
Private Web Search

Felipe Saint-Jean
∗

Yale University
Aaron Johnson

†

Yale University
Dan Boneh

‡

Stanford University

Joan Feigenbaum
§

Yale University

ABSTRACT
Web search is currently a source of growing concern about
personal privacy. It is an essential and central part of most
users’ activity online and therefore one through which a sig-
nificant amount of personal information may be revealed. To
help users protect their privacy, we have designed and imple-
mented Private Web Search (PWS), a usable client-side tool
that minimizes the information that users reveal to a search
engine. Our tool protects users against attacks that involve
active components and timing information, to which more
general Web-browsing privacy tools (including the combi-
nation of FoxTor and Privoxy) are vulnerable. PWS is a
Firefox plugin that functions as an HTTP proxy and as a
client for the Tor anonymity network. It configures Fire-
fox so that search queries executed from the PWS search
box are routed through the HTTP proxy and Tor client, fil-
tering potentially sensitive or identifying components of the
request and response.

Categories and Subject Descriptors
K.4.1 [Public Policy Issues]: Privacy

General Terms
Security

Keywords
Web Search, Privacy, Anonymity, PWS, Tor, Firefox

∗Supported by a Kern Family Scholarship and ARO grant
W911NF-06-1-0316. Email: felipe.saint-jean@yale.edu.
†Supported by NSF grant 0428422 and ARO grant
W911NF-05-1-0417. Email: aaron.johnson@yale.edu.
‡Supported by NSF and the Packard foundation. Email:
dabo@cs.stanford.edu.
§Supported in part by NSF grants 0331548 and 0534052,
ARO grant W911NF-06-1-0316, and US-Israeli BSF grant
2002065. Email: joan.feigenbaum@yale.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’07, October 29, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-883-1/07/0010 ...$5.00.

1. INTRODUCTION
The August 2006 release by AOL of the search queries of

approximately 650,000 people [4] served as an alert to the
privacy threat of online searching. Although the users’ IP
addresses were replaced with meaningless numbers, it was
easy in many cases for a member of the general public to
identify a user from his queries. The search-engine company
itself has even greater power to identify users. This is worri-
some, because queries can be very revealing, and the number
of queries that search engines receive is growing as they im-
prove and expand their web databases. Search-engine com-
panies are strongly motivated to collect and analyze these
data, because their business model is based on extracting
user information in order to better target online advertis-
ing.

The Web-search scenario is also a good one in which to
have a focused discussion about privacy. It has a few prop-
erties that are extremely important from the user’s point of
view, i.e., with respect to actions the user can take to con-
trol what he reveals about himself. First, search services are
widely used, and thus there is hope of hiding in the crowd.
Second, because of the large number of users, a concrete,
widely available tool for enhancing privacy might produce
useful feedback. Third, it is a point of connection among
most web activities; so the privacy concerns are larger than
in more specific web services.

Private Web Search (PWS) is a Firefox plugin that pro-
tects the user’s privacy by minimizing the information sent
to the search engine, while still getting the query result.
This is done by filtering the request and response and by
routing them through an anonymity network. The user is
thus protected from information leaks that might lead to his
identification.

2. PROBLEM STATEMENT
Search-engine queries can reveal a great deal about a user.

The query terms themselves can include clearly identifying
information such as a user’s name, Social Security Number,
and location. They may also indicate things about a user’s
work, family, interests, and future plans. Other aspects of
the search request, such as the IP address, the HTTP head-
ers, and the time of day, also let search engines learn things
about the user, such as his ISP, browser, and activity at a
specific time. Clearly, many users would like to keep this
kind of thing private. Privacy must, however, be achieved
while still providing users with the search functionality. A
trivial way to protect privacy would be to send no queries
at all, but this is unacceptable.

Before we make our notion of privacy more precise, con-
sider several scenarios in which a user’s search queries are
used to try to learn things about him:

1. The search-engine company runs a large-scale profiling
operation in which it tries to learn as much as possible
about its users. The engine could link queries and
build user profiles under the assumption that queries
done on the same day from the same IP address come
from the same user. These profiles could be combined
with information found online, such as personal web
pages and government records, to learn things such as
the users’ names and addresses.

