
NETTLE: A
LANGUAGE FOR
CONFIGURING

BGP NETWORKS

Andreas Voellmy
OGST - April 7, 2009

Prof. Dr. Otto Wilhelm Thomé, Flora von Deutschland, Österreich
und der Schweiz. 1885, Gera, Germany

1

BGP: FLEXIBLE & DANGEROUS!

• BGP is the Internet’s interdomain routing protocol; It is designed to be flexible and allow a variety
of policies to be expressed by networks.

• This flexibility also makes BGP complex, and misconfiguration is common: Mahajan et al estimate
that 50% of network outages are due to misconfigurations;

• Furthermore, BGP routers typically play a crucial role in a network’s connectivity, and
misconfiguration can have serious consequences.

2

3

Wow, AS7007!

 • From: Stephen A Misel
 • Date: Fri Apr 25 13:20:40 1997

I happened to be in one of our 7505 routers this afternoon when POP -- all
of a sudden most of the internet disappeared! I immediately thought it was
me, but looked around and saw this AS7007 broadcasting MY routes! It
wasn't for all of our network space -- We have several /18's here, and it
seemed only the first /24 of each CIDR was affected. When I found a
workstation at the end of the /18, we got the whois info for 7007 --
Florida Internet Exchange, and called them.

They claimed to have a customer broadcasting some bad routing information
and unplugged their router. A few moments later, the internet stabilized
and I started seeing real routes.

Correct me if I'm wrong, but:

 (1) We're going to read about this in EVERY computer magazine, newspaper
and TV as "the end of the internet?"

 (2) Access lists by backbone providers *should* have prevented this.

 (3) Does or does not the RADB and other routing registries (MCI's, etc)
prevent this?

I bet this hole will be patched up real soon!

Steve
- - - - - - - - - - - - - - - - -

DSL’S TO THE RESCUE!

• Our overall goal is to help operators configure BGP according to their intentions,
reducing misconfigurations and improving productivity.

• Domain-specific languages (DSL) help programmers construct correct programs by providing a
language that matches the way domain experts think about their domain.

• A domain-specific embedded language (DSEL) is a DSL embedded in a host language; this
technique reduces the cost of implementation and allows the DSL to inherit the general features of
the host language.

• We have built Nettle, a DSEL in Haskell, in which BGP configurations for a whole network can be
described, and a compiler which translates a Nettle program into router configuration files for the
eXtensible Open Router Platform (XORP).

4

BGP KNOBS AND CONTROLS

• BGP provides lots of “controls” and “knobs”

• Nettle makes those “controls” available in Haskell

• We can now compose “controls” to make new “controls”

5

THIS TALK

• Intro to BGP: understanding BGP’s “controls”.

• Intro to Nettle: how we embed BGP’s controls in Haskell.

• Three examples: defining high-level controls.

6

COMPUTER NETWORKS

• A computer network consists of a set of nodes,
each having an address, and a set of links
connecting nodes.

• Forwarding is the process of sending packets
to the next hop node

• Routing is the process that establishes the paths
along which forwarded packets flow. Routing
results in each node having a forwarding
table.

Destination Outgoing
interface

A 1

B 2

C 2

7

FORWARDING ON THE INTERNET

• IP addresses are 32-bit values, typically
written as 4 bytes, as in a.b.c.d,

• An address prefix, is written a.b.c.d/e, and
denotes the subset of IP addresses.

• Forwarding is by the “longest match”, i.e.
most specific

Prefix Outgoing
interface0.0.0.0/0 1

1.1.0.0/16 2

1.1.1.0/24 3

Address Longest Match

1.2.0.0 0.0.0.0/0

1.1.2.0 1.1.0.0/16

1.1.1.2 1.1.1.0/24

8

!"#$%"$#&'()*+,-.&!"/%-*#%0,#0%$!"#$%"$#&'()*+,-.&!"/%-*#%0,#0%$

1$*+2$"#+-.&-,,$**
3 4.

Backbone ISPISP ISP

! 3-4.$
! 5+4$%
! 678
! 9+%$.$**! 9+%$.$**

" :($&!"#$%"$#&+*&-&"$#;<%=&
</&"$#;<%=*

3->?0*&-,,$**@&
$ABA@
! C#($%"$#

</&"$#;<%=*
" C-,(&+"2+D+20-..)&

-2>+"+*#%-#$2&"$#;<%=&+*&
,-..$2&-"&E0#<"<><0*&

29

! C#($%"$#
! 9+%$.$**

,-..$2&-"&E0#<"<><0*&
7)*#$>&FE7G

9

BGP ROUTES

• BGP nodes announce routes to each other. These routes carry attributes, some of which
are:

• Address Prefix

• Next hop address

• AS Path, a sequence of AS numbers

• Community attributes

10

!"#$%&'!()*+,-'+,'*."'/,*"0,"*!"#$%&'!()*+,-'+,'*."'/,*"0,"*

-$*"1$2'0()*"03'(4'

5$*"1$2'0()*"03'
%$0*+#+%$*"'+,'

- 2
3$6"'78'3.$0"'
9"$0,":'0()*"3')3+,-'
+;5<= % %

+,*0$:(6$+,'*('9"$0,'
+,*"0,$9'0()*"3=

78 >
?!/<'+,*0$
0()*+,-@

78 ;
?A8<B +,*0$

78 7
?A8<B +,*0$

";5<
C$

0()*+,-@ ?A8<B +,*0$
0()*+,-@

?A8<B +,*0$
0()*+,-@

;5<";5< +;5<

5$*"1$2'0()*"03'(4'
:+44 '78D3' E . '

C

:+44='78D3'"E#.$,-"'
0()*"3')3+,-'";5<

EXAMPLE POLICIES

• Do not advertise routes heard from one provider to another
-- no transit

• For a particular customer, only accept routes with the subnet
they have been assigned -- no hijacks

• Prefer this route to my customer, but prepend my AS number
several times when advertising it to others -- customer wants
me to use this route, but to discourage others (but not prevent
entirely) from using it.

11

BGP’S CONTROLS

• BGP nodes then repeat the following:

• Collect announcements from neighbors;

• Choose some of the announced routes to consider - Use Filter

• Assigns numeric preference to remaining routes - Preference Policy

• For each prefix announced, select the best one according to the decision process

• Install best routes in the forwarding table of the router

• Choose some of the best routes to advertise - Ad Filter

• Advertise these with (potentially) modified attributes - Ad Modifier

12

BGP’S CONTROLS

• Two parts of BGP policy:

• Import policy: which
routes should we use?

• Export policy: which
routes should we offer to
neighbors, and how good or
bad should we make it look?

13

• useFilter : Neighbor × Route → Bool

• preference : Route → N

• adFilter : Neighbor × Route → Bool

• adModifier : Neighbor × Route → Route

BGP DECISION PROCESS

• The BGP decision process roughly implements shortest AS-path routing, while allowing networks to
override this behavior by assigning non-default local preferences to routes.

• Of the routes known, a BGP node selects the best route for each prefix, by applying the BGP decision
process, which is a lexicographic order on the following attributes:

• highest local preference

• shortest AS path length

• ...

• lowest router ID (used as a tie-breaker)

14

FORWARDING, REVISITED

• To forward a packet to an
address outside of the
network:

• Find the most specific
BGP routes matching
the address,

• Use the best one.

15

Route Prefix NextHop Pref

1 0.0.0.0/0 10.10.10.10 100

2 1.1.0.0/16 20.20.20.20 80

3 1.1.0.0/16 30.30.30.30 90

Address Route

1.1.1.1 3

1.2.0.0 1

PROTOCOL INTERACTION

• Networks running BGP also run an internal routing protocol
and these protocols interact by injecting routes into from one
protocol to the other. This process is called route redistribution.

