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Abstract

The proliferation of online sensitive data about individuals and orga-

nizations makes concern about the privacy of these data a top priority.

There have been many formulations of privacy and, unfortunately, many

negative results about the feasibility of maintaining privacy of sensitive

data in realistic networked environments. We formulate communication-

complexity-based definitions, both worst-case and average-case, of a prob-

lem’s privacy-approximation ratio. We use our definitions to investigate

the extent to which approximate privacy is achievable in a number of stan-

dard problems: the 2
nd
-price Vickrey auction, Yao’s millionaires problem,

the public-good problem, and the set-theoretic disjointness and intersec-

tion problems.

For both the 2
nd
-price Vickrey auction and the millionaires problem,

we show that not only is perfect privacy impossible or infeasibly costly

to achieve, but even close approximations of perfect privacy suffer from

the same lower bounds. By contrast, if the inputs are drawn uniformly

at random from {0, . . . , 2k − 1}, then, for both problems, simple and

natural communication protocols have privacy-approximation ratios that

are linear in k (i.e., logarithmic in the size of the input space). We also

demonstrate tradeoffs between privacy and communication in a family of

auction protocols.

We show that the privacy-approximation ratio provided by any proto-

col for the disjointness and intersection problems is necessarily exponential

(in k). We also use these ratios to argue that one protocol for each of these

problems is significantly fairer than the others we consider (in the sense

of relative effects on the privacy of the different players).
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1 Introduction

Increasing use of computers and networks in business, government, recreation,
and almost all aspects of daily life has led to a proliferation of online sensitive
data about individuals and organizations. Consequently, the study of privacy
has become a top priority in many disciplines. Computer scientists have con-
tributed many formulations of the notion of privacy-preserving computation that
have opened new avenues of investigation and shed new light on some well stud-
ied problems.

One good example of a new avenue of investigation opened by concern about
privacy can be found in auction design, which was our original motivation for
this work. Traditional auction theory is a central research area in Economics,
and one of its main questions is how to incent bidders to behave truthfully, i.e.,
to reveal private information that auctioneers need in order to compute optimal
outcomes. More recently, attention has turned to the complementary goal of
enabling bidders not to reveal private information that auctioneers do not need
in order to compute optimal outcomes. The importance of bidders’ privacy,
like that of algorithmic efficiency, has become clear now that many auctions
are conducted online, and Computer Science has become at least as relevant as
Economics.

Our approach to privacy is based on communication complexity. Although
originally motivated by agents’ privacy in mechanism design, our definitions and
tools can be applied to distributed function computation in general. Because
perfect privacy can be impossible or infeasibly costly to achieve, we investigate
approximate privacy. Specifically, we formulate both worst-case and average-
case versions of the privacy-approximation ratio of a function f in order to
quantify the amount of privacy that can be maintained by parties who supply
sensitive inputs to a distributed computation of f . We also study the tradeoff
between privacy preservation and communication complexity.

Our points of departure are the work of Chor and Kushilevitz [10] on char-
acterization of privately computable functions and that of Kushilevitz [25] on
the communication complexity of private computation. Starting from the same
place, Bar-Yehuda et al. [3] also provided a framework in which to quantify the
amount of privacy that can be maintained in the computation of a function
and the communication cost of achieving it. Their definitions and results are
significantly different from the ones we present here (see discussion in Sec. 1.4);
as explained in Section 8 below, a precise characterization of the relationship
between their formulation and ours is an interesting direction for future work.

1.1 Our Approach

Consider an auction of a Bluetooth headset with 2 bidders, 1 and 2, in which
the auctioneer accepts bids ranging from $0 to $7 in $1 increments. Each bidder
i has a private value xi ∈ {0, . . . , 7} that is the maximum he is willing to pay
for the headset. The item is sold in a 2nd-price Vickrey auction, i.e., the higher

bidder gets the item (with ties broken in favor of bidder 1), and the price he pays
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is the lower bid. The demand for privacy arises naturally in such scenarios [29]:
In a straightforward protocol, the auctioneer receives sealed bids from both
bidders and computes the outcome based on this information. Say, e.g., that
bidder 1 bids $3, and bidder 2 bids $6. The auctioneer sells the headset to bidder
2 for $3. It would not be at all surprising however if, in subsequent auctions of
headsets in which bidder 2 participates, the same auctioneer set a reservation
price of $5. This could be avoided if the auction protocol allowed the auctioneer
to learn the fact that bidder 2 was the highest bidder (something he needs to
know in order to determine the outcome) but did not entail the full revelation
of 2’s private value for the headset.
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Figure 1: The minimal knowledge requirements for 2
nd
-price auctions

Observe that, in some cases, revelation of the exact private information of
the highest bidder is necessary. For example, if x1 = 6, then bidder 2 will win
only if x2 = 7. In other cases, the revelation of a lot of information is necessary,
e.g., if bidder 1’s bid is 5, and bidder 2 outbids him, then x2 must be either
6 or 7. An auction protocol is said to achieve perfect objective privacy if the
auctioneer learns nothing about the private information of the bidders that is
not needed in order to compute the result of the auction. Figure 1 illustrates
the information the auctioneer must learn in order to determine the outcome
of the 2nd-price auction described above. Observe that the auctioneer’s failure
to distinguish between two potential pairs of inputs that belong to different
rectangles in Fig. 1 implies his inability to determine the winner or the price
the winner must pay. Also observe, however, that the auctioneer need not be
able to distinguish between two pairs of inputs that belong to the same rectangle.
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Using the “minimal knowledge requirements” described in Fig. 1, we can now
characterize a perfectly (objective) privacy-preserving auction protocol as one
that induces this exact partition of the space of possible inputs into subspaces in
which the inputs are indistinguishable to the auctioneer. Unfortunately, perfect
privacy is often hard or even impossible to achieve. For 2nd-price auctions,
Brandt and Sandholm [7] show that every perfectly private auction protocol
has exponential communication complexity. This provides the motivation for
our definition of privacy-approximation ratio: We are interested in whether
there is an auction protocol that achieves “good” privacy guarantees without
paying such a high price in computational efficiency. We no longer insist that the
auction protocol induce a partition of inputs exactly as in Fig. 1 but rather that
it “approximate” the optimal partition well. We define two kinds of privacy-
approximation ratio (PAR): worst-case PAR and average-case PAR.

The worst-case PAR of a protocol P for the 2nd-price auction is defined
as the maximum ratio between the size of a set S of indistinguishable inputs
in Fig. 1 and the size of a set of indistinguishable inputs induced by P that
is contained in S. If a protocol is perfectly privacy preserving, these sets are
always the same size, and so the worst-case PAR is 1. If, however, a protocol
fails to achieve perfect privacy, then at least one “ideal” set of indistinguishable
inputs strictly contains a set of indistinguishable inputs induced by the protocol.
In such cases, the worst-case PAR will be strictly higher than 1.

Consider, e.g., the sealed-bid auction protocol in which both bidders reveal
their private information to the auctioneer, who then computes the outcome.
Obviously, this naive protocol enables the auctioneer to distinguish between
every two pairs of private inputs, and so each set of indistinguishable inputs
induced by the protocol contains exactly one element. The worst-case PAR
of this protocol is therefore 8

1 = 8. (If bidder 2’s value is 0, then in Fig. 1
the auctioneer is unable to determine which value in {0, . . . , 7} is x1. In the
sealed bid auction protocol, however, the auctioneer learns the exact value of
x1.) The average-case PAR is a natural Bayesian variant of this definition: We
now assume that the auctioneer has knowledge of some market statistics, in
the form of a probability distribution over the possible private information of
the bidders. PAR in this case is defined as the average ratio and not as the
maximum ratio as before.

Thus, intuitively, PAR captures the effect of a protocol on the privacy
(in the sense of indistinguishability from other inputs) afforded to protocol
participants—it indicates the factor by which, in the worst case or on aver-
age, using the protocol to compute the function, instead of just being told the
output, reduces the number of inputs from which a given input cannot be dis-
tinguished. To formalize and generalize the above intuitive definitions of PAR,
we make use of machinery from communication-complexity theory. Specifically,
we use the concepts of monochromaticity and tilings to make formal the notions
of sets of indistinguishable inputs and of the approximability of privacy. We
discuss other notions of approximate privacy in Section 8.
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1.2 Our Findings

We present both upper and lower bounds on the privacy-approximation ratio
for both the millionaires problem and 2nd-price auctions with 2 bidders. Our
analysis of these two environments takes place within Yao’s 2-party commu-
nication model [35], in which the private information of each party is a k-bit
string, representing a value in {0, . . . , 2k − 1}. In the millionaires problem,
the two parties (the millionaires) wish to keep their private information hidden
from each other. We refer to this goal as the preservation of subjective privacy.
In electronic-commerce environments, each party (bidder) often communicates
with the auctioneer via a secure channel, and so the aim in the 2nd-price auction
is to prevent a third party (the auctioneer), who is unfamiliar with any of the
parties’ private inputs, from learning “too much” about the bidders. This goal
is referred to, in this paper, as the preservation of objective privacy.

Informally, for both the 2nd-price Vickrey auction and the millionaires prob-
lem, we obtain the following results: We show that not only is perfect privacy
impossible or infeasibly costly to achieve, but even close approximations of per-
fect privacy suffer from the same lower bounds. By contrast, we show that, if the
values of the parties are drawn uniformly at random from {0, . . . , 2k − 1}, then,
for both problems, simple and natural communication protocols have privacy-
approximation ratios that are linear in k (i.e., logarithmic in the size of the
space of possible inputs). We conjecture that this improved PAR is achievable
for any probability distribution. The correctness of this conjecture would imply
that, no matter what beliefs the protocol designer may have about the parties’
private values, a protocol that achieves reasonable privacy guarantees exists.

Importantly, our results for the 2nd-price Vickrey auction are obtained by
proving a more general result for a large family of protocols for single-item
auctions, termed bounded-bisection auctions , that contains both the celebrated
ascending-price English auction and the class of bisection auctions [17,20,21,24].
We are thus able to quantify a tradeoff between communication complexity and
the effect on privacy within this family of protocols.

We show that our results for the millionaires problem also extend to the
classic economic problem of provisioning a public good, by observing that, in
terms of privacy-approximation ratios, the two problems are, in fact, equivalent.
We also consider a truthful variant of the public-good problem and show that
this can have a bounded PAR (depending on how the cost of the good grows).

We then apply our PAR framework to two classic set-theoretic problems: the
intersection problem (in which party 1’s input is a set S1, party 2’s input is a set
S2, and the goal of the protocol is to compute S1 ∩ S2) and its decision version
disjointness (in which f(S1, S2) = 1 if S1∩S2 = ∅, and f(S1, S2) = 0 otherwise).
From both the privacy perspective and the communication-complexity perspec-
tive, these are extremely natural problems to study. The intersection problem
has served as a motivating example in the study of privacy-preserving compu-
tation for decades; in a typical application, two organizations wish to compute
the set of members that they have in common without disclosing to each other
the people who are members of only one of the organizations. The disjointness
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problem plays a central role in the theory and application of communication
complexity, where the fact that n+1 bits of communication are required to test
disjointness of two subsets of {1, . . . , n} is used to prove many worst-case lower
bounds.

In applying our PAR framework to the disjointness and intersection prob-
lems, we consider three natural protocols that apply to both problems. We
compute the objective and subjective PARs for all three protocols for both
problems. The objective and subjective PARs are exponential in all cases, but
we show that the protocol that is intuitively the best is quantifiably (and signif-
icantly) more fair than the others in the sense described below; to do this, we
consider the ratios of the subjective PARs (as described in Sec. 3.3) and argue
that this captures some intuitive sense of fairness.

1.3 Related Work and Follow-Up Work: Defining Privacy-

Preserving Computation

1.3.1 Communication-Complexity-Based Privacy Formulations

As explained above, the privacy work of Bar-Yehuda et al. [3] and the work
presented in this paper have common ancestors in [10,25]. Similarly, the work of
Brandt and Sandholm [7] uses Kushilevitz’s formulation to prove an exponential
lower bound on the communication complexity of privacy-preserving 2nd-price
Vickrey auctions. We elaborate on the relation of our work to that of Bar-
Yehuda et al. [3] in Sec. 1.4.

Similarly to [3,10,25], our work focuses on the two-party deterministic com-
munication model. We view our results as first step in a more general research
agenda, outlined in Sec. 8.

There are many formulations of privacy-preserving computation, both exact
and approximate, that are not based on the definitions and tools in [10,25]. We
now briefly review some of them and explain how they differ from ours.