2. The search-engine company is more focused and mon-
itors queries for terms of interest. These could include
things like subjects of national-security interest to the
government or products of partner companies. Once
a term of interest is encountered, it could, as before,
be linked to other queries issued around the same time
and from the same IP address, as well as with on-
line sources of information. If the terms of interest
were selective enough and the interested party moti-
vated enough, the profiles could also be compared to
and combined with less available sources of informa-
tion such as logs from the user’s ISP or public records
that must be retrieved physically.

3. The adversary wants to learn the queries of a specific
user. Perhaps an employee with access to the data is
curious about a celebrity, or law enforcement is gath-
ering data in a criminal investigation. In this case, the
adversary has significant background knowledge about
the user to start with. The adversary might, for ex-
ample, know where the user was at a certain time or
what his ISP is; perhaps the adversary can guess the
query terms that the user is likely to use, such as his
name or something related to his work. It is easy to
see how this background information can help the ad-
versary determine the queries that were issued by the
user.

In all of these situations, the privacy concern arises as
the search engine becomes able to make good guesses about
the source of some search queries. The engine is aided in
this task by knowledge of user behavior - some that it starts
with and some that it develops as it examines the queries.
We don’t have much hope of preventing an adversary from
guessing the source of queries that are likely to come from
only a few users: full names, addresses, credit-card numbers,
etc. Therefore, our privacy goal will be to prevent an ad-
versary from improving its guess too much after observing
incoming queries, while still providing users with the search
results that they want.

To state the privacy issue more concretely, assume that
there is some set of users U and that the adversary knows
the size of U . We can model web search as a probabilis-
tic process. Let there be some probability distribution on
the search queries that the users will make in a given time
period. Our adversary has prior knowledge about search
queries made in some period of time in the form of an es-
timate of the probability distribution over sets of queries.
He gets some information about the queries that were per-
formed in the form of the value of a random variable that

represents his observations. From this he can infer a con-
ditional distribution on which queries were performed and
by whom. We want to minimize the difference between the
prior distribution and this posterior distribution. In partic-
ular, we don’t want to increase by too much the probability
that a particular user issued a particular query.

We won’t develop this model of the problem any further
in this paper; nor will we attempt to precisely express and
analyze PWS or other solutions in it. However, we will use
it to understand how different approaches protect privacy.
Moreover, this view of privacy illustrates how the problem
of private web search relates to other privacy problems that
have been studied.

There are several practical tools [7, 15, 22] that offer ways
to hide major clues (e.g. IP address) to the user’s identity.
However, for the most part they do not address more subtle
attacks such as Flash cookies and cache timing [6, 10]. Also,
none of these tools is convenient and comprehensive. We
want to provide a tool that is easy to use and is effective at
protecting users’ privacy during web search.

3. RELATED WORK

3.1 Current approaches
One straightforward way to protect privacy in web search-

ing is to use an anonymizing proxy. Lists of freely accessi-
ble proxies are available online. Using these hides the true
source IP address. However, because all queries are sent
through the same proxy they can easily be linked together.
Also, the adversary need only obtain logs from the proxy to
determine the true source.

These concerns can be addressed by using the anonymity
network Tor [20], which is essentially a network of anonymiz-
ing proxies. The source of the connection to the search en-
gine is rotated periodically among the routers in Tor. Also,
connections are routed through several Tor routers and en-
crypted in such a way that logs from all are necessary to
determine the true source.

Still, the HTTP request itself might release information
about the source, e.g., through cookies or the User-Agent
header. Also, the HTTP response might include ways to get
the client to reveal itself, such as JavaScript that commu-
nicates with the engine. A filtering HTTP proxy, such as
Privoxy [15], can eliminate some of these possibilities, but it
is a general tool for all web browsing that does not include
sufficient filtering for web-search results. In particular, the
search engine can employ techniques such as redirects in the
search results and cache-timing attacks [6, 10].