• Some routes are known statically, and these may need to be
injected into BGP. We view statically known routes as being
computed by a static routing process.

16

NETTLE TUTORIAL
some internal routing protocol, such as OSFF or RIP, on all routers; and addi-
tionally configure some routes statically, that is, not learned through a dynamic
routing protocol. Currently Nettle supports only two routing protocols, BGP
and Static.

At the highest level, a Nettle program describing a BGP policy has the form:

nettleProg = routingNetwork bgpNet staticNet redistPolicy

where

1. bgpNet is a description of the BGP network.
2. staticNet is a description of the static protocol.
3. redistPolicy describes how the BGP and static protocols interact.

bgpNet is typically defined as follows:

bgpNet = bgpNetwork myASNumber bgpConns prefs usefilter adfilter admodifier

where:

1. myASNumber is the AS number of the AS whose routing is being defined.
2. bgpConns is a list of connections.
3. prefs is an assignment of preference levels, i.e. integers, to routes and is used

to determine which routes to use.
4. Given a set of routes received by a router, usefilter discards ones it doesn’t

want.
5. Given a set of routes known by a router, adfilter discards those that it does

not wish to advertise to neighbors.
6. admodifier is a function which may change attributes of a route as it is

exported; this used to influence neighbors routing decisions and to ultimately
influence incoming traffic.

In the following subsections we will see how each of these constituent pieces
is generated.

Routers Several aspects of routing policy, such as static route announcements
and route redistribution, are specified in terms of particular routers in the net-
work. Additionally, the Nettle compiler will need router-specific details, such as
hardware configurations, in order to compile a Nettle program. Nettle programs
therefore need to know the set of routers to be configured.

In order to maintain modularity, Nettle policies are written in terms of an
abstract router type that router-specific data types implement. For example, we
can declare an abstract router r1 , implemented by a XORP router, with the
following code:

r1 = router r1xorp
where r1xorp = xorpRouter xorpBgpId xorpInterfaces

xorpInterfaces = [ifaceEth0]

17

BGP NETWORK

some internal routing protocol, such as OSFF or RIP, on all routers; and addi-
tionally configure some routes statically, that is, not learned through a dynamic
routing protocol. Currently Nettle supports only two routing protocols, BGP
and Static.

At the highest level, a Nettle program describing a BGP policy has the form:

nettleProg = routingNetwork bgpNet staticNet redistPolicy

where

1. bgpNet is a description of the BGP network.
2. staticNet is a description of the static protocol.
3. redistPolicy describes how the BGP and static protocols interact.

bgpNet is typically defined as follows:

bgpNet = bgpNetwork myASNumber bgpConns prefs usefilter adfilter admodifier

where:

1. myASNumber is the AS number of the AS whose routing is being defined.
2. bgpConns is a list of connections.
3. prefs is an assignment of preference levels, i.e. integers, to routes and is used

to determine which routes to use.
4. Given a set of routes received by a router, usefilter discards ones it doesn’t

want.
5. Given a set of routes known by a router, adfilter discards those that it does

not wish to advertise to neighbors.
6. admodifier is a function which may change attributes of a route as it is

exported; this used to influence neighbors routing decisions and to ultimately
influence incoming traffic.

In the following subsections we will see how each of these constituent pieces
is generated.

Routers Several aspects of routing policy, such as static route announcements
and route redistribution, are specified in terms of particular routers in the net-
work. Additionally, the Nettle compiler will need router-specific details, such as
hardware configurations, in order to compile a Nettle program. Nettle programs
therefore need to know the set of routers to be configured.

In order to maintain modularity, Nettle policies are written in terms of an
abstract router type that router-specific data types implement. For example, we
can declare an abstract router r1 , implemented by a XORP router, with the
following code:

r1 = router r1xorp
where r1xorp = xorpRouter xorpBgpId xorpInterfaces

xorpInterfaces = [ifaceEth0]

18

ROUTERS
import Nettle.MultiHomed
data Neighbor = N100 | N200
data Link = High | Low100 | Low200
linkAddrs High = octets 10 10 10 0
linkAddrs Low100 = octets 10 10 20 0
linkAddrs Low200 = octets 20 20 20 0
prefs = balanceByBandwidth linkAddrs [[High], [Low100 ,Low200]]

stuff and things

r1 = router r1xorp
where r1xorp = xorpRouter xorpBgpId xorpInterfaces

xorpInterfaces = [ifaceEth0]
ifaceEth0 = xorpInterface "eth0" "data" [virtualIfEth0Eth0]
virtualIfEth0Eth0 = let block = address 200 200 200 2 // 30

bcastAddr = address 200 200 200 3
in vif "eth0" (vifAddrs (vifAddr block bcastAddr))

1

19

BGP CONNECTIONS

ifaceEth0 = xorpInterface "eth0" "data" [virtualIfEth0Eth0]
virtualIfEth0Eth0 = let block = address 200 200 200 2 // 30

bcastAddr = address 200 200 200 3
in vif "eth0" (vifAddrs (vifAddr block bcastAddr))

Here the router function hides the specific type of router. Policy is then written
in terms of the abstract router type, as will be shown in the following sections.
This design separates router-specific details from abstract policy and allows con-
figurations to be written modularly. In particular, it allows users to change the
router platform of a router without changing any routing policy. Furthermore,
this design allows Nettle to support configurations of a heterogeneous collection
of router types within a single language.

In the following examples, we assume that we have defined routers r1 , r2 ,
and r3 .

Static Routing Static routes are specified simply by describing the address
prefix, the next-hop router, and the router that knows of the route. For example,
the following describes a static routing configuration with three routes, known
at two routers:

staticConfig [staticRoute r1 (address 172 160 0 0 // 16) (address 63 50 128 1),
staticRoute r1 (address 218 115 0 0 // 16) (address 63 50 128 2),
staticRoute r2 (address 172 160 0 0 // 16) (address 63 50 128 1)]

We note that a standard Haskell let expression can be used to rewrite this as:

let ip1 = address 172 160 0 0 // 16
ip2 = address 218 115 0 0 // 16
ip n = address 63 50 128 n

in staticConfig [staticRoute r1 ip1 (ip 1),
staticRoute r1 ip2 (ip 2),
staticRoute r2 ip1 (ip 1)]

which is arguably easier to read. Even this simple kind of abstraction is not
available in most (if any) router scripting languages.

BGP Connections A connection specification consists of a set of BGPConnection
values. For example, the following two connections describe external and internal
connections, respectively:

conn1 = externalConn r1 (address 100 100 1 0) (address 100 100 1 1) 3400
conn2 = internalConn r1 (address 130 0 1 4) r3 (address 130 0 1 6)

The first line declares that router r1 has a BGP connection with an external
router from AS 3400 and that the address for r1 on this connection is 100.100.1.0
and the peer’s address is 100.100.1.1. The second line declares that r1 and r3
are connected via IBGP using addresses 130.0.1.4 for r1 and 130.0.1.6 r3 .

20

ROUTE PREDICATES

Subsets of Routes At the core of Nettle lies a small language of route predi-
cates for specifying sets of routes. This language is used to apply different poli-
cies to different sets of routes. The language, which is designed with an eye to-
wards implementation on available router platforms, consists of a set of atomic
predicates; a conjunction operator, ∧, denoting the intersection of two subsets
of routes; and a disjunction operator, ∨, denoting the union of two subsets of
routes. For example,

nextHopEq (address 128 32 60 1) ∨ taggedWith (5000 ::: 120)

denotes the set of routes whose next hop routers have address 128.32.60.1 or
those which are tagged with community attribute 5000:120.

Another example is:

destInSet [address 128 32 60 0 // 24, address 63 100 0 0 // 16]
∧ taggedWithAnyOf [5000 ::: 120, 7500 ::: 101]

which denotes the set of routes for destination prefixes 128.32.60.0/24 or 63.100.0.0/16
and which are marked with one or more of community attributes 5000:120 or
7500:101.

