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Abstract� In a system in which noncooperative agents share a common
resource� we propose the ratio between the worst possible Nash equilib�
rium and the social optimum as a measure of the e�ectiveness of the
system� Deriving upper and lower bounds for this ratio in a model in
which several agents share a very simple network leads to some interest�
ing mathematics� results� and open problems�

� Introduction

Internet users and service providers act sel�shly and spontaneously� without
an authority that monitors and regulates network operation in order to achieve
some �social optimum� such as minimum total delay ���	 How much performance

is lost because of this� This question appears to exemplify a novel and timely
genre of algorithmic problems� in which we are investigating the cost of the lack
of coordination 
as opposed to the lack of information �on�line algorithms or
the lack of unbounded computational resources �approximation algorithms	 As
we show in this paper� this point of view leads to some interesting algorithmic
and combinatorial questions and results	

It is nontrivial to arrive at a compelling mathematical formulation of this
question	 Independent� non�cooperative agents obviously evoke game theory ����
and its main concept of rational behavior� the Nash equilibrium� In an environ�
ment in which each agent is aware of the situation facing all other agents� a Nash
equilibrium is a combination of choices �deterministic or randomized� one for
each agent� from which no agent has an incentive to unilaterally move away	 Nash
equilibria are known not to always optimize overall performance� with the Pris�
oner�s Dilemma ��� ��� being the best�known example	 Conditions under which
Nash equilibria can achieve or approximate the overall optimum have been stud�
ied extensively ������ see also ��� �� ��� for studies on networks	 However� this line
of previous work compares the overall optimum with the best Nash equilibrium�
not the worst� as be�ts our line of reasoning	 To put it otherwise� this previous
research aims at achieving or approximating the social optimum by implicit acts
of coordination� whereas we are interested in evaluating the loss to the system
due to its deliberate lack of coordination	

Game�theoretic aspects of the Internet have also been considered by re�
searchers associated with the Internet Society ��� ���� with an eye towards de�
signing variants of the Internet Protocols which are more resilient to video�like



tra�c	 Their point of view is also that of the mechanism design aspect of game
theory� in that they try to design games �strategy spaces and reward tables that
encourage behaviors close to the social optimum	 Understanding the worst�case
distance of a Nash equilibrium from the social optimum in simple situations�
which is the focus of the present paper� is a prerequisite for making rigorous
progress in that project	

The model

Let us make the general game�theoretic framework more precise	 Consider a
network in which each link has a law �curve whereby tra�c determines delay	
Each of several agents wants to send a particular amount of tra�c along a path
from a �xed source to a �xed destination	 This immediately de�nes a game�
theoretic framework� in which each agent has as many pure strategies as there are
paths from its origin to its destination� and the cost to an agent of a combination
of strategies �one for each agent is the negative of the total delay for each agent�
as determined by the tra�c on the links	 There is also a well�de�ned optimization
problem� in which we wish to minimize the social or overall optimum� the sum
of all delays over all agents� say	 The question we want to ask is� how far from
the optimum total delay can be the total delay achieved by a Nash equilibrium�
Numerical experiments reported in ��� imply that there are Nash equilibria which
can be more than ��� o� the overall optimum	

In this paper we address a very simple special case of this problem� in which
the network is just a set of m parallel links from an origin to a destination�
all with the same capacity �similar special cases are studied in other works in
this �eld� e	g	 ���� we also brie�y examine the case of two parallel links with
unequal capacity	 We model the delay of these links in a very simple way� Since
the capacity is unit� we assume that the delay su�ered by each agent using
a link equals the total capacity of �ow through this link	 We assume that n
agents have each an amount of tra�c wi� i � �� � � � � n to send from the origin to
the destination	 Hence the resulting problem is essentially a scheduling problem
with m links and n independent tasks with lengths wi� i � �� � � � � n	 The set
of pure strategies for agent i is therefore f�� � � � �mg� and a mixed strategy is
a distribution on this set	 Let �j�� � � � � jn � f�� � � � �mgn be a combination of
pure strategies� one for each agent� its cost for agent i� denoted Ci�j�� � � � � jn� is
simply

