, and that full autonomy is reached when policy writers

can write policies consistent with all possible partitions.

Formally, we have the following.

Definition 4.6.1. A path-vector system PV is autonomous with respect to partition Π of

X ⊂ R iff for any partial order ≤Π on the partition, there exists a legal import policy f

(i.e., Lin(f) holds) such that for all ri ∈ Πi, rj ∈ Πj with Πi <Π Πj , there exist r̂i, r̂j ∈ R

such that

(f(ri) = r̂i and f(rj) = r̂j) ⇒ ω(r̂i) < ω(r̂j).

Useful partition types, as described above, include partitions based on attributes, e.g.,

“Let r ∈ Πi ⊂ R iff A(r) = i” (the index set of the partition is the set of possible attribute

73

values A(r)). If PV is autonomous with respect to such a partition, we will say that PV is

autonomous with respect to A.

Remark 4.6.2. If PV is autonomous with respect to A and B together (i.e., “Let r ∈ Π{ij} ⊂

R iff A(r) = i and B(r) = j”), then PV is both autonomous with respect to A and

autonomous with respect to B. The converse of this is not true.

Definition 4.6.3. The autonomy of a path-vector system PV is

A(PV) = {Π | PV is autonomous with respect to Π}

One intuitive definition for the concept of full autonomy might be that PV is au-

tonomous with respect to all possible predicates Π. However, this is not reachable. To

give a more useful definition, we first introduce the following concept.

Definition 4.6.4. Q(r, v) is an importability predicate iff Q(r, v) holds if tin applies some

F in(v, u) to r ∈ X ⊂ R.

Definition 4.6.5. PV has full autonomy iff there exists a PL such that for all instances I

over (PV , PL) and all vertices v in the instance graph there exists an importability pred-

icate Imp(r, v) such that for all partitions Π of {r ∈ R | Imp(r, v)}, PV is autonomous

with respect to Π.

This definition of full autonomy is more reasonable because it includes node indepen-

dence and limits the scope of path descriptors considered to those that are actually imported

at a given node. Informally then, a path-vector system has full autonomy when imported

path descriptors can be ranked freely at every node.

We now define a more specific notion of autonomy suitable for BGP-like systems. It

describes the ability to classify neighbors, e.g., so that an ISP can prefer routes from cus-

tomers over routes from peers.

74

Definition 4.6.6. The path-vector policy system (PV , PL) supports autonomy of neigh-

bor ranking if, for every instance I, node v, and a partition C1, C2, . . . , Ck of the set of

neighbors of v, there exists a legal import policy at v that does not filter routes such that,

for 1 ≤ j ≤ k − 1, v always prefers routes sent from partition Cj over those sent from

partition Cj+1.

Note that autonomy of neighbor ranking is simply autonomy with respect to a partition

on the value of the next hop (or path vector) attribute of “importable” path descriptors.

The system PV up in Example 4.5.14 does not support autonomy of neighbor rank-

ing. However the system PV force in Example 4.5.15 does, but in what might be called a

draconian manner, i.e., the policy-application functions enforce increasing rank even if the

policy writer’s policies do not—routes that are not increasing in rank are simply filtered out

by the protocol (not the policies).

4.6.2 Protocol Transparency

This brings us to another important property for policy writers: they should be able to

easily understand the semantics of policies that they write. For example, the import-policy

application Y = tin(v, u, f, X) is defined with the user-supplied policy f as input, but

there is no guarantee that the policy writer can easily understand why the output Y is

obtained.

Definition 4.6.7. Suppose there exists a function t̂in whose definition does not depend

on f , such that tin(v, u, f, X) = f(t̂in(v, u, X)). Then PV is said to apply import

policies transparently. Similarly, if there exists a function t̂out such that tout(v, u, f, X) =

t̂out(v, u, f(X)), then PV is said to apply export policies transparently. If both of these

75

conditions hold, then PV is transparent. In this case, we can define the function

t(v, u, X) = t̂in(v, u, t̂out(u, v, X))

and note that

F(v, u)(X) = F in(v, u)(t(v, u, F out(u, v)(X))).

That is, the transformation between two neighboring nodes participating in PV can be

easily understood as the composition of three functions: the export policy at one node; a

fixed, uniform transformation t given by PV ; and the import policy at another node.

Remark 4.6.8. The system PV force is not transparent, but PV up and PV µbgp are.

4.6.3 A Design Trade-off

We saw that the systems PV up and PV force are both robust, yet one supports autonomy of

neighbor ranking but is not transparent while the other is transparent but does not support

autonomy of neighbor ranking. This is just one example of a more general design trade-off:

Theorem 4.6.9. If (PV , PL) is any path-vector policy system such that M(PV , PL) =

APOSPP , then either (PV , PL) does not support autonomy of neighbor ranking, or PV is not

transparent, or both.

Proof. The SPP instance GOOD GADGET in Figure 4.5(a) is in APOSPP , so it must be

expressible by some (PV , PL) instance. If (PV , PL) supports autonomy of neighbor

ranking, then node 2 can change its policies to prefer paths through node 3, producing

the SPP instance BAD GADGET in Figure 4.5(b) which has no solution. Therefore, because

M(PV ,PL) = APOSPP , the policy-application functions of PV must not allow this

policy to take effect, i.e., the system is not transparent.

76

2 3 1
2 1

4 2 1
4 1

1

1

2 3

4

3 1
3 4 1

(a) (b)

2 3 1
2 1

3 4 1
3 1

32

1

1

4

4 2 1
4 1

Figure 4.5: (a) The SPP GOOD GADGET and its unique solution shown in bold. (b) The
SPP BAD GADGET.

4.6.4 Policy Opaqueness

Policy writers might often think of autonomy and transparency in terms of path-descriptor

attributes. In particular, a policy writer might be concerned with what freedom he or she

has to change a path-descriptor attribute and what effect such a change might have. A

related concern, the property of policy opaqueness that we discuss in this section, is whether

attribute settings are shared with neighbors or kept private. On one hand, the exchange

of information might be important to allow policy writers to make important conditional

assignments that affect ranking or the overall robustness of the system; on the other hand,

policy writers may not want to disclose their changes to path-descriptor settings (especially

when these changes should not influence others).

Informally, an opaque system is one where policy-related attributes are kept hidden

when path descriptors are exchanged between nodes. It is expected that this “information

hiding” occurs in the protocol transform functions (specifically tout , because we expect tin

to be executed by a router that is different than the one that last set attribute values) as a

built-in transformation to the path descriptor.

77

So that we may conveniently discuss the opaqueness of a system in terms of which

attributes are shared and which are kept private, we make the following definition. Let r−A

be the path descriptor r with attribute A removed.

Definition 4.6.10. Attribute A is opaque iff, for any two path descriptors r1, r2 ∈ R,

r−A1 = r−A2 implies that

tout
(
v, u,F out(v, u), {r1}

)
= tout

(
v, u,F out(v, u), {r2}

)

for all v, u (i.e., either r1 and r2 are both filtered or they produce the same descriptor).

An opaque attribute, then, is one that is essentially cleared on export (after application

of tout).

Remark 4.6.11. The local-preference attribute is opaque in the system PV force and in

the system PV µbgp , but not in the system PV up . In this case, the opaqueness of local-

preference and autonomy of neighbor ranking are closely intertwined because adjusting

rank for next-hop involves adjusting the local-preference value accordingly; this is not ar-

bitrarily permitted in PV up . It is the implementation of ranking restrictions in PV up that

removes the opaqueness of local preference. It is not generally true that loss of autonomy

of neighbor ranking goes hand-in-hand with a loss of opaqueness.

4.7 Global Constraints

Theorem 4.6.9 shows that the expressive power of APOSPP can be reached only if a

path-vector policy system gives up either transparency or some autonomy. However, both

of these may be very important in many applications. In this section, we discuss an ap-

proach that will allow us to move beyond this dilemma: relying on global assumptions in

the network.

78

The expressive power of a path-vector policy system is largely dictated by the local con-

straints included in the specification and those enforced by the policy language. We in-

troduce the complementary notion of a global constraint as any function K that maps any

(PV , PL) instance I to {TRUE, FALSE}.

Definition 4.7.1. A globally constrained path-vector policy system is a triple (PV , PL, K),

where K is a global constraint for (PV , PL). I is a legal instance of (PV , PL, K) if I is an

instance of (PV , PL) and K(I) = TRUE.

Definition 4.7.2. LetM(PV , PL, K) be the set

{E(S) | S ∈ S(I) for a legal (PV , PL) instance I}.

Definition 4.7.3. Define the constraint Kapo as

Kapo(I) ⇔ ∀S ∈ S(I), E(S) ∈ APOSPP.

We say that the global constraint K is robust for (PV , PL) if, for every instance I, K(I)

implies Kapo(I).

The following theorem implies that global constraints are indeed an integral part of

path-vector-system design.

Theorem 4.7.4. Suppose the global constraint K is robust for a transparent (PV , PL) allowing

autonomy of neighbor ranking such thatM(PV sp) � M(PV ,PL, K) (i.e., at least as expressive

as shortest paths). Then K must be non-trivial.

Proof. If we are not restricted to shortest-paths routing, then autonomy of neighbor rank-

ing and transparency allow us to express BAD GADGET (Figure 4.5(b)). Only a non-trivial

global constraint could prevent this.

79

Chapter 5

Path-Vector Algebras∗

João Sobrinho presented an independently developed formal model for path-vector rout-

ing, called a path-vector algebra [Sob03]. It, like the PVPS framework, is a framework for

protocol design, rigorously defining desirable protocol properties and identifying the con-

ditions needed to achieve them. It establishes an abstract formalism with which to discuss

protocol semantics separate from specific networks or implementation details. Further-

more, it too provides protocol-design guidelines that provably guarantee protocol conver-

gence on any network.

This chapter establishes the relationship between path-vector algebras and path-vector

policy systems. In doing so, it provides a context for understanding the process of protocol

design from abstract specification to implementation. We not only prove that many results

in the two frameworks are indeed equivalent, but we also show how to translate a protocol-

design specification and framework-specific design properties from one model into the

other. This is beneficial because, as we show, each model has its particular strengths in

discussing different parts of the protocol-design puzzle. The models focus on different lev-

els of abstraction of protocol design; being able to use the complementary machinery of

these two frameworks allows a more complete analysis of a protocol.

∗This chapter has previously appeared in joint work with Aaron D. Jaggard [JR05a].

80

5.1 Definition of Path-Vector Algebras

5.1.1 Common Design-Space Properties

Chapter 4 identifies several dimensions of the protocol design space and the trade-offs in-

herent in this space. The framework in [Sob03] is more abstract, thus it does not model

all of these dimensions. In this chapter we focus on three properties regarding protocol

convergence: (1) robustness, (2) expressivness, and (3) optimality. The algebra framework

assumes an equivalent definition of robustness and, as we will see, an equivalent sufficient

condition for it. Our translation between frameworks will add a notion of expressiveness

to the algebra framework, which was not originally considered; it will also permit us to

compare specifications in the two frameworks. Finally, our translation will add the notion

of optimality to the PVPS framework:

Definition 5.1.1. A protocol converges optimally if every router is assigned its most pre-

ferred path out of all possible paths (not just those it learns while running the protocol).

5.1.2 Framework Components

Definition 5.1.2. A path-vector algebra [Sob03] describes some basic semantics of a path-

vector protocol. It is a seven-tuple (W , �, L, Σ, φ, ⊕, f) comprising:

W a set of weights totally ordered by�;

L a set of labels;

Σ a set of signatures containing the special signature φ;

⊕ a binary operation⊕ : L × Σ → Σ; and

f a “weighing function” f : Σ →W .

81

Signatures model the path data structure; they contain enough information to determine

a path’s weight using the function f . Weights influence (but do not completely deter-

mine) choice of best route; heavier paths are less preferred. Each directed signaling edge

in a network is associated with a label, which models the transformation made to a path’s

data structure when advertised along the edge, i.e., labels correspond to import and ex-

port policies along the edge. The operation⊕ computes the signature for a path advertised

to a neighbor given the label on the signaling edge and the path’s original signature; this

amounts to applying the edge policy to the path data structure on extension.

Note that instantiating an algebra with a specific best-path selection procedure that

obeys the weight ordering on signatures induced by f produces a protocol; this protocol

may then be instantiated with a specific network and assignments of labels to edges, etc.,

producing a routing configuration.

5.1.3 Dynamics

Given an algebra, a path-vector protocol consistent with it would run in accordance with

the following dynamics: a node v knows of path P to d when it has a signature for P ,

either s(d) for the empty path to d (when d is in v’s own AS), or s(P) for a path extending

a neighbor’s path to d; the best path P ′ to d is a path with lowest weight; to advertise a

path P to u, s(P) is sent along the signaling edge (v, u) with some associated label l, and

s(uP) = l ⊕ s(P) is the signature of the imported, extended path at u.

5.1.4 Algebra Properties

It is assumed that the following two properties hold for any path-vector algebra.

Definition 5.1.3. An algebra obeys maximality iff ∀α ∈ Σ− {φ}, f(α) ≺ f(φ).

Definition 5.1.4. An algebra obeys absorption iff ∀ l ∈ L, l ⊕ φ = φ.

82

The special signature φ represents an unusable path, and so these properties mean that an

unusable path is always least preferred and is never extended to a usable path.

The following three properties are relevant to studying protocol convergence and opti-

mality.

Definition 5.1.5. An algebra is isotonic iff

∀ l ∈ L, ∀α, β ∈ Σ (f(α) � f(β)) ⇒ (f(l ⊕ α) � f(l ⊕ β)) .

Definition 5.1.6. An algebra is monotonic iff

∀ l ∈ L ∀α ∈ Σ, f(α) � f(l ⊕ α);

it is strictly monotonic iff

∀ l ∈ L ∀α ∈ Σ− {φ}, f(α) ≺ f(l ⊕ α).

Isotonicity implies that path extension does not reverse a strict preference relationship be-

tween paths. Monotonicity means that the actual weights of paths do not decrease as they

are extended. Strict monotonicity is enough to guarantee robust protocol convergence on

any network; monotonicity alone only guarantees protocol convergence on networks with

the following property (free networks).

Definition 5.1.7. A network is free iff for all cycles un · · ·u1u0,

∀w ∈ W − {f(φ)}, ∃ 0 ≤ i ≤ n : ∀α ∈ Σ, (f(α) = w) ⇒ (f(l(ui, ui−1)⊕ α) �= w).

This will be discussed in more detail in Section 5.4.

5.2 Three Levels of Abstraction

In this section we examine how the two frameworks are applied to a set of simple protocols.

Although these protocols have a simple route-selection procedure so that the example is

83

easy to diagram (see Tables 5.1–5.3), the frameworks can just as easily isolate the important

factors for convergence of protocols having the complexity of BGP itself.

From this example, it becomes clear that modeling occurs at three levels of abstraction:

moving from (1) properties that describe a set of protocols; to (2) a specification for one

particular protocol with some added implementation details; finally to (3) the properties

of a given protocol on particular networks. These three levels of abstraction naturally cor-

respond to: (1) the algebra framework; (2) the PVPS framework; and (3) instances of the

Stable Paths Problem (SPP). We then ask the natural question of how the two frameworks,

and these levels of abstraction, fit together. In this section, we give the intuition behind us-

ing both frameworks to analyze protocols at all three levels. Then, in Section 5.3, we give a

rigorous translation between the two frameworks; this translation relates the language and

notation originally suited to each framework’s context. Finally, in Section 5.4, we examine

the relationship between the frameworks’ protocol-design guidelines using our translation.

5.2.1 Example Protocols

NUMBER PRIMARY RANK CRITERION SECONDARY RANK CRITERION COST CONSTRAINT RANK PROPERTY

(1) cost, prefer lower path length, prefer shorter nondecreasing strictly monotone

(2) cost, prefer lower path length, prefer shorter none none

(3) path length, prefer shorter cost, prefer lower none strictly monotone

(4) cost, prefer lower none nondecreasing monotone

(5) cost, prefer lower none none none

(6) path length, prefer shorter none none strictly monotone

Table 5.1: Example protocols using the path data structure {cost, path length}.

Table 5.1 gives a summary of six example path-vector protocols. In each of these pro-

tocols, the path data structure includes a path cost in Z and a path length in N; we assume

that nodes may modify path cost on import and export, and that the protocol automatically

updates the path-length value when paths are extended. The protocols differ in which of

these two components they use as the primary determinant of path rank, whether they use

84

the other component as a secondary factor, and whether they place additional restrictions

on how the path cost is modified as paths are extended. Because we are primarily inter-

ested in relating these protocols to the algebra and PVPS frameworks, we do not assume

any protocol details at the level of, e.g., [RL95].

Protocols (1)–(3) use both cost and path length to determine the rank of a route while

Protocols (4)–(6) only use one of these components. In Protocols (1)–(2), the cost of a path

is the primary criterion for determining rank, and path length is the secondary criterion:

paths with lower cost are always preferred, and paths with shorter length are preferred

among paths with equal cost. In Protocol (3), the reverse is true, i.e., shorter paths are pre-

ferred most and ties are broken by choosing the path with lower cost. For Protocols (1) and

(4), we require that path cost does not decrease when a path is extended (this is indicated

in the COST CONSTRAINT column), while the other protocols allow negative costs to be

associated with edges.

The column RANK PROPERTY abuses notation slightly; it uses some of the algebra

properties discussed above to describe what happens to path rank in a protocol (rather than

path weight in an algebra) when a path is extended. In Protocols (1), (3), and (6), the rank

of a path must increase because path length is included in the calculation of rank and paths

only increase in length as they are extended—thus we say that rank is strictly monotone.

Note that in Protocol (2), even though path length is a component of rank calculation,

rank is not strictly monotone (or even monotone). This is because, although the primary

criterion for rank is path cost like Protocol (1), path cost could possibly decrease in Protocol

(2), i.e., this protocol does not enforce a constraint on cost values like Protocol (1) does.

The lack of a constraint also tells us nothing about rank in Protocol (5). In Protocol (4),

path cost is constrained to be nondecreasing and is the sole criterion for determining rank,

85

so we can say the rank is monotone (but not strictly monotone).

5.2.2 Algebras for Protocols

ALG. WEIGHT LABEL SIGNATURE CONVERGENCE PROPERTY PROTOCOLS

(A) (cost, length), lex. ordered edge cost ∈ N, +1 cost and length strictly monotone (1)

(B) (cost, length), lex. ordered edge cost ∈ Z, +1 cost and length cost constraint (1), (2)

(C) (length, cost), lex. ordered +1, edge cost ∈ Z length and cost strictly monotone (3)

(D) cost only, prefer lower edge cost ∈ N total cost monotone (1), (4)

(E) cost only, prefer lower edge cost ∈ Z total cost cost constraint (1), (2), (4), (5)

(F) length only, prefer shorter +1 length strictly monotone (3), (6)

Table 5.2: Algebras for protocols in Table 5.1.

Now consider the algebras in Table 5.2. Recall that weight essentially describes some

part of rank calculation. Lighter paths are always preferred to heavier ones; so, to be consis-

tent with an algebra, a protocol must evaluate a path’s weight first in determining rank. By

their definitions of weight, Algebras (D) and (E) can, in general, describe protocols whose

primary rank criterion is path cost, Algebra (F) can describe protocols whose primary rank

criterion is path length, and Algebras (A), (B), and (C) can describe protocols where rank

is computed using some combination of the two in the correct order.

Of the protocols from Table 5.1, Algebra (F) can describe Protocols (3) and (6), while

Algebra (C) can describe Protocol (3) only (Protocol (6) does not consider cost at all;

thus, it may be the case that Protocol (6) breaks ties in path length inconsistent with the

smaller-cost preference of Algebra (C)). Both of these algebras are strictly monotone be-

cause path length must increase when a path is extended, and both these protocols have

strictly monotone rank (as discussed above). Thus, they are indeed consistent with the

algebras’ prescribed behavior. Note that both protocols implement the semantics of Alge-

bra (F), but Protocol (3) in its specification breaks ties by cost while Protocol (6) does not.

However, any protocol implementing Algebra (C) or (F) is strictly monotone and thus con-

verges robustly for any network (see the CONVERGENCE PROPERTY column of Table 5.2);

86

essentially, the detail of how the protocol then looks at cost is irrelevant to convergence. So,

the algebra can be used to isolate the semantics that are most useful for understanding pro-

tocol convergence. (In particular, if Protocol (6) preferred higher path cost as its secondary

rank criterion, it would still converge robustly on any network.)

Similarly, Algebra (E) can describe Protocols (1), (2), (4), and (5); Algebra (B) can

describe Protocols (1) and (2); Algebra (D) can describe Protocols (1) and (4); and Alge-

bra (A) can describe Protocol (1) only. Because path cost is most important in calculating

weight for these algebras, the convergence of protocols consistent with these algebras de-

pends on whether the permitted edge costs give monotonicity or not; this is seen in the

CONVERGENCE PROPERTY column in Table 5.2. Protocols consistent with Algebra (B) or

(E) could permit negative edge costs, e.g., Protocols (2) and (5), which do not necessar-

ily converge robustly on any network. Indeed, this is specifically why we cannot make a

general robustness claim about Algebras (B) and (E), and why any consistent protocol’s

convergence claim depends on the protocol’s cost constraint.

Protocols (1) and (4) do have the additional constraint that cost is nondecreasing; they

are not only consistent with Algebra (E) but are also consistent with Algebra (D). Because

edge costs in N give monotonicity, we can say that Algebra (D) is monotone, and any

protocol consistent with it will at least have monotone rank.

