
Structural Cloud Audits that Protect Private Information

Hongda Xiao
Yale Univ., EE Dept.

hongda.xiao@yale.edu

Bryan Ford
Yale Univ., CS Dept.

bryan.ford@yale.edu

Joan Feigenbaum
Yale Univ., CS Dept.

joan.feigenbaum@yale.edu

ABSTRACT

As organizations and individuals have begun to rely more and more
heavily on cloud-service providers for critical tasks, cloud-service
reliability has become a top priority. It is natural for cloud-service
providers to use redundancy to achieve reliability. For example, a
provider may replicate critical state in two data centers. If the two
data centers use the same power supply, however, then a power out-
age will cause them to fail simultaneously; replication per se does
not, therefore, enable the cloud-service provider to make strong
reliability guarantees to its users. Zhai et al. [28] present a sys-
tem, which they refer to as a structural-reliability auditor (SRA),
that uncovers common dependencies in seemingly disjoint cloud-
infrastructural components (such as the power supply in the exam-
ple above) and quantifies the risks that they pose. In this paper,
we focus on the need for structural-reliability auditing to be done
in a privacy-preserving manner. We present a privacy-preserving
structural-reliability auditor (P-SRA), discuss its privacy proper-
ties, and evaluate a prototype implementation built on the Share-
mind SecreC platform [6]. P-SRA is an interesting application of
secure multi-party computation (SMPC), which has not often been
used for graph problems. It can achieve acceptable running times
even on large cloud structures by using a novel data-partitioning
technique that may be useful in other applications of SMPC.

Categories and Subject Descriptors

D.4.5 [Operating Systems]: Reliability; C.2.0 [Computer-Com-

munication Networks]: General—Security and protection

General Terms

Reliability, Security, Measurement

Keywords

Cloud computing, reliability, secure multi-party computation

1. INTRODUCTION

Cloud computing and cloud storage now play a central role in the
daily lives of individuals and businesses. For example, more than
a billion people use Gmail and Facebook to create, share, and store

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s). Copyright is held by the
owner/author(s).

CCSW’13, November 8, 2013, Berlin, Germany.
ACM 978-1-4503-2490-8/13/11.
http://dx.doi.org/10.1145/2517488.2517493.

personal data, 20% of all organizations use the commercially avail-
able cloud-storage services provided both by established vendors
and by cloud-storage start-ups [8,9], and programs run on Amazon
EC2 and Microsoft Azure perform essential functions.

As people and organizations perform more and more critical tasks
“in the cloud,” reliability of cloud-service providers grows in im-
portance. It is natural for cloud-service providers to use redundancy
to achieve reliability. For example, a provider may replicate criti-
cal state in two data centers. If the two data centers use the same
power supply, however, then a power outage will cause them to fail
simultaneously; replication per se does not, therefore, enable the
cloud-service provider to make strong reliability guarantees to its
users. This is not merely a hypothetical problem: Although Ama-
zon EC2 uses redundant data storage in order to boost reliability, a
lightning storm in northern Virginia took out both the main power
supply and the backup generator that powered all of Amazon’s data
centers in the region [16]. The lack of power not only disabled EC2
service in the area but also disabled Netflix, Instagram, Pinterest,
Heroku, and other services that relied heavily on EC2. This type
of dependence on common components is a pervasive source of
vulnerability in cloud services that believe (erroneously) that they
have significantly reduced vulnerability by employing simple re-
dundancy.

Zhai et al. [28] propose structural-reliability auditing as a sys-
tematic way to discover and quantify vulnerabilities that result from
common infrastructural dependencies. To use their SRA system,
a cloud-service provider proceeds in three stages: (1) It collects
from all of its infrastructure providers (e.g., ISPs, power compa-
nies, and lower-level cloud providers) a comprehensive inventory
of infrastructure components and their dependencies; (2) it con-
structs a service-wide fault tree; and (3) using fault-tree analysis, it
estimates the likelihood that critical sets of components will cause
an outage of the service. Prototype implementation and testing
presented in [28] indicates that the SRA approach to evaluation of
cloud-service reliability can be practical.

A potential barrier to adoption of SRA is the sensitive nature
of both its input and its output. Infrastructure providers justifiably
regard the structure of their systems, including the components and
the dependencies among them, as proprietary information. They
may be unwilling to disclose this information to a customer so that
the latter can improve its reliability guarantees to its customers.
Fault trees and failure-probability estimates computed by the SRA
are also proprietary and potentially damaging (to the cloud-service
provider as well as the infrastructure providers). All of the parties
to SRA computation thus have an incentive not to participate. On
the other hand, they have a countervailing incentive to participate:
Each party stands to lose reputation (and customers) if it promises
more reliability than it can actually deliver because it is unaware of
common dependencies in its supposedly redundant infrastructure.

In this paper, we investigate the use of secure multi-party compu-
tation (SMPC) to perform SRA computations in a privacy-preser-

http://dx.doi.org/10.1145/2517488.2517493

ving manner. SRA computation is a novel and challenging appli-
cation of SMPC, which has not often been used for graph compu-
tations1 (or, more generally, for computations on complex, linked
data structures). We introduce a novel data-partitioning technique
in order to achieve acceptable running times for SMPC even on
large inputs; this approach to SMPC efficiency may be applicable
in other contexts. Our preliminary experiments indicate that our P-
SRA (for “private structural-reliability auditing”) approach can be
practical.

2. RELATED WORK

2.1 Secure Multi-Party Computation

The study of secure multi-party computation (SMPC) began with
the seminal papers of Yao [25,26] and has been pursued vigorously
by the cryptographic-theory community for more than 30 years.
SMPC allows n parties P1, . . . ,Pn that hold private inputs x1, . . . ,xn
to compute y = f (x1, . . . ,xn) in such a way that they all learn y but
no Pi learns anything about x j, i �= j, except what is logically im-
plied by the result y and the particular input xi that he already knew.
Typically, the input providers P1, . . . ,Pn wish not only to compute
y in a privacy-preserving manner but also to do so using a proto-
col in which they all play equivalent roles; in particular, they don’t
want simply to send the xi’s to one trusted party that can compute y
and send it to all of them. Natural applications include voting, sur-
vey computation, and set operations. One of the crowning achieve-
ments of cryptographic theory is that such privacy-preserving pro-
tocols can be obtained for any function f , provided one is willing to
make some reasonable assumptions, e.g., that certain cryptographic
primitives are secure or that some fraction of the Pi’s do not cheat
(i.e., that they follow the protocol scrupulously).

Many SMPC protocols have the following structure: In the first
round, each Pi splits its input xi into shares, using a secret-sharing
scheme, and sends one share to each Pj; the privacy-preserving
properties of secret sharing guarantee that the shares do not reveal
xi to the other parties (or even to coalitions of other parties, pro-
vided that the coalitions are not too large). The parties then execute
a multi-round protocol to compute shares of y; the protocol ensures
that the shares of intermediate results computed in each round also
do not reveal xi. In the last round, the parties broadcast their shares
of y so that all of them can reconstruct the result. Alternatively, they
may send the shares of y to an outside entity (resp., to a subset of the
Pj’s) if none (resp., only a subset) of the Pj’s is supposed to learn
the result. The maximum size of a coalition of cheating parties that
the protocol must be able to thwart and the “adversarial model,”
i.e., the capabilities and resources available to the cheaters, deter-
mine which secret-sharing scheme the Pi’s should use. Because
secret-sharing-based SMPC is common (and for ease of exposi-
tion), we will refer to parties’ “sharing” or “splitting” their inputs.
Note, however, that some SMPC protocols use other techniques to
encode inputs and preserve privacy in multi-round computation.