The asSeqIn predicate allows users to specify complex conditions on BGP
routes, as in the following example which requires that routes originate at AS
7000, pass through any number of networks, and finally pass through either AS
3370 or 4010 once followed by AS 6500: 1

asSeqIn (repeat (i 7000) ! repeat any ! (i 3370 ||| i 4010) ! repeat (i 6500))

The full collection of predicates is shown in Figure 1.
Using Haskell’s standard abstraction mechanisms, this predicate language

allows users to write new predicates. For example, we can define a predicate
that matches a path exactly, while allowing for prepending, as follows:

pathIs :: [ASNumber]→ RoutePredicate BGPT
pathIs xs = asSeqIn $ foldr (λa r → repeat (i a) ! r) empty xs

It is impossible to express this kind of predicate in any router scripting language
that we are aware of.

Usage and Advertising Filters Filters play a role in both usage and ad-
vertising policy; a usage filter prevents some routes from being considered for
use, while an advertising filter prevents some routes from being advertised to
peers. Nettle allows users to declare filters based on predicates using the reject
function. For example,

reject (destEq (address 128 32 0 0 // 16))

1 In this paper repeat is the kleene star operation on regular expressions, not the repeat
function in Haskell’s Prelude module.

Subsets of Routes At the core of Nettle lies a small language of route predi-
cates for specifying sets of routes. This language is used to apply different poli-
cies to different sets of routes. The language, which is designed with an eye to-
wards implementation on available router platforms, consists of a set of atomic
predicates; a conjunction operator, ∧, denoting the intersection of two subsets
of routes; and a disjunction operator, ∨, denoting the union of two subsets of
routes. For example,

nextHopEq (address 128 32 60 1) ∨ taggedWith (5000 ::: 120)

denotes the set of routes whose next hop routers have address 128.32.60.1 or
those which are tagged with community attribute 5000:120.

Another example is:

destInSet [address 128 32 60 0 // 24, address 63 100 0 0 // 16]
∧ taggedWithAnyOf [5000 ::: 120, 7500 ::: 101]

which denotes the set of routes for destination prefixes 128.32.60.0/24 or 63.100.0.0/16
and which are marked with one or more of community attributes 5000:120 or
7500:101.

The asSeqIn predicate allows users to specify complex conditions on BGP
routes, as in the following example which requires that routes originate at AS
7000, pass through any number of networks, and finally pass through either AS
3370 or 4010 once followed by AS 6500: 1

asSeqIn (repeat (i 7000) ! repeat any ! (i 3370 ||| i 4010) ! repeat (i 6500))

The full collection of predicates is shown in Figure 1.
Using Haskell’s standard abstraction mechanisms, this predicate language

allows users to write new predicates. For example, we can define a predicate
that matches a path exactly, while allowing for prepending, as follows:

pathIs :: [ASNumber]→ RoutePredicate BGPT
pathIs xs = asSeqIn $ foldr (λa r → repeat (i a) ! r) empty xs

It is impossible to express this kind of predicate in any router scripting language
that we are aware of.

Usage and Advertising Filters Filters play a role in both usage and ad-
vertising policy; a usage filter prevents some routes from being considered for
use, while an advertising filter prevents some routes from being advertised to
peers. Nettle allows users to declare filters based on predicates using the reject
function. For example,

reject (destEq (address 128 32 0 0 // 16))

1 In this paper repeat is the kleene star operation on regular expressions, not the repeat
function in Haskell’s Prelude module.

prefixInSet [address 128 32 60 0 // 24, address 63 100 0 0 // 16]
∧ taggedWithAtLeastOneOf [5000 ::: 120, 7500 ::: 101]

adMod connection =
cond (taggedWith 1001 ::: (asNumber connection)) (prepends 1 1000) $
cond (taggedWith 1002 ::: (asNumber connection)) (prepends 2 1000) $
cond (taggedWith 1003 ::: (asNumber connection)) (prepends 3 1000) $
...
cond (taggedWith 1009 ::: (asNumber connection)) (prepends 9 1000) $
always ident

adMod connection = foldr f (always ident) [1 . . 9]
where f n rest = cond (taggedWith ((1000 + n) ::: (asNumber connection)))

(prepends n homeASNum) rest

reject (λconnection → taggedWith 1000 ::: (asNumber connection))

reject (λconnection →
case peerType (peer connection) of

Provider → taggedWith (1000 ::: 210)
Peer → taggedWith (1000 ::: 220)
Customer → taggedWith (1000 ::: 230)

)

cond (taggedWith 1000 ::: 80) 80
$ cond (taggedWith 1000 ::: 90) 90
$ cond (taggedWith 1000 ::: 100) 100
$ cond (taggedWith 1000 ::: 100) 110
$ cond (taggedWith 1000 ::: 120) 120
$ always 100

term impterm13 {
from {
as-path: "^200|(200 [0-9][0-9]*([0-9][0-9]*)*)$"

}
then {
localpref: 105

}
}
...
term impterm13 {
from {

1

21

NEW PREDICATES

Subsets of Routes At the core of Nettle lies a small language of route predi-
cates for specifying sets of routes. This language is used to apply different poli-
cies to different sets of routes. The language, which is designed with an eye to-
wards implementation on available router platforms, consists of a set of atomic
predicates; a conjunction operator, ∧, denoting the intersection of two subsets
of routes; and a disjunction operator, ∨, denoting the union of two subsets of
routes. For example,

nextHopEq (address 128 32 60 1) ∨ taggedWith (5000 ::: 120)

denotes the set of routes whose next hop routers have address 128.32.60.1 or
those which are tagged with community attribute 5000:120.

Another example is:

destInSet [address 128 32 60 0 // 24, address 63 100 0 0 // 16]
∧ taggedWithAnyOf [5000 ::: 120, 7500 ::: 101]

which denotes the set of routes for destination prefixes 128.32.60.0/24 or 63.100.0.0/16
and which are marked with one or more of community attributes 5000:120 or
7500:101.

The asSeqIn predicate allows users to specify complex conditions on BGP
routes, as in the following example which requires that routes originate at AS
7000, pass through any number of networks, and finally pass through either AS
3370 or 4010 once followed by AS 6500: 1

asSeqIn (repeat (i 7000) ! repeat any ! (i 3370 ||| i 4010) ! repeat (i 6500))

The full collection of predicates is shown in Figure 1.
Using Haskell’s standard abstraction mechanisms, this predicate language

allows users to write new predicates. For example, we can define a predicate
that matches a path exactly, while allowing for prepending, as follows:

pathIs :: [ASNumber]→ RoutePredicate BGPT
pathIs xs = asSeqIn $ foldr (λa r → repeat (i a) ! r) empty xs

It is impossible to express this kind of predicate in any router scripting language
that we are aware of.

Usage and Advertising Filters Filters play a role in both usage and ad-
vertising policy; a usage filter prevents some routes from being considered for
use, while an advertising filter prevents some routes from being advertised to
peers. Nettle allows users to declare filters based on predicates using the reject
function. For example,

reject (destEq (address 128 32 0 0 // 16))

1 In this paper repeat is the kleene star operation on regular expressions, not the repeat
function in Haskell’s Prelude module.