Note that Protocol (1), while consistent with a monotone algebra, has the additional

property of breaking ties in path cost by using a strictly monotone data component (path

length); thus, we can say that Protocol (1) has strict monotone rank—this may not be the

case for any protocol described by Algebra (D), even if the cost/label set is nonnegative,

e.g., Protocol (4). However, the combination of nondecreasing cost and path length in

Algebra (A) ensures strictly monotonic weights. Of the example protocols, only Proto-

87

col (1) is consistent with Algebra (A); Protocol (2) is inconsistent because of its lack of cost

constraint, even though both cost and path length are used in computation of rank, and

Protocol (4) could break ties in cost arbitrarily, as it ignores path length.

5.2.3 Path-Vector Systems for Protocols

PV RANK MAP POLICY CONSTRAINT

(1) ω : (c, n) �→ (c, n), lexically ordered Lin (f), Lout (f) : ((c′, n′) = f(c, n)) ⇒ ((n′ = n) ∧ (c ≤ c′))
(2) ω : (c, n) �→ (c, n), lexically ordered Lin (f), Lout (f) : ((c′, n′) = f(c, n)) ⇒ (n′ = n)

(3) ω : (c, n) �→ (n, c), lexically ordered Lin (f), Lout (f) : ((c′, n′) = f(c, n)) ⇒ (n′ = n)

(4) ω : (c, n) �→ c ∈ N Lin (f), Lout (f) : ((c′, n′) = f(c, n)) ⇒ ((n′ = n) ∧ (c ≤ c′))
(5) ω : (c, n) �→ c ∈ Z Lin (f), Lout (f) : ((c′, n′) = f(c, n)) ⇒ (n′ = n)

(6) ω : (c, n) �→ n ∈ N Lin (f), Lout (f) : ((c′, n′) = f(c, n)) ⇒ (n′ = n)

Table 5.3: Example path-vector systems using the path descriptor {cost, path length}.

In Table 5.3, we show six path-vector systems that correspond by number to the pro-

tocols in Table 5.1. In these systems, the path descriptor is the same data structure {cost,

path length} ⊂ Z×N used by the protocols; the predicate O requires that originated path

descriptors have the form (0, 0);

tin(u, v, f,X) = {f(r) | r ∈ X : r describes an acyclic path},

i.e., the import transform applies import policies but filters routing loops; and

tout(u, v, f, X) = {(c, n+ 1) | (c, n) ∈ f(X)},

i.e., the export transform applies export policies but increments the path length automat-

ically. The other components—the rank map ω and the local policy constraints Lin and

Lout—are shown in Table 5.3.

The correspondence with the protocols is clear: Each path-vector system describes the

corresponding Table-5.1 protocol because its rank criteria are captured by the definition

of ω and its cost constraint is captured by the definition of Lin and Lout . Therefore, the

88

consistency relationship between the Table-5.2 algebras and these PVPSes is exactly the

same as that between the algebras and the Table-5.1 protocols. It can be seen that the path-

vector system directly models one protocol, and any protocol that can be described by a

path-vector system PV ∈ ISPP will converge on any network.

5.2.4 Discussion: Levels of Abstraction

Using the two frameworks, we can discuss protocol design in three distinct levels of ab-

straction: the algebra level, the protocol level, and the network level. A move from one

level of abstraction to another is not uniquely determined, as we explore below.

Because algebras do not specify all the implementation details for a protocol, an algebra

can describe a set of path-vector protocols. The detail most relevant to protocol conver-

gence is how to decide between equal-weight routes. Because weight influences path rank

but does not totally determine it, some additional method must be used to rank paths of the

same weight. Any strictly monotonic criterion, such as path length, guarantees robustness

for that protocol. The different methods for tie-breaking correspond to different protocol

instantiations of the algebra.

Just as an algebra describes a set of protocols, a given protocol might have multiple

algebras that describe it. The definition of weight, labels, and signatures in an algebra

correspond to only some part of the path data structure; different subsets correspond to

different algebras. Thus, in translating protocols to algebras, a select part of the proto-

col behavior can be isolated and studied; this is a useful tool for analyzing convergence

constraints for a complex protocol and an important role for the algebra framework.

Although a path-vector system does not include the bit-level details of a full protocol

specification (e.g., [RL95]), it does include all of the essential details of a protocol; we there-

fore identify a PVPS with a single protocol. At this level of abstraction, protocol designers

89

can study the balance between enforcing constraints, convergence, and other properties

using results from Chapter 4.

Any protocol, whether a PVPS or a protocol instance of an algebra, may be instanti-

ated further to a particular network with specific node policies or edge weights and sig-

natures. Each instance is a routing configuration permitted by that protocol; the set of

permitted routing configurations is used later in this paper as a metric of expressiveness

to rigorously match algebras and PVPSes. Some protocols conditionally converge and re-

quire specific constraints on the network; one of these constraints is the freeness property

(Definition 5.1.7, which is an example of a network-level design property.

5.3 Mapping Between Formalisms

5.3.1 Intuition

It is easy to see that both frameworks model similar protocol components although differ-

ent notation is used. So, before showing the rigorous translation between formalisms, we

outline the intuitive relationship between framework components. Table 5.4 summarizes

this correspondence (in addition to the relationship with class-based PVPSes, which will

be introduced in Chapter 6) and the properties defined for each.

The rows of the table list components as follows. Paths are preferred based upon their

weight in the set W ordered by � (algebra) or rank in the set U ordered by ≤U (PVPS).

Each framework has a function—f and ω, respectively—that assigns values from the rank-

ing set to other objects (the set Σ of signatures in an algebra or the setR of path descriptors

in a PVPS).1 Each path in the network is assigned one of these objects, so we want to view

1Path descriptors in class-based systems, introduced in Chapter 6, have a level attribute g which is the
primary factor in computing the rank of a path. It is natural to associate this to the primary determinant of
path preference, i.e., weight, in an algebra; this accounts for the differences between the second and third
columns of Table 5.4.

90

Algebra Class-Based PVPS General PVPS

W {g} ⊂ N U
� ≤ ≤U
Σ R R
L {f(u,v)} {f(u,v)}

l ⊕ σ f(u,v)(r) f(u,v)(r)

φ ∈ Σ ∅ ∅
f : Σ →W πgω : R → {g} ω : R → U

monotonicity πgω(r) ≤ πgω(f(r)) ω(r) ≤U ω(f(r))

isotonicity essentially, policies act by edge, not by path

iso. & mono. essentially, policies are consistent with a non-negative per-edge cost function

maximality prefer any route to ∅
absorption f(u,v)(∅) = ∅

optimal in-tree a solution which gives all nodes most-preferred path

local-optimal in-tree a path-vector solution

Table 5.4: Informal translation between path-vector systems and algebras.

the sets Σ and R as containing the information about paths that is exchanged between

nodes. With this in mind, it is natural to identify a function l ⊕ : Σ → Σ, which modi-

fies signatures passed over an edge labeled with l, with an arc policy function f(u,v), which

modifies path descriptors exchanged over the edge (u, v); in particular, we should view the

labels of edges as corresponding to the arc policies on edges. The final component of an

algebra, the special signature φ ∈ Σ for unusable paths, is most naturally identified with

the empty set, the result of filtering paths.

The informal translation of properties between the two frameworks shows some of their

differences. Convergence properties studied in [Sob03] may be translated to the language

of PVPSes as shown in Table 5.4. Many of the other design dimensions from Chapter 4

involved policies and implementation details not explicitly included in algebras; we thus do

not translate these to the language of algebras, although they may of course be investigated

for particular protocols derived from algebras.

91

Note that it is the arc policies (combinations of nodes’ import and export policies and

the policy application functions) of a PVPS that correspond to the edge labels in an algebra;

the abstraction of the algebra framework does not explicitly include the separate import and

export policies of individual nodes.

5.3.2 Algebra-Protocol Consistency

Here we make rigorous the relationship between the three levels of protocol-design ab-

straction that naturally follow from our example; we do this by extending the notion of ex-

pressiveness to algebras. The semantic domain used for expressiveness is the Stable Paths

Problem (SPP); an SPP instance corresponds to one routing configuration (at the network

level of abstraction).

The constraints of a protocol specification determine the set of network configurations

possible when running a protocol. This idea motivated the definition of PVPS expres-

siveness; we make the analogous definition below for algebras, in which expressiveness is

defined as the set of permitted routing configurations.

Definition 5.3.1. Given an algebra A, let GA be the set of all networks whose edges are

assigned labels from A. For each G ∈ GA, let T (G,w) be the restriction of G where only

one destination w is originated with the signature s(w). Each T (G,w) maps to an SPP

instance SA(T (G,w)) in which the set of permitted paths is {P | s(P) �= φ} and the

ranking functions are consistent with weights in the following manner:

(I) if λ(P) < λ(P ′) then f(s(P)) � f(s(P ′)),

(II) if λ(P) = λ(P ′) then f(s(P)) = f(s(P ′)), and

(III) if f(s(P)) ≺ f(s(P ′)) then λ(P) < λ(P ′).

92

Define the expressiveness of an algebra A to be the set

X (A) =
{
E(S) | S = SA(T (G,w)) for some G ∈ GA, w ∈ V

}
.

Definition 5.3.2. A path-vector system PV and an algebra A are consistent iffM(PV) ⊆

X (A).

If A and PV are consistent, we may be able to relate the properties of each. Because

consistency is defined in terms of equivalence classes of SPPs, we will use properties which

hold for some SPP in each of the equivalence classes that defines the expressiveness of an

algebra or PVPS. We start with the following definition.

Definition 5.3.3. Let P be an SPP property. If every network instance of an algebra or

PVPS is equivalent to an SPP with property P , then we say that the algebra or PVPS itself

has SPP-property P . Formally, algebra A has property P iff for every E ∈ X (A), there

exists an SPP S ∈ E such that S has property P ; analogously, PVPS PV has property P

iff for every E ∈M(PV), there exists an SPP S ∈ E such that S has property P .

Remark 5.3.4. We may use different terminology to describe an SPP-property P at the

algebra or PVPS level; using this definition, a property P̂ stated in terms of algebras or

PVPSes is equivalent to an SPP-property P iff an algebra or PVPS satisfies P̂ exactly when

it has the SPP-property P .

Example 5.3.5. Monotonicity is a property that can be defined in terms of SPP instances

because every network instance of a monotone algebra is equivalent to an SPP with rank

functions λ nondecreasing on path extension.

Proposition 5.3.6. If algebra A has SPP-property P , then every PVPS PV consistent with A

also has SPP-property P .

93

Proof. ∀ E ∈ X (A), ∃ S ∈ E such that S has property P . If PV is consistent with A,

then E ∈ M(PV) implies E ∈ X (A); thus ∀ E ∈ M(PV), ∃ S ∈ E such that S has

property P .

5.3.3 Mapping an Algebra to a Path-Vector System

Here we show how to use the path-vector-system framework to describe a protocol whose

design specification is consistent with a given algebra. At its higher level of abstraction,

an algebra describes the behavior of protocols on just a select part of the protocol’s path

data structure. This part of the data structure is modeled by the algebra’s signature, which

is used to determine weight; the actual rank of paths with the same weight is determined

individually by nodes and is not modeled by the algebra.

To instantiate an algebra, we create a protocol whose data structure (the path descrip-

tor) includes the components of the signature and an opaque local-preference attribute that

can be set at a node to differentiate paths of equal weight. The ranking function ω is de-

fined to first weigh the signature components using the algebra function f : Σ → W and

then consider local preference.

Transformations to signatures are modeled by applying labels from L using the opera-

tor ⊕. As noted above, these transformations correspond to arc policy functions. Here we

use one possible combination of node policies that yield arc policies that are consistent with

the label transformations of the given algebra—we constrain export policies to be the iden-

tity function on path descriptors and constrain import policies to be those policy functions

that correspond to labels.

This choice does affect the implementation of the protocol and the individual expres-

siveness of import and export policies; in specific cases, it may be wise to change these

constraints so that arc-policy functions still correspond to labels in L without artificially

94

limiting the expressiveness of export of import policies. Our construction yields the fol-

lowing theorem.

Theorem 5.3.7. If A = (W ,�,L,Σ, φ,⊕, f) is an algebra, the path-vector system PV with

the following components is consistent with it (in particular, X (A) = M(PV)):

R = Σ× N

U = W × Z

≤U = � × ≤

ω = (σ ∈ Σ, n ∈ N) �→ (f(σ),−n)

L
in(F) = [((σ′, n′) = F ((σ, n))) ⇒ (∃ l ∈ L : σ′ = l ⊕ σ)]

L
out(F) = TRUE

tin(v, u, F,X) = {(σ′, n′) | ((σ′, n′) ∈ F (X)) ∧ (σ′ �= φ)}

tout(u, v, F,X) = {(σ, 0) | (σ, n) ∈ X is a loopless path when extended to v}

O(X) = [((σ, n) ∈ X) ⇒ (σ ∈ Σ)]

Proof. Note that by construction, PV allows exactly the same paths as A.

Suppose E ∈M(PV). Then for all SPPs S ∈ E:

(i) λ(P) = λ(P ′) iff ω(r(P)) = ω(r(P ′)); and

(ii) λ(P) < λ(P ′) iff ω(r(P)) < ω(r(P ′)).

We use these properties and the definition of ω to show that E(S) ∈ X (A). By definition,

weight primarily determines rank, so path ranks can only be equal if path weights are equal.

Thus,

ω(r(P)) = ω(r(P ′)) ⇒ f(s(P)) = f(s(P ′)).

95

Substituting using (i) gives

λ(P) = λ(P ′) ⇒ f(s(P)) = f(s(P ′)). (5.1)

For the same reason, a path that has strictly lower weight must be more preferred. There-

fore,

f(s(P)) ≺ f(s(P ′)) ⇒ ω(r(P)) < ω(r(P ′)),

and by using (ii) we have

f(s(P)) ≺ f(s(P ′)) ⇒ λ(P) < λ(P ′). (5.2)

Finally, a path is less preferred, by definition, if it has higher weight or it has equal weight

but lower local preference. This means that

ω(r(P)) < ω(r(P ′)) ⇒ f(s(P)) � f(s(P ′)).

Substituting using (ii) gives

λ(P) < λ(P ′) ⇒ f(s(P)) � f(s(P ′)). (5.3)

Statements (5.1)–(5.3) satisfy conditions (I)–(III) of Definition 5.3.1; thus E(S) ∈ X (A).

5.3.4 Describing a Path-Vector System with an Algebra

The path-vector-system specification contains a definition of the path data structure, the el-

ements involved in ranking, and constraints on policies. We can easily construct an algebra

that has the same specification components.

To do this, let the set Σ of signatures and the set W of weights be the set R of path

descriptors and the ranking set U , respectively. A natural way to construct labels that cor-

respond to arc-policy functions f(u,v)(r) is simply to list in a label the arguments to the pol-

icy application functions—used in the definition of f(u,v)(r)—other than r, i.e., the node

96

names u and v and the policy functions F in
(v,u) and F out

(u,v). Labels then contain sufficient

information so that⊕may used to recover f(u,v)(r) as l⊕ r, with φ used in place of filtered

routes (f(u,v)(r) = ∅).

Theorem 5.3.8. Given the path-vector system PV = (D, R, U , ≤U , Lin , Lout , O, tin , tout),

let

L(u, v, f1, f2) = X �→ tin(v, u, f1, t
out(u, v, f2, X)),

i.e., L(l) is the arc-policy function determined by the tuple l = (u, v, f1, f2), where u, v ∈ N

represent node identifiers defining a signaling edge (u, v), and f1, f2 ∈ 2R are the import and

export policies along that edge. (These tuples are members of the constructed label set L below.)

Then the algebra with the following components is consistent with PV :

W = U

� = ≤U

Σ = R

φ = signature for filtered routes

L = N× N× {F ∈ 2R | L
in(F)}

×{F ∈ 2R | L
out(F)}

⊕ = l ⊕ (r ∈ R) �→
{
L(l)(r), L(l)(r) �= ∅
φ, L(l)(r) = ∅

f = ω

Proof. By definition, this algebra allows exactly the same paths as PV . Suppose E ∈

M(PV). To show that E ∈ X (A), we show that for some SPP S ∈ E, conditions

(I)–(III) of Definition 5.3.1 are satisfied; thus E(S) ∈ X (A). By Definition 4.4.6,

λ(P) < λ(P ′) ⇒ ω(r(P)) < ω(r(P ′)). (5.4)

97

By construction, ω = f ; r(P) = s(P) because the labels and operations used to compute

s(P) can be replaced with composing arc-policy functions as discussed above. Substituting

these in (5.4) satisfies condition (I), namely,

λ(P) < λ(P ′) ⇒ f(s(P)) ≺ f(s(P ′)).

Replacing inequality with equality in the above argument gives condition (II). Finally, be-

cause ω = f , if f(s(P)) ≺ f(s(P ′)), then ω(r(P)) < ω(r(P ′)), and by Definition 4.4.6,

this implies λ(P) < λ(P ′), thus giving condition (III).

Although we do not give an explicit proof here, it is clear that an algebra constructed

in this way for an increasing path-vector system will be strictly monotone, because the

weighing function is just the increasing rank function ω.

The algebra constructed in Theorem 5.3.8 includes all the components of the path de-

scriptor in the signature, and so is consistent only with protocols that are very similar to the

original protocol. The resulting algebra may not yield the most generally applicable results;

depending on the protocol, it may be more useful to construct an algebra restricted to some

subset of the rank criteria (rather than the entire path descriptor), because the properties

of that algebra would apply to a greater number of protocol implementations than those

of the construction above. The intuition used behind mapping the components, i.e., the

informal correspondence the first and third columns of Table 5.4, would still apply.

5.4 Equivalence of Design Guidelines

Here we focus on the important convergence properties of robustness and optimality. Most

of the results below were stated at the algebra level of abstraction in [Sob03]; here we

prove these results at the PVPS level of abstraction, illustrating the utility of our translation

discussed above.

98

5.4.1 Monotonicity and Robustness

The main result from both frameworks is that if paths increase in absolute rank when they

are extended from router to router, the protocol is guaranteed to converge on any network.

Here we show that these results are compatible. We start with the following composition

of Theorems 4.5.13 and 4.5.6.

Proposition 5.4.1. An increasing PVPS is robust.

This result is meaningful at the protocol level of abstraction, and is consistent with the

following extension of Proposition 4 in [Sob03]:

Proposition 5.4.2. Any protocol (or PVPS) consistent with either a strictly monotone algebra

or a monotone algebra with shortest-paths tie-breaking is robust.

Proof. If an algebra is strictly monotone, then for every E ∈ X (A), there exists some SPP

S ∈ E all of whose ranking functions λ increase on path extension. The same is true for

monotone algebras with shortest-paths tie-breaking because path length imposes strict-

ness whenever it is not enforced by the algebra’s (weakly) monotonic weight. Therefore,

both types of algebras are increasing in the sense of Definition 5.3.3. By Proposition 5.3.6,

any PVPS or protocol consistent with such an algebra is increasing, and thus, by Proposi-

tion 5.4.1, is robust.

If either one of these propositions is combined with the translation between models

given in Section 5.3, e.g., as in the proof above, the other proposition directly follows. This

shows that these results are equivalent; this is intuitively clear because any instance of a

strictly monotone algebra can be described by an increasing path-vector system.

From this equivalence, we see the different strengths of the frameworks regarding

protocol-design analysis. The strength of the path-vector-system model is that a design

99

specification for an increasing system naturally yields a robust protocol whose implemen-

tation-specific properties can be studied and a framework for designing compatible policy

languages. The strength of the algebra framework is that core properties can be analyzed

at a higher level of abstraction; in particular, robustness guarantees can be made from ex-

amining just a subset of a protocol’s rank criteria.

The following corresponds to Proposition 3 in [Sob03].

Proposition 5.4.3. Any protocol (or PVPS) consistent with a monotone algebra will converge

robustly on free networks.

Proof. Suppose that there is some such PV is not robust. Then from Definitions 4.5.1

and 4.5.2, there is some SPP S such that E(S) ∈ M(PV) and S is not robust. From the

contrapositive of Theorem 4.5.6, S is not almost-partially ordered; thus from Lemma 4.5.7,

S contains a dispute wheel. However, the rim of the dispute wheel is a cycle of nodes that

violates the property of freeness in Definition 5.1.7. Therefore, any instance on which PV

does not converge robustly is not free.

Because freeness can be checked in time proportional to a polynomial in the number of

labels, signatures, and edges of a graph [Sob03], freeness is a feasible network-level global

constraint guaranteeing the robustness of any protocol consistent with a monotone algebra.

Proposition 5.4.5 below is a partial converse of Proposition 5.4.2 and captures one di-

rection of Proposition 5 in [Sob03]; we make the following definition to exclude trivial

counterexamples. The first part of the proof mirrors [Sob03], and we then translate this to

the language of PVPSes.

Definition 5.4.4. An algebra is range monotone iff

[f(l ⊕ σ) ≺ f(σ)] ⇒ (� l′ ∈ L, σ′ ∈ Σ : σ = l′ ⊕ σ′),

100

i.e., any violations of monotonicity involve signatures that are not the output of the opera-

tion⊕.

Proposition 5.4.5. If an algebra A is not range monotone, there exists a network instance on

which some protocol consistent with A does not converge; i.e., every non-range-monotone algebra

is consistent with some non-robust PVPS.

Proof. Given such an algebra A, there exists some σ ∈ Σ and l ∈ L such that f(l ⊕ σ) ≺

f(σ), and there exists some σ′ ∈ Σ and l′ ∈ L such that σ = l′ ⊕ σ′. Construct a network

K3 with node labels 0, 1, 2. Let node 0 originate the signature s(0) = σ′. Assign the label

l′ to signaling edges (0, 1) and (0, 2); assign the label l to signaling edges (1, 2) and (2, 1).