The past decade has seen great progress on general-purpose plat-
forms for SMPC, including Fairplay [14], FairplayMP [4], SEPIA
[7], VIFF [10], and Tasty [13]. For our prototype implementation
of P-SRA, we use the Sharemind SecreC platform [6]. Thorough
comparison of SMPC platforms is beyond the scope of this paper,
but we note briefly the properties of SecreC that make it a good
choice in this context. Because it has a C-like programming lan-
guage and optimizing compiler, assembler, and virtual machine,
programmers can more easily write efficient programs with SecreC

1A notable exception is the work of Gupta et al. [12] on SMPC for
interdomain routing.

than with most of the other SMPC tools. Scalability to large num-
bers of input providers and reliable predictions of running times of
programs are better in SecreC than in other SMPC environments.
SecreC makes it easy for programs to use both private data (known
to only one input provider) and public data (known to all parties to
the computation) in the same program – something that is useful
in our reliability-auditing context but is not provided by all SMPC
platforms. On the downside, SecreC is not especially flexible or
easily configurable.

2.2 Cloud Reliability

The case for “audits” as a method of achieving reliability in
cloud services was originally put forth by Shah et al. [17], who
advocated both internal and external auditing. Internal audits use
information about the structure and operational procedures of a
cloud-service provider to estimate the likelihood that the provider
can live up to its service-level agreements. To the best of our knowl-
edge, the first substantial effort to design and implement a general-
purpose internal-auditing system that receives the structural and
operational information directly from the cloud-service providers
is the recent work of Zhai et al. [28]; the privacy issue and the pos-
sibility of addressing it with SMPC were raised in [28] but were
not developed in detail.2 External audits use samples of the cloud-
service output provided by third parties through externally avail-
able interfaces to evaluate the quality of service; they have been
investigated extensively, e.g., in [18, 20–24]. Bleikertz et al. [5]
present a cloud-auditing system that Shah et al. [17] would proba-
bly classify as “internal,” because it uses structural and operational
information about the cloud services to estimate reliability rather
than using sampled output, but it obtains that structural and opera-
tional information through external interfaces rather than receiving
it directly from the cloud-service providers.

In addition to auditing, technical approaches that researchers have
taken to cloud reliability include diagnosis, the purpose of which
is to discover the causes of failures after they occur and, in some
cases, to mitigate their effects, accountability, the purpose of which
is to place blame for a failure after it occurs, and fault tolerance.
Further discussion of these approaches and pointers to key refer-
ences can be found in Section 6 of [28].

2.3 Fault Trees

Fault-tree analysis [19] is a deductive-reasoning technique in
which an undesirable event in a system is represented as a boolean
combination of simpler or “lower-level” events. Each node in a
fault tree3 represents either an event or a logic gate. Event nodes
depict failure events in the system, and logic gates depict the logical
relationships among these events. The links of a fault tree illustrate
the dependencies among failure events. The root node represents
a “top event” that is the specific undesirable state that this tree is
designed to analyze. The leaf nodes are “basic events,” i.e., fail-

2Concurrently with this work, Zhai, Chen, Wolinsky, and Ford [27]
also explored the problem of privacy in cloud-reliability analysis,
with a different goal of recommending good cloud configurations in
a privacy-preserving manner. Their work was done independently
of ours and differs from ours both in its target problem and in its
technical approach. Briefly, Zhai et al. [27] simply compute the
set of components that are common to two cloud-service systems,
while our P-SRA system involves more participants and a richer set
of outputs. The main technical tool in [27] is privacy-preserving set
intersection, whereas P-SRA does a variety of privacy-preserving
distributed computations using a general-purpose SMPC platform.
3What are called “fault trees” in the literature are not, in general,
trees but rather DAGs. Because it is standard and widely used, we
adopt the term “fault tree” in this paper.

ures that may trigger the top event; in order to use a fault tree, one
must be able to assess (at least approximately accurately) the prob-
abilities of these basic failures. Figure 4 is an example of a fault
tree.

Fault-tree analysis has been applied very widely, e.g., in aero-
space, nuclear power, and even social services [11], but, to the best
of our knowledge, was first used for cloud-service-reliability audit-
ing by Zhai et al. [28]. It is an appropriate technique in this con-
text for at least two reasons. First, the architectures of many cloud
platforms can be accurately represented as leveled DAGs; there-
fore, potential cloud-service failures are naturally modeled by fault
trees. Second, to construct a fault tree, one must uncover and rep-
resent the dependency relationships among components in a cloud
system, and this inventory of dependencies is itself helpful in iden-
tifying potential failures (especially correlated failures).

3. PROBLEM FORMULATION

In order to specify in full detail the goals of our P-SRA system
and how it achieves them, we start with a brief explanation of the
SRA system of Zhai et al. [28]. Here and throughout the rest of this
paper, a failure set (FS) is a set of components whose simultaneous
failure results in cloud-service outage.4 For example, the main and
backup power supplies in the Amazon EC2 example described in
Section 1 are an FS. A minimal FS is an FS that contains no proper
subset that is also an FS.

The first necessary and nontrivial task of SRA is data acqui-
sition. SRA’s data-acquisition unit (DAU) collects from a target
cloud-service provider S and all of the service providers that S de-
pends on the details of network dependencies, hardware dependen-
cies, and software dependencies, as well as the failure probability
of each component. Using this inventory of components and the
dependencies among them, SRA builds a model of S and the ser-
vices on which it depends in the form of a dependency graph. Zhai
et al. [28] assume that the dependency graph of a cloud service is a
leveled DAG, and we also make this assumption; we are aware that
it is a simplification (see Section 6), but it is an important first step.
There are many potential technical and administrative challenges
involved in modeling cloud components, discovering their depen-
dencies, and assigning realistic failure probabilities; in particular,
all cloud-service providers that participate in an SRA computation
must agree on a taxonomy of components and types of dependen-
cies. We defer to Subsection 3.2 of Zhai et al. [28] for discus-
sion of these challenges and for details about data acquisition and
dependency-graph construction in SRA. Here, we merely assume
that cloud providers have some usable modeling and dependency-
gathering infrastructure.

The next step in SRA is fault-tree analysis for the target cloud
service S. Ideally, the output of this step is a complete set of mini-
mal FSes for S. Note that an outage may occur because multiple en-
tities that S relied on for redundancy had a common dependency on
a set of components that failed; so accurate reporting of all minimal
FSes requires information about all of the other service providers
(e.g., ISPs, power suppliers, and lower-level cloud services) that
S uses. For some of these other services, the information might
be publicly available (or, in any case, available to S) and thus not
require the other service to participate in the computation; for ex-
ample, SRA makes the simplifying assumption that it can obtain
the information it needs about the ISPs and power suppliers that S
uses without their participation, and we continue with that assump-
tion in P-SRA. In other cases, participation in the SRA computation
by other service providers is required; this is true, for example, of

4These are called cut sets in the fault-tree literature.

lower-level and peer cloud services on which S depends. If the ideal
of reporting all minimal FSes is unattainable because it is too time-
consuming, then SRA may produce a collection of (not necessarily
minimal) FSes using a failure-sampling algorithm; this algorithm
uses both the dependency graph and the individual components’
failure probabilities.