1.3.2 Secure, Multiparty Function Evaluation

The most extensively developed approach to privacy in distributed computation
is that of secure, multiparty function evaluation (SMFE). Indeed, to achieve
agent privacy in algorithmic mechanism design, which was our original moti-
vation, one could, in principle, simply start with a strategyproof mechanism
and then have the agents themselves compute the outcome and payments using
an SMFE protocol. However, as observed by Brandt and Sandholm [7], these
protocols fall into two main categories, and both have inherent disadvantages
from the point of view of mechanism design:

• Information-theoretically private protocols, the study of which was initi-
ated by Ben-Or, Goldwasser, and Wigderson [5] and Chaum, Crépeau, and
Damg̊ard [8], rely on the assumption that a constant fraction of the agents
are “honest” (or “obedient” in the terminology of distributed algorithmic
mechanism design [16]), i.e., that they follow the protocol perfectly even
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if they know that doing so will lead to an outcome that is not as desirable
to them as one that would result from their deviating from the protocol;
clearly, this assumption is antithetical to the main premise of mechanism
design, which is that all agents will behave strategically, deviating from
protocols when and only when doing so will improve the outcome from
their points of view;

• Multiparty protocols that use cryptography to achieve privacy, the study
of which was initiated by Yao [36, 37], rely on (plausible but currently
unprovable) complexity-theoretic assumptions. Often, they are also very
communication-intensive (see, e.g., [7] for an explanation of why some of
the deficiencies of the Vickrey auction cannot be solved via cryptogra-
phy). Moreover, sometimes the deployment cryptographic machinery is
infeasible (over the years, many cryptographic variants of the current in-
terdomain routing protocol, BGP, were proposed, but not deployed due to
the infeasibility of deploying a global Internet-wide PKI infrastructure and
the real-time computational cost of verifying signatures). For some mech-
anisms of interest, efficient cryptographic protocols have been obtained
(see, e.g., [11, 29]).

In certain scenarios, the demand for perfect privacy preservation cannot
be relaxed. In such cases, if the function cannot be computed in a privacy-
preserving manner without the use of cryptography, there is no choice but to
resort to a cryptographic protocol. There is an extensive body of work on
cryptography-based identity protocols, and we are not offering our notion of
PAR as an extension of that work. (In fact, the framework described here
might be applied to SMFE protocols by replacing indistinguishability by com-
putational indistinguishability. However, this does not appear to yield any new
insights.)

However, in other cases, we argue that privacy preservation should be re-
garded as one of several design goals, alongside low computational/communication
complexity, protocol simplicity, incentive-compatibility, and more. (See, e.g., [28].)
Therefore, it is necessary to be able to quantify privacy preservation in order
to understand the tradeoffs among the different design goals, and obtain “rea-
sonable” (but not necessarily perfect) privacy guarantees. Our PAR approach
continues the long line of research about information-theoretic notions of pri-
vacy, initiated by Ben-Or et al. and by Chaum et al. Regardless of the above
argument, we believe that information-theoretic formulations of privacy and
approximate privacy are also natural to consider in their own right.

1.3.3 Private Approximations and Approximate Privacy

In this paper, we consider protocols that compute exact results but preserve
privacy only approximately. One can also ask what it means for a protocol
to compute approximate results in a privacy-preserving manner; indeed, this
question has also been studied [4,13,23], but it is unrelated to the questions we
ask here. Similarly, definitions and techniques from differential privacy [12] (see
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also [19]), in which the goal is to add noise to the result of a database query
in such a way as to preserve the privacy of the individual database records
(and hence protect the data subjects) but still have the result convey nontrivial
information, are inapplicable to the problems that we study here. Ghosh and
Roth [18] have used the differential-privacy framework to consider the problem
of selling privacy, which leads to the use of an auction for privacy; in addition
to using different techniques, that problem is different from that of how much
privacy is provided by the auction protocol itself (which is one of the problems to
which we apply our framework). Ghosh and Roth show that no mechanism can
compensate agents sufficiently to guarantee incentive compatibility if the values
that agents place on their privacy are unbounded; moreover, they do not attempt
to hide the privacy valuations from the mechanism. McGregor et al. [27] study
the setting of a database distributed between two parties who run a protocol
such that each party’s view is a differentially private function of the other’s
data. They proved lower bounds on the accuracy of such protocols, in part using
connections between differential privacy and communication complexity. Nissim
et al. [31] design privacy-aware mechanisms that are incentive-compatible with
respect to all agents whose privacy valuations are below a certain threshold and
differentially private with respect to all other agents.

1.4 Relation to the Work of Bar-Yehuda et al.

While there are certainly some parallels between the work here and the Bar-
Yehuda et al. work [3], there are significant differences in what the two frame-
works capture. Specifically:

1. The results in [3] deal with what can be learned by a party who knows
one of the inputs. By contrast, our notion of objective PAR captures the
effect of a protocol on privacy with respect to an external observer who
does not know any of the players private values.

2. More importantly, the framework of [3] does not address the size of monochro-
matic regions. As illustrated by the following example, the ability to do
so is necessary to capture the effects of protocols on interesting aspects of
privacy that are captured by our definitions of PAR.

Consider the function f : {0, . . . , 2n−1}×{0, . . . , 2n−1} → {0, . . . , 2n−2}

defined by f(x, y) = floor(x2 ) if x < 2n−1 and f(x, y) = 2n−2 otherwise.
Consider the following two protocols for f : in P , player 1 announces
his value x if x < 2n−1 and otherwise sends 2n−1 (which indicates that
f(x, y) = 2n−2); in Q, player 1 announces floor(x2 ) if x < 2n − 1 and x if
x = 2n − 1. Observe that each protocol induces 2n−1 + 1 rectangles.

Intuitively, the effect on privacy of these two protocols is different. For half
of the inputs, P reduces by a factor of 2 the number of inputs from which
they are indistinguishable while not affecting the indistinguishability of
the other inputs. Q does not affect the indistinguishability of the inputs
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affected by P , but it does reduce the number of inputs indistinguishable
from a given input with x ≥ 2n−1 by at least a factor of 2n−2.

Our notion of PAR is able to capture the different effects on privacy of the
protocols P and Q. (The average-case objective PARs are constant and
exponential in n, respectively.) By contrast, the three quantifications of
privacy from [3]—Ic, Ii, and Ic−i—do not distinguish between these two
protocols; we now sketch the arguments for this claim.

For each protocol, any function h for which the protocol is weakly h-
private must take at least 2n−1 + 1 different values. This bound is tight
for both P and Q. Thus, Ic cannot distinguish between the effects of P
and Q on f .

The number of rectangles induced by P that intersect each row and column
equals the number induced by Q. Considering the geometric interpreta-
tion of IP and IQ in Lemma 7 of [3], as well as the discussion in Sec.
VII.A of [3], we see that Ii and Ic−i (when restricted to a single protocol,
which erases the distinction between them) cannot distinguish between
the effects of P and Q on f .

In Sec. 8 we give examples that show the objective (i.e., from the per-
spective of an outside observer) analogues of the information-theoretic
measures used in defining Ii and Ic−i can disagree with PAR on whether
the effect of two protocols is similar and even on which protocol is more
private.

1.5 Follow-Up Work

Subsequent to our preliminary work, several papers adopted our approximate-
privacy framework to further explore the research directions outlined in this
work [1], to analyze other objective functions and communication protocols of
interest [9], and to study efficiency and privacy tradeoffs in mechanism de-
sign [32].

1.6 Paper Outline

In the next section, we review and expand upon the connection between perfect
privacy and communication complexity. We present our formulations of approx-
imate privacy, both worst case and average case, in Section 3; we present our
PAR results on second-price auctions, the millionaires problem, and public-good
problems in Sections 5 and 4. Section 6 gives formal definitions of the disjoint-
ness and intersection problems, describes the protocols that we consider for
these problems, and gives a summary and discussion of our related PAR results.
Section 7 gives the full statements and proofs of our PAR results for disjointness
and intersection, respectively. In Sec. 8, we discuss other approaches that might
be taken to the problem of quantifying partial privacy; we also discuss various
directions for future research in this area.
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2 Perfect Privacy and Communication Complex-

ity

We now briefly review Yao’s model of two-party communication and notions
of objective and subjective perfect privacy; see Kushilevitz and Nisan [26] for
a comprehensive overview of communication complexity theory. Note that we
only deal with deterministic communication protocols. Our definitions can be
extended to randomized protocols.

2.1 Two-Party Communication Model

There are two parties, 1 and 2, each holding a k-bit input string. The in-
put of party i, xi ∈ {0, 1}k, is the private information of i. The parties
communicate with each other in order to compute the value of a function
f : {0, 1}k × {0, 1}k → {0, 1}t. The two parties alternately send messages
to each other. In communication round j, one of the parties sends a bit qj that
is a function of that party’s input and the history (q1, . . . , qj−1) of previously
sent messages. We say that a bit is meaningful if it is not a constant function
of this input and history and if, for every meaningful bit transmitted previ-
ously, there is some combination of input and history for which the bit differs
from the earlier meaningful bit. Non-meaningful bits (e.g., those sent as part of
protocol-message headers) are irrelevant to our work here and will be ignored. A
communication protocol dictates, for each party, when it is that party’s turn to
transmit a message and what message he should transmit, based on the history
of messages and his value.

A communication protocol P is said to compute f if, for every pair of inputs
(x1, x2), it holds that P (x1, x2) = f(x1, x2). As in [25], the last message sent in
a protocol P is assumed to contain the value f(x1, x2) and therefore may require
up to t bits. The communication complexity of a protocol P is the maximum,
over all input pairs, of the number of bits transmitted during the execution of
P .

Any function f : {0, 1}k × {0, 1}k → {0, 1}t can be visualized as a 2k × 2k

matrix with entries in {0, 1}t, in which the rows represent the possible inputs
of party 1, the columns represent the possible inputs of party 2, and each entry
contains the value of f associated with its row and column inputs. This matrix
is denoted by A(f).

Definition 2.1 (Regions, partitions). A region in a matrix A is any subset of
entries in A (not necessarily a submatrix of A). A partition of A is a collection
of disjoint regions in A whose union equals A.

Definition 2.2 (Monochromaticity). A region R in a matrix A is called mono-

chromatic if all entries in R contain the same value. A monochromatic partition

of A is a partition all of whose regions are monochromatic.

Of special interest in communication complexity are specific kinds of regions
and partitions called rectangles, and tilings, respectively:

10



Definition 2.3 (Rectangles, Tilings). A rectangle in a matrix A is a submatrix
of A. A tiling of a matrix A is a partition of A into rectangles.

Definition 2.4 (Refinements). A partition or tiling P1(f) of a matrix A(f)
is said to be a refinement of another partition or tiling P2(f) of A(f) if every
region in P1(f) is contained in some region in P2(f).

Monochromatic rectangles and tilings are an important concept in commu-
nication-complexity theory, because they are linked to the execution of commu-
nication protocols. Every communication protocol P for a function f can be
thought of as follows:

1. Let R and C be the sets of row and column indices of A(f), respectively.
For R

� ⊆ R and C
� ⊆ C, we will abuse notation and write R

� × C
� to

denote the submatrix of A(f) obtained by deleting the rows not in R
� and

the columns not in C
�.

2. While R× C is not monochromatic:

• One party i ∈ {1, 2} sends a single bit q (whose value is based on xi

and the history of communication).

• If i = 1, q indicates whether 1’s value is in one of two disjoint sets
R1, R2 whose union equals R. If x1 ∈ R1, both parties set R = R1.
If x1 ∈ R2, both parties set R = R2.

• If i = 2, q indicates whether 2’s value is in one of two disjoint sets
C1, C2 whose union equals C. If x2 ∈ C1, both parties set C = C1.
If x2 ∈ C2, both parties set C = C2.

3. One of the parties sends a last message (consisting of up to t bits) con-
taining the value in all entries of the monochromatic rectangle R× C.

Observe that, for every pair of private inputs (x1, x2), P terminates at some
monochromatic rectangle in A(f) that contains (x1, x2). We refer to this rect-
angle as the monochromatic rectangle induced by P for (x1, x2). We refer to the
tiling that consists of all rectangles induced by P (for all pairs of inputs) as the
monochromatic tiling induced by P .