Then at nodes 1 and 2, the signatures σ and l ⊕ σ are available with f(l ⊕ σ) ≺ f(σ).

This network instance corresponds to the SPP instance DISAGREE from [GSW02], which

has two stable solutions and is thus not robust.

By Theorem 5.3.7, there is a path-vector system PV such that M(PV) = X (A) and

thus contains the network instance just constructed. Therefore PV is consistent with A

and not robust.

In summary, both the algebra and PVPS models can isolate properties to analyze con-

vergence. The sufficient conditions are equivalent; the properties translate by Proposi-

tion 5.3.6.

5.4.2 Isotonicity and Optimality

Sobrinho [Sob03] effectively shows that while convergence depends on monotonicity, op-

timal convergence depends on isotonicity. Formally, we have the following result that com-

bines Propositions 1, 2, and 5 from [Sob03].

101

Proposition 5.4.6. A protocol that converges robustly and optimally is consistent with some

monotone and isotone algebra. Also, there is some protocol consistent with any monotone and

isotone algebra that converges robustly and optimally.

To introduce optimality to the PVPS framework, we must define some additional prop-

erties required for the translation of results from [Sob03].

Definition 5.4.7. A path-vector system PV is nondecreasing iff for all instances I of PV ,

∀ (u, v) ∈ E, ∀ r ∈ R, ω(r) ≤ ω(f(u,v)(r)).

Definition 5.4.8. A path-vector system is PV-isotonic iff, in all instances, ∀ (u, v) ∈ E and

∀ r1, r2 ∈ R such that ω(r1) ≤ ω(r2), one of the following hold:

ω(f(u,v)(r1)) ≤ ω(f(u,v)(r2)) if f(u,v)(r1) �= ∅;

f(u,v)(r2) = ∅ if f(u,v)(r1) = ∅.

Nondecreasing is the analog of monotonicity just as increasing is the analog of strict

monotonicity. PV-isotonicity, the analog of isotonicity, is a property both of a network and

of a PVPS (in the latter case, the condition holds for all possible arc-policy functions rather

than all edges in the network). A PVPS that is PV-isotone has only isotone instances and is

consistent with an isotone algebra; a PVPS that is not PV-isotone has at least one instance

where arc-policy functions violate the PV-isotonicity condition (this instantiation follows

Proposition 5.3.6). This algebra-consistency relationship is easy to prove: Given a PVPS

PV , construct a consistent algebra A using Theorem 5.3.8. From PV-isotonicity, we have

ω(r(P1)) < ω(r(P2)) ⇒ ω(r(vP1)) < ω(r(vP2)) (5.5)

for all paths P1, P2 from some node u to destination d and all nodes v adjacent to u. As in

the proof of Thm 5.3.8, f = ω, r(P) = s(P), and r(vP) = f(l⊕ s(P)) where l is the label

102

corresponding to f(u,v); thus from (5.5) we have that

f(s(P1)) ≺ f(s(P2)) ⇒ f(l ⊕ s(P1)) ≺ f(l ⊕ s(P2)),

which means that A is isotone.

The following propositions about PVPSes are then analogous to Propositions 1 and 2

in [Sob03]. As noted above, their statements and proofs follow from applying our transla-

tion between algebras and PVPSes to the corresponding results for algebras [Sob03].

Proposition 5.4.9. If a path-vector system is PV-isotone and nondecreasing, then in all network

instances, if destination d is reachable from u, there exists an optimal (loopless) path from u to d

such that all subpaths to d are also optimal.

Proof. First note that for any path P and some loop L extending P , ω(P) ≤ ω(LP), i.e.,

adding loops does not decrease rank because the PVPS is nondecreasing. Any permitted

path with loops can be pruned to a permitted path without loops because of PV-isotonicity:

suppose node c has descriptors available for paths P and LP where L is a loop starting and

ending at c; because ω(r(P)) ≤ ω(r(LP)), if LP is advertised, P must also be advertised

because of PV-isotonicity, so any extension of LP can be pruned of the loop L without

increasing rank. Thus, if d is reachable from u, the lowest-ranked, loopless paths from

u to d are optimal. Now suppose that for none of these optimal paths, every subpath to

d is optimal. Choose the optimal path P = uu1 · · ·uk · · ·und with k maximal such that

subpaths to d from ui, 1 ≤ i < k, are optimal, but the subpath from uk to d is not optimal;

then there is some other path ukQd is optimal.

Suppose this path Q intersects P such that ui ∈ Q for some 1 ≤ i < k. Let Q1 be the

subpath ofQ from uk to ui, and letQ2 be the subpath ofQ from ui to d. Because the PVPS

is nondecreasing, ω(r(uk · · · und)) ≤ ω(r(ui · · ·und)) and ω(r(Q2)) ≤ ω(r(Q1Q2)). Be-

103

cause of the optimality of ui · · ·und, ω(r(ui · · ·und)) ≤ ω(r(Q2)). Putting these inequali-

ties together gives ω(r(uk · · ·und)) ≤ ω(r(Q1Q2)), which contradicts the assumption that

uk · · ·und is not optimal. Therefore, Q does not intersect P at any ui, 1 ≤ i < k.

Form the loopless path P ′ = uu1 · · ·ukQd. By PV-isotonicity,

∀ 1 ≤ j < k, ω(r(uj · · ·ukQd)) ≤ ω(r(uj · · ·und)),

and ω(r(P ′)) ≤ ω(r(P)), i.e., P ′ is optimal. The subpath of P ′ from uk to d is optimal,

contradicting the maximality of k in the choice of P . Therefore, our assumption that there

exists no optimal path, all of whose subpaths are all optimal, is wrong, proving the theorem.

Proposition 5.4.10. If a path-vector system is PV-isotone, then any nondecreasing instance has

an optimal solution.

Proof. Let π be the solution of such an instance (one exists by Proposition 5.4.9; if π is

not optimal, then there is some destination d for which a node u is not assigned an op-

timal path. However, by Proposition 5.4.9, there exists an optimal path Q = u1u2 · · · d

(where u1 = u) such that all subpaths Qk = uk · · · d are optimal. Let Pk be the as-

signed path in d from every uk ∈ Q to d (some may be empty). Choose the largest i

such that Pi is (i) empty or (ii) not optimal. By maximality of i, Qi+1 and Pi+1 are op-

timal; thus ω(r(Qi+1)) = ω(r(Pi+1)). Following the proof of Proposition 5.4.9, because

the instance is nondecreasing, ui �∈ Pi+1. By PV-isotonicity, we can extend to ui so that

ω(r(Qi)) = ω(r(uiPi+1)) and r(uiPi+1) is not filtered. This contradicts possibility (i) be-

cause uiPi+1 is available at ui; thus Pi cannot be empty. Because Pi is the assigned path

in π, ω(r(Pi)) ≤ ω(r(uiPi+1)), but this contradicts (ii) because ω(r(Pi)) > ω(r(Qi)) =

ω(uiPi+1) if Pi is not optimal.

104

Proposition 5.4.11. If a path-vector system is not PV-isotone, then for any non-isotone instance

I, there exists another instance I ′ generated by filtering a subset of permitted routes in I such that

I ′ has no optimal solution.

Proof. In this instance without isotonicity, there exists some edge (u, v) with a policy

for two path descriptors r1, r2 such that ω(r1) ≤ ω(r2) but either (i) ω(f(u,v)(r2)) <

ω(f(u,v)(r1)) or (ii) f(u,v)(r1) is filtered while f(u,v)(r2) is not. Construct instance I ′ from

I such that all paths other than those described by r1, r2 are filtered at v and that all paths

not through v are filtered at u. In case (i), the solution to I ′ assigns r1 to v because

ω(r1) < ω(r2) and thus assigns f(u,v)(r1) to u, but this solution is not optimal because

ω(f(u,v)(r1)) > ω(f(u,v)(r2)). In case (ii), the solution to I ′ assigns r1 to v, but r1 is filtered

along (u, v); thus, u cannot be assigned a path, which is not optimal.

Remark 5.4.12. The above theorem implies that there exists some instance of every non-

PV-isotone PVPS that has no optimal solution.

105

Chapter 6

Class-Based Systems∗

Class-based systems focus on a generalization of next-hop-preference routing, where rout-

ing policy for an AS can be defined by the relationships (commercial or otherwise) between

it and its neighboring ASes. They are transparent systems in which some type of auton-

omy of neighbor ranking is relevant, because route transformations depend on the parti-

tion of neighbors into these relationship classes. The canonical examples of such systems

are the Hierarchical-BGP points in the design space mentioned in Section 4.1. Inspired

by [GGR01,GR01], Hierarchical BGP (HBGP) is a simplified version of BGP that takes into

account the economic realities of today’s commercial Internet—that ASes partition their

neighbors into customers, providers, and peers and that there are preference guidelines

used to decide between routes learned from neighbors of different classes. The scope of

class-based systems, however, goes beyond HBGP; the framework can also be used to

build and analyze systems with complete autonomy and those that allow arbitrary next-

hop preference routing. Furthermore, we will show that any protocol specification that can

be described by a countable-weight, monotone path-vector algebra can also be described

by a class-based path-vector system.

∗Most of this chapter has previously appeared in joint work with Aaron D. Jaggard [JR04]. Portions of
the chapter’s introduction and Section 6.1 have appeared in joint work with Timothy G. Griffin and Aaron
D. Jaggard [GJR03], and Section 6.1.3 has appeared in other joint work with Aaron D. Jaggard [JR05a].

106

Theorem 4.7.4 tells us that such systems require a nontrivial global constraint. In this

chapter, we provide the best known robustness constraint for class-based systems. The

constraint ensures the robustness of networks that satisfy it; it is in fact the best possible

robustness guarantee because, in networks that do not satisfy it, some set of nodes may

write policies that cause route oscillations. (Our proof of this constructs such policies.)

We give an algorithm to generate the constraint given only the design specification of the

system. We then provide centralized and distributed algorithms to check networks for vi-

olation of the constraint and discuss their applications, including how to use our results

to check a network with arbitrary next-hop preferences for potential bad interactions. The

distributed algorithm reveals almost no private policy information, provides several op-

tions for correcting a constraint violation, and has constant message complexity per link

and limited storage at each node. We compare and contrast our algorithms with those in

previous work.

Although it may be sufficient to provide a supplementary protocol enforcing some

global conditions (and, indeed, the distributed algorithm in this paper, modified for BGP,

can be run alongside BGP to detect potentially bad policy interactions), there are sev-

eral benefits to this approach of analyzing robust protocol convergence from a design-

framework perspective. First, the algorithms in our paper preclude all policy-based os-

cillations in advance; as long as the constraint is enforced, the protocol can safely run on

any network. Second, the approach is an integral part of designing policy-configuration

languages. The design framework identifies provably sufficient local and global conditions

needed for a protocol to achieve its design goals. Our paper precisely gives the trade-off

between the strength of local policy guidelines built into the policy-configuration language

and the strength of the global assumption needed in the broad class-based context. The

107

designer can use these results to consider what balance between local and global enforce-

ment is desired and can incorporate the guidelines generated by the results in this paper

into the design of multiple high-level policy languages—all before running the protocol on

an actual network.

6.1 The Class-Based Framework

6.1.1 The Class-Based Path-Vector System

We fix a BGP-like path-vector system that can implement scoping and relative preference

rules dictated by class relationships (such as those in [GR01, GGR01]). By scope, we mean

the conditions under which routes are shared with neighbors, and by relative preference, we

mean the difference in rank assigned to routes learned from neighbors in different classes.

In our running-example system PV µbgp from Chapter 4, path descriptors r contain a

local preference attribute l(r) that can be set to assign rank based on the class of the exporting

neighbor. This attribute is not shared between nodes, intuitively allowing some autonomy

and opaqueness. Limited scoping can be implemented by filtering routes. However, this

notion of scope is restrictive, e.g., it does not allow easy flagging of a backup route, es-

pecially when the next hop might be through a neighbor of an ordinarily preferred class.

Therefore, we extend the path descriptor r, following [GGR01], to include a level attribute

g(r). This attribute is nondecreasing and shared and will have precedence in ranking; thus,

it can be used to communicate notions of scope that override relative-preference rules en-

coded in the local-preference attribute.

Remark 6.1.1. If all nodes agreed on an encoding within local preference for indicat-

ing backup routes or some information were shared between nodes, backup-route scop-

ing would be possible in BGP (PV µbgp) without additional attributes. However, the ad-

108

ditional attribute can separate the awkward encoding and information sharing from at-

tributes meant for local use. The original description of HBGP+BU in [GGR01] discussed

these same issues.

The components of the path-vector system PV cb that we use for class-based applica-

tions are as follows.

Rcb = Dcb × N× N× Seq(N)

Ucb = N× Z (lexically ordered)

dest cb(d, g, l, P) = d

ωcb(d, g, l, P) = (g,−l)

Ocb(X) = (r ∈ X) ⇒ (∃d ∈ Dcb,m ∈ N such that r = (d, 0, 0,m))

L
in
cb(f) = (((d′, g′, l′, P ′) = f(d, g, l, P)) ⇒ (g ≤ g′ ∧ P = P ′))

L
out
cb (f) = (((d′, g′, l′, P ′) = f(d, g, l, P)) ⇒ (g ≤ g′ ∧ P = P ′))

tincb(u, v, f,X) = {(d, g, l, P) ∈ f(X) | P is a simple path}

tout
cb (u, v, f,X) = {(d, g, 0, uP) | (d, g, l, P) ∈ f(X)}

Note that Lin
cb and Lout

cb guarantee that the level attribute is nondecreasing and that tout
cb

guarantees that local preference is not shared. When ranking, a smaller level attribute is

first preferred, then higher local preference. Also, note that PV cb is transparent: let

t(v, u, X) = {(d , g , 0, uP) | (d, g, l, P) ∈ X where uP is a simple path}

in Definition 4.6.7.

6.1.2 Class-Based Policy Languages

The second component of design is a policy language capable of expressing scope and

relative-preference rules for class-based systems. We first make formal the notion of class

109

u v

w

x

d
P

Q

C v(w =)

C v(x = C)

C v(u =) C

C

k

i

j

Direction of path descriptor export

Figure 6.1: Class assignments to neighbors of node v and paths to a destination node d.

relationships. Let C = {C1, C2, . . . , Cc} be a set of classes. Every node v ∈ V will have a

class-assignment function Cv : V → C that assigns each neighbor of v a class in C. As an

example, consider node v in Figure 6.1. Here, a node v with neighbors u,w, x has assigned

classes Ck, Ci, Cj to these neighbors, respectively.

Policies in class-based systems may filter routes, weakly increase the level attribute,

and change the local preference as desired, but nothing else. Nodes are also permitted to

assign classes to neighbors. Given that assignment, policies are constrained by the three

types of rules that essentially define a class-based system: relationship consistency, relative

preference, and scope. To encode each of these types of rules, we will use a square matrix

of dimension equal to the number of classes.

Relationship Consistency

Class assignments might require some consistency, e.g., that “customer” and “provider” as-

signments occur in consistent pairs. The cross-class matrix X describes the allowable ways

that u may view v’s role in their relationship given that v views u’s role as Cv(u). A neces-

sary condition for an instance to be legal is that for every two adjacent nodes u and v in the

network, if Cv(u) = Ci and Cu(v) = Cj , then Xij = 1; otherwise, Xij = 0.

110

Remark 6.1.2. Without loss of generality we may viewX as a symmetric matrix (X may be

replaced with the matrix (min(Xij, Xji))ij without changing the legality of any class-based

instance). Note that ifCv(u) always uniquely determines the value ofCu(v) allowed byX,

thenX has at most one 1 in each row and column; assuming no classes are superfluous,X

is then a permutation matrix.

Relative Preference

Relative preference rules are described by the matrix W , which has entries from the set

(•) = {<,≤,=, >,≥,�} of binary comparison operators, where x�y for every x, y. (We

will refer to a generic operator in (•) with the symbol •.) If a node v has imported path

descriptors ri and rj from neighbors whom v views as being in classes Ci and Cj , respec-

tively, if • = Wij , and if g(ri) = g(rj), then the local preference values l(ri) and l(rj) must

be set (via v’s import policy functions) so that ω(ri) •ω(rj). The policy-language compiler

can enforce this as a constraint on local-preference-attribute values set by import policies.

We assume that the preference relations between classes specified byW are consistent with

a partial order on C; e.g., W should not be such that W12 = W23 = W31 = ‘<’.

Therefore, W can be used to give a partial ordering on the classes describing which

class of neighbor’s routes should be preferred. For example, given the HBGP practice of

preferring customer routes to peer routes, we would set Wij = ‘<’ where Ci is the class

“customer” and Cj is the class “peer.” Note that W is an antisymmetric matrix of sorts

(because the comparisons are antisymmetric relations, if Wij = ‘<’ then Wji = ‘>’) and

that the only viable setting on the diagonal isWii = �.1

1The setting Wii = ‘=’ is also possible but not viable. In this case, all descriptors with the same level
imported from a neighbor of class Ci would have to have equal rank, and then ties could not be broken by
changing the local preference based on, e.g., next-hop address or shortest path length.

111

Scope

The scoping rules in a class-based system are described by M , a c × c matrix with entries

from (•) ∪ {⊥}. If Mij = ⊥, then v may not export path descriptors learned from a

neighbor in class Ci to a neighbor in class Cj; this setting is used to prevent the exchange

of routes between classes altogether (filtering). If Mij = • �= ⊥, then v may export a

path descriptor learned from a neighbor in class Ci to one in class Cj; however, if ri is

the descriptor that v receives (after applying the import policy function) from a neighbor

in class Ci, v’s export policy function F out(v, u) for a neighbor u in class Cj must satisfy

g(ri) • g (F out(v, u)(ri)); e.g., ifMij = ‘<’, Cv(u) = i, and Cv(w) = j, then v may export

routes learned from u to w, but the export policy function F out(v, w) must strictly increase

the level attribute of these descriptors.

Various scoping conditions can be described by allowing or enforcing a change in the

level attribute. One example is backup routing: Because lower levels take precedence, a

backup route can be assigned a higher level value to avoid being chosen even if it passes

through a preferred class.

Class Description

Definition 6.1.3. A class description is the quadruple

CD = (C,X,W,M).

CD contains all the information necessary to generate a policy language for PV cb whose

“compiler,” the semantic function M, can generate tuples (F in ,F out ,F orig) from node

policies that (1) list class assignments (i.e., Cv) for neighbors and (2) give local preferences

and level settings for routes. Formally, the tuples will honor the scope and relative pref-

erence rules described by CD if the compiler does the following at each node v given its

112

policy configuration p in PL:

1. For all neighbors u, let F in(v, u) set the local preference (and possibly level) at-

tributes of imported path descriptors as specified in the policy configuration p. Check

that for all pairs of neighbors u,w, if Cv(u) = Ci, C
v(w) = Cj , and • = Wij ,

then for all ru ∈ F(v,u)(Ru
I) and rw ∈ F(v,w)(Rw

I), we have that ω(ru) • ω(rw) if

g(ru) = g(rw).

2. For all neighbors u, let F out(v, u) set the level of outgoing path descriptors as spec-

ified in the policy configuration p. Then check that for all pairs of neighbors u,w,

if Cv(w) = Ci, C
v(u) = Cj , and • = Mij , then for all r ∈ F(v,w)(Rw

I), g(r) •

g(F out(v, u)(r)), unless • = ⊥, in which case F out(v, u)(r) = ∅.

The policy language can enforce the local constraints described by X, W , and M . Class

consistency, along with any further conditions necessary for robustness, must be built into

the accompanying global constraint.

Remark 6.1.4. Class-based systems are autonomous with respect to next-hop class if the

descriptors have the same level-attribute value; because a neighbor can be assigned any

class, as long as the assignments are consistent, this essentially means that class-based sys-

tems have a restricted form of autonomy of neighbor ranking.

Example 6.1.5. We now describe the system “Hierarchical BGP with Back-up Routes,”

motivated by the design guidelines in [GGR01, GR01]. It uses three classes, corresponding

to standard Internet business relationships: C1 or “customer”—someone to whom connec-

tivity is sold; C2 or “peer”—someone with whom an agreement is established to transit

traffic, usually to shortcut more expensive or long routes; and C3 or “provider”—someone

from whom connectivity is purchased. The class consistency rules require thatCv(u) = C2

113

implies Cu(v) = C2, and Cv(u) = C1 iff Cu(v) = C3. The level attribute is used to mark

routes that are for backup use; this is done by increasing the level on export. Because this

is a shared, nondecreasing attribute that has precedence in ranking, such a back-up route

will not be selected if there are routes with lower level available. Following economically

motivated practice, customer routes (i.e., routes learned from customers) are preferred to

peer routes when their level attributes are equal; both are preferred to provider routes. The

scoping rules allow customer routes to be shared with all neighbors (without requiring a

level increase). Peer and provider routes may be shared with customers without a level

increase; peer routes may be shared with peers and providers if the level is increased, and

provider routes may be shared with peers if the level is increased. Provider routes may not

be shared with other providers (as no node should carry transit traffic between two of its

providers). The class-description components for this system are thus:

C = {C1, C2, C3}, X =

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦ ,

W =

⎡
⎣ � < <
> � <
> > �

⎤
⎦ , M =

⎡
⎣ ≤ ≤ ≤
≤ < <
≤ < ⊥

⎤
⎦ .