Figure 3 depicts a simple dependency graph. Figure 4 depicts a
corresponding fault tree. The semantics of an OR gate in the fault
tree are that, if any input fails, the output of the gate is “fail.” For an
AND gate, only if all of the inputs fail does the gate output “fail.”
So Data Center #1 fails if Power #1 fails or if both Router #1 and
Router #2 fail. Note that the logic-gate nodes in Figure 4 cannot be
inferred from Figure 3; SRA collects additional information dur-
ing its data-acquisition phase that is needed for fault-tree construc-
tion. The minimal FSes for Cloud Service #1 are {Data Center #1,
Data Center #2}, {Router #1, Router #2}, {Power #1, Power #2},
{Power #1, Data Center #2}, and {Data Center #1, Power #2}.

The goal of P-SRA is to perform structural-reliability auditing
in a privacy-preserving manner; to do this, we must modify all
phases of SRA – data acquisition, fault-tree construction and anal-
ysis, and delivery of output. Our basic approach to the first two is
to use SMPC. Instead of sending their data to one machine that in-
tegrates them and performs fault-tree analysis, P-SRA participants
split their data into shares and perform fault-tree construction and
analysis in a distributed, privacy-preserving fashion. However, the
output of this computation cannot simply be a comprehensive list
of S’s minimal FSes, as it was in SRA, because these sets may con-
tain infrastructural components that are used only by other service
providers (i.e., not by S). So the first technical challenge in the de-
sign of P-SRA is to specify SMPC outputs that reveal to S the com-
ponents of its own infrastructure that could cause an outage while
not revealing private information about other service providers’ in-
frastructure. The second technical challenge is to reduce the size
of the data sets that are input to the SMPC; the complete depen-
dency graph of a cloud-service provider could have millions of
nodes, which is more than current SMPC technology can handle,
even in an off-line procedure like reliability auditing. P-SRA deals
with this challenge by requiring each service provider that partic-
ipates in the SMPC to partition its components into those that are
known to be “private” and those that might be shared with other
participants. For example, if the storage devices in a data center
owned and operated by S are not accessible by anyone outside of
S, then their failure cannot cause any service other than S to fail
– they can be marked “private” by S and not entered individually
into the SMPC. Rather, S can collapse certain “private” subgraphs
of its dependency graph into single nodes, treat each such node as
a “component” when entering its input to the SMPC, and perform
SRA-style fault-tree analysis on the private subgraph locally. We
refer to this data-partitioning technique as subgraph abstraction.
Finally, P-SRA must provide useful, privacy-preserving output to
cloud-service users as well as cloud-service providers. These three
technical challenges are addressed in detail in Section 4.

In Section 5, we present a P-SRA prototype implemented on the
Sharemind SecreC platform. The properties of this platform guar-
antee security in the semi-honest (or honest-but-curious) adversar-
ial model. See the beginning of Section 5 for a more detailed expla-
nation of Sharemind’s computational model and adversarial model.

4. SYSTEM DESIGN

4.1 System Overview

There are three types of participants in the P-SRA system: the
P-SRA host, cloud-service providers, and cloud-service users; see

Figure 1: System Overview

Figure 1. The input supplied by each cloud-service provider is its
topology information; this is private information and cannot be re-
vealed to any other participants. The input supplied by the P-SRA
host is the SMPC protocol. The inputs supplied by the cloud-
service users are the set of cloud-service providers that they use
or plan to use. The inputs of the P-SRA host and the cloud-service
users are not private.

The P-SRA host consists of two modules. One is the SMPC
execution unit (SMPC), which is responsible for execution of the
SMPC protocol. The other is the coordination unit, which is re-
sponsible for establishing the SMPC protocol and coordinating the
communication among the P-SRA host and the other participants.

Each cloud-service provider installs and controls a P-SRA client

that processes local data and communicates with the P-SRA host.
The P-SRA client consists of three modules: the Data-Acquisition
Unit (DAU), the Secret-Sharing Unit (SSU), and the Local-Exe-
cution Unit (LEU). The DAU collects component and dependency
information from the cloud-service provider and stores it in a lo-
cal database. The SSU (1) abstracts the dependency information
of “private” components in order to reduce the size of the input
to the SMPC, (2) splits the dependency information into secret
shares, and (3) connects to the P-SRA host and the SSUs of other
cloud-service providers to execute the SMPC. The LEU performs
local structural-reliability analysis within each “abstracted” macro-
component.

Step 1: Privacy-preserving dependency acquisition: The DAU
of the P-SRA client in each cloud-service provider S collects as
much dependency information as possible from S, including net-
work dependencies, hardware dependencies, software dependen-
cies, and component-failure probabilities. The DAU stores this in-
formation in a local database. Because the P-SRA client is fully
controlled by S, and the DAU does not communicate with any other
cloud-service providers or the P-SRA host, there is no risk that pri-
vate information will leak through the DAU.

Step 2: Subgraph abstraction. After data acquisition by the
DAU, the SSU processes the dependency information and creates
the macro-components to generate the SMPC input according to
some abstraction policy. For instance, if cloud-service provider
S1 uses cloud-service provider S2 as a lower-level infrastructure
provider, S1 can abstract S2 as a macro-component that its ser-
vices depend on. The SSU treats macro-components, the number

of which is much smaller than total number of components in a
cloud-service provider, as individual inputs to the SMPC. We leave
the choices of abstraction policies to the cloud-service providers,
which can tailor the policies based on the features of their archi-
tectures. However, we provide a standard example of subgraph
abstraction in Subsection 4.3.

Step 3: SMPC protocol execution and local computation. Af-
ter the subgraph-abstraction step, the SSUs of the cloud-service
providers and the P-SRA host execute the SMPC protocol. The
SSU of each cloud-service provider first adds some randomness to
conceal statistical information about the input (without changing
the output) and splits the randomized input into secret shares. It
then establishes connections with the SSUs of other providers and
the P-SRA host to execute the SMPC protocol, which identifies
common dependency, performs fault-tree analysis, and computes
reliability measures in a privacy-preserving manner. Meanwhile,
the SSU passes the dependency graphs of the macro-components
to the LEU, which performs local computation. The LEU mainly
performs fault-tree analysis to obtain minimal FSes of the macro-
components. After both the SSU and the LEU finish their execu-
tion, the SSU combines the results of the SMPC protocol and local
computation to generate the comprehensive outputs for the cloud-
service providers and users.

Step 4: Privacy-preserving output delivery. The output of
the P-SRA system should satisfy two requirements: preserving pri-
vacy of the cloud-service providers and illustrating reliability risk
caused by correlated failure. The SRA system of Zhai et al. [28]
fully reveals all minimal FSes; P-SRA cannot do this, because the
full specification of all minimal FSes may compromise the pri-
vacy of cloud-service providers. Although P-SRA is flexible in
that cloud-service providers can specify the output sets that are
most appropriate for them, we recommend some sets of benchmark
outputs for cloud-service providers and users. For cloud-service
providers, we recommend common dependency and partial failure
sets. For cloud-service users, we recommend common dependency
ratio, failure probabilities of relevant cloud services, and a small
set of top-ranked FSes. All the outputs are delivered by an SMPC
protocol in a privacy-preserving manner. We discuss these recom-
mended outputs in Subsection 4.5.

