NET TLE:A
LANGUAGE FOR
CONFIGURING
BGP NETWORKS

Andreas Voellmy
WEsE A7, 2007

2

S Y ittia - abivin S Grefie Srenmmeffel,

Prof. Dr. Otto Wilhelm Thomé, Flora von Deutschland, Osterreich
und der Schweiz. 1885, Gera, Germany

BGP: FLEXIBLE & DANGEROUS!

« BGP is the Internet’s interdomain routing protocol; It is designed to be flexible and allow a variety
of policies to be expressed by networks.

» This flexibility also makes BGP complex, and misconfiguration is common: Mahajan et al estimate
that 50% of network outages are due to misconfigurations;

* Furthermore, BGP routers typically play a crucial role in a network’s connectivity, and
misconfiguration can have serious conseguences.

Wow, AS7007!

e fFrom: Stephen A Misel
e Date: Fri Apr 25 13:20:40 1997

I happened to be in one of our 7505 routers this afternoon when POP -- all
of a sudden most of the internet disappeared! I immediately thought it was
me, but looked around and saw this AS7007 broadcasting MY routes! It
wasn't for all of our network space -- We have several /18's here, and it
seemed only the first /24 of each CIDR was affected. When I found a
workstation at the end of the /18, we got the whois info for 7007 --
Florida Internet Exchange, and called them.

They claimed to have a customer broadcasting some bad routing information
and unplugged their router. A few moments later, the internet stabilized
and I started seeing real routes.

Correct me if I'm wrong, but:

(1) We're going to read about this in EVERY computer magazine, newspaper
and TV as "the end of the internet?"

(2) Access lists by backbone providers *should* have prevented this.

(3) Does or does not the RADB and other routing registries (MCI's, etc)
prevent this?

I bet this hole will be patched up real soon!

DSLS TO THE RESCUE!

« Our overall goal is to help operators configure BGP according to their intentions,
reducing misconfigurations and improving productivity.

* Domain-specific languages (DSL) help programmers construct correct programs by providing a
language that matches the way domain experts think about their domain.

« A domain-specific embedded language (DSEL) i1s a DSL embedded in a host language; this
technique reduces the cost of implementation and allows the DSL to inherit the general features of
the host language.

* We have built Nettle, a DSEL in Haskell, in which BGP configurations for a whole network can be

described, and a compiler which translates a Nettle program into router configuration files for the
eXtensible Open Router Platform (XORP).

BGP KNOBS AND CONTROLS

* BGP provides lots of “controls’” and “knobs”
» Nettle makes those “controls’” available in Haskell

* We can now compose “‘controls” to make new “controls”

THIS TALK

* Intro to BGP: understanding BGP's “controls”.
* Intro to Nettle: how we embed BGP's controls in Haskell.

* [hree examples: defining high-level controls.

COMPUTER NETWORKS

« A computer network consists of a set of nodes,
each having an address, and a set of links
connecting nodes.

- Forwarding is the process of sending packets
to the next hop node

- Routing is the process that establishes the paths
along which forwarded packets flow. Routing
results in each node having a forwarding
table.

Destination

A

Outgoing
iNnterface

* IP addresses are 32-bit values, typically
written as 4 bytes, as in a.b.c.q,

* An address prefix, Is written a.b.c.d/e, and
denotes the subset of P addresses.

* Forwarding is by the “longest match”, I.e.
most specific

-ORWARDING ON THE IN

Prefix

0.0.0.0/0
RO ARe

= on

Address
2.0.0
20
=)

RN

Outgoing
:
2
3

Longest Match
0.0.0.0/0
BICHO | 6
B 00

Internet Physical Infrastructure
——Residentalaccess

o Cable
o Fiber

o DSL ISP Backbone ISP ISP
.. O Wireless

7 The Internet is a network
of networks

eg., administrated network is
O Ethernet called an Autonomous

o Wireless SysTem (A S)

29

BGP ROUTES

« BGP nodes announce routes to each other. These routes carry attributes, some of which
are:

» Address Prefix

« Next hop address

 AS Path, a sequence of AS numbers

» Community attributes

EXAMPLE POLICIES

* Do not advertise routes heard from one provider to another
-- no transit

* For a particular customer,; only accept routes with the subnet
they have been assigned -- no hijacks

* Prefer this route to my customer; but prepend my AS number
several times when advertising it to others -- customer wants
me to use this route, but to discourage others (but not prevent

entirely) from using it.

BGP'S CONTROLS

BGP nodes then repeat the following:
Collect announcements from neighbors;
Choose some of the announced routes to consider - Use Filter
 Assigns numeric preference to remaining routes - Preference Policy
For each prefix announced, select the best one according to the decision process
Install best routes in the forwarding table of the router
« Choose some of the best routes to advertise - Ad Filter

 Advertise these with (potentially) modified attributes - Ad Modifier

|57

BGP'S CONTROLS

. Two parts of BGP policy: userilter : Neighbor X Route = Bool

routes should we use!