Remark 2.5. There are monochromatic tilings that cannot be induced by com-
munication protocols. For example, observe that the tiling in Fig. 2 (which is
essentially an example from [25]) has this property. The first input-dependent
bit that is sent in the protocol will divide at least one monochromatic region into
two parts. If this bit is sent by party 1, whose possible input values correspond
to the rows, then at least one of the bottom-left and top-right regions shown
will be divided unnecessarily. (It is possible that the function takes the same
value on these regions, so that they in fact form a single monochromatic region;
that single region would still be divided.)
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Figure 2: A tiling that cannot be induced by any communication protocol [25]

2.2 Perfect Privacy

Informally, we say that a two-party protocol is perfectly privacy-preserving if
the two parties (or a third party observing the communication between them)
cannot learn more from the execution of the protocol than the value of the
function the protocol computes. (These definition can be extended naturally to
protocols involving more than two participants.)

Formally, let P be a communication protocol for a function f . The commu-

nication string passed in P is the concatenation of all the messages (q1, q2 . . .)
sent in the course of the execution of P . Let s(x1,x2) denote the communication
string passed in P if the inputs of the parties are (x1, x2). We are now ready
to define perfect privacy. The following two definitions handle privacy from the
point of view of a party i that does not want the other party (who is, of course,
familiar not only with the communication string, but also with his own value) to
learn more than necessary about i’s private information. We say that a protocol
is perfectly private with respect to party 1 if 1 never learns more about party
2’s private information than necessary to compute the outcome.

Definition 2.6 (Perfect privacy with respect to 1). [10,25] P is perfectly private

with respect to party 1 if, for every x1, x2, x
�
2 such that f(x1, x2) = f(x1, x

�
2), it

holds that s(x1,x2) = s(x1,x�
2)
.

Informally, Def. 2.6 says that party 1’s knowledge of the communication
string passed in the protocol and his knowledge of x1 do not aid him in distin-
guishing between two possible inputs of 2. Similarly:

Definition 2.7 (Perfect privacy with respect to 2). [10,25] P is perfectly private

with respect to party 2 if, for every x1, x
�
1, x2 such that f(x1, x2) = f(x�

1, x2), it
holds that s(x1,x2) = s(x�

1,x2).

Observation 2.8. For any function f , the protocol in which party i reveals xi

and the other party computes the outcome of the function is perfectly private
with respect to i.

Definition 2.9 (Perfect subjective privacy). P achieves perfect subjective pri-

vacy if it is perfectly private with respect to both parties.
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0 1
0 1 0
1 0 1

Figure 3: Matrix for f(x1, x2) = 1⊕x1⊕x2 (with x1 shown in the left column and
x2 in the top row) illustrating the differences between subjective and objective
privacy.

The following definition considers a different form of privacy—privacy from
a third party that observes the communication string but has no a priori knowl-
edge about the private information of the two communicating parties. We refer
to this notion as objective privacy.

Definition 2.10 (Perfect objective privacy). P achieves perfect objective pri-

vacy if, for every two pairs of inputs (x1, x2) and (x�
1, x

�
2) such that f(x1, x2) =

f(x�
1, x

�
2), it holds that s(x1,x2) = s(x�

1,x
�
2)
.

Figure 3 illustrates the difference between perfect subjective and objective
privacy. The function is f(x1, x2) = 1⊕ x1 ⊕ x2, and we assume that different
input pairs produce different communication strings. For every value of x1,
the conditions of Def. 2.6 are trivially satisfied; in terms of the matrix, for
each row, the inputs in the row that produce the same function value also
have the same communication string. This also holds for fixed values of x2

and the conditions of Def. 2.7 or, equivalently, for fixed columns of the matrix.
By contrast, because (0, 0) and (1, 1) produce the same output value, perfect
objective privacy would require that those inputs as well as (0, 1) and (1, 0)
produce the same communication strings (including output values).1

Kushilevitz [25] was the first to point out the interesting connections between
perfect privacy and communication-complexity theory. Intuitively, we can think
of any monochromatic rectangle R in the tiling induced by a protocol P as a
set of inputs that are indistinguishable to a third party. This is because, by
definition of R, for any two pairs of inputs in R, the communication string
passed in P must be the same. Hence we can think of the privacy of the
protocol in terms of the tiling induced by that protocol.

Ideally, every two pairs of inputs that are assigned the same outcome by
a function f will belong to the same monochromatic rectangle in the tiling
induced by a protocol for f . This observation enables a simple characterization
of perfect privacy-preserving mechanisms.

Definition 2.11 (Ideal monochromatic partitions). A monochromatic region in
a matrix A is said to be a maximal monochromatic region if no monochromatic

1
This check will be useful in subsequent examples. We may look at the matrix for the

function as in Fig. 3; if there are two input pairs (i, j) and (i�, j�) that produce the same

function value, the function cannot be computed perfectly privately if the inputs (i, j�) and

(i�, j) do not also produce this same function value. The tiling from Fig. 2 shows that satisfying

this is necessary but not sufficient, however.
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region in A properly contains it. The ideal monochromatic partition of A is
made up of the maximal monochromatic regions.

Observation 2.12. For every possible value in a matrix A, the maximal mono-
chromatic region that corresponds to this value is unique. This implies the
uniqueness of the ideal monochromatic partition for A.

Observation 2.13 (A characterization of perfectly privacy-preserving protocols).
A communication protocol P for f is perfectly privacy-preserving iff the monochro-
matic tiling induced by P is the ideal monochromatic partition of A(f). This
holds for all of the above notions of privacy.

3 Privacy-Approximation Ratios

Unfortunately, perfect privacy should not be taken for granted. As shown by
our results, in many environments, perfect privacy can be either impossible or
very costly (in terms of communication complexity) to obtain. To measure a
protocol’s effect on privacy, relative to the ideal—but perhaps impossible to
implement—computation of the outcome of a problem, we introduce the notion
of privacy-approximation ratios (PARs).

3.1 Worst-Case PARs

For any communication protocol P for a function f , we denote by R
P (x1, x2) the

monochromatic rectangle induced by P for (x1, x2). We denote by R
I(x1, x2)

the monochromatic region containing A(f)(x1,x2) in the ideal monochromatic
partition of A(f). Intuitively, RP (x1, x2) is the set of inputs that are indis-
tinguishable from (x1, x2) to P . R

I(x1, x2) is the set of inputs that would be

indistinguishable from (x1, x2) if perfect privacy were preserved. We wish to
asses how far one is from the other. The size of a region R, denoted by |R|, is
the cardinality of R, i.e., the number of inputs in R.

We can now define worst-case objective PAR as follows:

Definition 3.1 (Worst-case objective PAR of P ). The worst-case objective

privacy-approximation ratio of communication protocol P for function f is

α = max
(x1,x2)

|RI(x1, x2)|

|RP (x1, x2)|
.

We say that P is α-objective-privacy-preserving in the worst case.

Definition 3.2 (i-partitions). The 1-partition of a region R in a matrix A is the
set of disjoint rectangles Rx1 = {x1} × {x2 s.t. (x1, x2) ∈ R} (over all possible
inputs x1). 2-partitions are defined analogously.

Intuitively, given any region R in the matrix A(f), if party i’s actual private
information is xi, then i can use this knowledge to eliminate all the parts of R
other than Rxi . Hence, the other party should be concerned not with R but
rather with the i-partition of R.
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Definition 3.3 (i-induced tilings). The i-induced tiling of a protocol P is the
refinement of the tiling induced by P obtained by i-partitioning each rectangle
in it.

Definition 3.4 (i-ideal monochromatic partitions). The i-ideal monochromatic

partition is the refinement of the ideal monochromatic partition obtained by i-
partitioning each region in it.

For any communication protocol P for a function f , we use R
P
i (x1, x2) to

denote the monochromatic rectangle containing A(f)(x1,x2) in the i-induced
tiling for P . We denote by R

I
i (x1, x2) the monochromatic rectangle contain-

ing A(f)(x1,x2) in the i-ideal monochromatic partition of A(f).

Definition 3.5 (Worst-case PAR of P with respect to i). The worst-case

privacy-approximation ratio with respect to i of communication protocol P for
function f is

α = max
(x1,x2)

|RI
i (x1, x2)|

|RP
i (x1, x2)|

.

We say that P is α-privacy-preserving with respect to i in the worst case.

Definition 3.6 (Worst-case subjective PAR of P ). The worst-case subjective

privacy-approximation ratio of communication protocol P for function f is the
maximum of the worst-case privacy-approximation ratio with respect to each
party.

Definition 3.7 (Worst-case PAR). The worst-case objective (subjective) PAR

for a function f is the minimum, over all protocols P for f , of the worst-case
objective (subjective) PAR of P .

3.2 Average-Case PARs

As we shall see below, it is also useful to define an average-case version of
PAR. As the name suggests, the average-case objective PAR is the average

ratio between the size of the monochromatic rectangle containing the private
inputs and the corresponding region in the ideal monochromatic partition.

Definition 3.8 (Average-case objective PAR of P ). Let D be a probabil-
ity distribution over the space of inputs. The average-case objective privacy-

approximation ratio of communication protocol P for function f is

α = ED

�
|RI(x1, x2)|

|RP (x1, x2)|

�
.

We say that P is α-objective privacy-preserving in the average case with

distribution D (or with respect to D).

We define average-case PAR with respect to i analogously, and average-case
subjective PAR as the maximum over all players i of the average-case PAR
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with respect to i. We define the average-case objective (subjective) PAR for

a function f as the minimum, over all protocols P for f , of the average-case
objective (subjective) PAR of P .

In computing the average-case PAR (either objective or subjective) with
respect to the uniform distribution, we may simplify the previous expressions
for PAR values. If each player’s value space has k bits, then the average-case
objective PAR with respect to the uniform distribution equals

PAR(k) =
�

(x1,x2)

1

22k
|RI(x1, x2)|

|RP (x1, x2)|
,

where the sum is over all pairs (x1, x2) in the value space. We may combine all
of the terms corresponding to points in the same protocol-induced rectangle to
obtain

PAR(k) =
�

S

|S|

22k
|RI(S)|

|S|
=

1

22k

�

S

|R
I(S)|, (1)

where the sums are now over protocol-induced rectangles S. Note also that the
average-case PAR with respect to i and with respect to the uniform distribution
is obtained by replacing R

I(S) with R
I
i (S) in Eq. 1.

It may seem that the occurrences of set cardinality in the quantity considered
in Def. 3.8 should be replaced by the probability measure of the regions in
question. However, as we discuss in Sec. 8.1, such a definition is unable to
distinguish between examples that should be viewed as having very different
levels of privacy; by contrast, the definition that we consider here is able to
distinguish between such cases.

We note that extending a function and protocol to a larger domain can
significantly change the value of the protocol’s PAR. If the domain is enlarged
sufficiently and the expanded protocol is sufficiently private (or input-revealing),
the extended protocol’s PAR will be dominated by the contribution from the
extended domain.

3.3 Ratios of Subjective PARs

We may also be interested in another quantity related to PAR. Given some
protocol P for a function f , let PARi

D(k) be the average-case subjective PAR of
P with respect to protocol participant i and distribution D on the k-bit input
space. We then let

PARmax
D (k) = max

i
PARi

D(k) and PARmin
D (k) = min

i
PARi

D(k),

where the max and min are taken over all protocol participants. We then define
the ratio of (average-case with respect to D) subjective PARs to be

PARmax
D (k)

PARmin
D (k)

≥ 1.

16



Intuitively, in a two-participant protocol, this captures how much greater a
negative effect the protocol P can have on one participant than on the other
participant. The average-case subjective PAR of a protocol P identifies the
maximum effect that P can have on the privacy with respect to a participant.
However, it does not capture whether this effect is similar for both players, and
in fact this effect can be quite different. Below we show that, for both the dis-
jointness and intersection problems, there are protocols that have exponentially
large subjective PARs; for some protocols, the subjective PAR with respect to
one player is exponentially larger than that with respect to the other player,
while for one protocol for each problem, the subjective PARs with respect to the
different players differ only by a constant (asymptotic) factor. We argue that
this is an important distinction and that the ratio of average-case subjective
PARs captures some intuitive notion of the fairness of the protocol. If a proto-
col has a much larger PAR with respect to player 2 than with respect to player
1, an agent might agree to participate in a protocol run only if he is assigned
the role of player 2 (so that he learns much more about the other player than
the other player learns about him). Thus, from the perspective of the protocol
implementer who needs to induce participation, protocols with small ratios of
average-case subjective PARs would likely be more desirable.

4 2nd-Price Auctions: Bounds on PARs

In this section, we present upper and lower bounds on the privacy-approximation
ratios for the 2nd-price Vickrey auction and discuss the tradeoff between average-
case PAR and communication complexity for a family of auction protocols. We
start with a formal statement of the problem.