4.2 Privacy-preserving Data Acquisition

The DAU of each cloud-service provider collects as much in-
formation as possible about the components and dependencies of
this provider and then stores the information in a local database for
later use by the P-SRA’s other modules. The DAU can collect net-
work dependencies, hardware dependencies, software dependen-
cies, and failure probabilities of each component. For network de-
pendencies, it collects information about a variety of components in
the cloud structure including servers, racks, switches, aggregation
switches, routers, and power stations, as well as the connections
between these components within the cloud infrastructure and from
the cloud infrastructure to the Internet. For hardware dependencies,
the DAU inventories the CPUs, network cards, memory, disks, and
drivers, and collects product information about each piece of hard-
ware, including vendor, machine life, model number, and uptime.
For software dependencies, the DAU analyzes the cloud-service
provider’s software stacks to determine the correlations between
programs within the applications running on servers and the calls
and libraries used by these programs. Failure probabilities can be
obtained via a variety of methods, including examining the war-
ranty documents of a vendor or searching online based on hardware
type and serial number.

The dependency information can be encoded in XML files to
store in the local databases of the cloud providers. We use the
topology-path form to store graph information. The definition of
the topology-path form and our reasons for choosing it are given in
Subsection 4.4.

4.3 Subgraph Abstraction

Recall that a macro-component is an abstracted (or virtual) node
in the dependency graph of a cloud-service provider that can be
considered an atomic unit for the purpose of SMPC protocol exe-
cution. Creating macro-components allows us to reduce the input-
set size to something that is feasible for SMPC execution. A sub-
graph H of the full dependency graph of a cloud-service provider
S should have two properties in order to be eligible for abstraction
as a macro-component. First, all components in H must be used
only by S; intuitively, this is a “private” part of S’s infrastructure.
Second, for any two components v and w in H, the dependency in-
formation of v with respect to components outside of H is identical
to that of w; that is, if v has a dependency relationship (as com-
puted by the DAU) with a component y outside of H, then w has
exactly the same dependency relationship with y. (Note that y may
be inside or outside of S.) Abstraction of a subgraph that does not
satisfy these properties would destroy dependency information that
is needed for structural-reliability auditing.

Recall that different cloud-service providers may wish to use dif-
ferent abstraction policies. That is, we do not require that all sub-
graphs that satisfy the two properties given above be abstracted –
some providers may wish to use a more stringent definition of a
macro-component.

Suppose that G is the full dependency graph of cloud-service
provider S and that G contains macro-component H. To transform
G into a smaller graph G� via subgraph abstraction of H, S “col-
lapses” H to a single node in G�; that is, S replaces H with a single
node, say h, and, for every node y in G but not in H, replaces all
dependency relationships in G of the form (w,y,�), where w was
a node in H and � is a label that describes the nature of the de-
pendency relationship between w and y, with a single dependency
relationship (h,y,�) in G�. (Note that there will, in general, be many
nodes y that have no dependency relationships with nodes in H.) Of
course, there may be more than one subgraph H that is abstracted
before the reduced dependency graph is entered into the SMPC.
After S receives the results of the SMPC, it combines them with
the results of local fault-tree analysis of the macro-components H.
For example, if F is an FS of G�, h ∈ F , and f is an FS of H, then
(F −{h})∪ f is an FS of G.

As promised, we now provide a standard example in order to il-
lustrate the abstraction process. In this example, the SSU creates a
macro-component to represent all of the components in a data cen-
ter. In most cloud structures, the data centers are eligible for sub-
graph abstract. First, all the nodes in the data centers are owned and
used by exactly one cloud-service provider. Second, all nodes in a
data center communicate with the rest of the world only through
the data-center gateways; they therefore have identical dependency
relationships with components outside of the data center.

Figures 2 and 3 illustrate this process. Suppose that Figure 2 is
the full dependency graph of cloud-service provider C1, which con-
tains a storage-cloud service. C1’s users’ files are stored in server
S2, with two backup copies stored in server S5 and S7. The com-
ponents inside the red box belong to a data center DC1, which has
the two properties required for asbtraction. After abstracting both
DC1 and another data-center subgraph, the SSU obtains Figure 3
as the input to the SMPC. After the abstraction process, the SSU
executes the SMPC protocol with the abstracted inputs and passes

Figure 2: Full Dependency Graph of C1

Figure 3: Abstracted Dependency Graph, suitable for SMPC

the dependency information within the macro-components (such as
the red box in Figure 2 for DC1) to the LEU for local computation.

Because the number of components in a data center is often huge,
this kind of abstraction can be a crucial step toward the feasibility
of SMPC.

4.4 SMPC and Local Computation

4.4.1 SSU Protocol:
Fault-tree construction: Recall that a fault tree contains two

kinds of information: dependency information about components
(events and links) and logical relationships among components (rep-
resented as logic gates). As we said in Subsection 4.2, we use the
topology-path form to store dependency information. That is, we
represent a leveled DAG as a set of (directed) paths in which the
first node of each path is the root node of the leveled DAG, the
last node is one of the leaf nodes of the leveled DAG, and the
other nodes form a path from the root to the leaf. Figure 5 de-
picts the topology-path form of the dependency graph in Figure 3.
The topology-path form of a DAG can, in the worst case, be ex-

Figure 4: Fault Tree Based on Dependency Graph in Figure 3

ponentially larger than the DAG itself; thus, subgraph abstraction
is crucially important, because we need to start with modest-sized
DAGs. On the positive side, the topology-path form enables us to
avoid using conditional statements in our SecreC code – something
we must do to avoid leaking private information.

In order to capture the logical relationships among components
of a cloud-service provider, we extend this representation to what
we call the topology-path form with types. The SSU builds a “dis-
junction of conjunctions of disjunctions” data structure by assign-
ing different “types” to the topology paths. Failure of the top event
in the fault tree is the OR of a set of “type failures”; if any “type”
that is an input to this OR fails, then the top event fails. Each “type
failure” is the AND of failures of individual topology paths in the
type; the “type failure” occurs only if all of the topology paths in
that type fail. Failure of a topology path is the OR of failures of
individual nodes on the path.

The SSU assigns a “type ID” to each topology path; the type ID
is a function of the component IDs in the nodes on the path. Type
IDs and the mapping from sets of component IDs to type IDs can
be agreed upon by all of the relevant cloud-service providers and
stored in a table before the P-SRA execution starts; so the SSU
simply needs to look up type IDs during the protocol execution. To
construct the fault tree from the topology-path form with types, the
SSU traverses each path and constructs an OR gate for each path,
the inputs to which are the nodes on the path. It then constructs an
AND gate for each type of path, the inputs to which are the outputs
of the OR gates of the paths in the type. Finally, the SSU constructs
an OR gate whose inputs are the outputs of all the AND gates in the
previous step.

For example, starting with the fault tree of Figure 4, the SSU
can classify the topology paths of Figure 5 into two types. Type
1 includes the two topology paths (Cloud Service1, DC1, Power1)
and (Cloud Service1, DC2, Power2). Type 2 includes the other four
topology paths. It can be verified that the minimal FSes of the fault
tree generated by the topology path form with types are the same
as the minimal FSes of the fault tree in Figure 4; we defer a formal

Figure 5: Topology-path Form of Dependency Graph in Fig-

ure 3.

statement and proof of this fact to a future, longer version of this
paper that includes all of the necessary details of fault-tree analysis
given in [28].

Generate input for the SMPC: After constructing the topology
paths with types, the SSU “pads” the paths so that they all have
the same length L, where L is an agreed-upon global parameter dis-
tributed by the P-SRA host. Padding is accomplished by adding the
required number of “dummy” nodes in which the component ID is
0. (Here, “0” is any fixed value that is not a valid, real component
ID.) Similarly, the SSU adds a random number of “0 paths,” which
are topology paths with types in which all of the nodes have com-
ponent ID 0. The types of these 0 paths can be assigned randomly,
because they do not affect the result – the 0 paths never fail. The
purpose of this padding step is to prevent leakage of structural in-
formation about the cloud-service providers’ architectures, includ-
ing the number of topology paths or the size of each path. Finally,
the SSU splits the padded paths into secret shares that are input to
the SMPC protocol.