22

USE & AD FILTERS

usefilter c =
if c ≡ c1
then reject ((prefixEq (address 128 32 0 0 // 16) ∧ taggedWith (5000 ::: 120))

∨ taggedWith (12345 ::: 100))
else reject (asSeqIn (repeat any ! repeat (i 7000) ! repeat any))

prefixInSet [address 128 32 60 0 // 24, address 63 100 0 0 // 16]
∧ taggedWithAtLeastOneOf [5000 ::: 120, 7500 ::: 101]

adMod connection =
cond (taggedWith 1001 ::: (asNumber connection)) (prepends 1 1000) $
cond (taggedWith 1002 ::: (asNumber connection)) (prepends 2 1000) $
cond (taggedWith 1003 ::: (asNumber connection)) (prepends 3 1000) $
...
cond (taggedWith 1009 ::: (asNumber connection)) (prepends 9 1000) $
always ident

adMod connection = foldr f (always ident) [1 . . 9]
where f n rest = cond (taggedWith ((1000 + n) ::: (asNumber connection)))

(prepends n homeASNum) rest

reject (λconnection → taggedWith 1000 ::: (asNumber connection))

reject (λconnection →
case peerType (peer connection) of

Provider → taggedWith (1000 ::: 210)
Peer → taggedWith (1000 ::: 220)
Customer → taggedWith (1000 ::: 230)

)

cond (taggedWith 1000 ::: 80) 80
$ cond (taggedWith 1000 ::: 90) 90
$ cond (taggedWith 1000 ::: 100) 100
$ cond (taggedWith 1000 ::: 100) 110
$ cond (taggedWith 1000 ::: 120) 120
$ always 100

term impterm13 {
from {
as-path: "^200|(200 [0-9][0-9]*([0-9][0-9]*)*)$"

}
then {

1

reject (prefixEq (address 128 32 0 0 // 16))

usefilter c =
if c ≡ c1
then reject ((prefixEq (address 128 32 0 0 // 16) ∧ taggedWith (5000 ::: 120))

∨ taggedWith (12345 ::: 100))
else reject (asSeqIn (repeat any ! repeat (i 7000) ! repeat any))

prefixInSet [address 128 32 60 0 // 24, address 63 100 0 0 // 16]
∧ taggedWithAtLeastOneOf [5000 ::: 120, 7500 ::: 101]

adMod connection =
cond (taggedWith 1001 ::: (asNumber connection)) (prepends 1 1000) $
cond (taggedWith 1002 ::: (asNumber connection)) (prepends 2 1000) $
cond (taggedWith 1003 ::: (asNumber connection)) (prepends 3 1000) $
...
cond (taggedWith 1009 ::: (asNumber connection)) (prepends 9 1000) $
always ident

adMod connection = foldr f (always ident) [1 . . 9]
where f n rest = cond (taggedWith ((1000 + n) ::: (asNumber connection)))

(prepends n homeASNum) rest

reject (λconnection → taggedWith 1000 ::: (asNumber connection))

reject (λconnection →
case peerType (peer connection) of

Provider → taggedWith (1000 ::: 210)
Peer → taggedWith (1000 ::: 220)
Customer → taggedWith (1000 ::: 230)

)

cond (taggedWith 1000 ::: 80) 80
$ cond (taggedWith 1000 ::: 90) 90
$ cond (taggedWith 1000 ::: 100) 100
$ cond (taggedWith 1000 ::: 100) 110
$ cond (taggedWith 1000 ::: 120) 120
$ always 100

term impterm13 {
from {

1

23

ROUTE PREFERENCES

destEq :: Protocol p ⇒ AddressPrefix → RoutePred p
destNotEq :: Protocol p ⇒ AddressPrefix → RoutePred p
destInRange :: Protocol p ⇒ AddressPrefix → RoutePred p
destInSet :: Protocol p ⇒ [AddressPrefix] → RoutePred p
nextHopEq :: Address → RoutePred BGPT
nextHopInRange :: Address → Address → RoutePred BGPT
nextHopInSet :: [Address] → RoutePred BGPT
asSeqIn :: RegExp ASNumber → RoutePred BGPT
taggedWith :: Community → RoutePred BGPT
taggedWithAny Of :: [Community] → RoutePred BGPT
all :: Protocol p ⇒ RoutePred p
none :: Protocol p ⇒ RoutePred p
(∧) :: Protocol p ⇒ RoutePred p → RoutePred p → RoutePred p
(∨) :: Protocol p ⇒ RoutePred p → RoutePred p → RoutePred p

Fig. 1. The language of route predicates.

is a filter that rejects routes to destinations 128.32.0.0/16.
Nettle also allows users to specify connection-dependent filters, i.e. maps

associating BGP connections with usage (or advertising) filters. For example,
the following usage filter rejects routes learned over connection c1 which either
(1) are for block 128.32.0.0/16 and are tagged with community 5000:120, or (2)
are tagged with community 12345:100, while for other connections it rejects only
routes that pass through network 7000:

usefilter c =
if c ≡ c1
then reject ((destEq (address 128 32 0 0 // 16) ∧ taggedWith (5000 ::: 120))

∨ taggedWith (12345 ::: 100))
else reject (asSeqIn (repeat any ! repeat (i 7000) ! repeat any))

Route Preferences The central part of BGP usage policy consists of route
preferences. In Nettle, users specify route preferences by giving a numerical rank,
with higher being more preferred, to sets of routes, which are specified using
route predicates. To do this we can use the route conditional expressions cond
and always. For example, the expression 2

cond (taggedWith (5000 ::: 120)) 120
$ cond (taggedWith (5000 ::: 100)) 100
$ cond (taggedWith (5000 ::: 80)) 80
$ always 100

2 Note that f $x = f x . Using this function allows us to avoid writing some parantheses;
for example g $ f $ x = g (f x).

24

ROUTE MODIFIERS

ranks routes with community 5000:120 at rank 120, routes not tagged with
5000:120 but tagged with 5000:100 at rank 100, and so on, until it finally matches
all remaining routes with rank 100.

Route Modifiers and Guarded Route Modifiers The central part of BGP
advertising policy consists in modifying route attributes as routes are advertised
to peers, so as to communicate intentions about routes, or influence how others
prefer routes. Intentions about routes can be communicated through the use of
community attributes, while AS path prepending can influence peers’ decisions
by increasing the apparent path length of the route. Nettle provides a small
language for expressing route modifiers. For example, the modifier:

tag (5000 ::: 130)

denotes a function mapping a BGP route to the same BGP route tagged with
community 5000:130, while the modifier:

prepend 65000

represents a function mapping a BGP route to the same BGP route with the
AS number 65000 prepended to the AS path attribute. Two route modifiers f
and g can be combined as f ! g , which denotes the reverse composition of the
modifiers denoted by f and g. For example,

tag (5000 ::: 130) ! prepend 65000

represents the function which associates a BGP route with the same route tagged
with community 5000:130 and with AS path prepended with AS number 65000.
Finally, route modifiers ident and unTag c leave a route unchanged and remove
a community value c from a route, respectively.

As with route predicates, route modifiers allow us to define new modifiers
and use them wherever route modifiers are required. For example, we can define
a modifier which prepends an AS number a specified number of times:

prepends n asn = foldr (!) ident $ replicate n (prepend asn)

Route modifiers can be combined with conditional statements to describe
guarded route modifiers. For example,

cond (taggedWith (5000 ::: 120)) (prepend 65000) (always (tag 1000 ::: 99))

is a guarded route modifier that prepends the AS number 65000 to a route only
if that route is tagged with community value 5000:120, and otherwise tags the
route with community 1000:99.

Nettle allows route modifiers to be specified per connection and represents
these as Haskell functions. For example,

adMod c | c ≡ c1 = always (prepend 65000)
| c ≡ c2 = always (prepends 2 65000 ! tag (65000 ::: 120))
| otherwise = always ident

ranks routes with community 5000:120 at rank 120, routes not tagged with
5000:120 but tagged with 5000:100 at rank 100, and so on, until it finally matches
all remaining routes with rank 100.