This solution may also be somewhat difficult for users to
install and configure. Browser plugins, such as the FireFox
plugins FoxTor [7] and TorButton [21], can make this easier.
Even with these tools, if the user doesn’t want to run all
HTTP requests over the slower Tor network, he must go
through the effort of manually enabling and disabling the
use of Tor.

The TrackMeNot[22] tool uses a different approach. It
attempts to protect the user’s privacy by issuing computer-
generated random queries. The objective is to make it hard
for the search engine to distinguish real user queries from
the computer-generated ”cover traffic.” Users can be identi-
fied by IP address, but what they search for is obscured to
some extent by noise. TrackMeNot has not been formally
analyzed, however, and it is not clear how indistinguishable

one can actually make the false queries from real ones. Real
queries are often semantically related in subtle ways and may
include very specific and identifying terms (e.g., addresses
and names). This scheme also adds undesirable extra load
on the search engine.

3.2 Related privacy research
Two well known problems in the privacy literature have

significant similarities to private web search: privacy-preser-
ving data publishing [23] and private information retrieval
[8].

Privacy-preserving data publishing is the problem of mak-
ing a database of personal information available to the pub-
lic for data mining without revealing private information
about individuals. Census officials, for example, may want
to provide census data so that researchers can learn general
things about the population. However, they don’t want to
expose any individual’s private information, such as his or
her income. Some approaches to this problem include gen-
eralizing identifying fields [18, 13], adding random noise to
the entries in the database [1, 5], and randomly adding and
deleting entries [16].

Private web searching can be viewed as an instance of
this problem by taking the database to be the set of search
queries, the publisher to be the users, and the public to
be the search engine. Solutions to privacy-preserving data
publishing therefore suggest solutions to private web search.
Hiding the source IP address and normalizing the HTTP
headers of a web request, for example, can be viewed as an
application of the generalization technique. PWS adds ran-
dom noise to the response time of a query by sending it over
the Tor network. Using Tor perturbs the network latency,
making it harder to identify users based on their network
round-trip time. This is because the network latency will
depend on the randomly chosen Tor path. We are prevented
by our functionality requirement from deleting queries, but
adding random queries is exactly the approach taken by the
TrackMeNot utility [22].

Web search differs from data publishing in several ways
that affect the ability to transfer solutions between the two.
First, the data in web search are being “published” by many
users who are unknown to one another. We want to avoid
any solution that requires coordination among the users,
such as k-anonymous generalization [18]. Also, web search
has a limited functionality requirement - we must obtain
search results. Therefore we can freely modify any part of
the request other than the search terms without being con-
cerned that it might affect the utility of the data for data
mining. Finally, because we must obtain accurate search
results, we cannot in general add noise to the query terms.

In the Private Information Retrieval problem (PIR) [8], a
user wants to query a database without revealing the query.
It isn’t hard to see that solving this problem would solve
the web search problem. One simple PIR solution is for
the database owner to send a copy of the database to the
user. The size of the database may well be very large, how-
ever. Solutions that are information-theoretically secure and
have lower communication requirements [2] involve querying
copies of the database. Single-copy solutions with asymptot-
ically low communication based on computational-hardness
assumptions also exist [12].

The problem with applying PIR schemes to private web
search is that search databases are huge. Replication for

privacy purposes would be very costly. The single-database
PIR schemes just aren’t fast enough. Their response algo-
rithms must touch every piece of the data when computing a
response, or the adversary can determine that some entries
were not queried.

4. ON ANONYMITY NETWORKS
When a user establishes a connection with a server and

is concerned about the misuse of the personal information
that the server will gather during the connection, there are
a couple of approaches he can take. He can understand the
server’s privacy policy and trust the server to enforce it, or
he can remain anonymous. Of course not all services can be
accessed anonymously, but this approach should work for
Web searching.