Identify common dependencies: A component is in the com-
mon dependency of cloud-service provider Si if it is in the fault
tree of Si and in the fault tree of at least one other cloud-service
provider S j, j �= i. Conceptually, the common dependency is very
easy to compute by doing multiple (privacy-preserving) set inter-
sections, followed by one (privacy-preserving) union. However,
we need to do this computation without conditional statements; see
Algorithm 1 for a method of doing so.

Calculate failure sets: Finally, the SMPC protocol integrates
the fault trees of all participating cloud-service providers into a
unified, global fault tree and performs fault-tree analysis. It can
execute either algorithm 2, which computes minimal FSes, or algo-
rithm 3, a heuristic “failure-sampling” algorithm that is faster than
algorithm 2 and computes FSes but does not guarantee that the FSes
returned are minimal.

Algorithm 2 works as follows. Let T denote the unified, global
fault tree; because we represent fault trees as padded, topology

Algorithm 1: Common-Dependency Finder
Input: Fault tree Ti, i = 1 to N, where N is the number of participating

cloud-service providers
Output: Common Dependency

1 foreach TI and TJ , I �= J do

2 private mask.clear();
3 foreach nodei ∈ TI and node j ∈ TJ do

4 private mask[i][j] = (nodei.ID == node j.ID);
5 private CommonDep.clear();
6 foreach nodei ∈ Ti and node j ∈ Tj do

7 private CommonDep[i] =
mask[i][j]×node j.ID+CommonDep[i];

8 private CommonDependent.append(CommonDep);
9 return private CommonDependent;

Algorithm 2: Minimal-FS algorithm
Input: Global Fault tree T
Output: MinimalFS

1 foreach private pathi ∈ T do

2 foreach private node j ∈ private pathi do

3 private pathi.FS.apped(node j);
/* each path corresponds to an OR gate with

input as the nodes along the path */

4 foreach AndGatei ∈ T do

5 AndGatei.FS.clear();
6 foreach path j ∈ AndGatei do

7 AndGatei.FS ← AndGatei.FS× path j.FS;
/* process the AndGate for each type of

topology paths */

/* FS of AndGatei is the Cartesian Product of

AndGatei.FS and path j.FS. */

8 private minimalFS.clear();
9 foreach AndGatei ∈ T do

10 minimalFS.append(AndGatei.FS);
/* process the OR gate connecting to the And

Gates */

/* reduce redundant items in minimumFS and assign the

result to minimalFS, and then simplify minimalFS.

*/

11 minimalFS ← reduce_redundancy(minimalFS);
12 minimalFS ← simpli f y(minimalFS);
13 return minimalFS;

paths with types, T is simply the union of the fault trees of the
individual cloud-service providers. The algorithm traverses T , pro-
ducing FSes for each of the visited events. Basic events generate
FSes containing only themselves, while non-basic events produce
FSes based on the FSes of their child events and their gate types.
For an OR gate, any FS of one of the input nodes is an FS of the
OR. For an AND gate, we first take the cartesian product of the sets
of FSes of the input nodes and then combine each element of the
cartesian product into a single FS by taking a union. The last step
of algorithm 2 reduces the top event’s FSes to minimal FSes.

Algorithm 3 works as follows. For each sampling round, the
algorithm randomly assigns 1 or 0 to the basic events (leaves) of
the fault tree T , where 1 represents failure and 0 represents non-
failure. Starting from such an assignment, the algorithm can assign
1s and 0s to all non-basic events in T , using the logic gates. At
the end of each sampling round, the algorithm checks whether the
top event fails. If the top event fails, then the failure nodes in this
sampling round are an FS. The algorithm runs for a large number
of sampling rounds to find FSes. In [28], it is proven that most of

Algorithm 3: Failure-Sampling Algorithm
Input: Global Fault tree T and the number of samples N
Output: FSes

1 private FSes.clear();
2 for i ← 1 to N do

3 foreach private path j ∈ T do

4 private tmp = 0;
5 foreach private nodes ∈ path j do

6 foreach private nodek ∈ T do

7 private random = 0 or 1 based on randomly flipping
a fair coin;

8 tmp+= random× (nodes.ID == nodek.ID);

/* calculate whether path j fails */

9 path j. f ailure = (tmp > 0);
10 foreach AndGatei ∈ T do

11 AndGatei. f ailure = true;
12 foreach path j ∈ AndGatei do

13 AndGatei. f ailure =
AndGatei. f ailure && path j. f ailure;

14 private serviceFailure = false;
15 foreach AndGatei ∈ T do

16 serviceFailure = AndGatei. f ailure � serviceFailure;
17 open(serviceFailure);
18 if serviceFailure then

19 FS.clear();
20 foreach pathi ∈ T do

21 FS.append(pathi. f ailure);
22 FSes.append(FS);

23 return FS;

the critical FSes can be found in this fashion but that the FSes are
not necessarily minimal.

4.4.2 LEU Protocol:
The LEU in the P-SRA client of cloud-service provider S per-

forms fault-tree analysis on S’s macro-components. The LEU can
use algorithm 2 or algorithm 3. Note that these computations are
done locally and do not involve SMPC; so, large macro-components
are not necessarily bottlenecks in P-SRA computation. It is very
advantageous when a cloud-service provider can partition its infras-
tructure in a way that produces a modest number of large macro-
components, each one of which is a “virtual node” in the SMPC.

4.5 Privacy-preserving Output Delivery

Recall that P-SRA performs an SMPC on dependency informa-
tion that is potentially shared by multiple cloud-service providers
and performs local computation on dependency information that
is definitely relevant to only one provider. The intermediate re-
sults include common dependency and minimal FSes (or FSes if
algorithm 3 was used). We now turn our attention to the outputs
that P-SRA delivers to cloud-service providers and to cloud-service
users. P-SRA gives cloud services the flexibility to choose exactly
what should be output. However, we argue that the outputs should
not compromise the privacy of cloud-service providers and must
be illustrative of correlated-failure risk and reliability. We propose
some specific outputs that satisfying these two requirements.

4.5.1 Output for Cloud-Service Providers
Common dependency: The common dependency set, as de-

fined in Subsection 4.4, includes components shared by more than
one cloud-service provider. It is useful for cloud-service providers,
in that it can make them aware of unexpected correlation with other

providers. They can then deploy independent components as back-
ups to mitigate the impact of the common dependency or switch to
independent components to improve the reliability of their service
and decrease the correlation with other cloud-service providers.

Partial failure sets: If F is a (minimal) FS for cloud-service
provider S, then the corresponding partial (minimal) FS is simply
all of the components in F that are used by S. Such a partial FS
gives S information about components whose failure may lead to an
outage because equipment that is controlled by some other service
provider fails. If S can build enough redundancy into its internal
infrastructure to avoid failure of all of the components in this partial
FS, then it will not suffer an outage because of F , regardless of what
happens outside.

Sometimes the number of FSes is huge. If this is the case, we
need to rank the FSes first and only output the partial failure sets of
the top-ranked FSes. Ranking of comprehensive failure sets can be
either probability-based or size-based [28].

