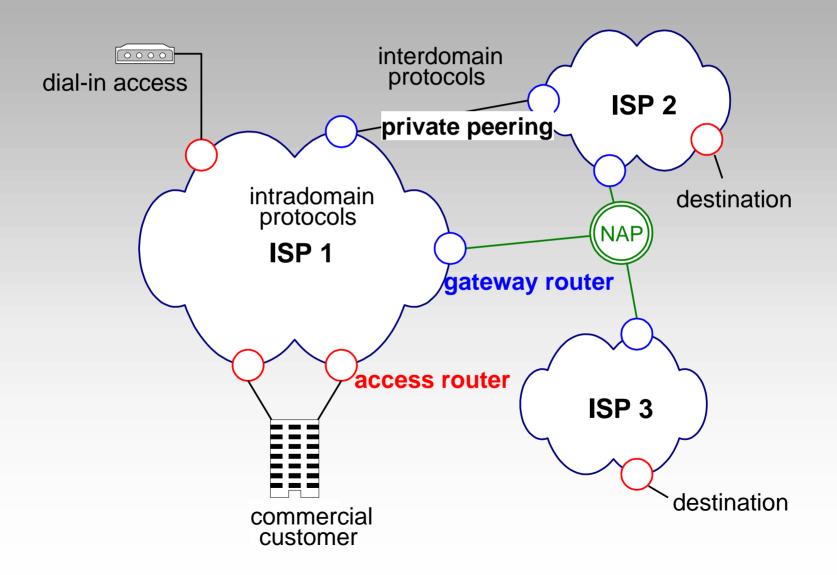

CS155b: E-Commerce

Lecture 4: Jan 18, 2001


How Does the Internet Work? (continued) Acknowledgement: J. Rexford

and Lessons Learned From Netscape

Layering in the IP Protocols

Internet Architecture

IP Connectionless Paradigm

- No error detection or correction for packet data
 Higher-level protocol can provide error checking
- Successive packets may not follow the same path Not a problem as long as packets reach the destination
- Packets can be delivered out-of-order
 Receiver can put packets back in order (if necessary)
- Packets may be lost or arbitrarily delayed
 Sender can send the packets again (if desired)
- No network congestion control (beyond "drop")
 Send can slow down in response to loss or delay

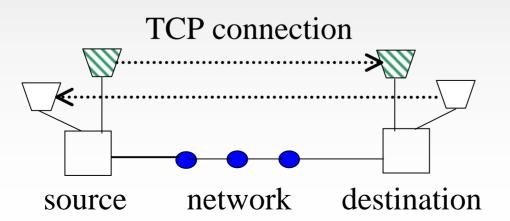
IP Packet Structure

4-bit Version	4-bit Header Length	8-bit Type of Service (TOS)	16-bit Total Length (Bytes)			
16-bit Identification			3-bit Flags	13-bit Fragment Offset		
8-bit Time to Live (TTL) 8-bit Protoco		8-bit Protocol	16-bit Header Checksum		20-byte Header	
32-bit Source IP Address						
32-bit Destination IP Address						
Options (if any)						
Payload						

Main IP Header Fields

- Version number (e.g., version 4, version 6)
- Header length (number of 4-byte words)
- Header checksum (error check on header)
- Source and destination IP addresses
- Upper-level protocol (e.g., TCP, UDP)
- Length in bytes (up to 65,535 bytes)
- IP options (security, routing, timestamping, etc.)

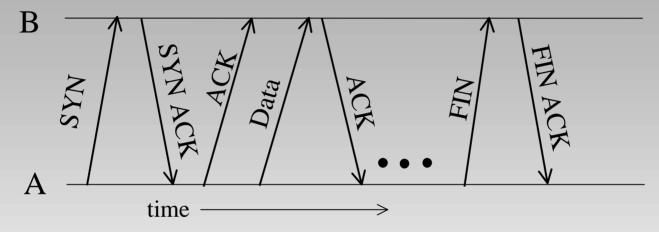
Time-to-Live Field


- Potential robustness problem
 - What happens if a packet gets stuck in a routing loop?
 - What happens if the packet arrives *much* later?
- Time-to-live field in packet header
 - TTL field decremented by each router on the path
 - Packet is discarded when TTL field reaches 0
 - Discard generates "timer expired" message to source
- Expiry message exploited in **traceroute** tool
 - Generate packets with TTL of i=1, 2, 3, 4, ...
 - Extract router id from the "timer expired" message
 - Provides a way to gauge the path to destination