Lji �
X
jk�ji

wk �

the �nish time of the link chosen by i� here we assume that link j has in the
beginning an initial task of length Lj scheduled� so it will be available for schedul�
ing the agents� tasks only after Lj time units	 This calculation assumes that� if
agent i�s task ends up in link j� it ends when all tasks on link j end� this is
realistic if the tasks are broken in packets� which are then sent in a round�robin
way	 We also examine the alternative model� in which the tasks scheduled in
link j are executed in a random batch order� and hence the cost to agent i is



Ci�j�� � � � � jn � Lji � �
�

P
jk�ji

wk	 We call this the batch model	 Finally� the
cost to agent i of a combination of mixed strategies is the expected cost of the
corresponding experiment in which a pure strategy is chosen independently for
each agent� with the probability assigned to it by the mixed strategy	 The overall
optimum in this situation� against which we propose to compare the Nash equi�
libria of the game just described� would be the optimum solution of the m�way
load balancing �partition into m sets problem for the n lengths w�� � � � � wn	

The costs in our model are a simpli�cation of the delays incurred in a network
link when agents inject tra�c into it	 The actual delays are in fact not the
sums of the individual delays� but nonlinear functions� as increased tra�c causes
increased loss rates and delays	 We discuss brie�y in the last section the open
problems suggested by our work that are associated with more accurate modeling
of network delays	

The results of this paper

In this paper we show upper and lower bounds on the ratio between the worst
Nash equilibrium and the overall optimum solution	

� In a network with two parallel links� we show that the worst�case ratio is
�
� �both upper and lower bound� independent of the number n of agents
�Theorems � and �	

� The above result assumes that the two link speeds are the same	 If the two
links have di�erent speeds� then the worst�case ratio increases to the golden
ratio � � ����� � � � �lower bound� Theorem �	

� Also� in the batch model of two links� the worst�case ratio is lower bounded
by ��

�� � ������ � � � which is also an upper bound if we have two agents
�Theorem �	

� We have not been able to determine the answers for three or more links	
However� the worst�case ratio �in all of the above models is bounded from
below by the ratio suggested by the load�balancing aspect of the problem�
that is to say� �� logm

log logm  �Theorem �	 Using the Azuma�Hoe�ding inequal�

ity� we establish an O�
p
m logm upper bound �Theorem �	 A similar bound

holds for links of di�erent speeds �Theorem  	

� All Nash equilibria

We consider the case of n agents sharing m identical links	 Before describing all
Nash equilibria� we need a few de�nitions	 We usually use subscripts for agents
and superscripts for links	 For example� for a Nash equilibrium� we denote the
probability that agents i selects link j with pji 	 LetM

j denote the expected tra�c

on link j	 If Lj is the initial load on link j� it is easy to see that

M j � Lj �
X
i

pjiwi� ��



From the point of view of agent i� its �nish time when its own tra�c wi is
assigned to link j is

cji � wi � Lj �
X
i��t

pjtwt �M j � ��� pji wi� ��

Probabilities pji de�ne a Nash equilibrium if there is no incentive for agent i to
change its strategy	 Thus� agent i will assign nonzero probabilities only to links
j that minimize cji 	 We will denote this minimum value by ci� i	e	�

ci � min
j

cji �

and we will call the set of links Si � fj � pji � �g the support of agent i	 More

generally� let Sji be an indicator variable that takes value � when pji � �	
Conversely� a Nash equilibrium is completely de�ned by the supports S�� � � � � Sn

of all agents	 More precisely� if we �x the Sji �s� the strategies in a Nash equilib�
rium are given by

pji � �M j � wi � ci�wi ��

subject to

for all j� M j � Lj �
P

i S
j
i �M

j � wi � ci

for all i�
P

j S
j
i �M

j � wi � ci � wi

To see that these constraints indeed de�ne an equilibrium� notice that the
�rst set of equations is equivalent to ��	 The constraints are equivalent to ���
and to the fact that the probabilities of agent i should sum up to exactly �	 Notice
also that the set of constraints specify in general� a unique solution for ci andM

j

�there are n�m constraints and n�m unknowns	 If the resulting probabilities
pji are in the interval ��� ��� then the above equations de�ne an equilibrium with

support Sji 	 Thus� an equilibrium is completely de�ned by the supports of the
agents �although not all supports give rise to a feasible equilibrium	 As a result�
the number of equilibria is� in general� exponential in n and m	