4.5.2 Output for Cloud-Service Users
Common-dependency ratio: Cloud-service users can obtain a

common-dependency ratio for each cloud-service provider. We de-
fine the common-dependency ratio of cloud-service provider S as
the fraction of components in S that are shared with at least one
other cloud-service provider. Intuitively, the larger the common-
dependency ratio, the higher the risk of correlated failure. In the
extreme case, if a cloud service is deployed entirely on an exter-
nal cloud infrastructure (as is the case with some Software-as-a-
Service providers), then its common-dependency ratio is 1. If a
cloud-service provider shares no components with other providers,
then its common-dependency ratio is 0. Cloud-service users can
evaluate risk and choose cloud providers in part based on this ratio.
This common-dependency ratio does not reveal any information
about internal architecture of the cloud providers.

Overall failure probabilities of cloud services: Cloud-service
users can compare these failure probabilities with the reliability
measures promised by the providers in their service-level agree-
ments and evaluate whether they are subject the risk of unexpected,
correlated failure. Failure probabilities, like common-dependency
ratios, do not reveal the architectures of the service providers.

Top-ranked failure sets: Recall from Subsection 2.1 that, in its
SMPC, P-SRA computes the secret shares of the (minimal) FSes of
the cloud-service providers. As we have seen, an SMPC program
can compute from those shares the partial (minimal) FSes that are
delivered to the providers. However, an alternative SMPC program
could use those shares to rank the (minimal) FSes based on failure
probability or size. Then a small set of top-ranked (minimal) FSes
can be delivered to cloud-service users. Just a few top-ranked sets
can give users useful information about how to avoid correlated
failures; they reveal some information about the cloud-service ar-
chitectures, but this may be tolerable in some markets.

5. IMPLEMENTATION

5.1 P-SRA Prototype

The Sharemind SecreC platform includes a set of miners to exe-
cute the SMPC protocols and a controller to coordinate the miners.
The SMPC protocols run by the miners are coded in SecreC, a
C-like programming language for SMPC programs. Variables in
SecreC may be declared public or private. The language supports
basic arithmetic, and some matrix and vector operations. SecreC
uses a client/server model, with multiple clients providing (secret-
shared) input to the miners, which execute the SMPC protocol.

Our implementation of P-SRA is illustrated in Figure 6. The
miners are installed in the SMPC module of the P-SRA host. The
P-SRA clients and P-SRA host upload their SecreC scripts to the
miners. The SecreC scripts are executed by the P-SRA clients re-
motely through the C++ interface of the controller or by the P-SRA
host locally. The P-SRA clients execute the SecreC scripts to split
their inputs into secret shares and to read and write shares of in-
puts or intermediate results from the miners’ secure databases. The
P-SRA host executes the SecreC scripts to perform the SMPC pro-
tocol that identifies common dependencies and performs fault-tree
analysis. SecreC uses SSL for secure communication between min-
ers and clients.

From Figure 6, it is not immediately obvious what one gains
from using the Sharemind platform and SMPC instead of a trusted-
party SRA as in [28]: All of the miners, i.e., the nodes that execute
the SMPC protocol, run inside the P-SRA host; if they share infor-
mation, then together they constitute a trusted party. However, this
system configuration is merely the default of the currently avail-
able Sharemind “demo,” and we have used it only in order to be
able to build this proof-of-concept prototype as quickly as possi-
ble. In a real, deployed P-SRA (or any real SMPC-based applica-
tion coded in SecreC), the miners would run on separate, indepen-
dently administered machines and communicate over a network;
no substantive changes to the SecreC compiler are needed to cre-
ate executables that run on separate networked nodes, and we ex-
pect future Sharemind releases to create them. Thus, moving to
P-SRA from the SRA of Zhai et al. [28], in which one trusted
auditor handles all of the sensitive information supplied by the
cloud-service providers, is tantamount to “distributing trust” over
a number of independently administered auditors no one of which
is trusted with any sensitive information, in the sense that each re-
ceives only a secret share of every input; if the independent owners
of the networked nodes that run the auditors do not collude, then
the clients’ inputs will remain private. This SMPC architecture,
in which clients (or “input providers”), rather than executing an
SMPC protocol themselves, instead send their input shares to in-
dependently administered computational agents that then execute
the SMPC protocol, is known as secure outsourcing in the SMPC
literature; see, e.g., Gupta et al. [12] for more information about
secure outsourcing’s history, its practical advantages, and its use in
a routing application.

The SecreC compiler relieves programmers of the need to code
standard cryptographic functionality. In particular, it generates se-
cret-sharing code automatically. Currently, it uses additive secret
sharing and thus guarantees privacy only against honest-but-curious
adversaries. We expect future releases to incorporate more elabo-
rate secret-sharing techniques and hence to protect input providers
against stronger classes of adversaries.

The DAU and LEU in the P-SRA client are written in Python.
The DAU uses the SNMPv2 library support from NetSNMP to col-
lect network dependencies; it uses lshw, a lightweight tool that ex-
tracts detailed hardware configuration from the local machines, to
collect hardware dependencies; it uses ps and gprof to collect soft-
ware dependencies. The LEU uses the Network-X library [2] to
process the dependency-graph data structures.

5.2 Case Study

This section outlines a case study to illustrate the prototype’s op-
eration. Let CS1 denote a cloud service provided by cloud provider
C1. To improve the reliability of CS1, C1 decides to use providers
C2 and C3 for redundant storage. Only C1 serves users directly,
while C2 and C3 provide lower-level services to C1. This architec-

Figure 6: Implementation in Sharemind SecreC

ture is analogous to iCloud, Apple’s storage service, which uses
Amazon EC2 and Microsoft Azure for redundant backup storage.

Suppose Alice, a user of CS1, wants to deploy a MapReduce
function using CS1. Alice deploys the MapReduce Master on a data
center DC1 of C1, and C1 uses a data center DC2 of C2 and a data
center D3 of C3 as backup for the MapReduce Master. However, as
in Figure 7, C1, C2, and C3 depend on the same power station P1.
Alice and all three cloud providers are unaware of this situation.
Therefore, they may overestimate the reliability of the MapReduce
Master and underestimate the risk of correlated failure. If P1 goes
down, Alice’s MapReduce may not work, because all the backup
data centers may fail simultaneously.

The P-SRA system can help to identify P1 as the common depen-
dency in the cloud structure supporting CS1 and provide multiple
measures of reliability and correlated failure risk (the failure prob-
ability for Alice and partial FSes for C1), without revealing signifi-
cant private information about C1, C2, and C3. Alice need not learn
private topological information about the three cloud providers (or
even learn of the existence of C2 and C3) but can accurately assess
the failure risk via the P-SRA system. Meanwhile, C1 can improve
the reliability of CS1 by connecting to alternative power stations
or seeking redundancy from cloud providers other than C2 and C3,
without learning private topological information about C2 and C3.

To further illustrate P-SRA, we display the details within a data
center. There are a large number of components in data centers
including servers, racks, switches, aggregate switches and routers.
For simplicity, we generate the same topology for all the data cen-
ters and show only the components in DC1 – see Figure 8. The
MapReduce Master is installed on server 5 of DC1. The DAUs
of C1, C2, and C3 collect the dependency information of each cloud
provider. Then the SSUs abstract macro-components for each cloud
provider using standard data-center abstraction. The SSUs pass
the information within the data centers to the LEUs and establish
connections with each other and the P-SRA host to execute the
SMPC protocol. The LEUs perform fault-tree analysis on the de-
pendency information within the data centers locally. The results
of the SMPC and the local computation are then combined as ex-
plained in Subsection 4.3.