Omitting the ability to mark routes for backup use (and generally ignoring the level at-

tribute) yields the simpler system, “Hierarchical BGP.” Its difference from HBGP+BU is in

its M matrix:

M =

⎡
⎣ = = =

= ⊥ ⊥
= ⊥ ⊥

⎤
⎦ .

6.1.3 Algebras and Class-Based Systems

By using the translation methods discussed in Section 5.3, we can discuss how to describe

class-based systems using the algebra framework of [Sob03]. The level attribute naturally

114

corresponds to the shared component of a path data structure used as the primary rank cri-

terion, modeled by signature and weight in an algebra, while the local preference naturally

corresponds to the local settings used to break ties among paths with the same weight. This

informal translation was shown in Table 5.4.

The translation from algebra to class-based systems is not straightforward, however—

it is intuitively clear that all algebras are not compatible with the restricted notion of a

class-based path-vector system. Because the level attribute is nondecreasing, all proto-

cols described by class-based systems must be monotonic (thus, we cannot translate non-

monotonic algebras). Furthermore, the encoding from signature components to the level-

attribute integer is only clear if the weight set is countable and the weighing function f

is invertible. In this case, there is a natural bijection ψ from weights to the natural num-

bers, and then σ = f−1(ψ−1(g)) is the signature σ corresponding to the level value g; the

level-attribute g can be used to encode the signature σ in a path descriptor. Labels then

correspond to increments in level-attribute values: If l ⊕ σ = σ′, then l corresponds to the

increment ψ(f(σ′)) − ψ(f(σ)). However, the class structure may provide a better way of

describing the constraints on the system than this encoding does, and there is no known

general way to generate a set of classes for an algebra.

In the other direction, we note that a consistent algebra can be constructed to describe

a class-based system where there is a total relative-preference order among the classes: The

weights are (level attribute, class) pairs; the weighing function ranks paths based on level

attribute first, then on the class assignment for the next-hop edge; labels are increments to

level-attribute values and class assignments for the edge; and the operator ⊕ changes the

signature of paths using the labels in accordance with the relative-preference and scoping

rules of the class-based system. This mapping will not work, however, if the classes are not

115

totally ordered in relative-preference. HBGP is an example of a total order among classes

because routes are chosen such that customer routes are most preferred, then peer routes,

then provider routes.

If the class-structure design principles are ignored, the following algebra is consis-

tent with any class-based path-vector system because it models only the level attribute.

The integers below correspond to level-attribute values (label integers correspond to level-

attribute increments). The algebra is monotonic because the level attribute is the primary

rank criterion and nondecreasing.

Theorem 6.1.6. Any class-based path-vector system is consistent with the following monotonic

algebra:

W = N

� = ≤

Σ = N

φ = signature for filtered routes

L = N ∪ {φ}

⊕ = n1 ⊕ n2 �→
{
n1 + n2, n1, n2 �= φ

φ, n1 or n2 = φ

f = identity

Proof. As in the proof of Theorem 5.3.8, we show that conditions (I)–(III) from Defini-

tion 5.3.1 are satisfied for some SPP S in every E ∈M(PV), so that E(S) ∈ X (A). By the

algebra construction, f(s(P)) = g(P), where g(P) is the level attribute of P , so we make

this substitution in the conditions.

If λ(P) < λ(P ′), then it cannot be that g(P) > g(P ′), otherwise a path with higher

level value could be more preferred; this implies g(P) ≤ g(P ′), satisfying condition (I).

116

If λ(P) = λ(P ′), then ω(r(P)) = ω(r(P ′)), which can only happen if g(P) = g(P ′),

satisfying condition (II). Finally, if g(P) < g(P ′), then ω(r(P)) < ω(r(P ′)); thus λ(P) <

λ(P ′), satisfying condition (III).

6.2 Class-Based Global Constraints

Definition 6.2.1. Let the class-consistency constraint C be defined as

∀u, v ∈ V, (Cv(u) = Ci) ⇒ (Cu(v) ∈ {Cj ∈ C | Xij = 1}) .

Definition 6.2.2. Let Kcb = C ∧ J, where J is some constraint such that Kcb is robust for

PV cb with respect to some PL of the form described above.

The goal of this chapter is to suitably define the robustness check J, given a class de-

scription.

6.2.1 Robustness and Dispute Wheels

A sufficient global constraint for the Hierarchical-BGP systems in Example 6.1.5 is that

the AS-level signaling graph does not contain any customer-provider cycles (i.e., cycles in

which each node views one of its two neighbors in the cycle as a customer and the other

as a provider) [GR01]. Our goal here is to find good global constraints for class-based

systems in general. Given the results from Section 4.5.2, we know that a good starting

point for guaranteeing robustness is precluding dispute wheels. Because of the preference

and scoping rules associated with class-based systems, we can more easily find potential

dispute wheels given the class assignments made by nodes.

Proposition 6.2.3. The path descriptors corresponding to all pathsRiQi+1 andQi on a dispute-

wheel rim in an SPP mapped from a class-based instance have equal level-attribute values.

117

Proof. In this proof, SPPs are those mapped from instances of a path-vector system; so, if

P ∈ Pv in the SPP S ∈ S(I), define d(P) ∈ Rcb as the realizable path descriptor for path

P at node v in the path-vector instance I. Recall that g(r) is the level attribute of r.

Assume we have a dispute wheel in some SPP S ∈ S(I); then for all i, λvi(RiQi) <

λvi(Qi−1), so ω(d(RiQi)) < ω(d(Qi−1)); this means that

g(d(RiQi)) ≤ g(d(Qi−1)). (6.1)

Level is nondecreasing, so

g(d(Qi)) ≤ g(d(RiQi)). (6.2)

Equations (6.1) and (6.2) together imply that g(d(Qi)) ≤ g(d(Qi−1)) for all i; iterating

around the wheel yields g(d(Qi−1)) ≤ g(d(Qi)), thus

g(d(Qi−1)) = g(d(Qi)) = g(d(RiQi))

for all i, which completes the proof.

We will use the above result to aid us in generating an appropriate global constraint.

Therefore, in our analysis, we are primarily interested in whether or not the entries of W

and M allow equality. We thus define two {0, 1}-matrices Ŵ and M̂ as follows.

Definition 6.2.4.

1. Let Ŵij be 0 if Wij permits equality (including �). Let Ŵij = −1 if Wij = ‘<’ and

let Ŵij = 1 if Wij = ‘>’.

2. Let M̂ij be 1 if Mij permits equality, i.e., Mij = ‘=’, ‘≤’, etc., and let M̂ij be 0

otherwise.

The following notation and conventions make it easier to discuss class assignments on

a dispute wheel.

118

Definition 6.2.5.

1. Given an undirected network edge {v, u}, we will often refer to it as a directed edge

contextually in the direction of signaling, i.e., along e = (u, v), u exports path de-

scriptors to v. We write e′ = (v, u) for the edge in the opposite direction (forwarding

or import).

2. The class of an edge e = (v, u) is c(e) = Cv(u).

3. Let x(Ci) = {Cj | Xij = 1}. Then for any edge e, c(e′) ∈ x(c(e)).

4. Let m(Ci) = {Cj | M̂ij = 1} and let m−1(Ci) = {Cj | M̂ji = 1}.

So, m(Ci) is the set of classes to which a path descriptor learned from a neighbor of classCi

can be exported without an increase in level, and m−1(Ci) is the set of classes from which

a path descriptor exported to a neighbor of class Ci without an increase in level could have

been imported.

Definition 6.2.6. A dispute wheel is homogeneous of type Ck iff for all edges e along the

rim, c(e) = Ck. A dispute wheel is heterogeneous of typesCk1 , Ck2 , . . . iff for all edges e along

the rim, c(e) ∈ {Ck1 , Ck2 , . . .}.

6.2.2 Generating a Global Constraint

PVPS solvability, and thus checking robustness, is NP-hard in general [GSW02]; we will

thus try to find an easy-to-check global constraint in the class-based context which rejects

as few robust instances as possible. Proposition 6.2.3 and the matrices in a class description

together restrict the edge types (and pairs of edge types) which may appear on the rim of

a dispute wheel. Because Theorem 4.5.9 tells us that precluding dispute wheels guarantees

119

Dispute

v
xu

d

wCw(v) = η
Cv(w) = β

Cu(v) = ζ
Cv(u) = α

Cv(x) = γ

Wheel

Figure 6.2: Active node v of a dispute wheel.

robustness for all instances, we can use those restrictions to produce a sufficient global

constraint.

Call the rim nodes at the ends of paths Ri in a dispute wheel active nodes; these are

the nodes at which route preferences cause the dispute wheel. In Figure 6.2, node v is an

active node with neighboring rim nodes u and x—these may or may not be active nodes

themselves. The neighbor on the spoke isw; the dispute occurs because the route through u

is preferred over the direct route throughw, but the route fromw is (or has been) exported

to x. Note that edges in Figure 6.2 have arrows in the direction of signaling or export.

Proposition 6.2.3 tells us that the level-attribute values of dispute-wheel paths are the

same at the rim, so the matrix M must permit level equality for the class assignments on

a dispute-wheel rim. The matrix W must also permit the preferences required by Defin-

ition 3.2.1 (a necessary condition for a dispute wheel). In particular, any of the following

conditions at one active node would preclude the dispute wheel in Figure 6.2; they are

written from the perspective of active node v without loss of generality.

120

(C1) v could not import a descriptor from w and export it to x without increasing level,

i.e., M̂βγ = 0;

(C2) v must prefer routes from w over those from u, i.e., Ŵαβ = 1; or

(C3) u could not export a descriptor from a neighbor and export it to v without increasing

level, i.e., ∀ψ ∈ C, M̂ψζ = 0; etc.

The above conditions could be achieved by forcing the class assignments α, β, γ, ψ, and ζ

to specific values. Note that in (C1) and (C3), a particular pair of class assignments (β and

γ, or ψ and ζ) is troublesome because of the associated M-matrix entry. This idea of pairs

of assignments will be used later to describe the general global constraint.

We now prove a result based on the discussion above. The following gives conditions

that are necessary for an edge to participate in a dispute-wheel rim (i.e., it generalizes (C1)

and (C3) above).

Proposition 6.2.7. Let edge e be on the rim of a dispute wheel. If c(e) = Cα, then

1. ∃Cβ ∈ C : M̂βα = 1; i.e., m−1(Cα) �= ∅; and

2. ∃Cγ ∈ C, Cψ ∈ x(m−1(Cα)) : M̂γψ = 1.

Proof. Condition (1) follows directly from Proposition 6.2.3.

To prove condition (2), let e = {v, u} ∈ E and let Cv(u) = Ci. If e is on a dispute

wheel rim, then by Proposition 6.2.3, there must be a class assignment of another nodew by

v such that v can export to u a path descriptor fromw without increasing the level attribute.

But when an edge lies on a dispute wheel rim, it imports a descriptor from two nodes, one

along a spoke edge and one also on the rim; so, this condition is true for both the node

adjacent to the spoke edge leading to v and for the node adjacent to the rim edge leading

121

to v. This condition, in turn, applies to the rim edge {w, v} as well (a dispute wheel must

contain at least two distinct directed edges). Note that we cannot iterate further around the

wheel, because w could import from rim edge e.

If, for each class Cα, either one of these conditions does not hold or, if both do hold, no

edges of class Cα are allowed, then all instances will be dispute-wheel free.

Theorem 6.2.8. Given an instance signaling graph G and class assignments, consider the sub-

graph H containing only edges e where c(e) = Cα as in Proposition 6.2.7. If H is acyclic then

there is no dispute wheel.

Proof. Dispute wheel rims must contain edges satisfying the condition in Proposition 6.2.7.

Thus if the signaling subgraph containing only these edges is acyclic, no cycle of these

edges, including a dispute wheel in the general signaling graph, is possible.

Example 6.2.9. In the case of HBGP or HBGP+BU, this cycle check reduces to checking

against customer-provider cycles. A simple case-by-case analysis of possible class assign-

ments, given the constraints in matrices C and M , shows that the only dispute wheels

possible are cycles in the customer-provider relationship graph. Consider the other possi-

bilities of edges on the dispute wheel:

1. Suppose we have a rim edge e = {v, u} where Cv(u) = C3. Then node v must

import from a node w without increasing the level attribute; however, only M31

permits equality so Cv(w) = C1. Because only X13 = 1, we have that Cw(v) = 3.

If w is on a spoke, then because W prefers routes from C1 neighbors such as w, the

adjacent rim node must also be of class C1. Thus the only situation is one where

the adjacent rim edge to v must have the same assignment as this one; this gives the

homogeneous customer-provider cycle.

122

2. Suppose we have a rim edge e = {v, u} where Cv(u) = C2. Just as with the case

above, only M21 permits equality, and by a similar argument, the adjacent rim edge

to v must be a customer-provider edge. But this results in case (1) above where the

dispute wheel must have these edges all the way around the rim, which contradicts

the assumption that Cv(u) = C2. Thus this edge e cannot be on a dispute wheel.

3. Suppose we have a rim edge e = {v, u} where Cv(u) = C1. All values M1i permit

equality, so v can import the dispute path descriptors from neighbors of any class.

Consider the assigment along the rim edge e′ = {w, v} adjacent to v. By case

(2) above, Cw(v) �= C2. If Cw(v) = C3 then all dispute wheel edges must have

this directed assignment, as in case (1) above, so this contradicts the assumed class

assignment along edge e. The only other possibility is that Cw(v) = C1, which

would give a customer-provider cycle.

Checking for these customer-provider cycles is tractable; even without an explicit check,

the basic economics of the current commercial Internet naturally prevent nodes from being

customers or providers of themselves.

This constraint is unreasonably strong because it precludes many robust instances; in

particular, the role of condition (C2) is ignored, and that could break dispute wheels in

some instances. Relying on condition (C2)—tweaking preferences locally—is not enough,

however; e.g., if the class assignment to both incoming edges is the same, no system-wide

rule can prevent the dispute. We now give four negative results in this regard: each shows

the existence of a simple instance containing a dispute wheel, given a certain combination

of entries for just one or two classes in the matricesX andM . These are canonical instances

that can be generalized. All but one of the cases do not require specific values in matrix W

for the construction; this suggests that while Theorem 6.2.8 is too strong, some constraint

123

preventing pairs of class assignments will be necessary.

First we introduce some notation: because matrixM involves the scoping rule between

an import and export, the class assignments used to look up values in M are not all in the

same direction (that of signaling). We define a matrix S incorporating the matricesM and

X: entry Sij = 1 if a descriptor can be exported along two signaling edges, first of class

Ci, then of class Cj , without increasing the level attribute. Equivalently, we may define S

in terms of X and M̂ as follows.

Definition 6.2.10. S = XM̂ (boolean), i.e., Sij = min((XM̂)ij, 1) ∈ {0, 1}.

We now proceed to the negative results. The first negative result involves the existence

of dispute wheels with only one type of class assignment on the rim. One of the cases

requires certain values in W for the construction; the other case does not.

Proposition 6.2.11. Suppose Cα ∈ C. If either

1. Sαα = 1, or

2. there exists some Cβ ∈ m−1(Cα) such that Ŵβγ �= −1 for some Cγ ∈ x(Cα),

then there exists an instance that contains a homogeneous dispute wheel of type Cα.

Proof. For case 1, we can construct a simple dispute wheel where all spokes and rim seg-

ments have length one, and for any of these edges e, c(e) = Cα and c(e′) = Cβ for the

same class Cβ ∈ x(Cα). Then, regardless of Ŵ , it is possible for every rim node to export

a spoke descriptor to its neighbor because Sαα = 1 and for every rim node to prefer the

neighbor’s path because the spoke and rim neighbors are assigned the same class and we

must have Ŵββ �= −1.

For case 2, we can construct a similar dispute wheel, but while c(eR) = Cα for rim

edges eR, we have that c(e′Q) = Cβ for the reverse spoke edges e′Q. Let c(e′R) = Cγ for γ

124

as defined in the proposition statement. Then, regardless of Ŵ , it is possible for every rim

node to export a spoke descriptor to its neighbor becauseCβ ∈ m−1(Cα) and for every rim

node to prefer the neighbor’s path because Ŵβγ �= −1.

Example 6.2.12. For the system in Example 6.1.5, we have

S =

⎡
⎣ 1 0 0

1 0 0
1 1 1

⎤
⎦ ,

so homogeneous dispute wheels of type customer or provider are possible. Again, this

shows that instances without customer-provider cycles are robust.

The next three results show how to construct dispute wheels with two types of class

assignments on the rim, regardless ofW . None of these results require particular values in

W for the existence of the dispute wheels.

Proposition 6.2.13. If there exist Cα, Cβ ∈ C such that Sαβ = Sβα = 1, then there exists an

instance containing a heterogeneous dispute wheel of types Cα, Cβ.

Proof. We can create a dispute wheel with origin v0 and two rim nodes v1 and v2. Let

Cv0(v1) = Cα, Cv0(v2) = Cβ, Cv1(v2) = Cβ, and Cv2(v1) = Cα. Then it is possible for v1

to assign the same class in x(Cα) to v0 and v2 and prefer the rim path over the spoke path;

similarly for v2 with x(Cβ). The export from spoke to rim is possible precisely because

Sαβ = Sβα = 1, and no setting in Ŵ can break this dispute wheel.

Proposition 6.2.14. Suppose X is not a permutation matrix. If there exist Cα, Cβ ∈ C such

that Sαα = 1, Sββ = 1, and x(Cα) ∩ x(Cβ) �= ∅, then there exists an instance containing a

heterogeneous dispute wheel of types Cα, Cβ.

Proof. We can create a dispute wheel with origin v0 and two rim nodes v1 and v2. Let

Cv0(v1) = Cα, Cv0(v2) = Cβ, Cv1(v2) = Cα, and Cv2(v1) = Cβ. Then because x(Cα) ∩

125

x(Cβ) �= ∅, it is possible for v1 and v2 to assign the same class Cγ ∈ x(Cα) ∩ x(Cβ) to

v0 and the rim neighbor. Because Ŵγγ �= −1, both can prefer the rim path over the spoke

path. The export from spoke to rim is possible precisely because Sαα = Sββ = 1, and no

setting in Ŵ can break this dispute wheel.

Proposition 6.2.15. If there exist Cα, Cβ ∈ C such that ∃Cγ ∈ x(Cα) with M̂βγ = 1 and

∃Cψ ∈ x(Cβ) with M̂αψ = 1, then there exists an instance containing a heterogeneous dispute

wheel of types Cγ, Cψ.

Proof. We can create a dispute wheel with origin v0 and two rim nodes v1 and v2. Let

Cv1(v0) = Cα,Cv2(v0) = Cβ,Cv1(v2) = Cα, andCv2(v1) = Cβ. These assignments are in

the reverse direction of export along the wheel. But, given the statement of the proposition,

we can set Cv0(v1) = Cγ , C
v0(v2) = Cψ, Cv2(v1) = Cγ , and Cv1(v2) = Cψ and obtain

a heterogeneous dispute wheel of types Cγ, Cψ similar to the dispute wheel constructed in

the proof of Proposition 6.2.13.

The constructions in the above proofs can be extended to larger dispute wheels, possibly

involving more class types, as long as the X-, M-, and, in some cases, W -matrix entries

permit. We now construct a predicate P on classes which generalizes conditions (C1)–

(C3). P(Ci, Cj) will be true exactly when nodes u, v, and w may be part of a dispute

wheel in which v is a rim node, v imports from u and exports to w, and Cv(u) = Ci and

Cv(w) = Cj . Note that from the proofs above, we see that just two permitted rim nodes

are necessary for some instance to contain a dispute wheel.

Definition 6.2.16. Let P be a predicate on two classes

P(Cα, Cβ) ⇐⇒
(
(Mαβ = 1) ∨

(
∃Cγ ∈ m−1(Cβ) : Ŵγα �= −1

))
.

126

The claim that P is the condition we want is supported by the following theorem. It

states that a cycle where P holds pairwise along the edges could be a dispute wheel; and, if

all cycles where P holds pairwise along the edges are prevented, no dispute wheel can exist.

Theorem 6.2.17. For 1 ≤ i ≤ n, let ki, k
′
i ∈ {1, . . . , c} so that Cki

, Cki
′ ∈ C; let kn+1 = k1.

There exists an instance containing a dispute wheel with rim cycle e1, e2, . . . , en, where en is

adjacent to e1, c(ei) = Cki
, and c(e′i) = Ck′i , iff ∀1≤i≤n, P(Ck′i , Cki+1

) is true.

Proof. We first prove the forward “only-if” direction. Assume there exists an instance con-

taining such a dispute wheel. Let vi be the node incident to edges ei and ei+1; its class

assignments for the neighbor incident to ei and ei+1 are then c(e′i) = Ck′i and c(ei+1) =

Cki+1
, respectively. Every rim node vi is either active (one with a direct spoke path) or in-

active (within a rim segment). If it is inactive, then some path descriptor imported along

ei must be exported along ei+1 without an increase in level (by Proposition 6.2.3); thus,

Mk′iki+1
= 1, which implies P(Ck′i , Cki+1

). If it is active, then the imported spoke path is

exported along ei+1 without increasing level (by Proposition 6.2.3); thus, it must assign

the neighboring spoke node w a class Cvi(w) = Cγ such that

Mγki+1
= 1. (6.3)

Furthermore, the descriptor imported along ei must be preferred more than the spoke path;

thus, it must be that

Ŵγki′ �= −1 (6.4)

so that the rim preference is allowed. (6.3) and (6.4) together imply P(Ck′i , Cki+1
). By

considering every node vi in this way, we see that P(Ck′i , Cki+1
) must hold for all i.