We built a client-side tool because we do not trust servers
to enforce reasonable privacy policies. Indeed, a complaint
in the AOL case has been lodged with the FTC arguing that
AOL violated its own privacy policy [4]. That being the case,
we want users to remain anonymous. A key step in realizing
this is the use of anonymity networks [20, 11], and in partic-
ular the Tor onion-routing network, to obscure the source of
the connection. Onion routing [17] uses a network of routers
to forward messages in a way that breaks the link between
incoming and outgoing traffic. This is done by layering en-
cryption so that each router knows the previous and the
next hops but nothing more. This kind of network provides
practical and robust anonymity for Internet traffic and thus
is very useful for our project. Tor [3] is a widely used imple-
mentation of onion routing. As of January 2007, it consists
of over 800 routers and serves an estimated 200,000 users.

We are using Tor for the specific purpose of private web
search, and so there may be ways to customize its operation.
One that we have implemented is building 2-hop paths in-
stead of 3-hop paths. The argument for three hops in Tor
is that an adversary that controls a router should not be
able to know all of the routers on the circuits it observes.
Our adversary is a search-engine company, however, and we
assume that it does not try to break the anonymity of the
Tor network. Therefore, we can improve speed by removing
one hop. We also suggest that Tor-router operators may
be more willing to act as exit nodes for the popular search
engines. Providing them with exit policies that allow such
access could help the performance of our tool.

Tor provides an important part of our solution by hiding
the source IP address. However, the search engine can get
information about the source of a query in other ways.

5. SENSITIVE INFORMATION IN WEB
SEARCHING AND USER TRACKING

There are many sources of potentially identifying informa-
tion in web search. Table 1 show a summery of this informa-
tion. First, there are IP addresses. The IP address by itself
provides a large amount of information about the user. It
may provide geographical location, ISP, or institution. Al-
though associating exactly one user with an IP address is
not simple, the address certainly narrows the possibilities.
Because a user’s IP address will, in all likelihood, be the
same for a while, it provides strong linkability among queries
issued during that time period. There is also timing infor-
mation at the IP level. The server side of the connection will
be able to estimate the round-trip time (RTT) of packets.

This will allow the adversary to distinguish between users
with RTTs that are far apart.

As seen in [14], at the TCP level, inspection of packets can
reveal information about the machines involved in the con-
nection. Uptime (time since system boot), operating system,
and other properties of the connection can be estimated with
high accuracy by passive inspection of the network traffic.

Then, there is the HTTP header, in which there is a lot
of information that allows tracking. Cookies can usually
uniquely identify the user, and they provide query linkability
for even longer periods of time than the IP address. Also,
there is a large set of flags and markers that give the search
engine specifics about the user’s system. Although these are
required for the processing of many types of web requests,
they are not required for search.

Once the search engine gives a response, the Web browser
will interpret and execute all elements in the Web page.
Many of these elements are designed to provide the user with
a rich experience and will thus initiate further network con-
nections. Each additional connection may implicate privacy.
For example, image, frame, and style tags will generate the
download of additional files. Each of this connections must
be dealt with in detail.

Beyond HTML tags, there are a variety of active compo-
nents that can be embedded in the web page. These active
components are used in general to improve the user’s expe-
rience and enhance user interfaces, but they can also reveal
private information about the user. For example, it is com-
mon practice for search engines to use JavaScript in order to
get feedback about the URL selected by the user. Most of
the active components execute within a constrained environ-
ment, but they are generally able to transmit to the server
information specific to the user. In addition to JavaScript,
we must deal with Flash, ActiveX, Java, and a variety of plu-
gins. These active components could, in principle, be used
to fingerprint the user’s machine, potentially identifying the
user.

The search engine can also use several web-timing attacks
[6, 10] to distinguish among users. The contents of a user’s
web cache can be queried by sandwiching a request for some
page between queries to the search engine’s own content in
the HTML response. By measuring the time between the
requests for its own content, it can determine whether the
page is in the user’s cache. The contents of the user’s DNS
cache can be similarly queried. The search engine can poten-
tially use this technique to read and write unique signatures
in user caches.