Route Modifiers and Guarded Route Modifiers The central part of BGP
advertising policy consists in modifying route attributes as routes are advertised
to peers, so as to communicate intentions about routes, or influence how others
prefer routes. Intentions about routes can be communicated through the use of
community attributes, while AS path prepending can influence peers’ decisions
by increasing the apparent path length of the route. Nettle provides a small
language for expressing route modifiers. For example, the modifier:

tag (5000 ::: 130)

denotes a function mapping a BGP route to the same BGP route tagged with
community 5000:130, while the modifier:

prepend 65000

represents a function mapping a BGP route to the same BGP route with the
AS number 65000 prepended to the AS path attribute. Two route modifiers f
and g can be combined as f ! g , which denotes the reverse composition of the
modifiers denoted by f and g. For example,

tag (5000 ::: 130) ! prepend 65000

represents the function which associates a BGP route with the same route tagged
with community 5000:130 and with AS path prepended with AS number 65000.
Finally, route modifiers ident and unTag c leave a route unchanged and remove
a community value c from a route, respectively.

As with route predicates, route modifiers allow us to define new modifiers
and use them wherever route modifiers are required. For example, we can define
a modifier which prepends an AS number a specified number of times:

prepends n asn = foldr (!) ident $ replicate n (prepend asn)

Route modifiers can be combined with conditional statements to describe
guarded route modifiers. For example,

cond (taggedWith (5000 ::: 120)) (prepend 65000) (always (tag 1000 ::: 99))

is a guarded route modifier that prepends the AS number 65000 to a route only
if that route is tagged with community value 5000:120, and otherwise tags the
route with community 1000:99.

Nettle allows route modifiers to be specified per connection and represents
these as Haskell functions. For example,

adMod c | c ≡ c1 = always (prepend 65000)
| c ≡ c2 = always (prepends 2 65000 ! tag (65000 ::: 120))
| otherwise = always ident

ranks routes with community 5000:120 at rank 120, routes not tagged with
5000:120 but tagged with 5000:100 at rank 100, and so on, until it finally matches
all remaining routes with rank 100.

Route Modifiers and Guarded Route Modifiers The central part of BGP
advertising policy consists in modifying route attributes as routes are advertised
to peers, so as to communicate intentions about routes, or influence how others
prefer routes. Intentions about routes can be communicated through the use of
community attributes, while AS path prepending can influence peers’ decisions
by increasing the apparent path length of the route. Nettle provides a small
language for expressing route modifiers. For example, the modifier:

tag (5000 ::: 130)

denotes a function mapping a BGP route to the same BGP route tagged with
community 5000:130, while the modifier:

prepend 65000

represents a function mapping a BGP route to the same BGP route with the
AS number 65000 prepended to the AS path attribute. Two route modifiers f
and g can be combined as f ! g , which denotes the reverse composition of the
modifiers denoted by f and g. For example,

tag (5000 ::: 130) ! prepend 65000

represents the function which associates a BGP route with the same route tagged
with community 5000:130 and with AS path prepended with AS number 65000.
Finally, route modifiers ident and unTag c leave a route unchanged and remove
a community value c from a route, respectively.

As with route predicates, route modifiers allow us to define new modifiers
and use them wherever route modifiers are required. For example, we can define
a modifier which prepends an AS number a specified number of times:

prepends n asn = foldr (!) ident $ replicate n (prepend asn)

Route modifiers can be combined with conditional statements to describe
guarded route modifiers. For example,

cond (taggedWith (5000 ::: 120)) (prepend 65000) (always (tag 1000 ::: 99))

is a guarded route modifier that prepends the AS number 65000 to a route only
if that route is tagged with community value 5000:120, and otherwise tags the
route with community 1000:99.

Nettle allows route modifiers to be specified per connection and represents
these as Haskell functions. For example,

adMod c | c ≡ c1 = always (prepend 65000)
| c ≡ c2 = always (prepends 2 65000 ! tag (65000 ::: 120))
| otherwise = always ident

ranks routes with community 5000:120 at rank 120, routes not tagged with
5000:120 but tagged with 5000:100 at rank 100, and so on, until it finally matches
all remaining routes with rank 100.

Route Modifiers and Guarded Route Modifiers The central part of BGP
advertising policy consists in modifying route attributes as routes are advertised
to peers, so as to communicate intentions about routes, or influence how others
prefer routes. Intentions about routes can be communicated through the use of
community attributes, while AS path prepending can influence peers’ decisions
by increasing the apparent path length of the route. Nettle provides a small
language for expressing route modifiers. For example, the modifier:

tag (5000 ::: 130)

denotes a function mapping a BGP route to the same BGP route tagged with
community 5000:130, while the modifier:

prepend 65000

represents a function mapping a BGP route to the same BGP route with the
AS number 65000 prepended to the AS path attribute. Two route modifiers f
and g can be combined as f ! g , which denotes the reverse composition of the
modifiers denoted by f and g. For example,

tag (5000 ::: 130) ! prepend 65000

represents the function which associates a BGP route with the same route tagged
with community 5000:130 and with AS path prepended with AS number 65000.
Finally, route modifiers ident and unTag c leave a route unchanged and remove
a community value c from a route, respectively.

As with route predicates, route modifiers allow us to define new modifiers
and use them wherever route modifiers are required. For example, we can define
a modifier which prepends an AS number a specified number of times:

prepends n asn = foldr (!) ident $ replicate n (prepend asn)

Route modifiers can be combined with conditional statements to describe
guarded route modifiers. For example,

cond (taggedWith (5000 ::: 120)) (prepend 65000) (always (tag 1000 ::: 99))

is a guarded route modifier that prepends the AS number 65000 to a route only
if that route is tagged with community value 5000:120, and otherwise tags the
route with community 1000:99.

Nettle allows route modifiers to be specified per connection and represents
these as Haskell functions. For example,

adMod c | c ≡ c1 = always (prepend 65000)
| c ≡ c2 = always (prepends 2 65000 ! tag (65000 ::: 120))
| otherwise = always ident

ranks routes with community 5000:120 at rank 120, routes not tagged with
5000:120 but tagged with 5000:100 at rank 100, and so on, until it finally matches
all remaining routes with rank 100.

Route Modifiers and Guarded Route Modifiers The central part of BGP
advertising policy consists in modifying route attributes as routes are advertised
to peers, so as to communicate intentions about routes, or influence how others
prefer routes. Intentions about routes can be communicated through the use of
community attributes, while AS path prepending can influence peers’ decisions
by increasing the apparent path length of the route. Nettle provides a small
language for expressing route modifiers. For example, the modifier:

tag (5000 ::: 130)

denotes a function mapping a BGP route to the same BGP route tagged with
community 5000:130, while the modifier:

prepend 65000

represents a function mapping a BGP route to the same BGP route with the
AS number 65000 prepended to the AS path attribute. Two route modifiers f
and g can be combined as f ! g , which denotes the reverse composition of the
modifiers denoted by f and g. For example,

tag (5000 ::: 130) ! prepend 65000

represents the function which associates a BGP route with the same route tagged
with community 5000:130 and with AS path prepended with AS number 65000.
Finally, route modifiers ident and unTag c leave a route unchanged and remove
a community value c from a route, respectively.

As with route predicates, route modifiers allow us to define new modifiers
and use them wherever route modifiers are required. For example, we can define
a modifier which prepends an AS number a specified number of times:

prepends n asn = foldr (!) ident $ replicate n (prepend asn)

Route modifiers can be combined with conditional statements to describe
guarded route modifiers. For example,

cond (taggedWith (5000 ::: 120)) (prepend 65000) (always (tag 1000 ::: 99))

is a guarded route modifier that prepends the AS number 65000 to a route only
if that route is tagged with community value 5000:120, and otherwise tags the
route with community 1000:99.