4.1 Problem Specification and Summary of Results

2nd-price Vickrey auction. A single item is offered to 2 bidders, each with
a private value for the item. The auctioneer’s goal is to allocate the item to
the bidder with the highest value. The fundamental technique in mechanism
design for inducing truthful behavior in single-item auctions is Vickrey’s 2nd-
price auction [34]: Allocate the item to the highest bidder, and charge him the
second-highest bid.

Definition 4.1 (2nd-Price Auctionk).
Input: x1, x2 ∈ {0, . . . , 2k − 1} (each represented by a k-bit string)
Output: the identity of the party with the higher value, i.e., argmaxi∈{1,2} xi

(breaking ties lexicographically), and the private information of the other party.

Brandt and Sandholm [7] show that a perfectly privacy-preserving commu-
nication protocol exists for 2nd-Price Auctionk. Specifically, perfect privacy
is obtained via the ascending-price English auction: Start with a price of p = 0
for the item. In each time step, increase p by 1 until one of the bidders indicates
that his value for the item is less than p (in each step first asking bidder 1 and
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then, if necessary, asking bidder 2). At that point, allocate the item to the other
bidder for a price of p− 1. If p reaches a value of 2k − 1 (that is, the values of
both bidders are 2k − 1) allocate the item to bidder 1 for a price of 2k − 1.

Moreover, it is shown in [7] that the English auction is essentially the only

perfectly privacy-preserving protocol for 2nd-Price Auctionk. Thus, perfect
privacy requires, in the worst-case, the transmission of Ω(2k) bits. 2k bits
suffice to compute the function without privacy because bidders can simply
reveal their inputs. Can we obtain “good” privacy without paying such a high
price in communication?

Table 1 summarizes the average-case PAR results (with respect to the uni-
form distribution) for 2nd-Price Auctionk that we obtain in the rest of this
section. As discussed in Sec. 4.4, Bisection Auctiong(k), which is parame-
terized by a function g : Z+ → Z≥0, interpolates between the ascending-price
English Auction (g(k) = 0) and the Bisection Auction (g(k) = k), which is
discussed in Sec. 4.2.

Avg.-Case Obj. PAR Avg.-Case Subj. PAR
English Auction 1 1

Bisection Auctiong(k)
g(k)+3

2 −
2g(k)

2k+1 +
g(k)+5

4 −
1

2g(k)+2+
1

2k+1 −
1

2g(k)+1

g(k)
2k+2

Bisection Auction k
2 + 1 k+5

4 + k−1
2k+2

Sealed-Bid Auction 2k+1

3 + 1
3·2k

2k

3 + 1− 1
3·2k

Table 1: Average-case PARs (with respect to the uniform distribution) for 2nd-
Price Auctionk

4.2 Objective-Privacy PARs

We now consider objective privacy for 2nd-Price Auctionk (i.e., privacy with
respect to the auctioneer). The Bisection Auction [17, 20, 21, 24] for 2nd-
Price Auctionk is defined as follows: Start by asking each player whether
his value lies in [0, 2k−1) or in [2k−1

, 2k); continue this binary search until the
players’ answers differ, at which point we know which bidder has the higher
value. (If the values do not differ, we will also discover this; in this case, award
the item to bidder 1, who must pay the common value.) Then use another binary
search on the interval that contains the value of the lower bidder in order to
find his value. Truthfulness is a weakly dominant strategy in Bisection Auc-
tion [20, 21, 24]. Furthermore, for every k and every other protocol for 2nd-
Price Auctionk, the number of input pairs for which the Bisection Auction
requires at most k steps is at least as large as the number of pairs for which the
other protocol requires at most k steps [22, Thm. 4.7].

More generally, we refer to an auction protocol as a c-bisection auction,
for a constant c ∈ (0, 1), if in each step the interval R is partitioned into two
disjoint subintervals: a lower subinterval of size c|R| and an upper subinterval
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of size (1− c)|R|. Hence, the Bisection Auction is a c-bisection auction with
c = 1

2 . We prove that no c-bisection auction for 2nd-Price Auctionk obtains
a subexponential objective PAR:

Theorem 4.2 (A worst-case lower bound for c-bisection auctions). For any

constant c >
1
2k , the c-bisection auction for 2nd-Price Auctionk has a worst-

case PAR of at least 2
k
2 .

Proof. Consider the ideal monochromatic partition of 2nd-Price Auctionk

depicted for k = 3 in Fig. 1. Observe that, for perfect privacy to be preserved,
it must be that bidder 2 transmits the first (meaningful) bit, and that this
bit partitions the space of inputs into the leftmost shaded rectangle (the set
{0, . . . , 2k − 1} × {0}) and the rest of the value space (ignoring the rectangles
depicted that further refine {0, . . . , 2k − 1}× {1, . . . , 2k − 1}). What if the first
bit is transmitted by player 2 and does not partition the space into rectangles in
that way? We observe that any other partition of the space into two rectangles
is such that, in the worst case, the privacy-approximation ratio is at least 2

k
2

(for any value of c): If c ≤ 1−2−
k
2 , then the case in which x1 = c2k−1 gives us

the lower bound. If, on the other hand, c > 1− 2−
k
2 , then the case that x1 = 0

gives us the lower bound. Observe that such a bad PAR is also the result of
bidder 1’s transmitting the first (meaningful) bit.

By contrast, as for The Millionaires Problemk, reasonable privacy guar-
antees are achievable in the average case; this follows from general results below
(Thm. 4.9 with g(k) = k).

Theorem 4.3. (The average-case objective PAR of the bisection auc-

tion) The average-case objective PAR of the Bisection Auction is k
2 + 1

with respect to the uniform distribution.

We conjecture that, for any distribution, similarly good objective PAR can
be achieved for the 2nd-price Vickrey auction. Ada et al. have proved the ana-
logue of this conjecture for the variant of PAR that they use [1].

Conjecture 4.4. For any probability distribution D over the k-bit input space,

the average-case objective PAR of 2nd-Price Auctionk is linear in k.

We note that the worst-possible approximation of objective privacy comes
when each value in the space is in a distinct tile; this is the tiling induced by
the sealed-bid auction. The resulting average-case privacy-approximation ratio
is exponential in k.

Observation 4.5 (Largest possible objective PAR). The largest possible (for any
protocol) average-case objective PAR with respect to the uniform distribution
for 2nd-Price Auctionk is 2

32
k + 1

32
−k.
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4.3 Subjective Privacy PARs

We now look briefly at subjective privacy for 2nd-Price Auctionk. For sub-
jective privacy with respect to 1, we start with the 1-partition for 2nd-Price
Auctionk; Fig. 4 shows the refinement of the 1-partition induced by the Bi-
section Auction for k = 4. Separately considering the refinement of the
2-partition for 2nd-Price Auctionk by the Bisection Auction, we have the
following results.

Figure 4: The Bisection-Auction-induced refinement of the 1-partition for
2nd-Price Auctionk (k = 4)

Using more general results below, we may obtain the average-case PARs
with respect to 1 and 2 (taking g(k) = k in Thms. 4.13 and 4.14, respectively)
for the bisection auction with respect to the uniform distribution. For 1, this
is k+3

4 −
k−1
2k+2 ; for 2, this is

k+5
4 + k−1

2k+2 , and we immediately have the following
corollary:

Corollary 4.6. (The average-case subjective PAR of the bisection auc-

tion) The average-case subjective PAR of the Bisection Auction with re-
spect to the uniform distribution is

k + 5

4
+

k − 1

2k+2
.

As with objective privacy, we conjecture that, for any distribution, similarly
good subjective PAR can be achieved for the 2nd-price Vickrey auction.

Conjecture 4.7. For any probability distribution D over the k-bit input space,

the average-case subjective PAR of 2nd-Price Auctionk is linear in k.

Also as with objective privacy, the sealed-bid auction gives the largest pos-
sible average-case subjective PAR.

Observation 4.8 (Largest possible subjective PAR). The largest possible (for
any protocol) average-case subjective PAR with respect to the uniform distri-

bution for 2nd-Price Auctionk is 2k

3 + 1− 1
3·2k .
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4.4 Bounded-Bisection Auctions

We now present a middle ground between the perfectly-private yet highly in-
efficient (in terms of communication) ascending English auction and the com-
munication-efficient Bisection Auction whose average-case objective PAR is
linear in k (and is thus unbounded as k goes to infinity): We bound the number
of bisections, using an ascending English auction to determine the outcome if it
is not resolved by the limited number of bisections.

We define the Bisection Auctiong(k) as follows: Given an instance of 2nd-
Price Auctionk, and an integer-valued function g(k) such that 0 ≤ g(k) ≤ k,
run the Bisection Auction as above but do at most g(k) bisection opera-
tions. (Note that we will never do more than k bisections.) If the outcome is
undetermined after g(k) bisection operations, so that both players’ values lie in
an interval I of size 2k−g(k), apply the ascending-price English auction to this
interval to determine the identity of the winning bidder and the value of the
losing bidder.

As g(k) ranges from 0 to k, the Bisection Auctiong(k) ranges from the
ascending-price English auction to the Bisection Auction. If we allow a
fixed, positive number of bisections (g(k) = c > 0), computations show that
for c = 1, 2, 3 we obtain examples of protocols that do not provide perfect
privacy but that do have bounded average-case objective PARs with respect
to the uniform distribution. We wish to see if this holds for all positive c,
determine the average-case objective PAR for general g(k), and connect the
amount of communication needed with the approximation of privacy in this
family of protocols. The following theorem allows us to do these things.

Theorem 4.9. For the Bisection Auctiong(k), the average-case objective

PAR with respect to the uniform distribution equals

g(k) + 3

2
−

2g(k)

2k+1
+

1

2k+1
−

1

2g(k)+1
.

Proof. Fix k, the number of bits used for bidding, and let c = g(k) be the
number of bisections; we have 0 ≤ c ≤ k, and we let i = k − c. Figure 5
illustrates this tiling for k = 4, c = 2, and i = 2; note that the upper-left
and lower-right quadrants have identical structure and that the lower-left and
upper-right quadrants have no structure other than that of the ideal partition
and the quadrant boundaries (which are induced by the first bisection operation
performed).

Recall from Eq. 1 that

PAR(k) =
1

22k

�

S

|R(S)|, (2)

gives the average-case objective PAR of a protocol with respect to the uniform
distribution, where the sum is over protocol-induced rectangles S, and R(S)
denotes the ideal region containing S. Each ideal region in which bidder 1 wins
is a rectangle of width 1 and height at most 2k; each ideal region in which bidder
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Figure 5: Illustration for the proof of Thm. 4.9

2 wins is a rectangle of height 1 and width strictly less than 2k. For a protocol-
induced rectangle S, let jS = 2k − |R(S)|. Let ac,i be the total number of tiles
that appear in the tiling of the k-bit value space induced by the Bisection
Auctiong(k) with g(k) = c, and let bc,i =

�
S jS (with this sum being over the

protocol-induced tiles in this same partition). Then we may rewrite Eq. 2 as

PARc,i =
1

22k

�

S

(2k − jS) =
ac,i2k − bc,i

22k
. (3)

(Note that Eq. 2 holds for general protocols; we now add the subscripts “c, i”
to indicate the particular protocol whose PAR we are computing.) We now
determine ac,i and bc,i.

Considering the tiling induced by c + 1 bisections of a (c + i + 1)-bit space
(which has ac+1,i total tiles), the upper-left and lower-right quadrants each
contain ac,i tiles while the lower-left and upper-right quadrants (as depicted in
Fig. 5) each contribute 2c+i tiles, so ac+1,i = 2ac,i +2c+i+1. When there are no
bisections, the i-bit value space has a0,i = 2i+1 − 1 tiles, from which we obtain
ac,i = 2c

�
2i(c+ 2)− 1

�
. The sum of jS over protocol-induced rectangles S in

the upper-left quadrant is bc,i. For a rectangle S in the lower-right quadrant,
jS equals 2c+i plus jS� , where S

� is the corresponding rectangle in the upper-
left quadrant; there are ac,i such S, so the sum of jS over protocol-induced
rectangles S in the upper-left quadrant is bc,i + ac,i2c+i. Finally, the sum of jS

over S in the lower-left quadrant equals
�2c+i−1

h=0 h and the sum over S in the

top-right quadrant equals
�2c+i

h=1 h. Thus, bc+1,i = 2bc,i+ac,i2c+i+22(c+i); with

b0,i =
�2i−1

h=0 h+
�2i−1

h=1 h, we obtain bc,i = 2c+i−1
�
(1 + 2c)

�
−1 + 2i

�
+ 2c+i

c
�
.