In the other direction, we construct the specified dispute wheel if P(Ck′i , Cki+1
) holds

for all i. Build a cycle of edges e1, e2, . . . , en, with en adjacent to e1, and assign c(ei) = Cki
,

127

c(e′i) = Ck′i . Assume there is a destination node d. As P(Ck′i , Cki+1
) holds, eitherMk′iki+1

=

1 or

∃Cγ ∈ m−1(Cki+1
) : Ŵγk′i �= −1. (6.5)

First assume that Mk′iki+1
= 1; in this case, the node between ei and ei+1 can be left an

inactive node. If (6.5) is true, then the node vi between ei and ei+1 can be made an active

node; in this case, connect the destination node d to vi and let Cvi(d) = Cγ such that Cγ

satisfies (6.5). Then let node vi prefer the route imported from the rim along ei over the

route from the spoke along (d, vi). This is permitted because Ŵγk′i �= −1 by (6.5). We

note that we can choose at least two nodes vi to be active nodes—the minimum required

for a dispute wheel—because even if Mk′iki+1
= 1, then we can set vi to be an active node

connected to d with c(vi, d) = c(e′i). If both descriptors imported at vi are from neigh-

bors of the same class, then the rim path can be preferred over the spoke path, which is

enough to cause the dispute. Therefore, this cycle of edges e1, e2, . . . , en with destination d

and class assignments set as indicated forms a dispute wheel that is permitted by the class

description.

Theorem 6.2.17 identifies our robustness constraint exactly: to prevent dispute wheels

in any network, we must check against all cycles where P holds on all pairs of edges in the

cycle; if these cycles are permitted, they are potential dispute wheels. Formally, we have the

following.

Constraint 6.2.18. For all cycles of signaling edges e1, e2, . . . , en, there exists some i, 1 ≤ i ≤

n such that P (c(e′i), c(ei+1)) does not hold (assume that en+1 = e1).

By Theorem 3.2.9, instances obeying this constraint are robust. Because the presence of a

dispute wheel does not preclude solvability, we cannot say that this constraint is tight.

128

Algorithm 6.2.19. Given a class description, we can find the “troublesome” pairs of as-

signments satisfying P inO(c3) time, where c is the number of classes, using the following

naı̈ve procedure:

1. For all 1 ≤ i, j ≤ c, examine Ŵij . If Ŵij �= −1, create a list T ′ of classes in m(Ci).

Add the pair (j, t) for all t ∈ T ′ to the list T .

2. For all 1 ≤ i, j ≤ c, examine Mij . If Mij = 1 then add the pair (i, j) to T .

Note that for any pair (t1, t2) ∈ T , P(Ct1 , Ct2) holds.

6.3 Centralized Dispute-Wheel Prevention

Although we can now identify the constraint for a given class description, we have not

yet mentioned how to enforce this condition. In this section, we describe a centralized

algorithm that operates on an instance graph and detects violations of Constraint 6.2.18.

6.3.1 Cycle-Detection Algorithm

Given an instance with undirected network G = (V,E) and nodes’ class assignments, we

want to identify all cycles in which P holds on all consecutive pairs of edges around the

cycle. We do this as follows.

Algorithm 6.3.1.

1. Construct a digraph GS = (V,ES) using the same vertices as in the network G. For

every edge in {u, v} ∈ E, ES contains the directed edges (u, v) and (v, u).

2. Construct a new digraph GL = (VL, EL) from GS as follows. Let VL = ES . EL

contains an edge from (u, v) to (w, x) iff v = w and P(c(v, u), c(v, x)) holds.

129

3. Do a directed depth-first search of GL. Any directed cycles found correspond to

potential dispute wheels.

The following proposition asserts the correctness of the algorithm.

Proposition 6.3.2. Any cycle in the graph GL generated by Algorithm 6.3.1 corresponds to a

potential dispute wheel in the original network, and every dispute wheel in the network produces a

directed cycle in GL.

Proof. Let e0, e1, . . . , ek be a directed cycle in GL, with ei = ((ui, vi), (ui+1, vi+1)) for

ui, vi ∈ V and vi = ui+1 for 0 ≤ i ≤ k (subscripts modulo k + 1). By construction of

GL, P(c(vi, ui), c(vi, vi+1)) holds for every i, so the cycle {u0, v0}, {u1, v1}, . . . , {uk, vk}

violates Constraint 6.2.18 (i.e., it is a potential dispute wheel).

By Proposition 6.2.3, the rim {v0, v1}, {v1, v2}, . . . , {vk, v0} of a dispute wheel in G is

such that P(c(vi, vi−1), c(vi, vi+1)) holds for all i. Thus EL contains ((vi−1, vi), (vi, vi+1))

for every i, producing a directed cycle in GL.

The following proposition gives an upper bound on the running time of the algorithm.

Proposition 6.3.3. Algorithm 6.3.1 has running time O(∆|E|) on a network G = (V,E)

with maximum vertex degree ∆.

Proof. Construction of GS takes O(|V | + |E|) time, construction of GL takes O(|VL| +

|EL|) = O(|E|+ ∆|E|) time, and cycle checking GL by depth-first search takes O(|VL|+

|EL|) = O(|E|+ ∆|E|) time. Therefore, the total running time is O(∆|E|).

6.3.2 Checking Next-Hop Preferences

Suppose we have a network running a path-vector protocol for which each node v specifies

a partial order � on neighbors such that for two neighbors u and w, if u � w, then routes

130

imported from u must be ranked lower (i.e., more preferred) than routes imported from

w, and if u = w, then no relative preference is forced between routes imported from u and

w. Furthermore, we allow nodes to describe scoping rules for these neighbors (under what

conditions, if any, routes can be exported). These policies are called next-hop preferences,

because the relative preference and scoping rules for routes are determined by the next hop

along the path, i.e., the neighbor from which the path descriptor is imported.

Given a network and next-hop preferences, we can construct a class-based system con-

sistent with the nodes’ relative preference and scoping rules. Define a class description in

which there is a class for every directed signaling edge in the network, and assign every

neighbor the class corresponding to the edge between the node and that neighbor. Then

set the entries of W to be consistent with the partial order for next-hop preferences, and

set the entries of M to be consistent with the scoping rules. Most of the entries of W and

M are irrelevant because not all edges in the graph are adjacent, so comparisons will never

have to be made between all possible pairs of classes. Essentially, each node’s next-hop

preferences define sub-matrices of W andM .

By creating this consistent class-based system, we can use the robustness checks de-

veloped in this paper to see whether this network with its next-hop preferences has any

potential dispute wheels. Because there is a class for every directed edge in the signaling

graph, there will be c = 2|E| classes, and generation of the constraint pairs satisfying P

using Algorithm 6.2.19 will take O(c3) = O(|E|3) time. However, not all pairs of classes

correspond to adjacent edges; assuming that ∆ is the maximum degree of any vertex in

the graph, each node in V gives less than ∆2 pairs of directed signaling edges. For each

pair we must check one entry in M and at most ∆ in W , so P may actually be generated

in O(∆3|V |) time. Running the centralized cycle-check (Algorithm 6.3.1) takes O(∆|E|)

131

time. The total time is thus O(∆3|V | + ∆|E|), but because |E| = O(∆|V |), the running

time is simply O(∆3|V |).

Below we give the full algorithm that executes the constraint-generating and centralized

constraint-checking procedures with the running time discussed above for a network G =

(V, E) with next-hop preferences (relative preference and scoping rules at each node for

all neighbors of that node).

Algorithm 6.3.4.

1. Construct a set T ⊂ V 3. For every node v ∈ G, repeat the following for each

neighbor x of v: For all neighbors u �= x of v, if a descriptor at v imported from u

can be exported to x (without level increase), then:

(a) add the triple (v, u, x) to the set T ; and

(b) for all neighbors w such that w � u, add the triple (v, w, x) to the set T .

After iterating through all nodes v and pairs of neighbors x and u, note that elements

of the set T correspond to pairs of class assignments satisfying the predicate P in the

next-hop-preferences sense.

2. Construct a new directed graph GL = (VL, EL). The vertex set

VL = {(u, v) and (v, u) | {u, v} ∈ E} ;

i.e., there is one vertex for every directed signaling edge. The edge set

EL = {((u, v), (v, x)) | (v, u, x) ∈ T} ;

i.e., there is a directed edge from (u, v) to (v, w) iff these two signaling edges can be

adjacent on a dispute-wheel rim.

132

3. Cycle-check GL using directed depth-first search. Any directed cycles found corre-

spond to potential dispute wheels.

Proposition 6.3.5. Any directed cycle in the graphGL generated by Algorithm 6.3.4 corresponds

to a potential dispute wheel in the original network, and every dispute wheel in the network produces

a directed cycle in GL.

Proof. The graph GL checked for cycles in Algorithm 6.3.4 is similar to the graph GL

checked for cycles in Algorithm 6.3.1; the difference is that the edges are based on next-

hop-preference conditions instead of a predefined Ŵ and M̂ . Therefore, this result follows

from Proposition 6.3.2 if we show that (v, u, x) ∈ T iff P(c(v, u), c(v, x)) would hold for

the Ŵ and M̂ created from the next-hop preferences.

However, this is simple to derive from the construction of T in step 1 of Algorithm 6.3.4:

(v, u, x) ∈ T iff (1) either an import over (u, v) can be exported over (v, x) without

level increase, thus M̂c(v,u) c(v,x) = 1; or (2) there exists some neighbor y of v such that

u � y and a descriptor learned from y can be exported to x without a level increase; thus

∃ y ∈ m−1(c(v, x)) : Ŵc(v,y) c(v,u) �= −1. These conditions are exactly equivalent to

P(c(v, u), c(v, x)).

6.3.3 Algorithms in Previous Work

Section 6.3 in [Sob03] gives a check for protocol convergence on a network given a path-

vector algebra—much like our centralized algorithm given the constraint generated from

the class description. Translated to the class-based framework, the class-aware constraint-

generating algorithm and convergence-checking algorithm from [Sob03] take time O(c3)

andO(c · (|V |+ |E|)), respectively, where c is the number of classes, assuming that matrix

W is consistent with a linear order on C. The performance of this algorithm on a network

133

compared to Algorithm 6.3.1 will depend on how the number of classes c compares to the

vertex degrees in a network and how sparse the network is. Also note that the algorithm

from the algebra framework might give some false positives: it identifies some cycles as

troublesome that are not actually potential dispute wheels (i.e., the constraint checked is

stronger than necessary and stronger than Constraint 6.2.18). We discuss this difference

below and show how to implement this stronger, but sometimes faster, convergence check

in our framework.

In the algebra framework, routing policy is captured by the assignment of a label to

each edge in the signaling graph. Changes to the attributes of a path descriptor when it

is shared between neighboring nodes are modeled by an operation that depends on (1) the

label on the signaling edge between the neighbors, and (2) the signature of the path before it

is shared—this corresponds to the original path descriptor; the result is a new signature, or

path descriptor, that can be ranked at the importing node. Because the algebra framework

does not separately model import and export transformations, the label assigned to the

edge must capture the policy decisions made at both import and export. In the class-based

framework, policy decisions depend on class assignments between neighbors. Therefore,

when using the algebra framework to model a class-based system, the labels on signaling

edges must capture the class assignment in both directions—both nodes’ view of the other

node—in order to capture the relative-preference and scoping rules that eventually affect

the rank or availability of path descriptors. Thus, if c is the number of classes, there are c2

possible labels.

The robustness algorithm in [Sob03] first generates a set of labels with which to check

cycles (this corresponds to the generation of our constraint involving pairs of classes): it

identifies sets of labels Lw that come from pairs of labels satisfying an equivalent notion

134

of P. (The variable w indexes these sets, ordering them based on the relative-preference

order of the labels falling into the sets.) The algorithm then uses these sets to check the

freeness constraint from Definition 5.1.7: it checks the graph for cycles formed by edges

whose labels all belong to one of these sets Lw (for some value w). Because the sets Lw

are missing information that could be used to detect that some cycles would not actually be

dispute wheels, some instances are flagged as problematic even though they are robust.

The following scenario causes the algorithm to produce a false positive. We will refer

to labels with a pair of classes indicating the class assignments in both directions along a

signaling edge. Suppose that (Cα, Cα′) and (Cβ, Cβ′) is the only pair of labels involving

(Cβ, Cβ′) that satisfies the equivalent notion of P (i.e., this pair of edge types could be

on a dispute-wheel rim). The algorithm in [Sob03] will add (Cβ, Cβ′) to the appropriate

set Lw. Suppose that the label (Cγ, Cγ′) also belongs to Lw because it, too, is part of a

pair of labels satisfying the equivalent notion of P. The algorithm would then remove

all cycles in which all edge labels belong to Lw. Consider such a cycle with two adjacent

edges labeled (Cγ, Cγ′) and (Cβ, Cβ′). It may be the case that Xγα′ �= 1, i.e., these edges

could not actually participate in a dispute because doing so would violate class-consistency.

The storage of labels in Lw basically throws away one half of the pair satisfying P, in this

case, the label (Cα, Cα′). As a result, cycles that could not have class consistency on the

overlapping edges and be dispute cycles at the same time are still flagged.

Below, we describe the translated algorithm to check the algebraic robustness constraint

and give bounds for the running time of each step.

Algorithm 6.3.6. Steps 1–3 generate the algebraic robustness constraint, the sets Lw;

steps 4–5 check that constraint.

1. By assumption, W is consistent with a linear order <C on the classes C. To each

135

class Ci assign a value w(Ci) ∈ {1, . . . , c} such that w(Ci) < w(Cj) if Ci <C Cj .

Let w∗ = maxiw(Ci); thus w∗ = O(c).

2. Use Algorithm 6.2.19 to generate pairs of classes on which P holds. This takesO(c3)

time.

3. For each w, 1 ≤ w ≤ w∗, construct the set of labels

Lw = {(Cβ, Cβ′) ∈ C × C | ∃Cα ∈ C :

P(Cα, Cβ) ∧Xββ′ = 1 ∧ w(Cβ′) = w}.

This takes O(c3) time because the sets can be built by examining the O(c2) pairs

(Cα, Cβ) satisfying P and, for each, examining theO(c) classes Cβ′ so that ifXββ′ =

1, (Cβ, Cβ′) is added to the set Lw(Cβ′).

4. Given the network G = (V, E), construct the graph GS = (V, ES) as in Algo-

rithm 6.3.1. Then for each w, 1 ≤ w ≤ w∗, construct the graph GS[w] = (V, Ew)

where e ∈ Ew iff c(e) = Cβ, c(e′) = Cβ′ such that (Cβ, Cβ′) ∈ Lw. This takes

O(c|E|) time, total.

5. Cycle-check eachGS[w]; any cycle is a potential dispute wheel. This takesO(c·(|V |+

|E|)) time by depth-first search.

6.4 Distributed Dispute-Wheel Prevention

Although the Internet graph and node relationships do not change haphazardly, a central-

ized algorithm running on a snapshot of the Internet graph is still somewhat infeasible:

A central source would need to collect information about the network topology as well as,

in a potentially harder and/or privacy-invading task, information about node relationships

136

throughout the network. In this section, we first present a distributed algorithm for de-

tecting potential dispute wheels and then contrast this algorithm with one given in earlier

work.

6.4.1 Distributed Cycle-Check

Our distributed algorithm (Algorithm 6.4.1) detects potential dispute wheels that include a

specified edge on their rim. The algorithm is administered by the two nodes connected by

the edge in question; it sends at most three messages across each edge in the graph and does

not require that the graph, minus the edge in question, is dispute-wheel-free. Furthermore,

the algorithm reveals little about the relationships between nodes in the graph—a node may

learn possibilities for its neighbors’ relationships with other nodes, but nothing about other

relationships in the graph.

If the algorithm detects the edge as problematic, either the edge can be removed from

the signaling graph (i.e., the edge is not used to advertise routes) or some tweaks to lo-

cal policy can be applied to prevent a dispute wheel. These tweaks are included in Algo-

rithm 6.4.1 and allow the edge to exist as-is for the purpose of signaling routes that would

never cause a dispute. This algorithm could be run, e.g., by two nodes before adding a

signaling link to the Internet graph to see what policy tweaks must be enforced to prevent

route oscillations.

In summary, node u starts the algorithm by sending out a forward token [N,F] to v. N

is a nonce, which prevents interference between parallel executions of the algorithm, and

F indicates that this is a (forward) token. Any node w along the way, including v, that

receives this token from some node x passes a copy of the token along to a neighbor y if

P(c(w, x), c(w, y)) holds and w has not already forwarded the token to y. In this way, the

token traverses all pairs of edges that could be part of a potential dispute wheel. If a cycle of

137

edges is traversed, i.e., u receives its starting token [N,F] and would forward it to v, then

u knows that the edge (u, v) participates in a potential dispute-wheel rim. Token-traversal

paths end when there are no neighbors y that should be forwarded the token; in that case, a

receipt, or “backwards” message, [N,B] is sent to the neighbor from whom the token was

received. If a node w receives receipts from all neighbors to whom it forwarded the token,

w then sends a receipt to the neighbor from whom it received the token. Note that only

one forward token needs to be sent along any edge; any duplicate tokens sent along an edge

will take the same route as the original token, and this has no effect on cycle detection from

u’s perspective. We thus know that all token-traversal paths will terminate—in the worst

case, after the token has traversed every edge once. The algorithm essentially ends when u

receives a receipt from v, indicating that all token traversals have ended. Node u then sends

out an all-clear message [N,C], which gets forwarded along the token-traversal paths, so

that other nodes can delete any data structures used for that instance of the algorithm. Once

the algorithm has ended, if u detected a problem, then u can either refuse to signal along

(u, v) or tweak policies so that a dispute wheel could never form along the cycle.

Algorithm 6.4.1. A node u should start the following procedure to check the signaling

edge (u, v); when checking the network edge {u, v}, v should separately check the sig-

naling edge (v, u) in the opposite direction. Assume that nodes have a list LQ for storing

nonces from different, parallel executions of this algorithm. Let the in-neighbors of v be

denoted in(v) and the out-neighbors be denoted out(v).

For node u:

1. Choose and store a nonce N . Create an empty list of nodes LB.

2. If ∃w ∈ in(u) such that P(c(u,w), c(u, v)) holds, then u sends the message [N,F]

to v along (u, v).

138

3. Whenever u receives [N,F] from w ∈ in(u), send the message [N,B] to w. If

P(c(u,w), c(u, v)) holds, then add the node w to the list LB.

4. When u receives the message [N,B] from v, u should send [N,C] to v. Node u

may now start routing along (u, v) after applying the appropriate policy-tweak rules

below to nodes in list LB.

5. Node u should ignore any [N,C] messages.

For all nodes w �= u:

1. If w receives the message [N,F] from x ∈ in(w):

(a) IfN �∈ LQ, addN to list LQ and create an arrayAN of lists of type (V ×{0, 1})

indexed by the elements of in(w).

(b) For each y ∈ out(w), if P(c(w, x), c(w, y)) and (y, 0), (y, 1) �∈ AN(z) for all

z ∈ in(w), then send [N,F] to y and add (y, 0) to AN(x).

(c) If no [N,F] messages were sent above in step (b), then send [N,B] to x.

2. If w receives [N,C] and N ∈ LQ, then for each z ∈ in(w), send [N,C] to each y

such that (y, 1) ∈ AN(z). Delete AN and remove N from LQ.

3. If w receives [N,B] from y ∈ out(w), then replace (y, 0) with (y, 1) in AN . If

((y, i) ∈ AN(x) ⇒ (i = 1)), i.e., if y is the last node in the list AN(x) from which

[N,B] was received for some x ∈ in(w), then send [N,B] to x.

The following are the policy-tweak rules for u if, at the end of the algorithm, LB is not

empty. Let

Y u(w) = {y ∈ in(u) | Cu(y) ∈ m−1(Cu(v)) ∧ ŴCu(y)Cu(w) �= −1 }.

139

Node u should depreference routes from w ∈ LB with respect to all y ∈ Y u(w). This is

only possible iff

�(w,w′) : (w′ ∈ Y u(w)) ∧ (w ∈ Y u(w′)) (6.6)

because two neighbors cannot both be depreferenced with respect to each other. If (6.6)

does not hold, then:

1. Pick some w ∈ LB : Y u(w) �= ∅. For all w′ �= w, if Y u(w′) �= ∅, then increase the

level attribute on import from w′ and remove w′ from LB.

2. Depreference w with respect to all other y ∈ Y u(w).

3. For all w ∈ LB remaining, increase the level on routes imported from w when ex-

ported to v.

The following propositions assert various properties of the algorithm, including cor-

rectness.

Lemma 6.4.2. In Algorithm 6.4.1, at most one [N,F] token is sent along each signaling edge.

Proof. For every node w �= u, an [N,F] message is only sent to a neighbor if an [N,F]

message is received, but the [N,F] message is not sent if the neighbor has already received

an [N,F] message from w, regardless of how many [N,F] messages are received at w.

Because this process starts with u sending one [N,F] message to v, it is clear that at most

one [N,F] message is sent between every pair of nodes.

Proposition 6.4.3. The algorithm terminates, i.e., every node that sends to y or receives from x

a message [N,F] receives from y or sends to x, respectively, a message [N,B].

Proof. We must show that if the [N,F] token is sent along some edge (x, y), then an [N,B]

receipt is sent back from y to x. Consider a graph GT = (VT , ET) constructed from the

140

target network G = (V, E). The vertex set VT is the set of directed signaling edges of G,

and there is an edge in ET from (x, y) to (y, z) if the receipt of a token [N,F] at y from x

causes y to send the token [N,F] to z.