The P-SRA system is practical in this case study. Even us-
ing a laptop with little computational power, equipped only with
a 2.5GHz 2-core Intel i5 CPU and 2.00GB of memory, the running
time used by the SSUs and P-SRA host to find the common depen-
dency was approximately 20 seconds; the time to perform the fault-
tree analysis was approximately 13 minutes using the minimal-
FS algorithm and 55 seconds using the failure-sampling algorithm
with 100 rounds. The running time for the LEUs deployed on

Figure 7: Multi-level Structure of Cloud Service

servers equipped with two 2.8GHz 4-core Intel Xeon CPUs and
16GB of memory was less than 30 seconds for both the minimal-
FS algorithm and the failure-sampling algorithm.

5.3 Large-Scale Simulation

This section evaluates the P-SRA prototype using larger-scale
simulations. Our data set is synthesized based on the widely ac-
cepted three-stage fat-tree cloud model [15] and scaled up to what
we expect to find in real cloud structures. For the SMPC protocol
run by the P-SRA host and the SSUs of P-SRA clients, we test the
running time of the common-dependency-finder Algorithm 1, the
minimal-FS Algorithm 2, and the failure-sampling Algorithm 3.
Our output for both cloud-service providers and users can be com-
puted efficiently from the common dependency and the (minimal)
FSes.

We test the five cases summarized in Table 1. For simplicity,
we generate only homogeneous cloud providers. In Table 1, the
numbers of data centers, Internet routers, and power stations are
numbers per cloud provider. The common-dependency ratio is as
defined in Subsection 4.5.2. The padding ratio is the number of
zeros with which the topology paths were padded divided by the
total number of nodes on the topology paths after padding.

The five cases are intended to be illustrative of configurations
broadly comparable to realistic multi-cloud services. To the best
of our knowledge, it is uncommon for any cloud services to be
deployed on more than three cloud providers or distributed over
more than 10 data centers, because the total number of data centers
worldwide is limited, and cloud-service management costs increase
quickly as data centers are added. Amazon, one of the giant cloud
providers, owns only 15 data centers globally [1]; Microsoft Azure
has fewer than 10 data centers [3].

Figure 9 summarizes measured P-SRA computation performance.
The P-SRA host and SSUs of the P-SRA clients were run on lap-
tops with 2.5GHz 2-core Intel i5 CPU and 2.00GB of memory. We
used these machines because the SecreC platform supported only
Microsoft Windows when we started this work. We expect that
performance would improve using higher-powered machines.

Figure 8: Components in Data Center DC1: Core, Agg, and

ToR represent core router, aggregation switch, and top-of-rack

switch.

Case 1 Case 2 Case 3 Case 4 Case 5

of cloud providers 2 2 3 3 2
of data center 1 3 8 10 3
of internet router 3 5 10 15 5
of power stations 1 2 3 5 2
ratio of common dep. 0.8 0.2 0.2 0.2 0.2
ratio of padding 0.0 0.0 0.0 0.0 0.5

Table 1: Configuration of Test Data Sets

The common-dependency finder exhibits reasonable efficiency
in all five cases, the runtimes of which are all less than 3 minutes.
The minimal-FS algorithm yields exact minimal FSes (but takes ex-
ponential time in the worst case, because the problem in NP-hard),
while the failure-sampling algorithm produces FSes approximating
the minimal FSes and runs in polynomial time. In Cases 4 and 5,
the minimal-FS algorithm was aborted before it finished, and thus
no results are shown for them in Figure 9. The runtimes of other
simulations of the minimal-FS algorithm and the failure-sampling
algorithm range from 1 to 50 hours depending on the configuration.
As the number of nodes increases, the efficiency of fault-tree analy-
sis drops quickly. Case 5 shows that the cost of padding to conceal
the statistical information of each topology path is high. Therefore,
subgraph abstraction to reduce the size of the dependency graphs is
important for the efficiency of fault-tree analysis in P-SRA.

For the LEUs in the P-SRA clients performing local computa-
tions, we also test the running times of both the minimal-FS algo-
rithm and the failure-sampling algorithm. For the LEUs running
on servers with two 2.8GHz 4-core Intel Xeon CPUs and 16GB
of memory, the failure-sampling algorithm with 106 rounds on a
data center with 13,824 servers and 3000 switches takes around 6
hours. For details, see Table 2. “FS round 10n” denotes the runtime
(in minutes) of the failure-sampling algorithm running 10n rounds.
“Minimal FS” denotes the runtime of the minimal-FS algorithm.

6. CONCLUSIONS AND FUTURE WORK

We have designed P-SRA, a private, structural-reliability auditor
for cloud services based on secure, multi-party computation, and

Figure 9: Performance of algorithms. On the X axis, “Com-

mon” represents the common-dependency finder, 2 through 4

represent the failure-sampling algorithm with sampling rounds

at various powers of 10, and “Min" represents the minimal-FS

algorithm.

Table 2: Performance of the LEU of a P-SRA client
Configuration Case 1 Case 2 Case 3 Case 4 Case 5

of switch ports 4 8 16 24 48
of core routers 4 16 64 144 576
of agg switches 8 32 128 288 1152
of ToR switches 8 32 128 288 1152
of servers 16 128 1024 3456 13824
Total # components 40 216 1360 4200 16752
Runtime (minutes)
FS round 103 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7
FS round 104 0.7 0.7 1.7 2.3 6.9
FS round 105 0.8 0.9 5.3 28.1 6.9
FS round 106 1.7 4.5 65.0 243.5 462.9
FS round 107 28.3 56.6 512.1 NA NA
Minimal FS 0.8 14.8 309.7 NA NA

prototyped it using the Sharemind SecreC platform. In addition, we
have explored the use of data partitioning and subgraph abstraction
in secure, multi-party computations on large graphs, with promis-
ing results. Our preliminary experiments and simulations indicate
that P-SRA could be a practical, off-line service, at least for small-
scale cloud services or for ones that permit significant subgraph
abstraction. There are many interesting directions for future work,
including: (1) Although our preliminary experiments indicate that
the cost of privacy in structural reliability auditing (i.e., the addi-
tional cost of using P-SRA instead of SRA) is not prohibitive, it
would be useful to measure this cost more precisely with more ex-
haustive experiments. (2) It will be interesting to seek more ef-
ficient algorithms for fault-tree analysis and/or a more efficient P-
SRA implementation; both would enable us to test P-SRA on larger
cloud architectures. (3) Note that we assumed, following Zhai et
al. [28], that dependency graphs of cloud services are acyclic, but
they need not be. Tunneling-within-tunneling of the type already in
use in MPLS and corporate VPNs could (perhaps unintentionally)
create cyclic dependencies if used in clouds. Thus, it will be worth-
while to develop structural-reliability auditing techniques that ap-
ply to cyclic dependency graphs. (4) P-SRA partitions components
based on the fact that some physical equipment is used by exactly
one service provider and hence cannot cause the failure of another
provider’s service, but this type of partitioning has limitations. If,
for example, two cloud-service providers purchase large numbers
of hard drives of the same make and model from the same batch,
and that batch is discovered to be faulty, then the two services have

a common dependency on this faulty batch of drives. P-SRA’s data
partitioning could hide this common dependency, because the hard
drives could be considered “private” equipment by both services. It
will be worthwhile to extend P-SRA so that it can discover this type
of common dependency while retaining the efficiency provided by
data partitioning and subgraph abstraction.