Type-of-Service Bits

- Initially, envisioned for type-of-service routing
 - Low-delay, high-throughput, high-reliability, etc.
 - However, current IP routing protocols are static
 - And, most routers have first-in-first-out queuing
 - So, the ToS bits are ignored in most routers today
- Now, heated debate for differentiated services
 - ToS bits used to define a small number of classes
 - Affect router packet scheduling and buffering polices
 - Arguments about consistent meaning across networks

Transmission Control Protocol (TCP)


- Byte-stream socket abstraction for applications
- Retransmission of lost or corrupted packets
- Flow-control to respond to network congestion
- Simultaneous transmission in both directions
- Multiplexing of multiple logical connections

TCP Header

16-bit source port number	16-bit destination port number				
32-bit sequence number					
32-bit acknowledgement number					
4-bit header length U A P R S F R C S S Y I G K H T N N	16-bit window size				
16-bit TCP checksum	16-bit urgent pointer				
Options (if any)					
Payload					

Establishing a TCP Connection

- Three-way handshake to establish connection
 - Host A sends a SYN (open) to the host B
 - Host B returns a SYN acknowledgement (ACK)
 - Host A sends an ACK to acknowledge the SYN ACK
- Closing the connection
 - Finish (FIN) to close and receive remaining bytes (and other host sends a FIN ACK to acknowledge)
 - Reset (RST) to close and not receive remaining bytes

Lost and Corrupted Packets

- Detecting corrupted and lost packets
 - Error detection via checksum on header and data
 - Sender sends packet, sets timeout, and waits for ACK
 - Receiver sends ACKs for received packets
- Retransmission from sender
 - Sender retransmits lost/corrupted packets
 - Receiver reassembles and reorders packets
 - Receiver discards corrupted and duplicated packets

Packet loss rates are high (e.g., 10%), causing significant delay (especially for short Web transfers)!

TCP Flow Control

- Packet loss used to indicate network congestion
 - Router drop packets when buffers are (nearly) full
 - Affected TCP connection reacts by backing-off
- Window-based flow control
 - Sender limits number of outstanding bytes
 - Sender reduces window size when packets are lost
 - Initial slow-start phase to learn a good window size
- TCP flow-control header fields
 - Window size (maximum # of outstanding bytes)
 - Sequence number (byte offset from starting #)
 - Acknowledgement number (cumulative bytes)

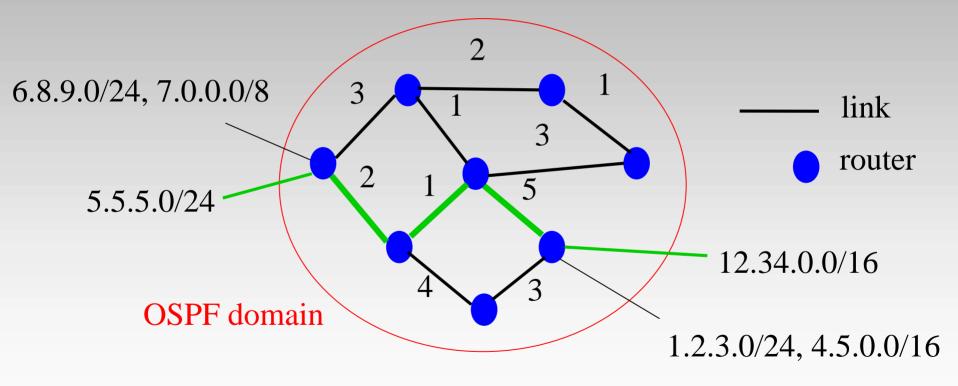
User Datagram Protocol (UDP)

- Some applications do not want or need TCP

 Don't need recovery from lost or corrupted packets
 Don't want flow control to respond to loss/congestion
- Amount of UDP packets is rapidly increasing
 - Commonly used for multimedia applications
 - UDP traffic interferes with TCP performance
 - But, many firewalls do not accept UDP packets
- Dealing with the growth in UDP traffic
 - Pressure for applications to apply flow control
 - Future routers may enforce "TCP-like" behavior
 - Need better mathematical models of TCP behavior