Nettle allows route modifiers to be specified per connection and represents
these as Haskell functions. For example,

adMod c | c ≡ c1 = always (prepend 65000)
| c ≡ c2 = always (prepends 2 65000 ! tag (65000 ::: 120))
| otherwise = always ident

25

COMPILING

import Nettle.MultiHomed
data Neighbor = N100 | N200
data Link = High | Low100 | Low200
linkAddrs High = octets 10 10 10 0
linkAddrs Low100 = octets 10 10 20 0
linkAddrs Low200 = octets 20 20 20 0
prefs = balanceByBandwidth linkAddrs [[High], [Low100 ,Low200]]

stuff and things

r1 = router r1xorp
where r1xorp = xorpRouter xorpBgpId xorpInterfaces

xorpInterfaces = [ifaceEth0]
ifaceEth0 = xorpInterface "eth0" "data" [virtualIfEth0Eth0]
virtualIfEth0Eth0 = let block = address 200 200 200 2 // 30

bcastAddr = address 200 200 200 3
in vif "eth0" (vifAddrs (vifAddr block bcastAddr))

more things and stuff. and then!

compile nettleProg r1

1

26

3 EXAMPLES

• Multi-homed “stub” network

• Hierarchical BGP

• Provider policies allowing customer-controlled policy

27

Homehigh

low-1

low-2

EXAMPLE: MULTI-HOMED NETWORK

R1

100

200

R2

R3

• Example from Zhang and Bartell,
“BGP Design and Implementation”

• Objectives:

• Balance traffic over high and low
bandwidth links.

• Use multiple links to provide
robustness under link failures.

• Default routing only is too coarse.

• Request “default and partial” routes
from providers.

28

Providers’
customers

Home

EXAMPLE: MULTI-HOMED NETWORK

R1

100

200

cust of
100

cust of
100 & 200

cust of
200

non-
customer

R2

R3

high

low-1

low-2

• Routes are of these types:

• Customer of 100

• Customer of 200

• Customer of both 100 & 200

• Neither customer of 100 nor
customer of 200.

• To balance traffic we want

• most traffic to flow over high,
including non customers and
customers of 100

• traffic to customers of 200 (and not
of 100) to flow over low-2.

29

Providers’
customers

Home

EXAMPLE: MULTI-HOMED NETWORK

R1

100

200

cust of
100

cust of
100 & 200

cust of
200

non-
customer

R2

R3

high

low-1

low-2

• Plan for link failures

• When one link fails:

• If low-2 fails, use high

• If low-1 fails, traffic is
unaffected

• If high fails, balance over
low-1 and low-2

• When two links fails, use the
remaining one.

30

EXAMPLE: MULTI-HOMED NETWORK

cond (nextHopEq (peerAddr connHigh)) 120 (always 100)

We can write the preference policy simply...

but this obscures the intentions of the policy.
We would like to express this more directly.

31

EXAMPLE: MULTI-HOMED NETWORK

• Balance on the most direct links available having the highest
bandwidth

as-path: "^200|(200 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 105
}
}
...
term impterm13 {
from {
as-path: "^300|(300 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 104
}
}
...

as well as export filters implementing the HBGP scope preferences, such as:

term expterm7 {
to {
neighbor: 130.6.1.1
as-path: "^700|(700 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
reject
}
}
term expterm8 {
to {
neighbor: 130.6.1.1
as-path: "^800|(800 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
reject
}
}

adFilter = hbgpAdFilter peerTyping

balanceByBandwidth :: [[BGPConnection]]→ Cond BGPT Preference

import Nettle.MultiHomed
prefs = balanceByBandwidth [[connHigh], [connLow100 , connLow200]]

2

as-path: "^200|(200 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 105
}
}
...
term impterm13 {
from {
as-path: "^300|(300 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 104
}
}
...

as well as export filters implementing the HBGP scope preferences, such as:

term expterm7 {
to {
neighbor: 130.6.1.1
as-path: "^700|(700 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
reject
}
}
term expterm8 {
to {
neighbor: 130.6.1.1
as-path: "^800|(800 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
reject
}
}

adFilter = hbgpAdFilter peerTyping

balanceByBandwidth :: [[BGPConnection]]→ Cond BGPT Preference

import Nettle.MultiHomed
prefs = balanceByBandwidth [[connHigh], [connLow100 , connLow200]]

2

32

EXAMPLE 2: HIERARCHICAL BGP

33

!"#$%"$#&'()")*+,&-.)&-+/$0&)1&
2304"$00&5$67#4)"084/2304"$00&5$67#4)"084/

! 9 # & 4: & ! ; # &! 930#)*$%&/%)<4:$%&
%$67#4)"084/
" 7&/%)<4:$%&40&7"&=>W#&

! ;$$%?#)?/$$%&
%$67#4)"084/
" *3#3766+&7@%$$&#)&$A(87"@$&/

()""$(#0$&(30#)*$%&#)&
#8$&%$0#&)1$&!"#$%"$#

" (30#)*$%&/7+0$&/%)<4:$%&
1 & 8 & 4 & 4

+ @ @
#%7114(&B$#.$$"$4%&
%$0/$(#4<$&!"#$%&'(#

" #8$%$&40&")&/7+*$"#&
B &1)%$&#%7"04#&0$%<4($

" $C@CD&E76$&40&7&(30#)*$%&)1&
=-F-&7":&GH'>-

B$#.$$"&/$$%0

/$$% /$$%

/%)<4:$%

(30#)*$%

/%)<4:$%

(30#)*$%

/%)<4:$%&#)
(30#)*$%

• Gao and Rexford found
that business relationships
between ASes falls into
two types:

• customer-provider

• peer-peer

EXAMPLE 2: HIERARCHICAL BGP

• These two types strongly constrain BGP policy, both usage and advertising:

• route preferences: customer > peer > provider

• customer routes are advertised to all neighbors, whereas peer and provider routes may
only be shared with customers

• Writing the routing configurations to satisfy these constraints is tedious and error-prone.

• We can generate these policies using Nettle!

34

HBGP IN NETTLE

printSimulation sim
(Node = 1, AS = 300):
(0.0.0.0 // 0, 100.100.100.1, [100], 120, [])
(20.20.20.0 // 24, 200.200.200.1, [200,7763],100, [])
(172.160.0.0 // 16, 200.200.200.0, [], 0, [])

(Node = 2, AS = 100):
(172.160.0.0 // 16, 100.100.100.0, [300],0, [])
(0.0.0.0 // 0, 100.150.150.88,[], 0, [])

(Node = 3, AS = 100):
(172.160.0.0 // 16, 100.100.150.0, [300,300],0, [])
(0.0.0.0 // 0, 100.100.150.23,[], 0, [])

(Node = 4, AS = 200):
(172.160.0.0 // 16, 200.200.200.0, [300,300,300],0, [Community 200 120])
(0.0.0.0 // 0, 10.23.140.223,[], 0, [])
(20.20.20.0 // 24, 10.23.140.223,[7763], 0, [])
(10.0.0.0 // 9, 10.23.140.223,[7763], 0, [])

Fig. 4. A sample simulation for the policy of Section 4 .

the Internet, would guarantee the abscence of many routing anomalies, including
global routing oscillations.

The guidelines, as described in Griffin et al. [9] can be summarized as follows:

1. Customer routes must be preferred to peer routes, and customer and peer
routes must be preferred over provider routes.

2. Customer routes may be advertised to all neighbors, whereas peer and provider
routes can only be shared with customers.