Note that the connected component of GT is a tree rooted at (u, v); this is because

Lem. 6.4.2 tells us that an [N,F] token is sent at most once along a signaling edge, and we

can see from the algorithm that an [N,F] token is only sent by a node after receiving one

itself. Therefore every node inGT has either no ancestors (if the node is (u, v) or [N,F] is

never sent along the edge) or exactly one ancestor.

First consider the leaf nodes of the tree; these are edges (x, y) such that receipt of the

[N,F] token at y does not cause an [N,F] token to be sent. According to the algorithm,

this happens in two cases: (1) y = u; or (2) there does not exist a neighbor z of y, for which

P(c(y, x), c(y, z)) holds, that has not already received a token. In both of these cases, an

[N,B] message is sent back to x from y.

Next consider the ancestors of leaf nodes in the tree. Given the argument above, we

know that for such an edge (x, y), node y receives an [N,B] message from all neighbors

z such that (y, z) is a descendant of (x, y). According to the algorithm, once this has

happened, every entry in the list AN(x) at y will be of the form (z, 1); thus y will send an

[N,B] receipt to x. This argument can be repeated for the ancestors of these nodes, etc., so

that all tokens are eventually acknowledged with receipts.

The [N,C] messages terminating the algorithm follow the path of the tree, so that every

node that initially received the token will destroy any data associated with the nonceN .

Proposition 6.4.4. At the end of the algorithm, if LB �= ∅ at u, then (u, v) is part of a cycle

violating Constraint 6.2.18.

Proof. If LB �= ∅, then there exists some w ∈ LB such that w sends u the message [N,F].

141

This means that u originated the message [N,F], sending it to v, and there is a set of

nodes {v = x1, x2, . . . , xn = w} such that every node xi sends [N,F] to xi+1 (assume

xn+1 = u). According to the algorithm, this only happens if: (1) P(c(u,w), c(u, v)) holds;

and (2) if P(c(xi, xi−1), c(xi, xi+1)) holds for all 1 ≤ i ≤ n. We then have a cycle of edges

(u, v), (v, x2), (x2, x3), . . . , (xn−1, w), (w, u)

where P holds pairwise along adjacent edges; this is a potential dispute wheel containing

(u, v).

Proposition 6.4.5. The algorithm sends either 0 or 3 messages per signaling-graph link.

Proof. By Lemma 6.4.2, at most one [N,F] message is sent along a link. If an [N,F] mes-

sage is sent, it is clear from the algorithm and the proof of Proposition 6.4.3 that one [N,B]

message and one [N,C] message are sent along the link, and that no other messages are

generated as a result of the [N,F] message. Therefore, the total number of messages sent

along a given link is either 0 (no [N,F] message is sent) or 3 (the messages [N,F], [N,B],

and [N,C] are sent).

Depending on the structure of the graph, a token-traversal path might include all the

edges in a graph; but, in this case, this will be the only token-traversal path (because tokens

are only sent once per edge).

Algorithm 6.4.1 preserves privacy in the following ways. As the messages involved con-

tain only a nonce and message type, the edge being checked by a run of the algorithm

is not revealed to nodes other than u. Furthermore, because Proposition 6.4.3 tells us

that every [N,F] message sent is acknowledged with an [N,B]-message reply, nothing

in the algorithm tells any of the other nodes whether or not a potential dispute wheel has

142

been detected—only u knows this. The only information learned is that if a node w re-

ceives an [N,F] message from x, it knows that there exists some neighbor z of x such that

P(c(x, z), c(x,w)) holds. w might then narrow down the possibilities for the assignments

Cx(z) and Cx(w), although the latter is already restricted by Cw(x) and the matrix X.

Node w does not learn any other information about nodes’ class assignments.

There is an inherent trade-off between the number of messages sent by the algorithm

and the state retained at each node. Algorithm 6.4.1 can be modified—without sacrificing

privacy—to delete the state for nonce N early, instead of waiting for an [N,C] message.

There are two possible modifications:

1. The list AN(z) can be deleted once an [N,B] message is sent to in-neighbor z; or

2. The array of listsAN can be deleted once [N,B] messages are sent to all in-neighbors

z such that AN(z) is nonempty, i.e., once all tokens have been acknowledged.

While these modifications eliminate the need for the [N,C] message, they lose some ben-

efit of aggregating token-traversal paths. Consider a node w that has acknowledged all

tokens with receipts. Using either modification, w now retains no state for this run of

the algorithm. However, it could receive the forward token from a neighbor that had not

yet sent it a token (e.g., because of network delays) or from a neighbor that previously

sent it a token (e.g., because it deleted state as well). As a result of either of these (and

certainly in the latter case), w might send a token to a neighbor it had previously sent a

token, thus duplicating a token-traversal path and increasing the total number of messages

used by the algorithm. Given the first modification, this could happen even when there

are outstanding tokens that have not been acknowledged. Therefore, these modifications

may be appropriate in certain networks where sending duplicate tokens is unlikely and in

networks where maintaining state or sending the [N,C] message is expensive; however,

143

in most cases, these modifications will result in duplicating messages along token-traversal

paths with little added benefit.

6.4.2 Algorithms in Previous Work

The algorithm SPVP3 in [GW00] is a distributed path-vector routing algorithm that de-

tects local-policy-based routing oscillations while running. SPVP3 essentially adds a path-

history attribute to path descriptors: it stores the changes in best-route choices that cause the

descriptor to be advertised. If there is a cycle in these changes, then the descriptor being ad-

vertised is contributing to a route oscillation due to local policies. These path-history cycles

are shown in [GW00] to correspond exactly to dispute wheels. Therefore, in the process of

routing, SPVP3 detects the actual policy conflicts forming a dispute wheel.

The algorithms in this chapter take a different approach—they attempt to detect and/or

prevent potential dispute wheels before a routing dispute ever occurs. But more impor-

tantly, the idea of including a constraint as part of the system specification allows us to

prove properties about the system at design-time. The centralized and distributed algo-

rithms, then, essentially implement constraint enforcement rather than find modified so-

lutions on-the-fly. The class-based path-vector routing protocol will work as expected as

long as the system has been designed to prevent bad policy interactions.

One final difference is that SPVP3 essentially removes the rim paths on a dispute wheel

from the choices that all rim nodes have for paths to a destination. This is unnecessary,

because the dispute wheel only needs to be “broken” at one active node by tweaking pref-

erences. SPVP3 prevents multiple nodes (rather than one) from being assigned its more-

preferred path, whereas our distributed algorithm tweaks policies at one node to correct

a potential dispute wheel. It is also worth noting that SPVP3 requires potentially large

routing messages (the length of the path history will be on the order of the size of the

144

dispute-wheel rim). Also, the entire detection process might be repeated for the same cycle

and slightly modified spoke paths (or a different destination), whereas the cycle-detection

algorithms will detect or fix a potential dispute-wheel rim before it is used for routing,

so that this cycle does not cause oscillation for any destination or set of spoke paths. The

downside of this, however, is that some policy tweaks or filtering might be used to fix the

potential dispute-wheel rim even if no route oscillation actually occurs, whereas SPVP3

deals with the oscillations as they happen dynamically without affecting policies for other

routes.

145

Chapter 7

Generalized Path-Vector Systems
and Independent Route Ranking∗

Chapters 4–6 ignore the complexities of sharing inter-domain routes within an AS; in par-

ticular, the model of the Internet assumed that every AS can be represented by one node in

a graph with a single routing policy and a single link to each neighboring node. (In real-

ity, ASes are made up of several routers that maintain BGP sessions to share inter-domain

routes; these sessions often connect links to different neighboring ASes and provide multi-

ple inter-connections between the same ASes. See Chapter 2 for more information.) Doing

so allowed the development of simple convergence conditions for eBGP.

On the other hand, previous work that included these complexities [BOR+02, GW02a,

GW02b]—e.g., violations of independent route ranking, including MEDs in BGP (see Sec-

tion 2.4)—has been unable to prove general guidelines for convergence analogous to those

for eBGP. In this chapter, we bridge this gap by providing a complete, rigorous model

that not only permits analysis of the MED attribute but also includes more general route-

selection procedures that may violate the independent-route-ranking property. We present

an extension of the SPP framework that covers these instances of the inter-domain routing

problem and derive a constraint for policy configuration that guarantees robust conver-

∗This chapter has appeared previously in joint work with Aaron D. Jaggard [JR05b].

146

gence; as it is more general, it applies to instances of the limited, original SPP model as

well. The generalized SPP is included in the PVPS framework to broaden their application

and to give a much cleaner measure for protocol expressiveness.

7.1 A Generalized Framework for

Inter-Domain Routing

We first define general route-selection functions and independent route ranking (IRR), ex-

plaining the difference between these definitions of route selection and the more specific de-

finitions used in the original SPP and PVPS frameworks. We then present the Generalized

Stable Paths Problem (GSPP) and the Generalized Path-Vector Policy System (GPVPS),

both of which incorporate the generalized version of route selection. In doing so, we pro-

vide an example GSPP demonstrating a MED-induced oscillation.

7.1.1 Route-Selection Functions and

Independent Route Ranking

We begin with a general model of selecting best routes from a routing table.

Definition 7.1.1. A route-selection function σv maps a set of paths R to a set S ⊆ R that is

a set of “best” routes at node v; we write σv(R) = S. When we restrict the selection to a

particular destination, we will write σdv(R) = Sd such that all paths Sd have destination d.

In most cases, including BGP, |σd(R)| ≤ 1 for a set of paths R and some destination d

(i.e., for each destination, at most one best path is chosen). Furthermore, we assume that

choosing some permitted path is preferred to choosing no path, although some paths are

filtered by local policy such that they are never considered as part of the selection process.

Assuming that these filtered paths are not stored in the routing tableR, then for allRd ⊂ R

to a particular destination d, Rd �= ∅ implies σd(Rd) �= ∅.

147

Independent route ranking (IRR) means that the preference of a path relative to other

paths depends only on that path alone (and any information in that path’s routing-table

entry) and not knowledge of other paths.

Definition 7.1.2. A selection function σ obeys Independent Route Ranking iff, for all sets of

routes R1 and R2 and destinations d, the following two conditions hold:

1. σd(R1) = S implies σd(R1 ∪R2) ∩ (R1 \ S) = ∅; and

2. σd(R1) = S and σd(R1 ∪R2) ∩ S �= ∅ implies σd(R1 ∪R2) ⊇ S.

We call violations of the first condition type-1 IRR violations and those of the second

condition type-2 IRR violations. In the case of single-route selection functions, the above

definition of IRR is equivalent to the following: if path P1 is chosen over all paths in P

as best, then additional knowledge of a route P2 �∈ P does not then permit another route

P3 �= P1 in P to be chosen as best; only P1 or P2 may be chosen relative to P ∪ {P2}.

(Condition 2 is not relevant for single-valued selection functions.)

The original SPP and PVPS frameworks only modeled selection functions that inde-

pendently assign a rank to each route and choose the path of minimal (or maximal) rank.

Selection functions written in this way are called linear selection functions; at each node, the

preference order on unfiltered (permitted) paths is consistent with a linear order. Because

the protocol-convergence conditions described in Chapters 3–6 depend on this notion of

rank, they do not apply to the more general setting involving arbitrary selection functions.

We note the relationship between linear selection functions and IRR below.

Definition 7.1.3. A selection function σ is a linear selection function iff there exists a map

ω : P → U from permitted paths P to a totally ordered set U such that

∀R ⊂ P, σ(R) = {P | ∀P ′ ∈ R, ω(P) ≤ ω(P ′)} .

148

Proposition 7.1.4. A selection function has no IRR violations iff it can be written as a linear

selection function.

Proof. First assume that σ is a linear selection function; then there exists some ranking

function ω such that σ(R) = {P | ω(P) ≤ ω(P ′) ∀P ′ ∈ R}. If there were a type-1

IRR violation, then there exist R1, R2 such that σ(R1) = S1 and σ(R1 ∪ R2) = S2 such

that S2 ⊂ (R1 \ S1). But then for all P ∈ S2, it must be that ω(P) ≤ ω(P ′) for all

P ′ ∈ (R1 ∪ R2), but this implies that ω(P) ≤ ω(P ′) for all P ′ ∈ R1, thus P ∈ S1, which

contradicts S2 ⊂ (R1 \ S1). If there were a type-2 IRR violation, then there exist R1, R2

such that σ(R1) = S1 and σ(R1 ∪ R2) = S2 such that S2 ∩ S1 �= S1 and S2 ∩ S1 �= ∅. Let

P ∈ S1 \S2; then ω(P) ≤ ω(P ′) for all P ′ ∈ R1 but there exists P ′′ ∈ (R1∪R2) such that

ω(P) > ω(P ′′). Thus P ′′ ∈ R2, but by transitivity, if ω(P) ≤ ω(P ′) for P ′ ∈ R1, then

ω(P ′′) < ω(P ′); this means that no route P ′ ∈ R1 could be chosen by σ(R1 ∪ R2), which

contradicts S2 ∩ S1 �= ∅. Therefore, any linear selection function has no IRR violations.

Now assume that we have an IRR selection function σ. For all R ⊆ P , if σ(R) = S,

then assign path ranks such that ω(P) ≤ ω(P ′) for P ∈ S, P ′ ∈ R. Suppose this ordering

of path ranks is not consistent with a linear order; then there exist two permitted paths

P1, P2 such that more than one of ω(P1) < ω(P2), ω(P1) > ω(P2), and ω(P1) = ω(P2)

are true. Suppose that σ({P1, P2}) = {P1} so that ω(P1) < ω(P2), but ω(P2) ≤ ω(P1):

then there exists R ⊂ P such that σ(R) ∩ {P1, P2} = {P2} and R ⊃ {P1, P2}. But then

let R1 = {P1, P2} and R2 = R \ {P1, P2}; then σ has a type-1 IRR violation with R1 and

R2, which contradicts our IRR assumption. (By symmetry, there is also a contradiction

if ω(P1) > ω(P2) but ω(P2) �< ω(P1).) Suppose that σ({P1, P2}) = {P1, P2} so that

ω(P1) = ω(P2) but ω(P2) �= ω(P1): then there exists R ⊂ P such that σ(R) �⊃ {P1, P2}

andR ⊃ {P1, P2}. But then letR1 = {P1, P2} andR2 = R\{P1, P2}; then σ has a type-2

149

IRR violation with R1 and R2, again contradicting our IRR assumption. Therefore, any

IRR selection function can be written as a linear selection function.

Previous work has conjectured that IRR violations are a major cause of protocol os-

cillations [BOR+02, GW02a]. Below we prove that given one IRR violation at a node, we

can construct a simple network on which the protocol diverges, but in which the other

nodes’ selection functions obey IRR and could satisfy previously established convergence

conditions.

Theorem 7.1.5. Suppose σv is an IRR-violating (nonlinear) selection function. Then there exists

an oscillating network instance containing node v in which all other nodes have IRR (linear)

selection functions.

Proof. Assume single-valued selection; the argument below generalizes. If σ violates IRR,

then there exists a set Y of paths to d containing at least vP1, vP2 such that σdv(Y) = vP1

and for some set of paths Z �= ∅ such that Z ∩ Y = ∅, σdv(Z ∪ Y) = vP2. Let the

next hops on vP1, vP2, . . . ∈ Y be v1, v2, . . ., respectively; assume that these paths are

fixed, i.e., ∀R P1, σ
d
v1

(R) = P1 and analogously for the other σdvi
. Let the next hops

on vZ1, vZ2, . . . ∈ Z be z1, z2, . . ., respectively. For each zi, let σdzi
(R ∪ {Zi}) be Zi if

R � zivP2 and zivP2 if R zivP2; but, assume that Zi are fixed, i.e., these paths are

always broadcast.

This instance diverges. Assume that the links between all routers use first-in-first-out

(FIFO) communication, though the network may be asynchronous. Consider a snapshot

in time in which v has chosen vP2 as best; this only happens if it also learns of all paths in

Z, which means that all zi have selected Zi as their best paths. After this, v will broadcast

vP2 to its neighbors, eventually reaching the zi. These nodes will thus switch to zivP2,

withdrawing Zi. When the withdrawal reaches v, it will switch to choosing vP1 as best,

150

withdrawing vP2. This withdrawal will eventually reach the zi (after the first broadcast

of vP2) causing these nodes to switch back to Zi; the broadcast of these choices back to v

returns us to the original state when all the zi switch, thus producing an oscillation.

If we examine the network when v has chosen vP1 as best, there are two possibilities:

(1) All zi have chosen Zi as best but the broadcasts of these choices have not yet reached v;

or (2) some zi (possibly all) have not chosen Zi as best. In case (1), the broadcasts of Zi

will eventually reach v causing a choice of vP2 as best; this leads to the starting state above.

In case (2), if Zi is not best at some zi, zivP2 must be available because Zi is fixed; thus, v

must have chosen vP2 at some previous time. In this case, choose that snapshot of time as

a starting point, and it is clear that the above oscillation will occur.

7.1.2 The Generalized Stable-Paths Problem

SPP limited nodes’ route-selection functions to linear selection functions. We now present

the generalized version first discussed in [GW02a] to accommodate modeling attributes in

BGP that are inconsistent with independent route ranking.

Definition 7.1.6. An instance of the Generalized Stable Paths Problem (GSPP) is a network

G = (V,E) and a set of permitted paths P in G to a fixed destination node v0 ∈ V . (The

set P of permitted paths can be partitioned into sets Pv, v ∈ V , which are the permitted

paths at node v, i.e., starting at v and ending at v0.) All nodes v �= v0 have a route-selection

function σv0v : 2Pv → Pv. A path assignment π : V → P is a solution to GSPP iff π(v0) =

(v0) and for every v �= v0 ∈ V , π(v) = σv0v ({vP ∈ P | P = π(u) and {u, v} ∈ E}).

Remark 7.1.7. GSPP is NP-complete. This is because GSPP is in NP—given a solution, it

is easy to check whether it is stable—and because SPP, an NP-complete problem [GSW02],

trivially reduces to GSPP by writing its path preferences as (linear) selection functions. Also

note that this version of the problem assumes single-valued selection functions.

151

Example 7.1.8. Figure 7.1 shows an example GSPP given in [GW02a, MGWR02]. This

instance models the route-selection procedure of BGP running on a network in which the

Multi-Exit Discriminator (MED) attribute is used. (We refer the reader to Section 2.4 for

a review of BGP with MEDs.) The network is shown from the perspective of AS 3.

In Figure 7.1, IGP distances are listed as numbers next to links; MED values are listed

next to inter-AS connections in parentheses. Let the fixed destination be AS 0, and assume

that all paths have the same local-preference value assigned at AS 3. The selection functions

for the internal routers A and B are also shown.

AS 3

A

EDC

1

0

B

2

1

2 1 4

(1) (0)

Selection functions for routers
A and B:

σ0
A(AC10, AD20) = AD20

σ0
A(AD20, ABE20) = ABE20

σ0
A(AC10, ABE20) = AC10

σ0
A(AC10, AD20, ABE20) = AC10

σ0
B(BAD20, BE20) = BE20

σ0
B(BAC10, BE20) = BAC10

Figure 7.1: The GSPP MED-EVIL.

This instance, called MED-EVIL, was first given in [GW02a,MGWR02] as an example of

a MED-induced oscillation. It is important to note that both selection functions have IRR

violations because of the MED values set by AS 2; thus, the paths cannot be ranked and

this configuration cannot be represented as a standard SPP.

We now briefly describe why this GSPP has no solution. First assume that A and B

have not advertised routes to each other; then they will choose AD20 and BE20, respec-

tively, because of minimal IGP distances. If these nodes share these choices, B will still

choose BE20 because, even though BAD20 has a shorter IGP path length, its MED value

152

is higher than BE20 and both paths lead to AS 2. Router A, upon learning of ABE20,

will no longer consider AD20 because of its higher MED value and will choose AC10 in-

stead (because its IGP path length is shorter than ABE20, the other viable option). When

A’s new choice is broadcast to B, router B will choose BAC10 because of its shorter

IGP distance (over BE20), withdrawing BE20. However, this withdrawal removes the

path through AS 2 with lower MED value, causing A to choose AD20 again, withdrawing

AC10. Thus, we have an oscillation similar to that in the proof above.

7.1.3 Generalized Path-Vector Policy Systems

In this section, we expand PVPSes to include arbitrary selection functions, and we incor-

porate GSPP as a new measure of protocol expressiveness. The expanded framework can

then be used to design and analyze non-IRR path-vector protocols.

Definition 7.1.9. A generalized path-vector policy system (GPVPS) is a triple comprising:

PV , the path-vector system that models the underlying message-passing system for route

advertisements and signaling; PL, a policy language used to configure local-policy inputs;

and K, a global constraint on network instances assumed to be true for executions of the

protocol modeled by PV .

A GPVPS path-vector system PV has one more component than a PVPS PV (Sec-

tion 4.2.1), a constraint Lσ on nodes’ route-selection functions.

Remark 7.1.10. By fixing some constraints, a GPVPS can be restricted to model a linear

selection function and a standard PVPS. In particular, assume there is some totally ordered

set U and some map ω : R → U , and let

L
σ(σ) ⇒ ∀ d, σd(R) = min{P | ω(P) ≤ ω(P ′) ∀P ′ ∈ R}.

153

Definition 7.1.11. An instance of a GPVPS is a pair I = (G, P) of a network G = (V, E)

and a configuration function P similar to Definition 4.2.7, except that nodes have an addi-

tional configuration-function component σv that is the route-selection function to be used

on routing tables for node v such that Lσ(σv) holds.