Classless Inter-Domain Routing (CIDR)

- IP addresses are all 32 bits in length
 - "Dotted-decimal" notation: 113.34.96.78
 - IP address has "network" part and "host" part
- Addresses used to have a natural network length
 - Class A: 8-bit network and 24-bit host part
 - Class B: 16-bit network and 16-bit host part
 - Class C: 24-bit network and 8-bit host part
- Now any division of the 32 bits is fine
 - Arbitrary division into prefix and mask
 - E.g.: 113.34.96.0/24 for mask of 255.255.255.0

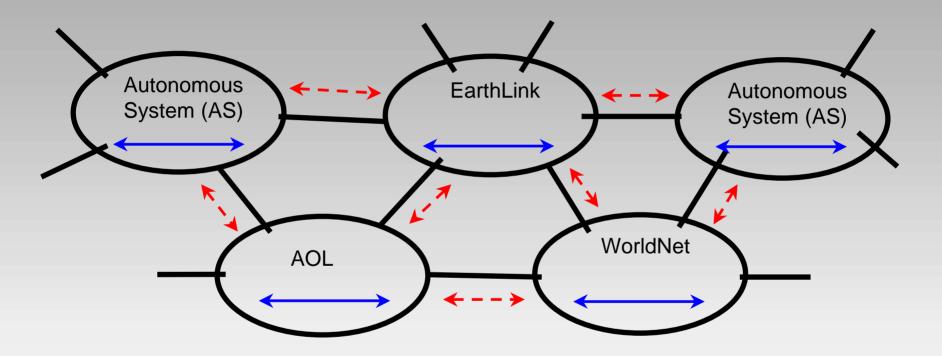

Getting an IP Packet From A to B

- Host must know at least three IP addresses
 - Host IP address (to use as its own source address)
 - Domain Name Service (to map names to addresses)
 - Default router to reach other hosts (e.g., gateway)
- Simple customer/company
 - Connected to a single service provider
 - Has just one router connecting to the provider
 - Has a set of IP addresses allocated in advance
 - Does not run an Internet routing protocol

Open Shortest-Path First (OSPF) Routing

- Network is a graph with routers and links
 - Each unidirectional link has a weight (1-63,535)
 - Shortest-path routes from sum of link weights
- Weights are assigned statically (configuration file)
 - -Weights based on capacity, distance, and traffic
 - Flooding of info about weights and IP addresses
- Large networks can be divided in multiple domains

Example Network and Shortest Path

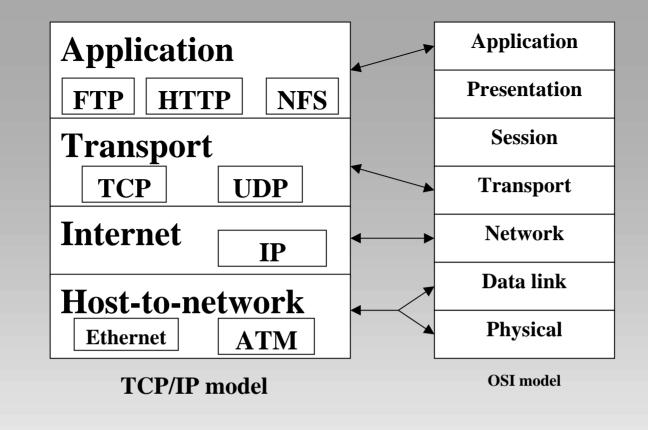

IP Routing in OSPF

- Each router has a complete view of the topology
 - Each router transmits information about its links
 - Reliable flooding to all routers in the domain
 - Updates periodically or on link failure/installation
- Each router computes shortest path(s)
 - Maintenance of a complete link-state database
 - Execution of Dijkstra's shortest-path algorithm
- Each router constructs a forwarding table
 - Forwarding table with next hop for each destination
 - Hop-by-hop routing independently by each router

Routing Software

- Routing protocol software
 - Checking connection with neighboring routers ("hello")
 - Exchanging link-state information with other routers
 - Computing shortest paths and IP forwarding table
 - Handling of packets with IP options selected
 - Exchanging routing information between providers
- Router management and configuration
 - Configuration files to configure addresses, routing, etc.
 - Command-line interface to inspect/change configuration
 - Logging of statistics in management information base
 - More complex traffic measurement (e.g., NetFlow)

Connecting to Other Networks


Autonomous System: A collection of IP subnets and routers under the same administrative authority.