We can express both of these guidelines in Haskell functions that generate
Nettle policy given the classification of peerings into HBGP relationship types,
and indeed, we have implemented such functions in the Nettle.HBGP module.
We will need to generate both preferences and advertising filters to implement
these guidelines, and we do so with the following two functions:

hbgpAdFilter :: [(ASNumber ,PeerType)]
→ BGPConnection r
→ Filter BGPT

hbgpPrefs :: [(ASNumber ,PeerType)]
→ PartialOrder ASNumber
→ Cond BGPT Preference

where we use the following enumerated type to stand for the HBGP relationship
types:

data PeerType = Customer | Peer | Provider

printSimulation sim
(Node = 1, AS = 300):
(0.0.0.0 // 0, 100.100.100.1, [100], 120, [])
(20.20.20.0 // 24, 200.200.200.1, [200,7763],100, [])
(172.160.0.0 // 16, 200.200.200.0, [], 0, [])

(Node = 2, AS = 100):
(172.160.0.0 // 16, 100.100.100.0, [300],0, [])
(0.0.0.0 // 0, 100.150.150.88,[], 0, [])

(Node = 3, AS = 100):
(172.160.0.0 // 16, 100.100.150.0, [300,300],0, [])
(0.0.0.0 // 0, 100.100.150.23,[], 0, [])

(Node = 4, AS = 200):
(172.160.0.0 // 16, 200.200.200.0, [300,300,300],0, [Community 200 120])
(0.0.0.0 // 0, 10.23.140.223,[], 0, [])
(20.20.20.0 // 24, 10.23.140.223,[7763], 0, [])
(10.0.0.0 // 9, 10.23.140.223,[7763], 0, [])

Fig. 4. A sample simulation for the policy of Section 4 .

the Internet, would guarantee the abscence of many routing anomalies, including
global routing oscillations.

The guidelines, as described in Griffin et al. [9] can be summarized as follows:

1. Customer routes must be preferred to peer routes, and customer and peer
routes must be preferred over provider routes.

2. Customer routes may be advertised to all neighbors, whereas peer and provider
routes can only be shared with customers.

We can express both of these guidelines in Haskell functions that generate
Nettle policy given the classification of peerings into HBGP relationship types,
and indeed, we have implemented such functions in the Nettle.HBGP module.
We will need to generate both preferences and advertising filters to implement
these guidelines, and we do so with the following two functions:

hbgpAdFilter :: [(ASNumber ,PeerType)]
→ BGPConnection r
→ Filter BGPT

hbgpPrefs :: [(ASNumber ,PeerType)]
→ PartialOrder ASNumber
→ Cond BGPT Preference

where we use the following enumerated type to stand for the HBGP relationship
types:

data PeerType = Customer | Peer | Provider

35

HBGP IN NETTLE

The HBGP preference guidelines do not constrain preferences among neigh-
bors of a given relationship type and we take advantage of this by having the
hbgpPreference function also take a PartialOrder ASNumber argument, which
represents route preferences among the neighbors. The function will attempt to
satisfy both the HBGP preference constraint and the given partial order, and
will report an error if these are incompatible. We omit the implementation of
these functions here, but we show how these can be used to easily create a Nettle
configuration that follows HBGP guidelines.

In this example, we show only the preference and advertising filter compo-
nents of the policy for a network with several customers and peers, and one
provider. First, we we define the set of external network numbers and a map to
classify external neighbors into HBGP peer types:

home = 100; cust1 = 200; cust2 = 300; cust3 = 400
cust4 = 500; peer1 = 600; peer2 = 700; prov = 800
peerTyping = [(cust1 ,Customer), (cust2 ,Customer), (cust3 ,Customer),

(cust4 ,Customer), (peer1 ,Peer), (peer2 ,Peer), (prov ,Provider)]

We can then easily define our preferences to be HBGP compatible preferences,
where we also give our preference of networks:

prefs = hbgpPrefs peerTyping basicPrefs
where basicPrefs = [(cust1 , cust2), (cust1 , cust4), (cust3 , cust4),

(peer2 , peer1), (prov , prov)]

We also add the HBGP advertising filters to our policy. In this example, we
suppose that we already have an advertising filter, adFilter1 , that we’d like to
refine with our HBGP scope filters. We can do this by simply intersecting the
filters,

adFilter = adFilter1 ∧ hbgpAdFilter peerTyping

Note that since the conjucts above are both functions of connections, our use
of ∧ resolves to the definition of conjunction lifted to the function level, where
operations are applied pointwise.

Compiling our example for a single Xorp router gives a configuration file
roughly 400 lines long, much of it consisting of preference setting commands,
such as:

term impterm13 {
from {
as-path: "^200|(200 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 105
}
}

The HBGP preference guidelines do not constrain preferences among neigh-
bors of a given relationship type and we take advantage of this by having the
hbgpPreference function also take a PartialOrder ASNumber argument, which
represents route preferences among the neighbors. The function will attempt to
satisfy both the HBGP preference constraint and the given partial order, and
will report an error if these are incompatible. We omit the implementation of
these functions here, but we show how these can be used to easily create a Nettle
configuration that follows HBGP guidelines.

In this example, we show only the preference and advertising filter compo-
nents of the policy for a network with several customers and peers, and one
provider. First, we we define the set of external network numbers and a map to
classify external neighbors into HBGP peer types:

home = 100; cust1 = 200; cust2 = 300; cust3 = 400
cust4 = 500; peer1 = 600; peer2 = 700; prov = 800
peerTyping = [(cust1 ,Customer), (cust2 ,Customer), (cust3 ,Customer),

(cust4 ,Customer), (peer1 ,Peer), (peer2 ,Peer), (prov ,Provider)]

We can then easily define our preferences to be HBGP compatible preferences,
where we also give our preference of networks:

prefs = hbgpPrefs peerTyping basicPrefs
where basicPrefs = [(cust1 , cust2), (cust1 , cust4), (cust3 , cust4),

(peer2 , peer1), (prov , prov)]

We also add the HBGP advertising filters to our policy. In this example, we
suppose that we already have an advertising filter, adFilter1 , that we’d like to
refine with our HBGP scope filters. We can do this by simply intersecting the
filters,

adFilter = adFilter1 ∧ hbgpAdFilter peerTyping

Note that since the conjucts above are both functions of connections, our use
of ∧ resolves to the definition of conjunction lifted to the function level, where
operations are applied pointwise.

Compiling our example for a single Xorp router gives a configuration file
roughly 400 lines long, much of it consisting of preference setting commands,
such as:

term impterm13 {
from {
as-path: "^200|(200 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 105
}
}

term impterm13 {
from {
as-path: "^200|(200 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 105
}
}
...
term impterm13 {
from {
as-path: "^300|(300 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 104
}
}
...

as well as export filters implementing the HBGP scope preferences, such as:

term expterm7 {
to {
neighbor: 130.6.1.1
as-path: "^700|(700 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
reject
}
}
term expterm8 {
to {
neighbor: 130.6.1.1
as-path: "^800|(800 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
reject
}
}

adFilter = hbgpAdFilter peerTyping

balanceByBandwidth :: (link → IPAddress)→ [[link]]→ Cond BGPT Preference

import Nettle.MultiHomed

1

36

COMPILING HBGP

term impterm13 {
from {
as-path: "^200|(200 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 105
}
}
...
term impterm13 {
from {
as-path: "^300|(300 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 104
}
}
...

as well as export filters implementing the HBGP scope preferences, such as:

term expterm7 {
to {
neighbor: 130.6.1.1
as-path: "^700|(700 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
reject
}
}
term expterm8 {
to {
neighbor: 130.6.1.1
as-path: "^800|(800 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
reject
}
}

adFilter = hbgpAdFilter peerTyping

balanceByBandwidth :: (link → IPAddress)→ [[link]]→ Cond BGPT Preference

import Nettle.MultiHomed

1

37

COMPILING HBGP

term impterm13 {
from {
as-path: "^200|(200 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 105
}
}
...
term impterm13 {
from {
as-path: "^300|(300 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 104
}
}
...

as well as export filters implementing the HBGP scope preferences, such as:

term expterm7 {
to {
neighbor: 130.6.1.1
as-path: "^700|(700 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
reject
}
}
term expterm8 {
to {
neighbor: 130.6.1.1
as-path: "^800|(800 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
reject
}
}

adFilter = hbgpAdFilter peerTyping

balanceByBandwidth :: (link → IPAddress)→ [[link]]→ Cond BGPT Preference

import Nettle.MultiHomed

1

38

EXAMPLE 3: CUSTOMER-
ADJUSTABLE POLICY

• Allow customers to adjust preference of announced routes.