The last piece of information transmitted when searching
the Web is the search query itself. Each query gives some
information about the user. In other words, a given query
could be issued by a subset of the user base but probably
not by all users. The problem grows as queries are linkable.
Each query reduces the set of possible users that might have
issued the queries, and, once the set of queries gets large
enough, they can be related to a user or a small set of users.
This means that, in order to achieve our main objective, we
need to work towards reducing the linkability of queries to
each other as well as the linkability of queries to users. It
should be hard for the search engine to determine that a
large set of queries was issued by the same user.

Table 1 summarizes the information that is revealed by
a general Web transaction. 1 and 2 are very standard and
mostly independent of the application or website. That is

why 1 and 2 can be addressed by general Web-privacy tools
like Tor+Privoxy. We can’t expect to hide 4 without the
search engine’s cooperation and maintain functionality and
usability. But what about 3 and 5? The information that
is revealed at those levels is application-specific; thus, it is
not possible to delete this information without considering
the application semantics and expect to preserve function-
ality. This issue requires a specific solution for each Web
application. PWS is a specific solution for Web search.

6. IMPLEMENTATION

6.1 General architecture
PWS is a Firefox plugin within which run a Tor client

and an HTTP proxy. When the user executes a query, it
connects to the HTTP proxy. The proxy filters the HTTP
request, then sends it to the search engine over the Tor net-
work. Later the proxy receives the response from Tor, fil-
ters the HTML to remove all active components, and gets
the answer back to Firefox for display. Table 1 shows which
PWS modules take care of the various types of information
leaks that may occur during search. Right now PWS can
only be used with Google [9]; it would be straightforward
to extend the plugin to let users select from multiple search
engines, and we intend to do so. Also, Google guesses the
user’s desired language from the IP address of the source,
and Tor may send the query from servers around the world.
Therefore we currently send queries to the English language
URL (http://www.google.com/intl/en/). Allowing users
to select a search language slightly reduces anonymity, but
it an essential usability feature that we also plan to add.

Figure 1: PWS general architecture

6.2 HTTP filter
The HTTP module’s goal is to normalize the HTTP re-

quest so that it looks as similar as possible across all PWS
users. Query terms will be different, of course, but all proto-
col specifics of the connection should be removed. A general
HTTP header looks like figure 2.

Much of the information in this header is not needed to
resolve the query but helps the search engine to identify
users. The HTTP filter in PWS makes all headers look
something like this:

GET /search?hl=en&q=tennis+tournament HTTP/1.1

Level Identifying information Solution
1 TCP/IP Tor

IP address
Institution or ISP
Operating system
Uptime
Timing (RTT)

2 HTTP Headers HTTP filter
Cookies
Operating system make and version
Browser make and version
Encoding and language

3 HTML HTML filter
JavaScript
Timing (web timing attacks)

4 Application Open problem
Query terms
Time of day of the query

5 Active components HTML filter
...
...
...

Table 1: Gray items (3 and 5) are new to PWS and provide protection not provided by Tor+Privoxy

GET /search?hl=en&lr=&q=tennis+tournament&btnG=Search HTTP/1.1

Host: www.google.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.7) Gecko/20060921 \\

Ubuntu/dapper-security Firefox/1.5.0.7

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Referer: http://www.google.com/search?hl=en&q=tennis&btnG=Google+Search

Cookie: PREF=ID=71566fe64d9cded5:TM=1165265408:LM=1165265408: S=b7rWrEz_I8UIXl5U; \\

SID=DQAAAGoAAABj6AMZNxlm1JiSeJcN0jZG [...]

Figure 2: Sample of HTTP-header section

Host: www.google.com

User-Agent: Mozilla/5.0

Accept-Encoding: gzip,deflate

The only things that change from user to user are the query
terms. This is the only module that must be reimplemented
to support different search engines.

6.3 Tor client
The Tor client serves two different purposes. First, it

makes it hard for the search engine to link a user to a source
IP address of a query. Second, it allows us to change that
source IP address between queries in order to reduce query
linkability. Every query is issued through a different channel
and, as long as the query rate is below our channel-rebuild
rate, channels are not reused. Therefore the source IP of
every query is randomly and indepently selected from the
routers in the Tor network (or, more accurately, from the
exit nodes).