A path assignment ρ : V → 2R is a solution to the instance I iff

ρ(v) = σv

⎛
⎝F orig(v) ∪

⎛
⎝ ⋃

{u,v}∈E

F(u,v)(ρ(u))

⎞
⎠
⎞
⎠ ,

where F(u,v) is the arc-policy function for signaling edge (u, v) as in Definition 4.2.10.

A solution therefore must consist of consistent, best paths to each destination.

Remark 7.1.12. We assume, just as for original PVPSes, that policy functions are separable,

i.e., if p is a policy function and R is a set of path descriptors, then p(R) = {p(r) | r ∈ R}.

Separability is preserved by policy application, thus arc-policy functions are separable:

∀ (u, v) ∈ E, F(u,v)(R) =
{
F(u,v)(r) | r ∈ R

}
.

Because the GPVPS framework is general enough to model various types of inputs and

constraints on those inputs, the implementation of intended protocol behavior is left to the

protocol designer; several methods may achieve the same types of permitted routing con-

figurations. For example, the general notion of “routing-policy expressiveness” might be

captured by either allowing broad choices of selection functions for individual routers, or by

defining a simple route-selection procedure and limiting path-descriptor transformations

via import- and export-policy constraints.

Example 7.1.13. To model BGP, let the set of path descriptors be the set of data records

used in BGP update messages and routing tables (including attributes such as local pref-

erence and MED). Set the policy-application functions to hide (or zero-out) all private

154

attributes on eBGP export and extend the AS-path entry, checking for and filtering loops.

Then set the import and export policy constraints to limit attribute changes as described

in the BGP specification [RL95], e.g., local preference is an integer value in some range.

Set the origination constraint to check for the proper form of path descriptors for local

paths. Finally, set the selection function constraint so that all routers use the BGP selection

procedure in Section 2.4.

The original PVPS framework used SPP as a semantic domain to measure the expres-

siveness of a PVPS, i.e., the types of routing configurations that could be expressed using

a PVPS given its constraints. Because we allow arbitrary selection functions for GPVPSes,

we define a new measure of expressiveness incorporating GSPP.

Definition 7.1.14. Suppose that Ir is a restriction of a GPVPS instance I in which the

only path descriptor originated is r for some single destination d. Define the GSPP S(Ir)

to have the set of permitted paths at each node be the realizable paths at that node, i.e.,

P =
⋃
v∈V {P = v · · · d | r(P) �= ∅}. (These are the unfiltered paths.) Let the selec-

tion functions be the same as in the GPVPS instance. Then S(Ir) represents the routing

configuration for that destination.

The expressive power of a GPVPS PV is the set of all allowable routing configurations

(all allowable instances), i.e.,

M(PV) = {S(Ir) | Ir is a restriction of a legal instance I of PV }.

Remark 7.1.15. We note that any solution π for the GSPP S(Ir) corresponds to a solution

ρ for the restricted GPVPS instance Ir and vice versa. The proofs of these facts are mostly

algebraic manipulation and exactly mirror the analogous proofs in Section 4.4.1 for the

original SPP and PVPS.

155

GSPP can also be used as a better measure of expressiveness for the original PVPS; all

GSPPs in this case will have linear selection functions because the original PVPSes do not

allow IRR violations. The original framework defined expressiveness in terms of equiva-

lence classes of SPPs because only the relative preference ordering of paths at each node,

not the actual integer ranking function used to order paths, is important in capturing a

routing configuration. Therefore, any SPP S belongs to an equivalence class of SPPs E(S)

in which all SPPs may have different integer rank functions but have the same ordering

of permitted paths at each node. We note that there is an injection from SPP equivalence

classes to GSPPs; there is a canonical GSPP whose selection function orders paths in the

same way as each of the SPPs in the equivalence class.

This is also clear from the definition of linear selection functions (Definition 7.1.3).

Given a linear selection function, there are any number of rank maps ω that preserve the

choices of the selection function. Every one of these rank assignments corresponds to a pos-

sible SPP instance (because nodes have functions assigning ranks to paths), but these SPPs

all share the same relative preference between paths and thus belong to the same equiva-

lence class. However, there is only one (canonical) GSPP for a set of selection functions

assigned to nodes.

7.2 Conditions for Generalized

Protocol Convergence

We begin by providing the analogous definition of evaluation digraphs for GSPPs that

incorporate route-selection functions. (Given this definition, we use analogous versions of

the SPP convergence properties given in Section 3.2.1.)

156

Definition 7.2.1. The evaluation digraph of a GSPP instance S is a directed graph T (S) =

(VT , ET) in which the nodes represent protocol selection states, and the edges represent tran-

sitions between states. A selection state is a path assignment π ∈
(∏

v∈V Pv
)
; if α ∈ VT ,

then we write the path assignment corresponding to this node as πα. The start state is the

node corresponding to the empty path assignment, in which π(v0) = (v0) and, for v �= v0,

π(v) = ε, the empty path. The directed edge (α, β) is present in ET iff for all v �= v0 ∈ V

πβ(v) = σv0v

⎛
⎝ ⋃

{u,v}∈E

{vπα(u)}

⎞
⎠ .

Given a set of routing-policy inputs, we can study the corresponding GSPP’s evalua-

tion digraph to see how they affect path-vector-protocol execution. However, an evalua-

tion digraph is both large and complex; it is impractical to construct it as doing so requires

simulating all possible update sequences in the GSPP instance. Therefore, we introduce

a new version of dispute wheels and prove that it adequately captures oscillations in gen-

eralized SPPs. From that discussion, we are then able to describe oscillations in terms of

a new partial order on permitted paths described by local-policy configurations. (Because

our generalized version of the problem does not have a notion of rank, we must nontrivially

change the components of the order in Section 4.4.2 to correctly describe the generalized

robustness condition.)

7.2.1 Generalized Dispute Wheels

Definition 7.2.2. A generalized dispute wheel (see Figure 7.2) contains active nodes v0, . . . , vk

(with all subscripts interpreted modulo k + 1) such that vi has a spoke pathQi to the desti-

nation d, and vi and vi+1 are connected by a rim segment Ri+1 such that either:

1. ∃S ⊇ {Qi, Ri+1Qi+1} such that σdvi
(S) = Ri+1Qi+1; or

157

0

v w

QQ

Q

R R

i

i i+1

i+1

i−1

u x

vi

vi+1

v

i−1

Figure 7.2: Generalized dispute wheel.

2. ∃S � Ri+1Qi+1 such that

(a) σdvi
(S ∪ {Qi}) �= Qi and

(b) σdvi
(S ∪ {Qi, Ri+1Qi+1}) = Qi; or

3. ∃S � Ri+1Qi+1 such that

(a) σdvi
(S ∪ {Qi}) = Qi and

(b) σdvi
(S ∪ {Qi, Ri+1Qi+1}) �∈ {Qi, Ri+1Qi+1}.

Remark 7.2.3. Note that of the three relationships between active nodes in a generalized

dispute wheel, only condition (1) can occur for a linear selection function; conditions (2)

and (3) imply the existence of an IRR violation. Condition (1) is analogous to the condition

on rim segments found in the original definition of a dispute wheel for standard SPPs.

Theorem 7.2.4. If the evaluation digraph of a GSPP instance contains a cyclic trace, i.e., if a

GSPP instance is not safe, then it contains a generalized dispute wheel.

Proof. Let C be a cycle in the evaluation digraph of the instance, v0 a node which does not

select the same route throughout C, and Q0 one of the paths that v0 selects in C. Without

158

loss of generality, we may assume that u is the last (and thus only) node on Q0 that does

not select the same route throughout C. Viewing Q0 as one of the spokes of a generalized

dispute wheel, we now attempt to construct another such spoke and a rim segment joining

it to the spoke Q0.

Let v0P1 be the next path that v0 selects in C, and let x1 be the first node on P1. If

x1 oscillates its path selection in C, then let v1 be the last cycling node on P1, let Q1 =

v1 · · · d be the next spoke, and R1 = v0x1 · · · v1 be the rim segment connecting these two

spokes. (BothQ1 andR1 are subpaths of P1.) Because x1 oscillates in C, it must broadcast

and withdraw P1 during the oscillation, and one of these actions causes the selection-state

transition; thus the rim segment satisfies condition (1) in Definition 7.2.2.

If x1 does not oscillate in C, let v0P2 be the path that v0 selects in C after v0P1 and x2

the first node on P2. If x2 cycles in C, we may proceed as above, otherwise we consider the

path v0P3 that v0 selects in C after v0P2, etc. Eventually, we either construct another spoke

connected to Q0 by a new rim segment or we progress through all of C and return to the

path assignment in which v0 selects v0P1. If the latter happens, then v0 cycles through a

sequence of paths in C, and each of these paths is learned from a neighbor who does not

cycle in C. All of these paths are thus known to v0 at all times, therefore all of the changes

in path assignment to v0 must be the result of IRR violations. (This is because a change in

path assignment requires that v0 know of different routes before and after the change. If

the change selects a route that was already known but not chosen, by Definition 7.1.2, the

selection function for v0 has a type-1 IRR violation.)

In this case, assume that v0’s selection ofQ0 is the result of σdv0(S) = Q0 and v0’s choice

of v0P1 is the result of σdv0(S1) = v0P1, with Q0, v0P1 ∈ (S ∩ S1). Because S∆S1 �= ∅,

there is some route P2 such that either learning or withdrawing v0P2 causes the transition

159

from S to S1 and Q0 to v0P1. Let x be the first node on P2 and v1 be the last oscillating

node onP2. (There is such a node becauseP2 is broadcast and withdrawn in the oscillation;

otherwise we would not have this oscillation.) Then we can let Q1 = v1 · · · d be the next

spoke, and R1 = v0x · · · v1 be the rim segment joining them such that either condition

(2)—if P2 is learned—or condition (3)—if P2 is withdrawn—is satisfied.

Because the oscillation cycle is finite, we can repeat this process until we reach a selection

state or path assignment that we have already visited. At this point, a subset of the spoke

and rim segments will form a generalized dispute wheel.

Corollary 7.2.5. If a GSPP instance is not solvable, then it contains a generalized dispute wheel.

Proof. An unsolvable GSPP has no sink state in its evaluation digraph; therefore all traces

must contain cycles, and any of these cyclic traces produces a generalized dispute wheel by

Theorem 7.2.4.

Proposition 7.2.6. If a GSPP instance has multiple solutions, then it contains a generalized

dispute wheel.

Proof. We follow an analogous proof method in [GSW02]. Suppose π1, π2 are two so-

lutions; we can view these as trees in the network, rooted at the destination v0: Ti =⋃
v∈V πi(v). Then let H = (V, E(T1) ∩ E(T2)) be the graph induced by the intersec-

tion of the trees and let T be the component of H including v0. Note that V − V (T) is

nonempty—otherwise T1 = T2.

In the following process, assume that all nodes ui are assigned paths in both solutions.

Choose an edge {u1, v1} ∈ T1 where u1 �∈ V (T) and v1 ∈ V (T). Then π1(u1) = u1Q1,

where Q1 is the path in T from v1 to d; π1(v1) = π2(v1) = Q1 so that Q1 is in both

solutions because T is the intersection of both solutions. There is some other path P1 =

160

π2(u1) in T2; this path is of the form R2Q2 where R2 = u1 · · ·u2 contained in T2 \H and

Q2 = v2 · · · d contained in T . Note that π2(u2) = u2Q2, so we can repeat this process by

examining the path π1(u2). Continuing, we can alternate between both solutions until we

repeat a node ui.

The paths Ri, Qi form a generalized dispute wheel. This is because for each i, there

must exist some S ⊂ Pui
such that σv0ui

(S ∪ {Ri+1Qi+1, uiQi}) = Ri+1Qi+1 because for

either i = 1 or i = 2, πi(ui) = Ri+1Qi+1 given the construction above. (If not, πi is not a

stable solution, because the path uiQi must be available given that Qi is in the intersection

of both solutions.) This satisfies condition (1) in Definition 7.2.2.

The contrapositive of the above three assertions forms a sufficient condition on GSPP

instances that guarantees robust protocol convergence; we summarize this as the following.

Proposition 7.2.7. If a GSPP instance has no generalized dispute wheel, it is robust.

7.2.2 Partially Ordered GSPPs and

Generalized Dispute Digraphs

The three types of conditions described in Definition 7.2.2 that connect dispute-wheel

spokes by rim segments can be used to define relations between permitted paths in a GSPP.

These relations can, in turn, be used to define a graph structure on the paths in a GSPP that

makes the relationship between paths based on policy interactions easy to visualize. The

underlying compatibility of local-policy configurations can then be described as the exis-

tence of a consistent partial order on permitted paths using these relations. By rephrasing

the sufficient condition from Proposition 7.2.7 using these terms, we can better understand

how individual policy interactions (corresponding to the following path relations) consti-

tute a global routing anomaly.

161

Definition 7.2.8. Define the following four relations on permitted paths in a GSPP in-

stance; assume that v0 is the fixed destination node and that u, v ∈ V are other network

nodes.

Subpath P1 � P2 iff

P1 = v · · · v0, P2 = u · · · v0, and uP1 = P2

Linear Selection P1 � P2 iff

P1 = v · · · v0, P2 = u · · · v0, and ∃S : σv0u ({uP1, P2} ∪ S) = uP1

Nonlinear Selection (first type) P1 �1 P2 iff P1 = v · · · v0, P2 = u · · · v0, and

∃S � uP1 : σv0u ({P2} ∪ S) �= P2 and σv0u ({uP1, P2} ∪ S) = P2

Nonlinear Selection (second type) P1 �2 P2 iff P1 = v · · · v0, P2 = u · · · v0, and

∃S � uP1 : σv0u (S) = P2 and σv0u ({uP1} ∪ S) �∈ {uP1, P2}

We now define the following graph on the set of permitted paths using the above rela-

tions.

Definition 7.2.9. Given a GSPP instance S, its generalized dispute digraph is the directed

graph D(S) = (VD, ED). The nodes VD = P are the permitted paths in the network. The

directed edge (P1, P2) is present in ED iff one of P1 � P2, P1 � P2, P1 �1 P2, or P1 �2 P2

holds.

Note that the dispute digraph is smaller than the evaluation digraph as each node is

labeled with a single network route rather than a set of network routes; it is also easy to

build given the definition of each node’s selection function.

162

Because the relations correspond to transitions in the evaluation digraph and connec-

tions between dispute-wheel spokes, we can prove the following.

Theorem 7.2.10. A GSPP instance has a generalized dispute wheel iff it has a cycle in its gener-

alized dispute digraph.

Proof. First assume that the instance has a generalized dispute wheel. Its rim gives a

cycle in the generalized dispute digraph as follows, because the pair of paths from ad-

jacent rim nodes to the destination each belong to one of the four relations in Defini-

tion 7.2.8. Begin with any active node vi on the rim; let r1 be the next node on the rim

segment Ri. From the construction of the dispute wheel, r1Qi = r1vi · · · d is an exten-

sion of Qi, so Qi � rQi; this relation holds for further extensions along the rim, such that

(ri · · · r1Qi)� (ri+1ri · · · r1Qi). Let R∗
i be the rim segment up to, but not including, vi−1;

using these relations, we see there is a path from Qi to R∗
iQi in the dispute digraph for

each active node vi in the dispute wheel. Call these paths Di. Then, for every RiQi and

Qi−1, one of the three conditions in Definition 7.2.2 holds. In the case of condition (1),

∃S : σdvi−1
(S ∪ {RiQi, Qi−1}) = RiQi; thus R∗

iQi � Qi−1, corresponding to the edge

(R∗
iQi, Qi−1) connecting Di and Di−1. In the case of condition (2), learning RiQi at vi−1

forces another route to be selected over Qi−1; thus R∗
iQi �2 Qi−1, also corresponding to

the edge (R∗
iQi, Qi−1) connectingDi andDi−1. Finally, in the case of condition (3), with-

drawing some route at vi−1 forcesQi−1 to be chosen; thusR∗
iQi�1Qi−1, corresponding to

the same edge connecting Di and Di−1. Therefore the dispute-digraph edges correspond-

ing to pairwise relations between paths starting at adjacent rim nodes form a cycle.

In the other direction, assume that we have a cycle in the dispute digraph. Consider

any edge (P1, P2) and examine the relation between P1 and P2. If P1 � P2, then let the

first node of P1 be a rim node and connect it to the first node of P2 as an adjacent rim node

163

(counterclockwise, referencing Figure 7.2.). If P1�P2, P1�1P2, or P1�2P2, then let P2 be

a spokeQi and connect the first node of P2 to the first node of P1 on the rim segmentRi+1;

the subpath of P1 from the first node to the last oscillating node will be the rim segment

Ri+1 and the remainder of P1 will be the next spokeQi+1. The resulting structure will obey

one of the three conditions in Definition 7.2.2 for rim segments connecting spokes and will

have subpaths along individual rim segments (moving clockwise); therefore, this structure

is the dispute wheel corresponding to the dispute-digraph cycle.

This immediately leads to the following corollary, which provides an equivalent suf-

ficient condition to Proposition 7.2.7 using the transitive closure of path relations (local

conditions) instead of dispute-wheel freeness (a global condition).

Corollary 7.2.11. Given a GSPP instance, if there is a cycle in its evaluation digraph, then the

corresponding relation© = (� ∪ � ∪ �1 ∪ �2)
∗ on permitted paths is not a partial order.

Proof. If P1©P2, then there is a path in the dispute digraph from P1 to P2 (as in the proof

of Theorem 7.2.10). If the relation © is not a partial order, there are two paths P1 �= P2

such that P1 © P2 and P2 © P1; the two corresponding paths form a dispute-digraph

cycle. Analogously, if there is a cycle in the dispute digraph, there are paths P1 �= P2

corresponding to nodes in this cycle such that P1 © P2 and P2 © P1; thus © cannot be a

partial order. The result then follows directly from Theorems 7.2.4 and 7.2.10.

Remark 7.2.12. The original set of relations defined in Section 4.4.2 for SPP partial order-

ing could assume linear selection functions; thus both types of the “nonlinear selection”

relation were not used. However, recall that the “linear selection” relation was also differ-

ent, defined as follows: assuming that ω is a ranking function, P1 � P2 iff ω(P1) ≤ ω(P2).

In this version of the definition, both paths begin at the same node, and the extension of

164

P1 to u in Definition 7.2.8 was captured in the transitive closure of � with the subpath

relation�. If we defined a similar selection relation, i.e., P1 � P2 iff there exists some S

such that σ({P1, P2} ∪ S) = P1, then any IRR violation would automatically introduce a

cycle in the dispute digraph (this fact follows directly from Definition 7.1.2). Because not

all such IRR violations cause protocol oscillations (given other nodes’ policies), subsuming

one subpath relation into the three selection relations eliminates these spurious cycles from

dispute digraphs. Consequently, the example dispute cycles below will appear different

than the disputes in [GSW02].

Using the generalized dispute digraph, one can diagnose the cause of oscillations: cy-

cles that involve nonlinear-selection edges are the result of IRR violations, and cycles only

involving linear-selection and subpath edges are manifestations of basic policy disputes not

based on IRR violations.

7.2.3 Example GSPPs and Dispute Digraphs

In the following diagrams of generalized dispute digraphs, we will use the following con-

vention for edges: solid lines correspond to subpath relations, dashed lines correspond to

linear-selection relations, and dotted-and-dashed lines correspond to nonlinear-selection

relations. Of these, those with solid arrowheads are of the first type while those with white

arrowheads are of the second type.

Example 7.2.13. We begin with the generalized dispute digraph for MED-EVIL, the GSPP

from Example 7.1.8. To simplify the diagram, we have condensed ASes 1, 2, and 0 into a

single AS 0 connected to routers C, D, and E; we can write analogous selection functions

that maintain the policies and MED-induced oscillation in the original MED-EVIL. The

graph is shown in Figure 7.3.

165

AC0 AD0 BE0

C0 D0 E0

ABE0BAD0BAC0

Figure 7.3: Generalized dispute digraph for MED-EVIL.

This digraph has two cycles,AC0−BE0 andAD0−BE0; as expected, both of these

involve nonlinear selection edges and the paths that cause IRR violations. The policies

of MED-EVIL create no oscillation when MEDs are ignored: note that the linear-selection

edges do not form any cycles. Involving MEDs creates relations between paths that are not

consistent with a partial order. To achieve a partial order, we can attempt to change local

policies to change the relations, i.e., break the cycle; e.g., we can force node A to always

choose the path AC0.

Example 7.2.14. We now revisit the two canonical policy-induced oscillations discussed in

Section 3.1. The instance DISAGREE is shown in Figure 7.4; it contains two stable solutions

but does not predictably converge to either one, thus its dispute digraph contains a cycle.

The instance BAD GADGET is shown in Figure 7.5; it has no solution, so its dispute digraph

also contains a cycle. Because these instances have linear selection functions, they are shown

as standard SPPs.

7.3 Applications to Protocol Design

In this section we examine some strategies for constraining policies to guarantee robust

protocol convergence. Although dispute wheels and dispute digraphs are useful tools for

166

2010

0

1 2
210120

(a)

120

10 20

210

(b)

Figure 7.4: (a) The SPP instance DISAGREE and (b) its corresponding generalized dispute
digraph.

30

10 1 2
230
20

0

3
310

120

(a)

10 20 30

210 320 130

(b)

Figure 7.5: (a) The SPP instance BAD GADGET and (b) its corresponding generalized dis-
pute digraph.

studying policy interactions, using them can be impractical for real network configurations.