Rewriting Eq. 3, we obtain

PARc,i(k) =
c+ 3

2
−

2c

2c+i+1
+

1

2c+i+1
−

1

2c+1
.

Recalling that k = c+ i, the proof is complete.

For the protocols corresponding to values of g(k) ranging from 0 to k (ranging
from the ascending-price English auction to the Bisection Auction), we may
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thus relate the amount of communication saved (relative to the English auction)
to the effect of this on the PAR.

Corollary 4.10. Let g be a function that maps non-negative integers to non-

negative integers. Then the average-case objective PAR with respect to the uni-

form distribution for the Bisection Auctiong(k) is bounded if g is bounded and

is unbounded if g is unbounded. We then have that the Bisection Auctiong(k)

may require the exchange of Θ(k+ 2k−g(k)) bits, and it has an average-case ob-

jective PAR of Θ(1 + g(k)).

Remark 4.11. Some of the sequences that appear in the proof above also appear
in other settings. For example, the sequences {a0,i}i, {a1,i}i, and {a2,i}i are
slightly shifted versions of sequences A000225, A033484, and A028399, respec-
tively, in the On-Line Encyclopedia of Integer Sequences [33], which notes other
combinatorial interpretations of them.

We also conjecture that the tradeoff in Cor. 4.10 generalizes to other proto-
cols.

Conjecture 4.12. There is no protocol for 2nd-Price Auctionk that achieves

bounded average-case objective PAR (w.r.t. the uniform distribution, as k → ∞)

and has sub-exponential communication complexity.

4.4.1 Subjective privacy for bounded-bisection auctions

We now turn to the subjective privacy of bounded-bisection auctions.

Theorem 4.13. (The average-case PAR w.r.t. 1 of the bounded-bi-

section auction) The average-case PAR with respect to 1 of the Bisection
Auctiong(k) is

g(k) + 5

4
−

1

2g(k)+2
−

1

2k−g(k)+1
−

g(k)− 2

2k+2

with respect to the uniform distribution.

Proof. The approach is similar to that in the proof of Thm. 4.9. We start by
specializing Eq. 2 to the present case.

Each ideal region in which bidder 1 wins is a rectangle of size 1; each ideal
region in which bidder 2 wins is a rectangle of height 1 and width strictly less
than 2k. For a protocol-induced rectangle R, let jR = 2k−|RI(R)|. Let c = g(k)
and let i = k−c ≥ 0. Let T 1

c,i be the refinement of the 2nd-Price-Auctionk 1-
partition of the k-bit value space induced by the Bisection-Auctiong(k). Let
xc,i be the number of rectangles in T

1
c,i in which bidder 2 (the column player)

wins, and let yc,i be the sum, over all rectangles R in which bidder 2 wins, of
the quantity 2c+i − |RI(R)|. Let zc,i be the number of rectangles R in which
bidder 1 (the row player) wins.
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Using PAR1
c,i to denote the PAR w.r.t. bidder 1 in this case (c bisections and

i = k − c), we may rewrite Eq. 2 as

PAR1
c,i =

1

22(c+i)








�

RP in which
1 wins

|R
I(RP )|



+




�

RP in which
2 wins

|R
I(RP )|









=
1

22(c+i)

�
(zc,i) +

�
2c+i

xc,i − yc,i

��
.

We now turn to the computation of xc,i, yc,i, and zc,i.
Following the same approach as in the proof of Thm. 4.9, we have xc+1,i =

2xc,i+2c+i, yc+1,i = 2yc,i+
�2c+i

j=1 j+2c+i
xc,i, and zc+1,i = 2zc,i+22(c+i). With

x0,i = 2i − 1, y0,i =
�2i−1

j=1 j, and z0,i =
�2c+1

j=1 j, we obtain

xc,i = 2c−1
�
2ic+ 2i+1

− 2
�
,

yc,i = 2c+i−2
�
2c+i

c+ 2c+i + 2i − 2c+1 + c
�
, and

zc,i = 2c+i−1(2c+i + 1).

Using these in our expression for PAR1
c,i, we obtain

PAR1
c,i =

c+ 5

4
+

2− c

2c+i+2
−

1

2i+1
−

1

2c+2
.

Recalling that k = c+ i and g(k) = c completes the proof.

Theorem 4.14. (The average-case PAR w.r.t. 2 of the bounded-bi-

section auction) The average-case PAR with respect to 2 of the Bisection
Auctiong(k) is

g(k) + 5

4
−

1

2g(k)+2
+

g(k)

2k+2

with respect to the uniform distribution.

Proof. The approach is essentially the same as in the proof of Thm. 4.13, al-
though the induced partition differs slightly.

Let c = g(k) and let i = k − c ≥ 0. Let T
2
c,i be the refinement of the 2nd-

Price-Auctionk 2-partition of the k-bit value space induced by theBisection-
Auctiong(k). Let uc,i be the number of rectangles in T

2
c,i in which bidder 1 (the

row player) wins, and let vc,i be the sum, over all rectangles R in which bidder
1 wins, of the quantity 2c+i − |RI(R)|. Let wc,i be the number of rectangles R
in which bidder 2 (the column player) wins. Using PAR2

c,i to denote the PAR
w.r.t. bidder 2 in this case (c bisections and i = k− c), we may rewrite Eq. 2 as

PAR2
c,i =

1

22(c+i)

��
2c+i

uc,i − vc,i

�
+ (wc,i)

�
.
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Mirroring the approach of the proof of Thm. 4.13, we have uc+1,i = 2uc,i +
2c+i, vc+1,i = 2vc,i + 2c+i−1(2c+i − 1) + 2c+i

uc,i, and wc,i = 2c+i−1(2c+i − 1).
With u0,i = 2i and v0,i = 2i−1(2i − 1), we obtain

uc,i = 2c+i−1(c+ 2),

vc,i = 2c+i−2
�
2c+i(c+ 1) + 2i − c− 2

�
, and

wc,i = 2c+i−1(2c+i
− 1).

Using these in our expression for PAR2
c,i, we obtain

PAR2
c,i =

c+ 5

4
−

1

2c+2
+

c

2c+i+2
.

Recalling that k = c+ i and g(k) = c completes the proof.

Because g(k) ≥ 0, the average-case PAR with respect to 2 is at least as large
as the average-case PAR with respect to 1; this gives the average-case subjective
PAR of the Bisection Auctiong(k) as follows.

Corollary 4.15. (Average-case subjective PAR of the bounded-bi-

section auction) The average-case subjective PAR of the Bisection Auc-
tiong(k) is

g(k) + 5

4
−

1

2g(k)+2
+

g(k)

2k+2

with respect to the uniform distribution.

5 The Millionaires Problem and Public Goods:

Bounds on PARs

In this section, we prove upper and lower bounds on the privacy-approximation
ratios for two classic problems: Yao’s millionaires problem and the provision of
a public good.

5.1 Problem Specifications

The millionaires problem. Two millionaires want to know which one is
richer. Each millionaire’s wealth is private information known only to him, and
the millionaire wishes to keep it that way. The goal is to discover the identity of
the richer millionaire while preserving the (subjective) privacy of both parties.

Definition 5.1 (The Millionaires Problemk).
Input: x1, x2 ∈ {0, . . . , 2k − 1} (each represented by a k-bit string)
Output: the identity of the party with the higher value, i.e., argmaxi∈{1,2} xi

(breaking ties lexicographically).
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There cannot be a perfectly privacy-preserving communication protocol for
The Millionaires Problemk [25]. (Considering any two distinct inputs (i, i)
and (j, j), which produce a tie broken in favor of the first millionaire, the reason-
ing is similar to that used with the example in Fig. 3.) Hence, we are interested
in the PARs for this well studied problem.

The public-good problem. There are two agents, each with a private value
in {0, . . . , 2k − 1} that represents his benefit from the construction of a public
project (public good), e.g., a bridge.2 The goal of the social planner is to build
the public project only if the sum of the agents’ values is at least its cost c,
where, as in [2], the c is set to be 2k − 1.

Definition 5.2 (Public Goodk).
Input: x1, x2 ∈ {0, . . . , 2k − 1} (each represented by a k-bit string)

Output: “Build” if x1 + x2 ≥ 2k − 1, “Do Not Build” otherwise.

It is easy to show (via Observation 2.13) that for Public Goodk, as for
The Millionaires Problemk, no perfectly privacy-preserving communication
protocol exists. Therefore, we are interested in the PARs for this problem.

In Sec. 5.4, we consider a truthful version of this problem. Our results for
The Millionaires Problemk and the truthful public-good problem are shown
in Table 2; the results for the standard public-good problem are essentially those
for The Millionaires Problemk. Of particular note is the fact that the PAR
for the truthful public-good problem is bounded for fixed c (as k grows); unlike
most of the problems we consider here, this problem allows good privacy bounds
to be realized.

Protocol Average-Case Obj. PAR Average-Case Subj. PAR
The Millionaires Problemk

All ≥ 2k −
1
2 + 2−(k+1)

Bisection Protocol 3
22

k −
1
2

k
2 + 1

Truthful Public Goodk,c

All ≥ 1 + c3

22k+1 (1−
1
c2 )

Table 2: Average-case PARs forThe Millionaires Problemk andTruthful
Public Goodk,c.

5.2 The Millionaires Problem

The following theorem shows that not only is perfect subjective privacy unattain-
able for The Millionaires Problemk, but a stronger result holds:

2
This is a discretization of the classic public good problem, in which the private values are

taken from an interval of reals, as in [2, 6].
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Theorem 5.3 (A worst-case lower bound on subjective PAR). No communi-

cation protocol for The Millionaires Problemk has a worst-case subjective

PAR less than 2
k
2 .

Proof. Consider a communication protocol P for The Millionaires Prob-
lemk. Let R represent the space of possible inputs of millionaire 1, and let
C represent the space of possible inputs of millionaire 2. In the beginning,
R = C = {0, . . . , 2k − 1}. Consider the first (meaningful) bit q transmitted in
course of P ’s execution. Let us assume that this bit is transmitted by millionaire
1. This bit indicates whether 1’s value belongs to one of two disjoint subsets of
R, R1 and R2, whose union equals R. Because we are interested in the worst
case, we can choose adversarially to which of these subsets 1’s input belongs.
Without loss of generality, let 0 ∈ R1. We decide adversarially that 1’s value is
in R1 and set R = R1. Similarly, if q is transmitted by millionaire 2, then we
set C to be the subset of C containing 0 in the partition of 2’s inputs induced
by q. We continue this process recursively for each bit transmitted in P .

Observe that, as long as both R and C contain at least two values, P is inca-
pable of computing The Millionaires Problemk. This is because 0 belongs
to both R and C, and so P cannot eliminate, for either of the millionaires, the
possibility that that millionaire has a value of 0 and the other millionaire has a
positive value. Hence, this process will go on until P determines that the value
of one of the millionaires is exactly 0, i.e., until either R = {0} or C = {0}. Let
us examine these two cases:

• Case I: R = {0}. Consider the subcase in which x2 equals 0. Recall that
0 ∈ C, and so this is possible. Observe that, in this case, P determines
the exact value of x1, despite the fact that, in the 2-ideal-monochromatic
partition, all 2k possible values of x1 are in the same monochromatic
rectangle when x2 = 0 (because for all these values 1 wins). Hence, we
get a lower bound of 2k on the subjective privacy-approximation ratio.

• Case II: C = {0}. Let m denote the highest input in R. We consider
two subcases. If m ≤ 2

k
2 , then observe that the worst-case subjective

privacy-approximation ratio is at least 2
k
2 . In the 2-ideal-monochromatic

partition, all 2k possible values of x1 are in the same monochromatic
rectangle if x2 = 0, and the fact that m ≤ 2

k
2 implies that |R| ≤ 2

k
2 .

If, on the other hand, m > 2
k
2 , then consider the case in which x1 = m

and x2 = 0. Observe that, in the 1-ideal-monochromatic partition, all
values of millionaire 2 in {0, . . . ,m − 1} are in the same monochromatic
rectangle if x1 = m. However, P will enable millionaire 1 to determine
that millionaire 2’s value is exactly 0. This implies a lower bound of m on
the subjective privacy-approximation. We now use the fact that m > 2

k
2

to conclude the proof.

By contrast, we show that fairly good privacy guarantees can be obtained in
the average case. We define the Bisection Protocol for The Millionaires
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Problemk similarly to the Bisection Auction for 2nd-Price Auctionk:
Ask each millionaires whether his value lies in [0, 2k−1) or in [2k−1

, 2k); continue
this binary search until the millionaires’ answers differ, at which point we know
which millionaire has the higher value. If the answers never differ the tie is
broken in favor of millionaire 1.