Our implementation of a Tor client makes heavy use of
Jap [11]. The Jap proxy is not solely a Tor client, but it
implements one as part of its feature set. The Jap Tor client
is written in Java and embedded in the PWS plugin using the
Java Firefox Extension code from the SIMILE [19] project.
We use paths of length 2, instead of the default 3, in order
to improve performance. Still, using PWS is much slower
than a direct search, because queries are routed through the
Tor network. In our tests, a query was, on average, 20 times
slower than a direct connection: 10 seconds vs 0.5 seconds.
The variance in response time was much higher, too.

6.4 HTML filter
The HTML filter’s job is to remove any component that

may provide feedback to the search engine. Recall that this
is the additional privacy protection that PWS provides over
and above the protection provided by Tor+Provoxy. This
is done by parsing the response HTML and extracting only
the information needed to present an answer to the user.
The information extracted is the result description, text ab-
stract, and result URL. These are extracted using regular
expressions. Using the extracted text, a new HTML file is
built, with all HTML generated by PWS. This has only the
results and no embedded objects. This means that the user
only performs one HTTP GET per query, preventing cache
timing attacks [6]. All active components such as JavaScript
and Flash are removed, so that no extra code is executed.

One alternative approach might be to disable all features
in the browser that can initiate additional connections and
leak information. We prefer our approach for two reasons.
First, it gives better assurance that all active components
and undesired labels are removed, even those we did not
think about while writing PWS. Second, it gives us control
over the functionality. It is possible that disabling some
feature will break functionality. By generating new HTML,
we can be sure that functionality is preserved.

Because we are protecting only connections to the search
engine, we need to be much more careful about additional
connections than other tools that filter all connections. Just
loading an image is very dangerous if the resulting connec-
tion is not filtered. The HTML filter makes sure this does
not happens.

Changes in the search engine’s HTML code can make the
HTML filter fail to produce an output. That means that
we need to keep up with the changes. We don’t expect

the HTML in the response to change too frequently. Also,
updating Firefox plugins is a painless process for the user.

7. HOW TO USE PWS
Usability is an important objective of ours, and so in this

section we describe briefly how the plugin works from the
user’s point of view.

The PWS plugin is distributed as a single .xpi file that,
to be installed, needs to be dragged into the plugin instal-
lation window. Once it’s installed, Firefox will need to be
restarted. After that, a new search option will show up
among the search engines in the search box (see figure 3).
That search option is labeled “PWS Google search.” When
the user searches using this option, the query will be routed
through the HTTP proxy and the Tor client. The response
will take some more time and will look different from the
standard Google response, because the HTML was filtered
and then displayed. Notice that the user can choose between
regular Google queries and PWS just by selecting accord-
ingly from the search box.

Figure 3: PWS user interface

8. CONCLUSIONS AND FUTURE WORK
Taken together, search queries can reveal a lot of infor-

mation about a user. Experience has shown that we cannot
rely on the search-engine companies not to release this infor-
mation or otherwise use it in undesirable ways. Therefore,
we suggest that users might want to minimize the informa-
tion they give to the search engines by preventing them from
identifying the source of the queries or even which queries
originate from the same user.

Preventing search engines from linking queries requires
eliminating all potentially unique information that gets sent
to them. We have identified the IP layer, the HTTP request,
and the browser’s behavior on the HTML response as likely
sources of this information and have designed a tool that
prevents all of these sources from leaking. Previous tools
deal only with part of the potentially identifying informa-
tion; so PWS is a contribution over exiting software.

Our tool, Private Web Search (PWS), is a Firefox plu-
gin that gives users a search box in the browser for private
search. Queries are sent over the Tor anonymity network,
after homogenizing the HTTP headers, and the results are
extracted from the response to prevent active components or
timing attacks from identifying the user to the engine. The
plugin is easy to install and use and works transparently in
the background after a request is made, with an increase
in the response time as the only major change in the user
experience.

