CS155b: E-Commerce

Lecture 3: Jan 16, 2001

How Does the Internet Work?

Acknowledgements: S. Bradner and R. Wang
Internet Protocols Design Philosophy

- ordered set of goals
 1. multiplexed utilization of *existing networks*
 2. survivability in the face of failure
 3. support multiple types of communications service
 4. accommodate a variety of network types
 5. permit distributed management of resources
 6. cost effective
 7. low effort to attach a host
 8. account for resources

- not all goals have been met
Packets!

- **basic decision: use packets not circuits**
 - Kleinrock’s work showed packet switching to be a more efficient switching method

- **packet (a.k.a. datagram)**
 - self contained
 - handled independently of preceding or following packets
 - contains destination and source internetwork address
 - may contain processing hints (e.g. QoS tag)
 - **no delivery guarantees**
 - net may drop, duplicate, or deliver out of order
 - reliability (where needed) done at higher levels
Telephone Network
- Connection-based
- Admission control
- Intelligence is “in the network”
- Traffic carried by relatively few, “well-known,” communications companies

Internet
- Packet-based
- Best effort
- Intelligence is “at the endpoints”
- Traffic carried by many routers, operated by a changing set of “unknown” parties
Review: Technology Advances

<table>
<thead>
<tr>
<th></th>
<th>1981</th>
<th>1999</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIPS</td>
<td>1</td>
<td>1000</td>
<td>1,000</td>
</tr>
<tr>
<td>$/MIPS</td>
<td>$100K</td>
<td>$5</td>
<td>20,000</td>
</tr>
<tr>
<td>DRAM Capacity</td>
<td>128KB</td>
<td>256MB</td>
<td>2,000</td>
</tr>
<tr>
<td>Disk Capacity</td>
<td>10MB</td>
<td>50GB</td>
<td>5,000</td>
</tr>
<tr>
<td>Network B/W</td>
<td>9600b/s</td>
<td>155Mb/s</td>
<td>15,000</td>
</tr>
<tr>
<td>Address Bits</td>
<td>16</td>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>Users/Machine</td>
<td>10s</td>
<td><=1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

- Expensive machines, cheap humans
- Cheap machines, expensive humans
- (Almost) free machines, really expensive humans, and communities
The Network *is* the Computer

- Relentless decentralization
 - “Smaller, cheaper, more numerous”
 - mainframe → mini → PC → palms → ubiquitous/embedded
 - More computers → more data communication
- (Shifting) reasons computers talk to each other
 - Efficient sharing of machine resources
 - Sharing of data
 - Parallel computing
 - *Human* communication
The Network *is* the computer (con’t)

- Networks are everywhere and they are converging
 - SAN, LAN, MAN, WAN
 - All converging towards a similar switched technology
- New chapter of every aspect of computer science
 - Re-examine virtually all the issues in the context of distributed systems or parallel systems
- This is only the beginning.
Directly Connected

- (a) point-to-point: ATM
- (b) multiple-access: ethernet, FDDI
- Can’t build a network by requiring all nodes to be directly connected to each other: scalability in terms of the number of wires or the number of nodes that can attach to a shared media
Switched Network

- Circuit switching vs. packet switching
- Hosts vs. “the network,” which is made of switches
- Nice property: scalable aggregate throughput
Interconnection of Networks

- Recursively build larger networks
Some Hard Questions

- How do hosts share links?
- How do you name and address hosts?
- Routing: given a destination address, how do you get to it?
IP addresses and Hosts Names

- Each machine is addressed by a 32-bit integer: IP address
 - We will tell you what “IP” is later
 - Ran out of numbers and there are schemes to extend
- An IP address is:
 - Written down in a “dot notation” for “ease” of readings such as 128.36.229.231
 - Consists of a network address and a host ID
- IP addresses are the universal IDs that are used to name everything
- For convenience, each host also has a human-friendly host name: for example “128.36.229.231” is “concave.cs.yale.edu”
- Question: how do you translate names into IP addresses?
Initially name-to-address mapping was a flat file mailed out to all the machines on the internet.

- Now we have a hierarchical name space, just like a UNIX file system tree.
- Top level names: historical influence: heavily US centric, government centric, and military centric view of the world.
DNS Zones and Name Servers

- Divide up the name hierarchy into zones
- Each zone corresponds to one or more name servers under a single administrative control
Hierarchy of Name Servers

- Clients send queries to name servers
- Name servers reply with answers or forward request to other name servers
- Most name servers also perform lookup caching
Application-Level Abstraction

- What you have: hop-to-hop links, multiple routes, packets, can be potentially lost, can be potentially delivered out-of-order
- What you may want: application-to-application (end-to-end) channel, communication stream, reliable, in-order delivery
OSI Architecture

- **Physical**: handles *bits*
- **Data link**: provides “*frames*” abstraction
- **Network**: handles hop-to-hop routing, at the unit of *packets*
- **Transport**: provides process-to-process semantics such as in-order-delivery and reliability, at the unit of *messages*
- **Top three layers** are not well-defined, all have to do with application level abstractions such as transformation of different data formats
Protocols: abstract objects that makeup a layer

Lowest level: hardware specific, implemented by a combination of network adaptors and OS device drivers

IP (Internet Protocol): focal point of the architecture, provides host-to-host connection, defines common methods of exchanging packets

TCP (transmission Control Protocol): reliable, in-order stream

UDP (User Datagram Protocol): unreliable messages (maybe faster)

On top of those are the application protocols

Not strictly layered, “hour-glass shape,” implementation-centric