We may exactly compute the average-case subjective PAR with respect to
the uniform distribution for the Bisection Protocol applied to The Mil-
lionaires Problemk. Figure 6 illustrates the approach. The far left of the
figure shows the ideal partition (for k = 3) of the value space for The Million-
aires Problemk; these regions are indicated with heavy lines in all parts of the
figure. The center-left shows the 1-partition of the regions in the ideal partition;
the center-right shows the 1-induced tiling that is induced by the Bisection
Protocol. The far right illustrates how we may rearrange the tiles that parti-
tion the bottom-left region in the ideal partition (by reflecting them across the
dashed line) to obtain a tiling of the value space that is the same as the tiling
induced by applying the Bisection Auction to 2nd-Price Auctionk.

Figure 6: Left to right: The ideal partition (for k = 3) for The Millionaires
Problemk; the 1-partition of the ideal regions; the 1-induced tiling induced by
the Bisection Protocol; the rearrangement used in the proof of Thm. 5.4

Theorem 5.4. The average-case subjective PAR of the bisection proto-

col The average-case subjective PAR with respect to the uniform distribution
for the Bisection Protocol applied to The Millionaires Problemk is
k
2 + 1.

Proof. Given a value of i, consider the i-induced-tiling obtained by running the
Bisection Protocol for The Millionaires Problemk (as in the center-
right of Fig. 6 for i = 1). Rearrange the rectangles in which player i wins by
reflecting them across the line running from the bottom-left corner to the top-
right corner (the dashed line in the far right of Fig. 6). This produces a tiling
of the value space in which the region in which player 1 wins is tiled by tiles of
width 1, and the region in which player 2 wins is tiled by tiles of height 1; in
computing the average-case-approximate-privacy with respect to i, the tile-size
ratios that we use are the heights (widths) of the tiles to the height (width) of
the tile containing all values in that column (row) for which player 1 (2) wins.
This tiling and the tile-size ratios in question are exactly as in the computation
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of the average-case objective privacy for 2nd-Price Auctionk; the argument
used in Thm. 4.9 (for g(k) = k) below completes the proof.

As with the 2nd-price Vickrey auction, we conjecture that the good PAR
that can be achieved with respect to the uniform distribution can be achieved
with respect to any distribution. In light of Prop. 5.6, the analogous result for
objective PAR does not hold.

Conjecture 5.5. For any probability distribution D over the k-bit input space,

the average-case subjective PAR of The Millionaires Problemk is linear in

k.

Consider the case in which a third party is observing the interaction of the
two millionaires. How much can this observer learn about the private informa-
tion of the two millionaires? We show that, unlike the case of subjective privacy,
good PARs are unattainable even in the average case.

Because the values (i, i) (in which case player 1 wins) and the values (i, i+1)
(in which player 2 wins) must all appear in different tiles in any tiling that refines
the ideal partition of the value space for The Millionaires Problemk, any
such tiling must include at least 2k tiles in which player 1 wins and 2k − 1 tiles
in which player 2 wins. The total contribution of a tile in which player 1 wins is
the number of values in that tile times the ratio of the ideal region containing
the tile to the size of the tile, divided by the total number (22k) of values in

the space. Each tile in which player 1 wins thus contributes (1+2k)2k

22k+1 to the
average-case PAR under the uniform distribution; similarly, each tile in which

player 2 wins contributes 2k(2k−1)
22k+1 to this quantity. This leads directly to the

following result.

Proposition 5.6 (A lower bound on average-case objective PAR). The average-
case objective PAR for The Millionaires Problemk with respect to the uni-

form distribution is at least 2k −
1
2 + 2−(k+1).

There are numerous different tilings of the value space that achieve this ratio
and that can be realized by communication protocols. For the Bisection Pro-
tocol, we obtain the same exponential (in k) growth rate but with a larger
constant factor.

Proposition 5.7. (The average-case objective PAR of the bisection

protocol) The Bisection Protocol for The Millionaires Problemk ob-
tains an average-case objective PAR of 3 · 2k−1 −

1
2 with respect to the uniform

distribution.

Proof. The bisection mechanism induces a tiling that refines the ideal partition
and that has 2k+1 − 1 tiles in which the player 1 wins and 2k − 1 tiles in which
the player 2 wins. The contributions of each of these tiles is as noted above,
from which the result follows.
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5.3 The Public-Good Problem

The government is considering the construction of a bridge (a public good) at
cost c. Each taxpayer has a k-bit private value that is the utility he would gain
from the bridge if it were built. The government wants to build the bridge if
and only if the sum of the taxpayers’ private values is at least c. In the case
that c = 2k − 1, we observe that x̂2 = c − x2 is again a k-bit value and that
x1 +x2 ≥ c if and only if x1 ≥ x̂2; from the perspective of PAR, this problem is
equivalent to solving The Millionaires Problemk on inputs x1 and x̂2. We
may apply our results for The Millionaires Problemk to see that the public-
good problem with c = 2k − 1 has exponential average-case objective PAR with
respect to the uniform distribution. Section 5.4 discusses average-case objective
PAR for a truthful version of the public-good problem.

5.4 Truthful Public-Good Problem

5.4.1 Problem

As in Sec. 5.3, the government is considering the construction of a bridge at
cost c. Each taxpayer has a private value that is the utility he would gain from
the bridge if it were built, and the government wants to build the bridge if and
only if the sum of the taxpayers’ private values is at least c. Now, in addition to
determining whether to build the bridge, the government incentivizes truthful
disclosure of the private values by requiring taxpayer i to pay c −

�
j �=i xj if�

j �=i xj < c but
�

i xi ≥ c (see, e.g., [30] for a discussion of this type of
approach). The government should thus learn whether or not to build the bridge
and how much, if anything, each taxpayer should pay. The formal description
of the function is as follows; the corresponding ideal partition of the value space
is shown in Fig. 7, in which regions for which the output is “Build” are just
labeled with the appropriate value of (t1, t2).

Definition 5.8 (Truthful Public Goodk,c).
Input: c, x1, x2 ∈ {0, . . . , 2k − 1} (each represented by a k-bit string)
Output: “Do Not Build” if x1+x2 < c; “Build” and (t1, t2) if x1+x2 ≥ c, where
ti = c− x3−i if x3−i < c and x1 + x2 ≥ c, and ti = 0 otherwise.

5.4.2 Results

Proposition 5.9. (Average-case objective PAR of Truthful Public
Goodk,c) The average-case objective PAR of Truthful Public Goodk,c

with respect to the uniform distribution is

1 +
c
3

22k+1
(1−

1

c2
).

Proof. We may rewrite Eq. 2 as (adding subscripts for the values of k and c in
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Do Not Build

(3,1) (2,1)

(2,2)

(1,1)

(1,2)

(1,3)

(0,4)

(0,3)

(0,2)

(0,1)

(1,0)(2,0)(3,0)(4,0) (0,0)

Figure 7: Ideal partition of the value space for Truthful Public Goodk,c

with k = 3 and c = 4.

this problem):

PARk,c =
1

22k

�
�

RDNB

|R
I(RDNB)|+

�

RB

|R
I(RB)|

�
,

where the first sum is taken over rectangles RDNB for which the output is “Do
Not Build” and the second sum is taken over rectangles RB for which the out-
put is “Build” together with some (t1, t2). Using the same argument as for The
Millionaires Problemk, the first sum must be taken over at least c rectan-
gles; the ideal region containing these rectangles has size

�c
i=1 i = c(c + 1)/2.

Considering the second sum, each of the ideal regions containing a protocol-
induced rectangle is in fact a rectangle. If the protocol did not further partition
these rectangles (and it is easy to see that such protocols exist) then the total
contribution of the second sum is just the total number of inputs for which the
output is “Do Not Build” together with some pair (t1, t2), i.e., this contribution
is 4k − c(c+ 1)/2. We may thus rewrite PARk,c as

PARk,c =
1

22k

�
c
c(c+ 1)

2
+ 4k −

c(c+ 1)

2

�
= 1 +

c
3

22k+1
(1−

1

c2
)

Unsurprisingly, if we take c = 2k − 1 (as in Public Goodk in Sec. 5.3), we
obtain PARk,2k−1 = 2k−1 −

1
2 + 1

2k , which is essentially half of the average-case
PAR for The Millionaires Problemk.
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6 Overview of Protocols and Results for Set Prob-

lems

We now provide an overview of our PAR results for the set-theoretic problems
that we study and discuss their significance. We start with technical definitions
of the problems and protocols that we consider here.

6.1 Problems

We define the Disjointnessk problem as follows:
Problem: Disjointnessk
Input: Sets S1, S2 ⊆ {1, . . . , k} encoded by x1 and x2.
Output: 1 if S1 ∩ S2 = ∅, 0 if S1 ∩ S2 �= ∅.

Figure 8 illustrates the ideal monochromatic partition of the 3-bit value
space; inputs for which S1 and S2 are disjoint are white, and inputs for which
these sets are not disjoint are black.

101
110
111

000
001

110
111101

010 100
011

S

100
011
010
001
000

S2
1

Figure 8: Ideal monochromatic partition for Disjointnessk with k = 3.

We define the Intersectionk problem as follows:
Problem: Intersectionk

Input: Sets S1, S2 ⊆ {1, . . . , k}.
Output: The set S1 ∩ S2.

Figure 9 shows the ideal monochromatic partition of the 3-bit value space
for Intersectionk. The key at the right indicates the output set. (Here,
as throughout this paper, we encode S ⊆ {1, . . . , k} as bitstring of length k

in which the most significant bit is 1 if k ∈ S, etc., so that 1011 encodes
{1, 2, 4} ⊂ {1, 2, 3, 4}; we will abuse notation and identify x ∈ {0, 1}k with the
subset of {1, . . . , k} that it encodes.)
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101
110

010
100
011
010
001
000

100

100

111

000
001

010
011 101

110
111

Intersection
011 

101 

110 

111 

S1
2S

000

001

Figure 9: Ideal monochromatic partition for Intersectionk problem with k =
3.

6.2 Protocols

For each problem, we identify three possible protocols for computing the output
of the problem. We describe these protocols here; in Sec. 7 we discuss the
structure of the tilings that these protocols induce for Intersectionk and
illustrate these tilings for k = 1, 2, 3.

Trivial protocol In the trivial protocol, player 1 (w.l.o.g.) sends his input
to player 2, who computes the output and sends this back to player 1. This
requires the transmission of k + 1 bits for Disjointnessk and 2k bits for In-
tersectionk.

1-first protocol In the 1-first protocol, player 1 announces a bit, and player
2 replies with his corresponding bit if its value might affect the output (i.e., if
player 1’s value for this bit is 1); this continues until the output is determined.
In detail, player 1 announces the most significant (first) bit of x1. After player
1 announces his j

th bit, if this bit is 0 and j < k, then player 1 announces his
(j + 1)st bit. If this bit is 0 and j = k, then the protocol terminates (with, if
computing Disjointnessk, output 1). If this bit is 1, then player 2 announces
the value of his j

th bit. If player 2’s j
th bit is also 1, then for Disjointnessk

the protocol terminates with output 0, and for Intersectionk the protocol
continues (with k+1− j in the output set); if player 2’s bit is 0 and j < k, then
player 1 announces his (j+1)st bit, while if j = k, then the protocol terminates.

Alternating protocol In the alternating protocol, the role of being the first
player to announce the value of a particular bit alternates between the players
whenever the first player to announce the value of his jth bit announces “0” (in
which case the other player does not announce the value of his corresponding
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bit). This continues until the output is determined. In detail, player 1 starts by
announcing the most significant (first) bit of x1. After player i announces the
value of his j

th bit, if this bit is 0 and j < k, then the other player announces
his j+1st bit; if i’s jth bit is 0 and j = k, the protocol terminates (with output
1 if computing Disjointnessk).

If i’s jth bit is 1 and the other player had previously announced his jth bit
(which would necessarily be 1, else player i would not be announcing his j

th

bit), then the protocol terminates with output 0 if computing Disjointnessk,
or it continues with the other player announcing his (j + 1)st bit (and with
k + 1 − j being part of the output set). If i’s j

th bit is 1 and the other player
had not previously announced his j

th bit, then the other player announces his
j
th bit; if that bit is 0, then player i proceeds as above. If that bit is 1 and
Disjointnessk is being computed, the protocol terminates with output 0; if
the bit is 1 and Intersectionk is being computed, then player i proceeds as
above (and k + 1− j will be in the output set).