- Export policy: which
routes should we offer to
neighbors, and how good or
bad should we make it look?

adFilter : Neighbor x Route — Bool

adModifier : Neighbor X Route = Route

BGP DECISION PROCESS

« The BGP decision process roughly implements shortest AS-path routing, while allowing networks to
override this behavior by assigning non-default local preferences to routes.

- Of the routes known, a BGP node selects the best route for each prefix, by applying the BGP decision
process, which is a lexicographic order on the following attributes:

highest local preference

shortest AS path length

lowest router ID (used as a tie-breaker)

FORWARDING, REVISITED

0.0.0.0/0 | 10O FONEEEEuuEis
address outside of the 2 1.0.0/1 6] 2020202088
network: 3 1.0.0/16| 303030801

» Jo forward a packet to an

» Find the most specific

- matching
the address,

[3

« Use the best one. JHOH0 |

PROTOCOL INTERACTION

* Networks running BGP also run an internal routing protocol
and these protocols interact by injecting routes into from one
protocol to the other. This process Is called route redistribution.

» Some routes are known statically, and these may need to be
injected Into BGR We view statically known routes as being
computed by a static routing process.

NETTLE TUTORIAL

nettleProg = routingNetwork bgpNet staticNet redistPolicy

BGP NETWORK

bgpNet = bgpNetwork myASNumber bgpConns prefs usefilter adfilter admodifier

ROUTERS

rl = router rizorp

where rizorp = zorpRouter rorpBgpld xorpInterfaces
rorpInterfaces = |ifaceEth0 |
iface Eth0 = zorplnterface "eth0" "data" |virtuallfEthOEthO]
virtual[fEthOEth0 = let block = address 200 200 200 2 // 30

becastAddr = address 200 200 200 3
in vif "eth0" (vifAddrs (vifAddr block bcastAddr))

BGP CONNECTIONS

connl = externalConn r1 (address 100 100 1 0) (address 100 100 1 1) 3400
conn?2 = internalConn r1 (address 130 0 1 4) r3 (address 1300 1 6)

20

ROUITE PREDICATES

nextHopEq (address 128 32 60 1) V tagged With (5000 ::: 120)

prefixInSet |address 128 32 60 0 // 24, address 63 100 0 0 // 16]
A tagged WithAtLeastOneOf [5000 ::: 120, 7500 ::: 101]

asSeqln (repeat (¢ 7000) > repeat any > (¢ 3370 ||| 2 4010) > repeat (i 6500))

7

NEW PREDICATES

pathls xs = asSeqln $ foldr (Aa r — repeat (¢ a) > r) empty xs

)

USE & AD FILTERS

reject (prefirEq (address 128 3200 // 16))

usefilter ¢ =
if ¢ = cl
then reject ((prefitEq (address 128 32 00 // 16) A tagged With (5000 ::: 120))

V tagged With (12345 ::: 100))
else reject (asSeqln (repeat any > repeat (¢ 7000) > repeat any))

76

ROUITE PREFERENCES

cond (tagged With (5000 ::: 120)) 120

$ cond (tagged With (5C

$ cond (tagged With (5C
$ always 100

i

C

C

(O]
(5 RS

00)) 100

0)) 80

ROUTE MODIFIERS

tag (5000 ::: 130)
prepend 65000

tag (5000 ::: 130) > prepend 65000

cond (tagged With (5000 ::: 120)) (prepend 65000) (always (tag 1000 ::: 99))

adMod c | ¢ = cl always (prepend 65000)
c = c2 always (prepends 2 65000 > tag (65000 ::: 120))
otherwise = always ident

75

COMPILING

compile nettleProg r1

26

3 EXAMPLES

* Multi-homed “'stub’” network
* Hierarchical BGP

* Provider policies allowing customer-controlled policy

Ak

D NETWORK

- XAMPLE: MULTI-HOM

Example from Zhang and Bartell,
"BGP Design and Implementation”™

Objectives:

Balance traffic over high and low
bandwidth links.

Use multiple links to provide
robustness under link failures.

Default routing only Is too coarse.

Request “default and partial” routes
from providers.

28

- XAMPL

= MULTI-RHOM

D NETWORK

« Routes are of these types:

« Customer of 100

« Customer of 200

« Customer of both 100 & 200

« Neither customer of 100 nor

customer of 200.

+ To balance traffic we want

« most traffic to flow over high,
including non customers and
customers of 100

cust of
|00 & 200

Providers’\

customers| . traffic to customers of 200 (and not
of 100) to flow over low-2.