39

Community Preference
1000:80 80
1000:100 100
1000:120 120

Provider → taggedWith (1000 ::: 210)
Peer → taggedWith (1000 ::: 220)
Customer → taggedWith (1000 ::: 230)

)

cond (taggedWith 1000 ::: 80) 80
$ cond (taggedWith 1000 ::: 100) 100
$ cond (taggedWith 1000 ::: 120) 120
$ always 100

term impterm13 {
from {
as-path: "^200|(200 [0-9][0-9]*([0-9][0-9]*)*)$"

}
then {
localpref: 105

}
}
...
term impterm13 {
from {
as-path: "^300|(300 [0-9][0-9]*([0-9][0-9]*)*)$"

}
then {
localpref: 104

}
}
...

as well as export filters implementing the HBGP scope preferences, such as:

term expterm7 {
to {
neighbor: 130.6.1.1
as-path: "^700|(700 [0-9][0-9]*([0-9][0-9]*)*)$"

}
then {
reject

}
}
term expterm8 {
to {
neighbor: 130.6.1.1
as-path: "^800|(800 [0-9][0-9]*([0-9][0-9]*)*)$"

}

2

CUSTOMER-ADJUSTABLE POLICY

• Allow customers to control advertising:

• Suppress by AS number - community tag indicates which peers not to advertise
to based on their AS Numbers.

reject (λconnection → taggedWith 1000 ::: (asNumber connection))

reject (λconnection →
case peerType (peer connection) of

Provider → taggedWith (1000 ::: 210)
Peer → taggedWith (1000 ::: 220)
Customer → taggedWith (1000 ::: 230)

)

cond (taggedWith 1000 ::: 80) 80
$ cond (taggedWith 1000 ::: 90) 90
$ cond (taggedWith 1000 ::: 100) 100
$ cond (taggedWith 1000 ::: 100) 110
$ cond (taggedWith 1000 ::: 120) 120
$ always 100

term impterm13 {
from {
as-path: "^200|(200 [0-9][0-9]*([0-9][0-9]*)*)$"

}
then {
localpref: 105

}
}
...
term impterm13 {
from {
as-path: "^300|(300 [0-9][0-9]*([0-9][0-9]*)*)$"

}
then {
localpref: 104

}
}
...

as well as export filters implementing the HBGP scope preferences, such as:

term expterm7 {
to {
neighbor: 130.6.1.1
as-path: "^700|(700 [0-9][0-9]*([0-9][0-9]*)*)$"

}
then {
reject

}

1

40

Community Suppress when advertising to

1000:5500 5500

1000:5600 5600

... ...

CUSTOMER-ADJUSTABLE POLICY

• Prepending by AS Number - community tag indicates how many times to
prepend when advertising a route to a specific neighbor

41

Community AS Times to Prepend
1001:5500 5500 1
1002:5500 5500 2

...
1001:5600 5600 1

CUSTOMER-ADJUSTABLE POLICY

• We can write functions these policies in Nettle, and then apply
them by applying these functions:

42

adjustablePrefs homeASNum [80, 100, 120] (always 100)

adjustablePrepending homeASNum [1, 2, 3, 4, 5] [5500, 5600]

prefixEq :: Protocol p ⇒ AddressPrefix → RoutePred p
prefixNotEq :: Protocol p ⇒ AddressPrefix → RoutePred p
prefixInRange :: Protocol p ⇒ AddressPrefix → RoutePred p
prefixInSet :: Protocol p ⇒ [AddressPrefix] → RoutePred p
nextHopEq :: Address → RoutePred BGPT
nextHopInRange :: Address → Address → RoutePred BGPT
nextHopInSet :: [Address] → RoutePred BGPT
asSeqIn :: RegExp ASNumber → RoutePred BGPT
taggedWith :: Community → RoutePred BGPT
taggedWithAtLeastOneOf :: [Community] → RoutePred BGPT
all :: Protocol p ⇒ RoutePred p
none :: Protocol p ⇒ RoutePred p
(∧) :: Protocol p ⇒ RoutePred p → RoutePred p → RoutePred p
(∨) :: Protocol p ⇒ RoutePred p → RoutePred p → RoutePred p

reject (prefixEq (address 128 32 0 0 // 16))

usefilter c =
if c ≡ c1
then reject ((prefixEq (address 128 32 0 0 // 16) ∧ taggedWith (5000 ::: 120))

∨ taggedWith (12345 ::: 100))
else reject (asSeqIn (repeat any ! repeat (i 7000) ! repeat any))

prefixInSet [address 128 32 60 0 // 24, address 63 100 0 0 // 16]
∧ taggedWithAtLeastOneOf [5000 ::: 120, 7500 ::: 101]

adMod connection =
cond (taggedWith 1001 ::: (asNumber connection)) (prepends 1 1000) $
cond (taggedWith 1002 ::: (asNumber connection)) (prepends 2 1000) $
...
cond (taggedWith 1009 ::: (asNumber connection)) (prepends 9 1000) $
always ident

adMod connection = foldr f (always ident) [1 . . 9]
where f n rest = cond (taggedWith ((1000 + n) ::: (asNumber connection)))

(prepends n homeASNum) rest

reject (λconnection → taggedWith 1000 ::: (asNumber connection))

1

adjustablePrefs homeASNum [80, 100, 120] (always 100)

adjustablePrepending homeASNum [1, 2, 3, 4, 5] [5500, 5600] (always ident)

prefixEq :: Protocol p ⇒ AddressPrefix → RoutePred p
prefixNotEq :: Protocol p ⇒ AddressPrefix → RoutePred p
prefixInRange :: Protocol p ⇒ AddressPrefix → RoutePred p
prefixInSet :: Protocol p ⇒ [AddressPrefix] → RoutePred p
nextHopEq :: Address → RoutePred BGPT
nextHopInRange :: Address → Address → RoutePred BGPT
nextHopInSet :: [Address] → RoutePred BGPT
asSeqIn :: RegExp ASNumber → RoutePred BGPT
taggedWith :: Community → RoutePred BGPT
taggedWithAtLeastOneOf :: [Community] → RoutePred BGPT
all :: Protocol p ⇒ RoutePred p
none :: Protocol p ⇒ RoutePred p
(∧) :: Protocol p ⇒ RoutePred p → RoutePred p → RoutePred p
(∨) :: Protocol p ⇒ RoutePred p → RoutePred p → RoutePred p

reject (prefixEq (address 128 32 0 0 // 16))

usefilter c =
if c ≡ c1
then reject ((prefixEq (address 128 32 0 0 // 16) ∧ taggedWith (5000 ::: 120))

∨ taggedWith (12345 ::: 100))
else reject (asSeqIn (repeat any ! repeat (i 7000) ! repeat any))

prefixInSet [address 128 32 60 0 // 24, address 63 100 0 0 // 16]
∧ taggedWithAtLeastOneOf [5000 ::: 120, 7500 ::: 101]

adMod connection =
cond (taggedWith 1001 ::: (asNumber connection)) (prepends 1 1000) $
cond (taggedWith 1002 ::: (asNumber connection)) (prepends 2 1000) $
...
cond (taggedWith 1009 ::: (asNumber connection)) (prepends 9 1000) $
always ident

adMod connection = foldr f (always ident) [1 . . 9]
where f n rest = cond (taggedWith ((1000 + n) ::: (asNumber connection)))

(prepends n homeASNum) rest

reject (λconnection → taggedWith 1000 ::: (asNumber connection))

1