6.3 Results

Table 3 summarizes our PAR results for the Disjointnessk and Intersec-
tionk problems. The rows labeled with “All” describe bounds for all protocols
for that problem (as reflected by the inequalities). Asymptotic results are for
k → ∞; entries of “—” for bounds on subjective PARs indicate that we do not
have results beyond those implied by the PARs for specific protocols. For Inter-
sectionk, the results for the trivial and 1-first protocols are shown together;
as shown in Lemma 7.1, these protocols induce the same tiling, so the PAR
results are the same. All of these results are for average-case objective PARs
with respect to the uniform distribution. These include objective and subjective
PARs and the ratio of the subjective PARs.

Problem Protocol Objective PAR Subjective PAR Ratio of

Subj. PARs

Disjointnessk All ≥
�
3
2

�k
— —

Trivial ∼ 2
k ∼ 2

k ∼ 2
k

1 First ∼ 2
k ∼

�
3
2

�k ∼ 2
k

�
3
2

�k

Alternating ∼ 2
k ∼ 3+2

√
2

2

�
1+

√
2

2

�k
∼

√
2

Intersectionk All ≥
�
7
4

�k
— —

Trivial/1 First
�
7
4

�k �
3
2

�k �
3
2

�k

Alternating
�
7
4

�k 6
5

�
5
4

�k 3
2

Table 3: Summary of average-case results for uniform distribution. Asymptotic
results are for k → ∞.
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6.3.1 Discussion of results for Disjointnessk

All three protocols have the lowest possible average-case objective PAR for Dis-
jointnessk. They also have average-case subjective PARs that are exponential
in k, although the bases differ. When considering these protocols, however, our
intuition is that players are much less likely to participate in the trivial and
1-first protocols (if they do so as player 1) than they are to participate in the
alternating protocol. This is captured by the comparison of the average-case
subjective PAR with respect to the two players in each protocol: In the trivial
and 1-first protocols, the subjective PAR with respect to player 2 is exponen-
tially worse than the subjective PAR with respect to player 1; by contrast, in the
alternating protocol the subjective PARs differ (asymptotically) by a constant
factor. We do not have any absolute lower bound for the average-case subjective
PAR for Disjointnessk. However, we conjecture that this grows exponentially.

Conjecture 6.1. The average-case subjective PAR for Disjointnessk with

respect to the uniform distribution grows exponentially in k.

We omit the details of obtaining the results for Disjointnessk as these use
techniques similar to (although requiring greater length) those used for Inter-
sectionk.

6.4 Discussion of results for Intersectionk

From a high-level perspective, the PAR results for Intersectionk are very
similar to those for Disjointnessk. As for their Disjointnessk variants, all
three protocols have exponentially large average-case objective PAR for Inter-
sectionk; we show that the average-case objective PAR for Intersectionk is
also exponential in k, and we conjecture that this bound can be tightened to
match the 2k asymptotic growth of the average-case objective PAR for all three
of these protocols.

Conjecture 6.2. The average-case objective PAR for Intersectionk is asymp-

totic to 2k.

All three protocols also have average-case subjective PARs that are exponen-
tial in k, although the bases differ. Our intuition that the alternating protocol is
significantly better is not captured by the average-case objective and subjective
PARs, but we again see it when we consider the ratio of the subjective PARs:
In the trivial and 1-first protocols, the subjective PAR for player 1 is exponen-
tially worse than the subjective PAR for player 2; by contrast, in the alternating
protocol the subjective PARs differ by a constant factor of 3

2 . In a preliminary
version of this paper, we conjectured that the lower bound for the average-case
subjective PAR for Intersectionk with respect to the uniform distribution
grows exponentially in the number of bits in the input space [15, Conj. 3.3].
This has since been proved by Ada et al.:

Theorem 6.3 (Ada et al., Thm. 3 of [1]). The average-case subjective PAR of

Intersectionk with respect to the uniform distribution is exponential in k.
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7 PARs for Intersectionk

7.1 Structure of Protocol-Induced Tilings

First, we observe that for Intersectionk, the trivial and 1-first protocols in-
duce the same tiling.

Lemma 7.1. The tilings induced by the trivial and 1-first protocols for Inter-
sectionk are identical.

Proof. Given two input pairs (S1, S2) and (T1, T2), each of these protocols can-
not distinguish between the pairs if and only if (1) S1 = T1 and (2) S2 and T2

differ only on elements that are not in S1 = T1.

Figure 10 depicts the tilings of the 1-, 2-, and 3-bit value spaces induced
by the trivial and 1-first protocols for Intersectionk. If we denote by Tk

the 1-first-protocol-induced tiling of the k-bit input space, then when we depict
Tk+1 as in Fig. 10, the bottom-left quadrant is 10Tk (i.e., the k-bit tiling with
10 prepended to each transcript), each of the top quadrants is 0Tk, and the
bottom-right quadrant is 11Tk.
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Figure 10: Partition of the value space for k = 1 (top left), 2 (bottom left),
and 3 (right) induced by the trivial and 1-first protocols for Intersectionk;
each rectangle is labeled with the transcript output by the protocol when run
on inputs in the rectangle.

Figure 11 depicts the tilings of the 1-, 2-, and 3-bit value spaces induced by
the alternating protocol for Intersectionk. If we denote by Tk the alternating-
protocol-induced tiling of the k-bit value space and depict Tk+1 as in Fig. 11,
the bottom-left quadrant is 10Tk (i.e., the k-bit tiling with 10 prepended to

36



each transcript), each of the top quadrants is 0TT
k (i.e., the k-bit tiling reflected

across the top-left–bottom-right diagonal), and the bottom-right quadrant is
11Tk.
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Figure 11: Partition of the value space for k = 1 (top left), 2 (bottom left), and
3 (right) induced by the alternating protocol for Intersectionk; each rectangle
is labeled with the transcript output by the protocol when run on inputs in the
rectangle.

7.2 Objective PAR

7.2.1 Lower bound

We obtain the following result for the average-case objective PAR of the Inter-
sectionk problem.

Theorem 7.2. The average-case objective PAR of the Intersectionk problem

with respect to the uniform distribution is
�
7
4

�k
.

Proof. We show that PARk+1 = 7
4PARk and that PAR1 = 7

4 .
Using Eq. 1, we may write PARk+1 as

PARk+1 =
1

22(k+1)




�

R=f−1(0...)

|R
I(R)|+

�

R=f−1(1...)

|R
I(R)|



 , (4)

where the first sum is over induced rectanglesR in which the intersection set does
not contain k+1 (i.e., the encoding of the set starts with 0) and the second sum is
over induced rectangles R in which the intersection set does contain this element.
Observe that the ideal monochromatic partition of the region corresponding to
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inputs in which k+1 ∈ S1∩S2 (the bottom-right quadrant when depicted as in
Fig. 9) has the same structure as the ideal monochromatic partition of the entire
space when only k elements are used. Similarly, the three regions corresponding
to k + 1 /∈ S1 ∪ S2 (top-left quadrant), k + 1 ∈ S1 \ S2 (bottom-left quadrant),
and k + 1 ∈ S2 \ S1 (top-right quadrant) all have this same structure, although
each input in these regions belongs to the same monochromatic region as the
corresponding inputs in the other two quadrants.

The first observation allows us to rewrite Eq. 4 as

PARk+1 =
1

4



 1

22k

�

R=f−1(0...)

|R
I(R)|



+
1

4
PARk. (5)

We now turn to rewriting the term in parentheses.
Consider an input (0x1, 0x2) ∈ f

−1(0x) (i.e., x, xi ∈ {0, 1}k and x1∩x2 = x)
in the top-left quadrant of the (k+1)-bit input space (when depicted as in Fig. 9).
In any monochromatic tiling of this space, (0x1, 0x2) may be in the same tile
as at most one of the inputs (0x1, 1x2) (top-right quadrant) and (1x1, 0x2)
(bottom-left quadrant)—if both (0x1, 1x2) and (1x1, 0x2) were in the same tile,
then (1x1, 1x2) ∈ f

−1(1x) would also be in this tile, violating monochromaticity.
If ax is the minimum number of monochromatic tiles needed to tile the region
f
−1(x) in the k-bit input space, then at least 2ax monochromatic tiles are needed

to tile the region f
−1(0x) in the (k + 1)-bit input space. For any x ∈ {0, 1}k,

the size of the ideal monochromatic region f
−1(0x) is 3 times the size of the

monochromatic region f
−1(x) in the ideal partition of the input space for k-

element sets. Thus the contribution to the sum (for PARk+1) in Eq. 4 of the
rectangles R in f

−1(0x) is 6 times the contributions of the contribution to the
sum (for PARk) of the rectangles R in f

−1(x). This allows us to rewrite Eq. 5
as

PARk+1 =
6

4
PARk +

1

4
PARk.

Finally, the ideal partition for the Intersectionk problem with k = 1 requires
at least 2 tiles for the region (of size 3) corresponding to an empty intersec-
tion and a single tile for the region (of size 1) corresponding to a non-empty
intersection. This immediately gives the initial condition PAR1 = 7

4 .

7.2.2 Objective PAR for the trivial and 1-first protocols

Proposition 7.3. The average-case objective PAR for the trivial and 1-first

protocols for the Intersectionk problem equals
�
7
4

�k
.

Proof. Consider the tiling Tk+1 of the (k + 1)-bit value space induced by these
protocols. Any tile S in Tk has 3 corresponding tiles in Tk+1: the tile whose
transcript (in the 1-first protocol) is 10S, in the bottom-left quadrant; the tile
whose transcript is 0S, which spans the top two quadrants; and the tile whose
transcript is 11S, which is in the bottom-right quadrant. The ideal monochro-
matic region that contains 0S and 10S (the same region contains both) in the
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(k + 1)-bit value space is 3 times the size of the ideal monochromatic region
that contains S in the k-bit value space; the ideal monochromatic region that
contains 11S is the same size as the ideal monochromatic region that contains
S. Thus, we have that PARk+1 = 7

4PARk. By inspection, PAR1 = 7
4 , finishing

the proof.

7.2.3 Objective PAR for the alternating protocol

Although the recursive tiling structure induced by the alternating protocol is
slightly different than that induced by the trivial and 1-first protocols, the ar-
gument from the proof of Prop. 7.3 applies essentially unchanged. In particular,
even though the structure is different, the tiles in Tk+1 corresponding to a tile
S in Tk are: one tile in the bottom-left quadrant; one tile that spans the top
two quadrants; and one tile in the bottom-right quadrant. Thus, we again have
PARk+1 = 7

4PARk. Again, we also have PAR1 = 7
4 , giving us the following

proposition.

Proposition 7.4. The average-case objective PAR for the alternating protocol

for the Intersectionk problem equals
�
7
4

�k
.

7.3 Subjective PAR

7.3.1 Subjective PAR for the trivial and 1-first protocols

Proposition 7.5. The average-case PAR with respect to player 1 of the triv-

ial and 1-first protocols for Intersectionk is 1. The average-case PAR with

respect to player 2 of the trivial and 1-first protocols for Intersectionkis
�
3
2

�k
.

Proof. The 1-partition induced by the trivial protocol is exactly the ideal 1-
partition, from which the first claim follows.

For the second claim, we let vk be the value of the sum in Eq. 1. Let S

be a tile in the induced 2-tiling of the k-bit input space; we will also use S to
denote the 1-first-protocol transcript that labels S. We now consider the tiles
corresponding to S in the induced 2-tiling of the (k + 1)-bit input space. The
tile 10S in the bottom-left quadrant is contained in an ideal region that is twice
as big as the one that contains S—this ideal region contains points in both the
bottom-left and top-left quadrants; the same is true of the tile 0S in the top-left
quadrant. The tile 0S in the top-right quadrant (which is a different 2-induced
tile than the one in the top-left quadrant) is contained in an ideal region that
is the same size as the ideal region containing S—this ideal region does not
contain any points in the bottom-right quadrant. Finally, the tile 11S in the
bottom-right quadrant is contained in an ideal region that is the same size as
the ideal region containing S. Thus, we have that vk+1 = 6vk; by inspection,
v1 = 6, so vk = 6k. Note that the average-case PAR with respect to 2 equals
vk/4k, completing the proof.

Corollary 7.6. The average-case subjective PAR of the trivial and 1-first pro-

tocols for Intersectionk with respect to the uniform distribution is
�
3
2

�k
.
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Corollary 7.7. If PARtrivial
i denotes the average-case PAR w.r.t. i of the trivial

protocol for Intersectionk w.r.t. the uniform distribution, and if PAR1−first
i

denotes the average-case PAR w.r.t. i of the 1-first protocol for Intersectionk

w.r.t. the uniform distribution, then

PARtrivial
2

PARtrivial
1

=
PAR1−first

2

PAR1−first
1

=

�
3

2

�k

.