J

7

D NETWORK

- XAMPLE: MULTI-HOM

Plan for link failures

« When one link fails:

It low-2 falls, use high

If low-1| falls, traffic is
unaffected

cust of
100 & 200

30

It high falls, balance over

))
Providers low-| and low-2
customers

« When two links fails, use the

J 4
remadining one.

- XAMPLE: MULTI-HOM

By

- WORK

We can write the preference policy simply...

cond (nextHopkq (peerAddr connHigh)) 120 (always 100)

but this obscures the intentions of the policy.
We would like to express this more directly.

&l

-XAMPL

= MULTI-RHOM

D N

- WORK

» Balance on the most direct links available having the highest

bandwidth

balance ByBandwidth :: [| BGPConnection|] — Cond BGPT Preference

import Nettle. MultiHomed
prefs = balanceByBandwidth || connHigh|, | connLow100, connLow200]]

£V

EXAMPLE 2: HIERARCHICAL BGP

» Gao and Rexford found
that business relationships
between ASes falls into
two types:

* customer-provider

* peer-peer

O Customer provider
relationship

O a provider is an AS that
connects the customer to
the rest of the Internet

O customer pays the provider
for the transit service

O e.g., Yale is a customer of
AT&T and QWEST

~ ~

provider provider

customer
—»)

provider to \\—'\/—j
customer

£k

O Peer-to-peer
relationship

O mutually agree to exchange
traffic between their
respective customers

O there is no payment
between peers

EXAMPLE 2: HIERARCHICAL BGP

 These two types strongly constrain BGP policy, both usage and advertising:
* route preferences: customer > peer > provider

» customer routes are advertised to all neighbors, whereas peer and provider routes may
only be shared with customers

* Whriting the routing configurations to satisfy these constraints is tedious and error-prone.

* We can generate these policies using Nettle!

£

HBGP IN NET TLE

data PeerType = Customer | Peer | Provider

hbgpAdFilter :: | (ASNumber, PeerType)]
— BGPConnection r
— Filter BGPT

hbgpPrefs :: [(ASNumber, PeerType)|
— PartialOrder ASNumber
— Cond BGPT Preference

55

HBGP IN NET TLE

home = 100; custl = 200; cust?2 = 300; cust3 = 400
cust4 = 500; peer! = 600; peer2 = 700; prov = 800

peerTyping = [(custl, Customer), (cust2, Customer), (cust3, Customer),
(cust4 , Customer), (peerl, Peer), (peer2, Peer), (prov, Provider)]|

prefs = hbgpPrefs peerTyping basicPrefs
where basicPrefs = [(custl, cust?2), (custl, custy), (cust3, custs),
(peer?2, peerl), (prov, prov)]

adFilter = hbgpAdFilter peerTyping

36

COMPILING HBGP

term imptermi3 {
from {
as-path: "7200| (200 [0-9] [0-9]*([0-9] [0-9]*)*)$"
+
then {
localpref: 105
I
It

term impterml3 {
from {
as-path: "7300| (300 [0-9] [0-9]*([0-9] [0-9]*)*)$"
I
then {
localpref: 104
Iy
I

5}/

COMPILING HBGP

term expterm7 {

o

neighbor: 130.6.1.1

as-path: "~700| (700 [0-9][0-9]*([0-9][0-9]*)*)$"
+

then {

reject

+
Iy

term expterm8 {

to {

neighbor: 130.6.1.1

as-path: "7800| (800 [0-9] [0-9]*([0-9] [0-9]*)*)$"
+

then {

reject

+
I

38

EXAMPLE 3: CUSTOMER-

ADJUSTABLE POLICY

» Allow customers to adjust preference of announced routes.

.
cond (tagged With 1000 ::: 80) 80

1000:80

000:
000:

00
29,

30 $ cond (tagged With 1000 ::: 100) 100

00 $ cond (tagged With 1000 ::: 120) 120
$ always 100

s

B

CUSTOMER-ADJUSTABLE POLICY

* Allow customers to control advertising:

* Suppress by AS number - community tag indicates which peers not to advertise
to based on their AS Numbers.

Suppress when advertising to

000:5500 5500
000:5600 5600

reject (Aconnection — tagged With 1000 ::: (asNumber connection))

40

CUSTOMER-ADJUSTABLE POLICY

* Prepending by AS Number - community tag indicates how many times to
prepend when advertising a route to a specific neighbor

Times to Prepenc

85500 5500 |
002:5500 5500 2

100 1:5600 5600 |

Gl

CUSTOMER-ADJUSTABLE POLICY

* We can write functions these policies in Nettle, and then apply
them by applying these functions:

adjustable Prefs homeASNum [80,100,120] (always 100)

adjustable Prepending homeASNum [1,2,3,4,5] [5500,5600] (always ident)

5