Interior Routing Protocol (e.g., Open Shortest Path First)

---- Exterior Routing Protocol (e.g., Border Gateway Protocol)

Connecting With Our Neighbors

- Public peering
 - Network Access Points (e.g., MAE East, MAE West)
 - Public location for connecting routers
 - Routers exchange data and routing information
- Private peering
 - Private connections between two peers (e.g., MCI)
 - Private peers exchange direct traffic (no transit)
 - Private peers must exchange similar traffic volumes
- Transit networks
 - Provider pays another for transit service (e.g., BBN)
 - Improve performance and reach more addresses

HTTP

- Standard protocol for web transfer
- Request-response interaction
- Request methods: GET, HEAD, PUT, POST, DELETE, ...
- Response: Status line + additional info (*e.g.*, a web page)

HTML

- The language in which web pages are written
- Contains formatting commands
- Tells browser what to display & how to display
- <HEAD> Welcome to Yale </HEAD>
 The head of this page is "Welcome to Yale"
- <*B*> *Great News!* </*B*> - Set "**Great News!**" in boldface
- <A HREF="<u>http://www.cs.yale.edu/index.html</u>">Yale Computer Science Department
 -A link pointing to the web page: "<u>http://www.cs.yale.edu/index.html</u>"
 -with the text: "Yale Computer Science Department" displayed.

What does "<u>http://www.cs.yale.edu/index.html</u>" mean?

Protocol	Host domain name	Local file
http	www.cs.yale.edu	index.html

- Late 1990: WWW, HTTP, HTML, "Browser" invented by Tim Berners-Lee
- **Mid-1994:** Mosaic Communications founded (later renamed to Netscape Communications)
- Summer of 1995: Market share 80%+
- August 1995: Windows 95 released with Internet Explorer
- January 1998: Netscape announced that its browser would thereafter be **free**; the development of the browser would move to an **open-source** process

Estimated Market Share of Netscape

NOTE: data are from different sources and not exact

Perfectly Captures the *Essence* of Internet Business

- Enormous power of Internet architecture and ethos (*e.g.*, layering, "stupid network," open standards)
- <u>Must</u> bring new technology to market quickly to build market share
- Internet *is* the distribution channel
 - First via FTP, then via HTTP (using Netscape!)
 - Downloadable version available free and CD version sold

Uses Many "Internet Business Models" (esp. those that involve making money by "giving away" an information product)

Complementary products (esp. server code)

- Bundling
 - Communicator includes browser, email tool, collaboration tool, calendar and scheduling tool, etc. One "learning curve," integration, compatibility, etc.
- Usage monitoring
 - Datamining, strategic alliances
 - "Installed base" \neq "Active installed base"

Browser as "Soul of the Internet"

- "New layer" (Note Internet architectural triumph!)
- Portal business
 - Early "electronic marketplace"
 - Necessity of strategic alliances
 - "Positive transfers" to customers
- (Temporarily?) Killed R&D efforts in user interfaces

Pluses and Minuses of Network Effects

- + Initial "Metcalf's Law"- based boom
- + Initial boom <u>accelerated</u> by bundling, complementary products, etc.
- Market share ≠ lock in high market cap ≠ high switching costs
- Network effects strong for "browser" but weak for any particular browser

Exposed the True Nature of Microsoft

- 1995: Navigator released, MS rushes IE to market
- 1996: Version 3.0 of IE no longer technically inferior ("Openness" and standardization begets commoditization)
- MS exploits advantage with strategic allies (Windows!)
 - Contracts with ISPs to make IE the default
 - Incents OEMs not to load Netscape products
 - Exclusive access to premium content (from, *e.g.*, Star Trek)
- 1998: MS halts browser-based version of these "strategies" under DoJ scrutiny of its contracts with ISPs.

Internet-ERA Anti-Trust Questions are Still Open

- Can consumers benefit from full integration of browser and OS?
- How to prevent "pre-emptive strikes" on potential competitors in the Windows-monopoly universe?

– ("post-desktop era" technical Solution?)

• Remember: DoJ case is <u>not</u> about protecting Netscape!