There is a very interesting side impact of this project.
Search-engine companies, as seen with AOL, want to release
data to third parties in order to improve their understanding
of web search. The problem is that there is no agreed-upon
privacy standard for releasing these data. If we are able
to reach agreement that our tool protects individual users’
privacy, that by itself will advance the discussion about data-
release policies. The search-engine company could simulate
the case in which every user uses PWS and thus generate
a dataset acceptable for distribution. This may, however,
reduce the usefulness of the data for research purposes.

No usability tests have been made so far, but, because we
regard usability as an important feature of PWS, we will
conduct them as the application matures.

9. REFERENCES
[1] Shuchi Chawla, Cynthia Dwork, Frank McSherry,

Adam Smith, and Hoeteck Wee. Toward privacy in
public databases. In Proceedings of the 2nd Theory of
Cryptography Conference, pages 363–385, February
2005.

[2] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In
Proceedings of the 36th IEEE Symposium on
Foundations of Computer Science, pages 41–50,
October 1995.

[3] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion router. In
Proceedings of the 13th USENIX Security Symposium,
August 2004. http://tor.eff.org/tor-design.pdf.

[4] Eff. http://www.eff.org/Privacy/AOL/.

[5] Alexandre Evfimievski, Johannes Gehrke, and
Ramakrishnan Srikant. Limiting privacy breaches in
privacy preserving data mining. In Proceedings of the
22nd ACM Symposium on Principles of Database
Systems, pages 211–222, June 2003.

[6] Edward Felten and Michael Schneider. Timing attacks
on web privacy. In Proceedings of the 7th ACM
Conference on Computer and Communications
Security, pages 25–32, November 2000.

[7] Foxtor. http://cups.cs.cmu.edu/foxtor/.

[8] William Gasarch. A survey on private information
retrieval, 2004.

[9] Google. http://www.google.com/.

[10] Collin Jackson, Andrew Bortz, Dan Boneh, and
John C. Mitchell. Protecting browser state from web
privacy attacks. In Proceedings of the 15th
International Conference on the World Wide Web,
pages 737–744, May 2006.

[11] Jap.
http://anon.inf.tu-dresden.de/index_en.html.

[12] Eyal Kushilevitz and Rafail Ostrovsky. Replication is
NOT needed: SINGLE database,
computationally-private information retrieval. In
Proceedings of the 38th IEEE Symposium on
Foundations of Computer Science, pages 364–373,
October 1997.

[13] Ashwin Machanavajjhala, Johannes Gehrke, Daniel
Kifer, and Muthuramakrishnan Venkitasubramaniam.
l-diversity: Privacy beyond k-anonymity. In
Proceedings of the 22nd IEEE International
Conference on Data Engineering, page 24, April 2006.

[14] p0f. http://lcamtuf.coredump.cx/p0f/README.

[15] Privoxy. http://www.privoxy.org.

[16] Vibhor Rastogi, Dan Suciu, and Sungho Hong. The
boundary between privacy and utility in data
anonymization, 2006.
http://www.citebase.org/abstract?id=oai:

arXiv.org:cs/0612103.

[17] Michael G. Reed, Paul F. Syverson, and David M.
Goldschlag. Anonymous connections and onion
routing. IEEE Journal on Selected Areas in
Communications, 16(4):482–494, May 1998.

[18] P. Samarati and L. Sweeney. Protecting privacy when
disclosing information: k-anonymity and its
enforcement through generalization and suppression.
Technical Report SRI-CSL-98-04, SRI Computer
Science Laboratory, Palo Alto, CA, 1998.

[19] Simile.
http://simile.mit.edu/java-firefox-extension/.

[20] Tor. http://tor.eff.org.

[21] Torbutton.
http://freehaven.net/~squires/torbutton/.

[22] Trackmenot.
http://mrl.nyu.edu/~dhowe/TrackMeNot/.

[23] V. S. Verykios, E. Bertino, I. N. Fovino, L. P.
Provenza, Y. Saygin, and Y. Theodoridis.
State-of-the-art in privacy preserving data mining.
ACM SIGMOD Record, 3(1):50–57, March 2004.