The dispute digraph has size proportional to the number of loopless paths in a network;

checking for dispute wheels is at least as hard, because there is no known way to directly

produce a dispute wheel without an instance’s dispute digraph or evaluation digraph. Fur-

thermore, it is almost impossible to obtain Internet-wide policy information to generate

these structures, and the structures will be different every time nodes make policy changes.

Ideally, we want constraints on the protocol specification or policy-configuration language

that applies to a broad set of networks and routing configurations—we would like to use

the sufficient condition from the previous section while allowing for as much policy expres-

siveness as possible.

167

Unfortunately, generalizing the types of constraints in Chapters 4–6 is hard because

our new model allows for nonlinear selection functions, which removes any notion of path-

rank values, and because our model broadens the notion of the protocol’s route-selection

procedure arbitrarily.

Some obvious, draconian constraints, e.g., preventing the advertisement of any route

that causes an IRR violation, can be trivially shown to prevent routing anomalies, but these

are very strict and harshly limit expressive power. Below we review a specific proposal to

review MED-induced oscillations in BGP, and we use our tools to suggest an improvement.

In the following subsections, we discuss two other conjectured solutions and, using the

results from the PVPS and GPVPS frameworks, prove them to be true.

7.3.1 Multiple-Path Broadcast

Basu et al. [BOR+02] and Musunuri and Cobb [MC04] proved that a modification to BGP’s

update messages will prevent MED-induced oscillations. They suggested that nodes broad-

cast not only best routes, but any route that remains after step 3 in the BGP route-selection

process (see Example 7.1.8), i.e., all routes with minimal MED values, possibly one for each

AS, are broadcast, not only the one with minimal IGP distance to the egress point. This

prevents routes that cause IRR violations from being broadcast and withdrawn repeatedly.

In the case of MED-EVIL in Example 7.1.8,1 node B would then always broadcast the route

BE20, even though it would never select it. Because the route is never chosen elsewhere

due to its high MED value, this introduces no consistency problems. However, it (1) allows

other nodes to make the correct choice of routes with respect to MED values and (2) stops

the oscillation by making that choice stable.

We can see the effect of such a change by examining the cyclic traces in the evaluation

1As in Example 7.2.13, we simplify the instance by condensing AS 1, AS 2, and AS 0 into a single AS 0 and
modifying the selection functions accordingly.

168

+ABE0
BE0

AC0
BE0

AC0
BAC0

AD0
BAC0

broadcast (always
send ABE0)

with multiple−path

+BAD0

−ABE0

+BAC0

AD0

Figure 7.6: Cycle in the evaluation digraph of MED-EVIL.

digraph. The MED-induced cycle of MED-EVIL is shown in Figure 7.6. The nodes show the

selections of nodesA andB, and the labels on arrows show the causes of transitions (routes

being advertised or withdrawn). Note the IRR violation is clear in the transition between

the first and second states; node A switches from AD0 to AC0 by learning a different

route, ABE0. With multiple-path broadcast, the withdrawal of ABE0 never takes place;

therefore the state (AC0, BAC0) becomes a sink state and a stable assignment.

This effect easily generalizes to all GSPP instances involving MEDs: any MED-induced

oscillation corresponds to an evaluation-digraph cycle of the above form, and preventing

a route withdrawal by broadcasting additional routes will break the cycle by preventing

one (or more) of the cycle’s transitions. In addition, because more routes are always broad-

cast, nodes will not choose higher-MED-valued routes when lower-MED-valued routes are

available, thus preserving the intended behavior of the MED attribute. More generally, if

routes causing IRR violations are always broadcast, the resulting route-selection functions

with restricted domain have no IRR violations.

Multiple-path broadcast can increase the size of routing tables and update messages.

However, we propose that IRR violations can be detected dynamically, precisely when

a newly learned route causes a switch in selection without selecting the new route. Re-

questing that the new route always be broadcast will prevent a future oscillation due to

169

withdrawal of that route without any route inconsistencies. Maintaining one extra route as

needed is more storage-efficient than the multiple-path broadcast proposed by [BOR+02,

MC04]. Although this solution requires further modification to BGP, dynamic detection of

IRR violations is possible by examining protocol-execution traces. In practice, whenever

a BGP update message is received, the route selection before and after the update message

can be compared. If the new selection is neither the old selection or the newly learned

route, the route points to an IRR violation (this is clear from Definition 7.1.2. Request-

ing this IRR-violating route to be broadcast as long as it is available prevents any induced

oscillations because the route essentially becomes fixed, breaking the cycle of withdrawals

and advertisements in the evaluation digraph. Formally, we have the following.

Proposition 7.3.1. An oscillation due to an IRR violation can be dynamically detected and

stopped by requesting one additional route to be broadcast permanently.

Proof. Given a cycle in the evaluation digraph involving an IRR violation, there are transi-

tions in this cycle involving an advertisement or withdrawal of a route that is never selected.

This route can be detected by comparing path assignments in the states adjacent to these

transitions. If the withdrawal transition is prevented by forcing the route to be advertised

as long as it is available, even if it is not chosen, the withdrawal transition cannot take place

and the cycle is broken.

This procedure breaks cycles in a “snapshot of time,” i.e., for a static routing config-

uration that induces a protocol oscillation. If changes occur and routes are introduced or

withdrawn for legitimate causes, the resulting GSPP instance will have a different eval-

uation digraph; however, the relevant IRR-violating routes can be detected for this new

configuration in the same way. If the IRR-violating route is no longer available, the broad-

casting node can send the appropriate withdrawal—this still allows the receiving node to

170

detect new IRR violations involving other routes. Furthermore, if any IRR-violating se-

lections are superseded by learning new routes that are always more preferred or by other

IRR-violating routes, the original routes are not needed and the broadcast can be stopped.

7.3.2 Compare All MEDs

Some routers have an option to change the route-selection procedure involving MEDs: In

step 3 of the BGP procedure described in Example 7.1.8, instead of eliminating multiple

paths to the same AS by choosing the one with lowest MED value, MED values are com-

pared across all paths so that, regardless of AS next-hop, only paths with the lowest MED

values are retained for possible selection.

This option essentially changes the route-selection procedure so that it is linear: for

each path, the preference of that path depends, in order, on its local preference, then path

length, then MED value, and finally IGP distance. Therefore, IRR violations are no longer

possible, and previous convergence constraints apply. In fact, because local-preference, AS-

path length, and MED values do not change during intra-domain BGP (iBGP) sessions,

and because IGP distances increase as paths are extended, the absolute rank value asso-

ciated with paths increases on extension. This obeys the strict-monotonicity constraints

of [GJR03, Sob03], so MED-induced oscillations cannot occur. (Of course, more general

policy-induced oscillations due to, e.g., local-preference settings, can still occur.)

Formally, comparing all MEDs changes the route-selection procedure such that selec-

tion functions are linear, compatible with the rank map ω(l, P,m, d) = (−l, |P |,m, d),

lexically ordered, where l is the local preference, P is the AS path (path vector), m is the

MED value, and d is the IGP distance.

171

7.3.3 AS-Distinct Local-Preference Settings

McPherson et al. in [MGWR02] suggest a workaround for MED-induced oscillations that

prevents BGP from having a conflict when it reaches the MED step. If only routes from one

AS remain when MEDs are considered, then all routes have their MED values compared

and, similar to above, IRR violations are not possible. One simple way to do this is to assign

local-preference values such that no two routes from different ASes have the same value;

then the first step of the BGP selection process will automatically eliminate all routes except

those from a single AS. (One can also assign distinct local-preference values to equidistant

ASes; then the first two steps eliminate all routes but those from one AS.)

This route-selection procedure is consistent with linear selection functions because, just

as above, the rank of a route independently depends on four criteria in order. Once the

MED value is considered, all remaining routes have the same local preference, path length,

next-hop AS, and MED value, again leaving the strictly monotonic IGP distance to be used

to break ties. Therefore, this modification to BGP prevents MED-induced anomalies.

172

Chapter 8

Conclusions and Open Questions

The path-vector policy system (PVPS) framework is a rigorous model that can be used to

understand the behavior of inter-domain routing protocols. Previous work has given point

solutions in the design space of robust routing protocols and has given some sufficient

conditions on specific network instances or specific protocol implementations. This disser-

tation, however, uses the methodology of formal modeling to investigate the underlying

convergence issues of path-vector protocols and inter-domain routing in general, without

being constrained by the details of BGP. Doing so provides a complete description of the

design space. In Chapter 4, we identified and rigorously defined several dimensions of this

space corresponding to desirable protocol properties and demonstrated several inherent

trade-offs in this space—these apply broadly to the design of inter-domain routing proto-

cols. In particular, we showed the importance of including the development of a global

constraint in the design of any routing system. Such design principles are required if we

are to move beyond ad hoc fixes every time policy-interaction problems are encountered.

Our characterization of robust routing systems was not complete, however. Either

Conjecture 4.5.3 must be proven or a broader sufficient condition for robustness should

be found. Furthermore, we have not shown the simultaneous trade-offs among all dimen-

sions of the design space. Design properties such as security, privacy, and policy opaque-

173

ness should be studied further. And, if we begin the design process with tractable global

constraints as our starting point, we should be able to characterize the level of expressive-

ness that can be achieved with an autonomous, transparent, and robust system with an

imposed global constraint that can be checked in polynomial time. Although we have ad-

dressed the balance of local and global constraints in the context of class-based systems in

Chapter 6, we have yet to study this question in general.

Chapter 6 does, however, complete the analysis of these class-based systems that gen-

eralize Hierarchical-BGP and related protocols. In particular, we showed how to use the

specification of a generic class-based system to generate a global constraint which guar-

antees the robust convergence of any network instance satisfying it. Our constraint is the

best-known such constraint for these systems, and we provided centralized and distributed

algorithms to enforce it. The question of how to efficiently run our distributed algorithm

in parallel remains open, however: In particular, token-traversal paths from separate in-

stances of the algorithm can probably be combined to find and fix all potential dispute

wheels simultaneously.

To date, class-based systems seem to be the only path-vector systems well-characterized

enough that an exact balance of local and global constraints for them can be proven. Other

examples of path-vector policy systems should be studied in a similar way, hopefully yield-

ing constraints and enforcement mechanisms that guarantee robustness for a larger set of

path-vector protocols.

In Chapter 5, we showed that the results of the path-vector algebra framework [Sob03]

are essentially equivalent to those in the PVPS framework. Because we can translate speci-

fications between frameworks, the results discussed above can be applied to different levels

of abstraction. However, we have yet to develop new design principles using a combination

174

of frameworks; we do expect that the translation will aid continuation of work in this area,

because the more suitable framework for a specific task can be used, and our translation can

be applied to describe the result in the other framework when necessary.

Chapter 7 has fully extended the notion of convergence conditions on SPPs to the gen-

eralized version of the problem, allowing arbitrary route-selection procedures instead of

those based on some notion of a linear path rank. Doing so allows us to fully understand

the causes of policy-induced routing anomalies from the perspective of an underlying math-

ematical consistency between nodes’ policies. The generalized version is able to capture the

behavior of protocols, e.g., BGP with MEDs, that do not satisfy independent route ranking

(IRR). In examining these generalized policy interactions, we rigorously defined protocol-

convergence properties and several useful graph structures that illustrate protocol behavior.

We provided two equivalent sufficient conditions for robust convergence, both of which

involve structures that are significantly smaller than examining the execution states of the

protocol directly. We also discussed applications of these results to protocol design, includ-

ing some simple (but strict) local-policy constraints and rigorous examinations of proposed

solutions to MED-induced oscillations.

There are two obvious directions for future work left open by the results in Chapter 7.

The first is the development of analogous constraints to those in Chapters 4–5 for arbitrary

selection functions. The original increasing or monotonicity condition depends on path-

rank values, which are not available in the generalized version. We have only been able

to develop very simple local-policy constraints, and these limit expressiveness quite a bit.

Because route-selection procedures are so broad, we expect generalizing previous notions

of constraints to be difficult. One method that may prove fruitful is examining a restricted

set of route-selection procedures, e.g., the application of PVPSes to class-based systems in

175

Chapter 6. Similar work could be done for systems allowing IRR violations.

The second is a further broadening of the model to capture the static semantics of policy

interactions when multiple-path broadcast is used; more generally, the results can be ex-

tended to SPPs with set-valued arbitrary selection and broadcast functions. The notion of a

broadcast function is similar to a selection function: it returns a subset of paths, as dictated

by the protocol specification, that are advertised to neighbors, given nodes’ routing tables

as inputs. (This allows more latitude in modeling step 3 of path-vector-protocol behavior

discussed in Section 2.3.) Separating broadcast functions from export policies allows more

freedom in implementing constraints at different parts of the route-advertisement process

and keeps the separability property for policy functions. Unfortunately, it seems that the

problem statement for arbitrary, set-valued selection and broadcast functions is difficult;

in fact, the problem of finding a stable, consistent solution for such a routing configuration

may not be in NP, because there may be a set of oscillating routing tables for each node that,

given particular broadcast functions, do give at least one stable solution. This extension to

the model could help design and evaluate protocols or protocol modifications, such as the

ones reviewed briefly in Section 7.3.1, without having to study large evaluation digraphs.

We are able to capture the static semantics of deterministic routing using the SPP/PVPS

and GSPP/GPVPS frameworks. However, in non-deterministic systems, the static and dy-

namic semantics may become intertwined; e.g., a node might use some temporal condi-

tion to break ties between equally ranked routes from different neighbors in a BGP-like

system—a system that prefers more recent routes will have very different semantics than

one that prefers older routes. Both non-deterministic systems and their dynamic semantics

should be investigated.

While security may be an orthogonal issue, it may be possible to use a similar formal-

176

modeling approach to prove guarantees about secure protocol behavior. It seems unlikely

that adding mechanisms for authenticating update messages or protecting routers will

change protocol-convergence properties, but a formal proof of that fact could hasten de-

ployment of a secured routing protocol.

Finally, we note that we have not addressed the actual development of deployable

policy-configuration languages using our design principles. In the case of BGP, it is unclear

that new languages can adequately enforce robustness constraints and provide desired ex-

pressiveness at the same time. However, there may be slight modifications to BGP and its

languages that are safe, e.g., hierarchical BGP with back-up routes [GGR01]. We have yet

to design a next-generation routing protocol and policy-configuration languages from first

principles, but we hope the results in this dissertation provide a foundation for doing so.

177

Bibliography

[ABG+98] C. Alaettinoglu, T. Bates, E. Gerich, D. Karrenberg, D. Meyer, M. Terpstra,
and C. Villamizar. Routing Policy Specification Language (RPSL). RFC 2280,
January 1998.

[BCC00] T. Bates, R. Chandra, and E. Chen. BGP Route Reflection – An Alternative to
Full Mesh IBGP. RFC 2796, April 2000.

[BOR+02] Anindya Basu, Chih-Hao Luke Ong, April Rasala, F. Bruce Shepherd, and
Gordon Wilfong. Route Oscillations in I-BGP with Route Reflection. In Pro-
ceedings of ACM SIGCOMM’02, pages 235–247, ACM Press, November 2002.

[BQ03] Olivier Bonaventure and Bruno Quoitin. Common Utilizations of BGP Com-
munity Attribute. draft-bonaventure-quoitin-bgp-communities-00,
IETF Internet Draft. Work in progress, 2003.

[Cis01] Cisco Systems. Endless BGP Convergence Problem in Cisco IOS Software Re-
leases. Field Note, http://www.cisco.com/warp/public/770/fn12942.
html. October 2001.

[CTL96] R. Chandra, P. Traina, and T. Li. BGP Communities Attribute. RFC 1997,
August 1996.

[DS98] Rohit Dube and John G. Scudder. Route Reflection Considered Harmful.
draft-dube-route-reflection-harmful-00, IETF Internet Draft. Work
in progress, November 1998.

[GAE+99] R. Govindan, C. Alaettinoglu, G. Eddy, D. Kessens, S. Kumar, and W.S.
Lee. An Architecture for Stable, Analyzable Internet Routing. IEEE Network,
13(1):29–35, January / February 1999.

[GGR01] Lixin Gao, Timothy G. Griffin, and Jennifer Rexford. Inherently Safe Backup
Routing with BGP. In Proceedings of IEEE INFOCOM 2001. IEEE Communi-
cations Society, IEEE Press, April 2001.

[GJR03] Timothy G. Griffin, Aaron D. Jaggard, and Vijay Ramachandran. Design
Principles of Policy Languages for Path Vector Protocols. In Proceedings of

178

ACM SIGCOMM’03, pages 61–72. ACM Press, August 2003. Extended ver-
sion available as Yale University Technical Report YALEU/DCS/TR-1250,
ftp://ftp.cs.yale.edu/pub/TR/tr1250.pdf.

[GR01] Lixin Gao and Jennifer Rexford. Stable Internet Routing without Global Co-
ordination. ACM/IEEE Transactions on Networking, 9(6):681–692, December
2001.

[GSW02] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The Stable
Paths Problem and Interdomain Routing. ACM/IEEE Transactions on Net-
working, 10(2):232–243, April 2002.

[GW00] T. Griffin and G. Wilfong. A Safe Path Vector Protocol. In Proceedings of IEEE
INFOCOM 2000, IEEE Communications Society, IEEE Press, March 2000.

[GW02a] Timothy G. Griffin and Gordon Wilfong. An Analysis of the MED Oscillation
Problem in BGP. In Proceedings of the 10th International Conference on Network
Protocols (ICNP’02), pages 90–99, IEEE Press, November 2002.

[GW02b] Timothy G. Griffin and Gordon Wilfong. On the Correctness of IBGP Con-
figuration. In Proceedings of ACM SIGCOMM’02, pages 17–29, ACM Press,
August 2002.

[Hen88] C. Hendrick. Routing Information Protocol (RIP). RFC 1058, June 1988.

[Hus99a] Geoff Huston. Interconnection, Peering and Settlements: Part I. Internet Pro-
tocol Journal, 2(1), June 1999.

[Hus99b] Geoff Huston. Interconnection, Peering and Settlements: Part II. Internet
Protocol Journal, 2(2), June 1999.

[Hus01] Geoff Huston. Scaling Interdomain Routing—A View Forward. Internet Pro-
tocol Journal, 4(4):2–16, December 2001.

[JR04] Aaron D. Jaggard and Vijay Ramachandran. Robustness of Class-Based Path-
Vector Systems. In Proceedings of the 12th International Conference on Net-
work Protocols (ICNP’04), pages 84–93. IEEE Press, October 2004. Extended
version available as Yale University Technical Report YALEU/DCS/TR-1296,
ftp://ftp.cs.yale.edu/pub/TR/tr1296.pdf.

[JR05a] Aaron D. Jaggard and Vijay Ramachandran. Relating Two Formal Models of
Path-Vector Routing. In Proceedings of IEEE INFOCOM 2005 (electronic only).
IEEE Press, March 2005.

[JR05b] Aaron D. Jaggard and Vijay Ramachandran. Robustness of Path-
Vector Protocols without Independent Route Ranking. Technical Report
YALEU/DCS/TR-1314, Yale University, April 2005. ftp://ftp.cs.yale.

edu/pub/TR/tr1314.pdf.

179

[JR05c] Aaron D. Jaggard and Vijay Ramachandran. Towards the Design of Robust
Inter-domain Routing Protocols. Manuscript, March 2005.

[MC04] Ravi Musunuri and Jorge A. Cobb. A Complete Solution for iBGP Stability.
In Proceedings of IEEE ICC-04. IEEE Press, June 2004.

[MGWR02] D. McPherson, V. Gill, D. Walton, and A. Retana. Border Gateway Protocol
(BGP) Persistent Route Oscillation Condition. RFC 3345, August 2002.

[Pos80] Jon Postel. User Datagram Protocol. RFC 768, August 1980.

[Pos81a] Jon Postel. Internet Protocol. RFC 791, September 1981.

[Pos81b] Jon Postel. Transmission Control Protocol. RFC 793, September 1981.

[RL95] Y. Rehkter and T. Li. A Border Gateway Protocol (BGP version 4). RFC 1771,
1995.

[RLA04] B. Rajagopalan, J. Luciani, and D. Awduche. IP over Optical Networks: A
Framework. RFC 3717, March 2004.

[RR99] E. Rosen and Y. Rekhter. BGP/MPLS VPNs. RFC 2547, 1999.

[RSS02] Jonathan Rosenberg, Hussein Salma, and Matt Squire. Telephony Routing
over IP (TRIP). RFC 3219, January 2002.

[Sob03] João L. Sobrinho. Network Routing with Path Vector Protocols: Theory and
Applications. In Proceedings of ACM SIGCOMM’03, pages 49–60. ACM Press,
August 2003.

[Sta99] Richard P. Stanley. Enumerative combinatorics. Vol. 2. Cambridge University
Press, Cambridge, 1999.

[STR05] Srihari R. Sangli, Daniel Tappan, and Yakov Rekhter. BGP Extended Com-
munities Attribute. draft-ietf-idr-bgp-ext-communities-08, IETF In-
ternet Draft. Work in progress, February 2005.

[VGE00] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent Route
Oscillations in Inter-domain Routing. Computer Networks, 32(1):1–16, March
2000.

[WCRS02] Daniel Walton, David Cook, Alvaro Retana, and John Scudder. BGP Persistent
Route Oscillation Solution. draft-walton-bgp-route-oscillation-stop
-00, IETF Internet Draft. Work in progress, May 2002.

[XBX03] Y. Xu, A. Basu, and Y. Xue. A BGP/GMPSL Solution for Inter-domain Op-
tical Networking. draft-xu-bgp-gmpls-03, IETF Internet Draft. Work in
progress, September 2003.

180