A natural quantity associated with an equilibrium is the expected maximum

tra�c over all links�

cost �

mX
j���

� � �
mX

jn��

nY
i��

pjii max
j�������m

fLj �
X
t�jt�j

wtg� ��

We call it the social cost and we wish to compare it with the social optimum opt	
More precisely� we want to estimate the coordination ratio which is the worst�
case ratio R � max cost�opt �the maximum is over all equilibria	 Computing the
social optimum opt is an NP�complete problem �partition problem� but for the
purpose of upper bounding R here� it su�ces to use two simple approximations
of it� opt � maxfw��

P
j M

j�mg � maxfw�� �
P

j L
j �
P

i wi�mg �we shall be
assuming that w� � w� � � � � � wn	



� Worst�case equilibria for � links

We shall assume that there are no initial loads 
that is� all Lj �s are zero	
This is no restriction at all for the standard model� because initial loads can be
considered as jobs of m additional agents� each with a pure strategy	 However�
this may not be true for other models	 In particular� in the batch model �the one
with the �

� factor in front of
P

wi it follows from our results that initial loads
result in strictly worse ratio	

Our �rst theorem is trivial�

Theorem �� The coordination ratio for � links is at least ����

Proof� Consider two agents with tra�c w� � w� � �	 It is easy to check that
probabilities pji � ��� for i� j � �� � give rise to a Nash equilibrium	 The expected
maximum load is cost � ��� and the social optimum is opt � � achieved by
allocating each job to its own link	

Our main technical result of this section is a matching upper bound	 To
prove it� we �nd a way to upper bound the complicated expression �� for the
social cost	 In fact� it is relatively easy to compute the strategies of a Nash
equilibrium	 There are � types of agents� pure strategy agents with support of
size one and stochastic agents with support of size �	 Let dj be the sum of all
jobs of pure strategy agents assigned to link j	 Also let k � � denote the number
of stochastic agents	 It is not di�cult to verify that the system of equations ��
gives the following probabilities of a stochastic agent i�

pji �
�

�
� d� � d� � �dj

��k � �wi
� ��

However� we don�t see how to use this expression to upper bound ��	
Central to our proof of the upper bound is the notion contribution probability�

The contribution probability qi of agent i is equal to the probability that its
job goes to the link of maximum load �if there are more than one maximum
load links� we consider the lexicographically �rst such link� say	 Clearly� the
social cost is given by cost �

P
i qiwi� The key idea in our proof is to consider

the pairwise contribution to social cost	 In particular� let tik be the collision

probability of agents i and k� that is� the probability that the tra�c of both agents
goes to the same link	 Observe then that both agents i and k can contribute to
the social cost only if they collide� that is�

qi � ql � � � tik � ��

The following lemma provides a crucial property of collision probabilities	 It
holds for any number of links	

Lemma �� The collision probabilities of a Nash equilibrium of n agents and m
links satisfy X

k ��i

tikwk � ci � wi�



Proof� Observe �rst that tik �
P

j p
j
ip

j
k	 Therefore� we have

X
k ��i

tikwk �
X
j

pji
X
k ��i

pjkwk �
X
j

pji �M
j � pjiwi�

It follows from �� that we can use pjiwi � M j � wi � ci	 There is a minor

technical point to be made here� the equality pjiwi � M j �wi � ci holds only if

link j is in the support of agent i �pji � �	 However� observe that when pji � �

there is no harm in replacing pjiwi with any expression	 We get

X
k ��i

tikwk �
X
j

pji �ci � wi � ci � wi�

A �nal ingredient for the proof is the bound �which also holds for any number
of agents and links�

ci �
P

i wi

m
�
m� �

m
wi� ��

This follows from ci � minj c
j
i � �

m

P
j�M

j � ��� pji wi �

P
j
Mj

m � m��
m wi �P

k
wk

m � m��
m wi	

Theorem �� The coordination ratio for any number of agents and m � � links

is at most ����

Proof� We have seen that pairwise the contribution probabilities satisfy qi�qk �
� � tik 	 Therefore�

P
k ��i�qi � qkwk � Pk ��i�� � tikwk 	 Using Lemma � and

bound ��� we get
P

k ��i�qi � qkwk � �
�

P
k ��i wk	 From this we can compute

cost �
X
k

qkwk � �
�

�
� qi
X
k

wk � ��qi � �

�
wi�

Recall that opt � maxf ��
P

k wk� wig	 If for some agent i� qi � �
� � then ��qi �

�
� wi � ��qi � �

� opt and cost � � �� � qi�opt � ��qi � �
� opt �

�
�opt	 Otherwise�

when all contribution probabilities are at most �
� � cost �

P
k qkwk � �

�

P
k wk �

�
�opt	

Links with di�erent speeds

So far� we assumed that all links have the same speed or capacity	 We now
consider the general problem where links may have di�erent speeds	 Let sj be
the speed of link j	 Without loss of generality� we shall assume s� � � � � � sm	
We can estimate all Nash equilibria again	 Equation �� now becomes

cji � �M j � ��� pji wi�sj � ��



and the equilibria are given by�

pji � �M j � wi � sjci�wi � 

subject to

for all j� M j � Lj �
P

i S
j
i �M

j � wi � sjci

for all i�
P

j S
j
i �M

j � wi � sjci � wi

We can extend the lower bound Theorem � to this case�

Theorem �� The coordination ratio for two links with speeds s� � s� is at least

R � � � s���s� � s� when s� � �s�� where � � �� �
p
���� The coordination

ratio R achieves its maximum value � when s��s� � ��

Proof� We �rst describe the equilibria for any number of agents	 Again let dj be
the sum of all tra�c assigned to link j by pure agents	 We give the probabilities
p�i of the stochastic agents �p�i � �� p�i 	

p�i �
s�

s� � s�
� �s� � s�

P
i wi � �s�d

� � s�d
�

�k � ��s� � s�wi

It is not hard to verify that these probabilities indeed satisfy � 	 To prove the
theorem� we consider the case of no initial loads and two agents with jobs w� � s�

and w� � s�	 The probabilities are p
�
� �

s�
�

s�	s�
s��
and p�� � �� s�

�

s�	s�
s��
	 We can

then compute cost � �p��p
�
��s� � p��p

�
��s��w� � w� � �p��p

�
��s� � p��p

�
��s�w� �

�s� � �s���s� � s� and opt � �	 The lower bound follows	
It is worth mentioning that when s��s� � � the probabilities given above are

outside the interval ��� ��	 Therefore� both agents have pure strategies and the
coordination ratio is �	

We believe that the proof of Theorem � can be appropriately generalized to
the case of links of di�erent speeds	

The batch model

For the batch model with two links we can prove the following bounds �proof
omitted�

Theorem �� In the batch model with two identical links� the coordination ratio

is between ��
�� � ���� � � � and �� The lower bound ��

�� is also an upper bound in

the case of n � � agents�

When the links have no initial load� the batch model and the standard model
have the same equilibria and the same coordination ratio	 However� in the general
case� as the above theorem demonstrates� the batch model has higher coordina�
tion ratio	 But it cannot be much higher�

Theorem 	� For m links and any number of agents� the coordination ratios of

the batch model and the standard model di	er by at most a factor of ��



We omit the details of the proof� but we point out the main idea� We can consider
the initial loads Lj of the batch model as pure strategy agents of weight �Lj 	
This preserves the equilibria and changes the social optimum by at most a factor
of �	

� Worst�case equilibria for m links

We now consider lower bounds for the coordination ratio for m links	

Theorem 
� The coordination ratio for m identical links is ��logm� log logm�

Proof� Consider the case where there are m agents� each with a unit job� i	e	�
wi � �	 If the links have no initial load� it is easy to see that the uniform strategies
with pji � ��m for i� j � �� � � � �m is an equilibrium	 This is identical to the
problem of throwing m balls into m bins and asking for the expected maximum
number of balls in a bin	 The answer is well�known to be ��logm� log logm	

We believe that this lower bound is tight� That is� if Tm denotes the expected
maximum number of balls in a bin� we conjecture that the coordination ratio
for any number of agents and m identical links is Tm �in the standard model	
Theorem � shows that the conjecture holds for m � �	

We believe that a proof of the conjecture can be obtained by appropriately
generalizing the proof technique of Theorem �� it seems however that a substan�
tially deeper structural theorem about the Nash equilibria� similar to Lemma ��
is needed	 Here� we give a weaker upper bound	 But �rst we need the following
theorem� which is interesting on its own	

Theorem �� For m identical links� the expected load M j of any link j is at most

��� ��mopt� For links with di	erent speeds� Mj is at most sj���
p
m� �opt�

Proof� For identical links the theorem follows directly from �� by observing that
M j � ci � �

P
i wi�m� �m� �wi�m � sj��� ��mopt	

The proof for links with di�erent speeds has the same �avor with ��	 This
time we take a weighted average over the links �the weight for machine j is
sj�
P

r sr	 Thus�

cji �
P

rM
r � �m� �wiP

r sr
�

Also� cmi � �Mm � wi�sm � �
P

rM
r � wi�sm	 In summary�

cji � minf
P

rM
r � �m� �wiP

r sr
�

P
rM

r � wi

sm
g�

However� we can lower bound the social optimum by maxfwi�sm�
P

rM
r�
P

r srg�
Thus� we get cji � opt � minf 	m���wiP

r
sr

�

P
r
Mr

sm
g	 Using the obvious inequality

minfxa�b� c�dg � p
xmaxfa�d� c�bg� we get cji � ���

p
m� �opt	 We can then

conclude that M j � sjc
j
i � sj�� �

p
m� �opt	



We can now prove an upper bound for the case of m identical links	

Theorem �� The coordination ratio of any number of agents and m identical

links is at most T � � �
p
�m lnm�

Proof� Using a martingale concentration bound known as the Azuma�Hoe�ding
inequality ���� we will show that the load of a given link j exceeds �T��opt with
probability at most ��m�	 Then� the probability that the maximum load on all
links does not exceed �T � �opt is at least �� ��m	 It follows that the expected
maximum load is bounded by ��� ��m�T � �opt � ��m�mopt � Topt	

It remains to show that indeed the probability that the load of a given link
j exceeds �T � �opt is small �at most ��m�	 Let Xi be a random variable
denoting the contribution of agent i to the load of link j	 In particular� Pr�Xi �
w�� � pji and Pr�Xi � �� � � � pji 	 Clearly� the random variables X�� � � � � Xn

are independent	 We are interested in estimating the probability Pr�
P

iXi �

�T � �opt�	 Since the weights wi and the probabilities pji may vary a lot� we
don�t expect the sum

P
iXi to exhibit the good concentration bounds of sums

of binomial variables	 However� we can get a weaker bound using the Azuma�
Hoe�ding inequality	 The inequality gives very good results for probabilities
around ���	 Unfortunately� in our case the probabilities may be very close to �
or �	

Let 	i � E�Xi� and consider the martingale Yt � X��� � ��Xt�	t
��� � ��	n
�it is straightforward to verify E�Yt
�jYt� � Yt	 Observe that jYt
� � Ytj �
jXt
� � 	t
�j � wt
�	 We can then apply the Azuma�Hoe�ding�s inequality�

Pr�Yn � Y� � x� � e�
�

�
x��
P

i
w�

i �

Let x � �T � �opt	 Since Y� �
P

i 	i � M j � �opt �Theorem �� we get that

the load of link j exceeds �T � �opt with probability at most e�
�

�
x��
P

i
w�

i 	
However� it is not hard to establish that

X
i

w�
i � maxfmw�

��m�
X
i

wi�m�g � mopt��

Thus the probability that the load of link j exceeds �T � �opt is at most

e�
�

�
	T�����m	 For T � � �

p
�m lnm� this probability becomes ��m� and the

proof is complete	

It is worth noticing that the only structural property of Nash equilibria we
needed in the proof of the above theorem is that the expected load of a link j is
at most �opt �and� of course� the independence of the agent strategies	 We can
use a similar proof to extend the theorem to the case of m links with di�erent
speeds�

Theorem � The coordination ratio of any number of agents and m di	erent

links is O�
q

sm
s�

P
j
sj
s�

p
logm�



� Discussion and open problems

We believe that the approach introduced in this paper� namely evaluating the
worst�case ratio of Nash equilibria to the social optimum� may prove a useful
calculation in many contexts	 Although the Nash equilibrium is not trivial to
reach without coordination� it does serve as an important indicator of the kinds
of behaviors exhibited by noncooperative agents	

Besides bridging the gaps left open in our theorems� there are several ex�
tensions of this work that seem interesting� namely� investigating with the same
point of view more complex and realistic cost models� for example� when the
cost is given by �

C�minfC�
P

wig�
where C is the capacity of a link and

P
wi its

load ���	 More important is the study of realistic Internet metrics� that result
from the employed protocols such as the one related to TCP and the square root
of the drop frequency ���	 Finally� it would be extremely interesting� once the
relative quality of the Nash equilibria in such situations is better understood� to
employ such understanding in the design of improved protocols ���	
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