7.3.2 Subjective PAR for the alternating protocol

Proposition 7.8. The average-case PAR with respect to player 1 of the al-

ternating protocol for Intersectionk is
4
5

�
5
4

�k
. The average-case PAR with

respect to player 1 of the alternating protocol for Intersectionk is
6
5

�
5
4

�k
.

Proof. We let

hk =
�

S

|R
I
1(S)|,

where the sum is taken over all induced 1-rectangles (“horizontal rectangles”)
in the k-bit value space, and we let

hk =
�

S

|R
I
2(S)|,

where the sum is taken over all induced 2-rectangles (“vertical rectangles”) in
the k-bit value space.

Making use of the structure of the tiling, we have that

vk+1 = 2vk + 2hk + hk + vk = 3(vk + hk),

where the summands correspond to the contributions from each quadrant (clock-
wise from the bottom-left quadrant). We also have

hk+1 = hk + 2vk + hk = 2(vk + hk),

where the summands correspond to the contributions from the bottom-left, top-
two, and bottom-right quadrants, respectively. By inspection, we have h1 = 4
and v1 = 6; this gives hk = 4 · 5k−1 and vk = 6 · 5k−1.

As corollaries, we obtain the subjective-PAR results for this protocol that
are shown in Table 3.

8 Discussion and Future Directions

8.1 Other Notions of Approximate Privacy

By our definitions, the worst-case/average-case PARs of a protocol are deter-

mined by the worst-case/expected value of the expression |RI(x)|
|RP (x)| , where R

P (x)
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is the monochromatic rectangle induced by P for input x, and R
I(x) is the

monochromatic region containing A(f)x in the ideal monochromatic partition
of A(f). That is, informally, we are interested in the ratio of the size of the ideal
monochromatic region for a specific pair of inputs to the size of the monochro-
matic rectangle induced by the protocol for that pair. More generally, we can
define worst-case/average-case PARs with respect to a function g by considering

the ratio g(RI(x),x)
g(RP (x),x) . Our definitions of PARs set g(R,x) to be the cardinality of

R. This captures the intuitive notion of the indistinguishability of inputs that
is natural to consider in the context of privacy preservation. Other definitions
of PARs may be appropriate in analyzing other notions of privacy. We suggest
a few here; further investigation of these and other definitions provides many
interesting avenues for future work.

Probability mass. Given a probability distribution D over the parties’
inputs, a seemingly natural choice of g is the probability mass. That is, for
any region R, g(R) = PrD(R), the probability according to D that the input
corresponds to an entry in R. However, a simple example illustrates that this
intuitive choice of g is problematic: Consider a problem for which {0, . . . , n}×
{i} is a maximal monochromatic region for 0 ≤ i ≤ n − 1 as illustrated in
the left part of Fig. 12. Let P be the communication protocol consisting of a
single round in which party 1 reveals whether or not his value is 0; this induces
the monochromatic tiling with tiles {(0, i)} and {(1, i), . . . , (n, i)} for each i as
illustrated in the right part of Fig. 12. Now, for some small � > 0, let D1 and D2

be the probability distributions over the inputs x = (x1, x2) such that, for 0 ≤

i ≤ n − 1 and 1 ≤ j ≤ n, PrD1 [(x1, x2) = (0, i)] = �
n , PrD1 [(x1, x2) = (j, i)] =

1−�
n2 , PrD2 [(x1, x2) = (0, i)] = 1−�

n , and PrD2 [(x1, x2) = (j, i)] = �
n2 . Intuitively,

any reasonable definition of PAR should imply that, for D2, P provides “bad”
privacy guarantees (because with high probability it reveals the value of x1),
and, for D1, P provides “good” privacy (because with high probability it reveals
little about x1). In sharp contrast, choosing g to be the probability mass results
in the same average-case PAR in both cases.

...

0 1 n−1

0

1

n

0 1 n−1

0

1

n

...

...

Figure 12: Maximal monochromatic regions (left) and protocol-induced rectangles

(right) for an example showing the deficiencies of PAR definitions based on probability

mass.

One might rightly argue that when the probability distribution is D2, i.e.,
when the x1 is very likely 0, asking party 1 whether x1 = 0 leaks very little addi-
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tional information beyond what is already implied by D2. However, information
leakage and privacy are two different (though not unrelated) things. A protocol
that, with high probability, asks the party for its exact value when that value is
not even needed for the computation can hardly be viewed as a protocol with
a good PAR, in the same sense that, even if a large fraction of the population
has some disease, a protocol that asks someone whether they have the disease
to compute an unrelated objective will not be viewed as a protocol with good
privacy guarantees.

Information-theoretic approaches. Information-theoretic approaches
using conditional entropy are also natural to consider when studying privacy,
and these have been used in various settings; such approaches might facilitate
the comparison of privacy between different problems. Most relevantly, Bar-
Yehuda et al. [3] defined (in Sec. VII of [3]) multiple measures based on the
conditional mutual information about one player’s value (viewed as a random
variable) revealed by the protocol trace and knowledge of the other player’s
value.

A natural objective (i.e., from the perspective of an outside observer) ana-
logue of the Bar-Yehuda et al. approach would use the mutual information
I(X;F) between the distribution X on the underlying space and the output of
the function F (or I(X;P ) for the output of a protocol P ). If we want to capture
the effect of a protocol, a natural quantity to consider is I(X;P )− I(X;F), i.e.,
how much more information the protocol gives about the underlying distribu-
tion than is given by the function; recalling that I(A;B) = H(A)−H(A|B), we
see that this is H(X|F) − H(X|P ) (which has the natural direct interpretation
as the decrease in entropy caused by using P ). As with the PAR, a larger value
of this quantity means that the protocol is less private in some sense.

We now consider two examples that together demonstrate that our defini-
tion of PAR is very different than the effect of a function that is captured by
H(X|F) − H(X|P ). In particular, the average-case objective PAR (w.r.t. the
uniform distribution) of the first protocol is bounded while this quantity for the
second protocol grows linearly in k as k → ∞. By contrast, H(X|F) −H(X|P )
is slightly larger (for k ≥ 2) for the first protocol than it is for the second and
it approaches similar finite limits for both protocols as k → ∞. Thus, not only
do these two approaches seem to disagree on whether the effect of the protocols
is asymptotically similar, but they also disagree about which protocol has more
of a negative effect on the participants’ privacy.

The protocols we consider compute the function f(x1, x2) = x2, whose in-
duced partition of the 4-bit input space is shown in the left of Fig. 13. In
protocol P1, whose induced partition of the 4-bit input space is illustrated in
the center of Fig. 13, each player reveals the most significant bit of his input;
if both revealed bits are 0, then each player reveals the second most significant
bit of his input. This process is iterated until either one of the revealed bits
is 1—at which point player 1 reveals his second bit (if he hasn’t already done
so) and player 2 reveals the remaining bits of his input—or both players have
revealed all of their bits. In protocol P2, whose induced partition of the 4-bit
input space is illustrated in the right of Fig. 13, player 1 reveals his input one
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Figure 13: Induced partitions of the 4-bit value space by the function (left) and
the protocols P1 (center) and P2 (right).

bit at a time (starting with the most significant bit) until he either reveals a 1
or has revealed his entire input. Player 2 then reveals his entire input.

It is straightforward to compute that the average-case objective PAR (w.r.t.
the uniform distribution) of P1 equals (for k ≥ 2) 9

2 − 2−(k−1); for P2, this
quantity equals k + 1. To compare H(X|F)−H(X|P ) quantity to PAR, we first
observe that

H(X|F)−H(X|P ) =
�

x:µ(x)>0

µ(x) log2
µ(R(x))

µ(S(x))
, (6)

where R(x) and S(x) are the ideal region and protocol-induced rectangle, re-
spectively, that contain the input x. It is then straightforward to see that the
quantity in Eq. 6 computed for P1 equals (for k ≥ 2) 25

12 −
1

3·4k−1 ; for P2, this

information-theoretic quantity equals 2− 2−(k−1).
Other additive functions. In our definition of PAR and in the probability-

mass approach, each input x in a rectangle contributes to g(R,x) in a way
that is independent of the other inputs in R. Below, we discuss some natu-
ral approaches that violate this condition, but we start by noting that other
functions that satisfy this condition may be of interest. For example, taking
g(R,x) = 1 +

�
y∈R\x d(x,y), where d is some distance defined on the input

space, gives our original definition of PAR when d(x, y) = 1 − δx,y and might
capture other interesting definitions (in which indistinguishable inputs that are
farther away from x contribute more to the privacy for x). (The addition of
1 ensures that the ratio g(RI

,x)/g(RP
,x) is defined, but that can be accom-

plished in other ways if needed.) Importantly, here and below, the notion of
distance that is used might not be a Euclidean metric on the n-player input
space [0, 2k − 1]n. It could instead (and likely would) focus on the problem-
specific interpretation of the input space. Of course, there are may possible
variations on this (e.g., also accounting for the probability mass).

Maximum distance. We might take the view that a protocol does not
reveal much about an input x if there is another input that is “very different”
from x that the protocol cannot distinguish from x (even if the total number of
things that are indistinguishable from x under the protocol is relatively small).
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For some distance d on the input space, we might than take g to be something
like 1 + maxy∈R\{x} d(y,x).

Plausible deniability. One drawback to the maximum-distance approach
is that it does not account for the probability associated with inputs that are
far from x (according to a distance d) and that are indistinguishable from x

under the protocol. While there might be an input y that is far away from
x and indistinguishable from x, the probability of y might be so small that
the observer feels comfortable assuming that y does not occur. A more re-
alistic approach might be one of “plausible deniability.” This makes use of a
plausibility threshold—intuitively, the minimum probability that the “far away”
inputs(s) (which is/are indistinguishable from x) must be assigned in order to
“distract” the observer from the true input x. This threshold might correspond
to, e.g., “reasonable doubt” or other levels of certainty. We then consider how
far we can move away from x while still having “enough” mass (i.e., more
than the plausibility threshold) associated with the elements indistinguishable
from x that are still farther away. We could then take g to be something like
1 + max{d0|PrD({y ∈ R|d(y,x) ≥ d0})/PrD(R) ≥ t}; other variations might
focus on mass that is concentrated in a particular direction from x. (In quantify-
ing privacy, we would expect to only consider those R with positive probability,
in which case dividing by PrD(R) would not be problematic.) Here we use
PrD(R) to normalize the weight that is far away from x before comparing it
to the threshold t; intuitively, an observer would know that the value is in the
same region as x, and so this seems to make the most sense.

Relative rectangle size. One observation is that a bidder likely has a
very different view of an auctioneer’s being able to tell (when some particular
protocol is used) whether his bid lies between 995 and 1005 than he does of
the auctioneer’s being able to tell whether his bid lies between 5 and 15. In
each case, however, the bids in the relevant range are indistinguishable under
the protocol from 11 possible bids. In particular, the privacy gained from an
input’s being distinguishable from a fixed number of other inputs may (or may
not) depend on the context of the problem and the intended interpretation of the
values in the input space. This might lead to a choice of g such as diamd(R)/|x|,
where diamd is the diameter of R with respect to some distance d and |x| is
some (problem-specific) measure of the size of x (e.g., bid value in an auction).
Numerous variations on this are natural and may be worth investigating.

8.2 Open Questions

There are many interesting directions for future research:

• As discussed in the previous subsection, the definition and exploration of
other notions of PARs is a challenging and intriguing direction for future
work.

• We have shown that, for both 2nd-Price Auctionk and The Million-
aires Problemk, reasonable average-case PARs with respect to the uni-
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form distribution are achievable. We conjecture that our upper bounds
for these problems extend to all possible distributions over inputs.

• An interesting open question is proving lower bounds on the average-case
PARs for 2nd-Price Auctionk and The Millionaires Problemk.

• Lower bounds on the average-case subjective PARs for Disjointnessk
and Intersectionk would be interesting; as noted above, we conjecture
that these are exponential in k.

• It would be interesting to apply the PAR framework presented in this
paper to other functions.

• The extension of our PAR framework to the n-party communication model
is a challenging direction for future research.

• Starting from the same place that we did, namely [10, 25], Bar-Yehuda
et al. [3] provided three definitions of approximate privacy. The one that
seems most relevant to the study of privacy-approximation ratios is their
notion of h-privacy. It would be interesting to know exactly when and
how it is possible to express PARs in terms of h-privacy and vice versa.
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