7. ACKNOWLEDGEMENTS

We thank Ennan Zhai, Aaron Segal, Debayan Gupta, and the
anonymous reviewers for their helpful comments. This material
is based on research sponsored by NSF grants CNS-1016875 and
CNS-1149936, ONR grant N00014-12-1-0478, DARPA contract
FA8750-13-2-0058, and a gift from Google Research.

The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of NSF, ONR, DARPA, or the U.S. Government.

8. REFERENCES

[1] Amazon web services global infrastructure. http://aws.
amazon.com/en/about-aws/globalinfrastructure/.

[2] NetworkX. http://networkx.github.com/.
[3] Windows azure.

http://en.wikipedia.org/wiki/Windows_Azure.
[4] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a

system for secure multi-party computation. In ACM
Symposium on Computer and Communication Security,
pages 257–266, 2008.

[5] S. Bleikertz, M. Schunter, C. W. Probst, D. Pendarakis, and
K. Eriksson. Security audits of multi-tier virtual
infrastructures in public infrastructure clouds. In ACM Cloud
Computing Security Workshop, pages 93–102, 2010.

[6] D. Bogdanov and A. Kalu. Pushing back the rain – how to
create trustworthy services in the cloud. ISACA Journal,
3:49–51, 2013. Available at
http://www.isaca.org/Journal/Past-Issues/2013/
Volume-3/Pages/default.aspx.

[7] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos.
SEPIA: Privacy-preserving aggregation of multi-domain
network events and statistics. In USENIX Security
Symposium, 2010.

[8] B. Butler. Cloud storage viable option, but proceed carefully,
2013. Available at http://www.networkworld.com/
news/2013/010313-gartner-storage-265460.html.

[9] B. Butler. Top 10 cloud storage providers, 2013. Available at
http://www.networkworld.com/news/2013/
010313-gartner-cloud-storage-265459.html.

[10] I. Damgård, M. Geisler, M. Krøigård, and J. Nielsen.
Asynchronous multiparty computation: Theory and
implementation. In S. Jarecki and G. Tsudik, editors, Public
Key Cryptography – PKC 2009, pages 160–179. Springer
Verlag, LNCS 5443, 2009.

[11] C. A. Ericson II. Hazard analysis techniques for system
safety. John Wiley and Sons, 2000.

[12] D. Gupta, A. Segal, A. Panda, G. Segev, M. Schapira,
J. Feigenbaum, J. Rexford, and S. Shenker. A New Approach
to Interdomain Routing Based on Secure Multi-Party
Computation. In ACM SIGCOMM Workshop on Hot Topics
in Networks, 2012.

[13] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and
I. Wehrenberg. Tasty: tool for automating secure two-party
computations. In ACM Conference on Computer and
Communications Security, pages 451–462, 2010.

[14] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – a
secure two-party computation system. In USENIX Security
Symposium, pages 298–302, 2004.

[15] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: A Scalable Fault-tolerant Layer 2 Data Center
Network Fabric. In ACM SIGCOMM, pages 39–50, 2009.

[16] W. Oremus. Internet outages highlight problem for cloud
computing: Actual clouds, 2012. Available at http:
//www.slate.com/blogs/future_tense/2012/07/02/
amazon_ec2_outage_netflix_pinterest_instagram_
down_after_aws_cloud_loses_power.html.

[17] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan.
Auditing to keep online storage services honest. In USENIX
Workshop on Hot Topics in Operating Systems, 2007.

[18] M. A. Shah, R. Swaminathan, and M. Baker.
Privacy-preserving audit and extraction of digital contents.
Cryptology ePrint Archive, Report 2008/186, 2008.
Available at http://eprint.iacr.org/2008/186/.

[19] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl.
Fault Tree Handbook. US Nuclear Regulatory Commission,
1981.

[20] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou.
Privacy-preserving public auditing for secure cloud storage.
IEEE Transactions on Computers, 62(2):362–375, 2013.

[21] C. Wang, K. Ren, W. Lou, and J. Li. Toward publicly
auditable secure cloud data storage services. IEEE Network,
24(4):19–24, 2010.

[22] C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preserving
public auditing for data storage security in cloud computing.
In IEEE INFOCOM, pages 525–533, 2010.

[23] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li. Enabling
public auditability and data dynamics for storage security in
cloud computing. IEEE Transactions on Parallel and
Distributed Systems, 22(5):847–859, 2011.

[24] K. Yang and X. Jia. Data storage auditing service in cloud
computing: challenges, methods and opportunities. World
Wide Web, 15(4):409–428, 2012.

[25] A. C. Yao. Protocols for secure computation. In IEEE
Symposium on Foundations of Computer Science, pages
160–164, 1982.

[26] A. C. Yao. How to generate and exchange secrets. In IEEE
Symposium on Foundations of Computer Science, pages
162–167, 1986.

[27] E. Zhai, R. Chen, D. I. Wolinsky, and B. Ford. An untold
story of redundant clouds: Making your service deployment
truly reliable. In ACM Workshop on Hot Topics in
Dependable Systems, 2013.

[28] E. Zhai, D. I. Wolinsky, H. Xiao, H. Liu, X. Su, and B. Ford.
Auditing the structural reliability of the clouds. Technical
Report YALEU/DCS/TR-1479, July 2013. Available at
http://www.cs.yale.edu/publications/
techreports/tr1479.pdf.

http://aws.amazon.com/en/about-aws/globalinfrastructure/
http://aws.amazon.com/en/about-aws/globalinfrastructure/
http://networkx.github.com/
http://en.wikipedia.org/wiki/Windows_Azure
http://www.isaca.org/Journal/Past-Issues/2013/Volume-3/Pages/default.aspx
http://www.isaca.org/Journal/Past-Issues/2013/Volume-3/Pages/default.aspx
http://www.networkworld.com/news/2013/010313-gartner-storage-265460.html
http://www.networkworld.com/news/2013/010313-gartner-storage-265460.html
http://www.networkworld.com/news/2013/010313-gartner-cloud-storage-265459.html
http://www.networkworld.com/news/2013/010313-gartner-cloud-storage-265459.html
http://www.slate.com/blogs/future_tense/2012/07/02/amazon_ec2_outage_netflix_pinterest_instagram_down_after_aws_cloud_loses_power.html
http://www.slate.com/blogs/future_tense/2012/07/02/amazon_ec2_outage_netflix_pinterest_instagram_down_after_aws_cloud_loses_power.html
http://www.slate.com/blogs/future_tense/2012/07/02/amazon_ec2_outage_netflix_pinterest_instagram_down_after_aws_cloud_loses_power.html
http://www.slate.com/blogs/future_tense/2012/07/02/amazon_ec2_outage_netflix_pinterest_instagram_down_after_aws_cloud_loses_power.html
http://eprint.iacr.org/2008/186/
http://www.cs.yale.edu/publications/techreports/tr1479.pdf
http://www.cs.yale.edu/publications/techreports/tr1479.pdf

	Introduction
	Related Work
	Secure Multi-Party Computation
	Cloud Reliability
	Fault Trees

	Problem Formulation
	System Design
	System Overview
	Privacy-preserving Data Acquisition
	Subgraph Abstraction
	SMPC and Local Computation
	SSU Protocol:
	LEU Protocol:

	Privacy-preserving Output Delivery
	Output for Cloud-Service Providers
	Output for Cloud-Service Users

	Implementation
	P-SRA Prototype
	Case Study
	Large-Scale Simulation

	Conclusions and Future Work
	Acknowledgements
	References

