
Evaluating Source Code Disclosure in the Criminal Justice System

Greg Schwartz

Table of Contents

I. INTRODUCTION ... 2

II. AUTOMATION AND CRIMINAL JUSTICE .. 5

A. THE RISE OF AUTOMATION ... 5
B. EVIDENCE RULES FOR SCIENTIFIC EVIDENCE ... 6

1. Admissibility ... 6
2. Pre-trial Discovery ... 7

III. THE IMPORTANCE OF SOURCE CODE .. 8

A. SOFTWARE ERRORS .. 8
B. THE SUFFICIENCY OF VALIDATION STUDIES ... 11
C. DNA MIXTURE ANALYSIS ... 13

IV. THE RISKS OF DISCLOSURE ... 14

A. FINANCIAL HARMS .. 14
B. HARMS TO PRODUCT ... 16

V. A PATH FORWARD ... 17

V. A PATH FORWARD ... 17

I. Introduction

The criminal justice system is becoming increasingly automated. Predictive algorithms

are being employed for pre-trial investigations,1 assessments of evidence,2 sentencing,3 and

parole.4 In response, a large body of work has developed on the fairness5 and transparency6 of

these systems, but only recently has the academic discussion addressed the role of ownership and

trade secrets.7 The Sixth Amendment contains the right of a defendant to confront “the witnesses

against him,”8 which the Supreme Court has recognized with full force in regard to forensic

evidence.9 Yet in court, the developers of these criminal justice software systems often claim that

the source code for their products are trade secrets and exempt from discovery. They challenge

subpoenas from defendants and resist disclosure. They argue that revealing their code, even to

just defense experts, would harm themselves and not provide any uniquely valuable

information.10

1 Bennett Moses, Lyria, and Janet Chan. Algorithmic prediction in policing: assumptions, evaluation, and

accountability. Policing and society 28.7 (2018): 806-822. and Asher, Jeff, and Rob Arthur. Inside the algorithm

that tries to predict gun violence in Chicago. The New York Times 13 (2017).
2 Friedman, Jennifer, and Jessica Brand. It Is Now up to the Courts: Forensic Science in Criminal Courts: Ensuring

Scientific Validity of Feature-Comparison Methods. Santa Clara L. Rev. 57 (2017): 367.
3 Wexler, Rebecca. Code of Silence: How private companies hide flaws in the software that governments use to

decide who goes to prison and who gets out. (2017).
4 Wexler, Rebecca. When a computer program keeps you in jail: How computers are harming criminal justice. New

York Times 13 (2017).
5 Angwin, Julia & Larson, Jeff. Bias in Criminal Risk Scores Is Mathematically Inevitable, Researchers Say.

ProPublica (identifying concerns over accuracy, objectivity, errors, and bias).
6 Skeem, Jennifer. Scientific Risk Assessment in Sentencing May Beat the Alternative. Berkeley Blog; in contrast to

Rebecca Wexler, Code of Silence supra note 3.
7 Wexler, Rebecca. Life, liberty, and trade secrets: Intellectual property in the criminal justice system. Stan. L.

Rev. 70 (2018): 1343.
8 U.S. Const. amend. VI.; Crane v. Kentucky, 476 U.S. 683, 686–87 (1986); see United States v. Bess, 75 M.J. 70,

75–76 (C.A.A.F. Jan. 6, 2016)
9 Melendez-Diaz 557 U.S. at 313
10 See Computers Are Helping Justice, CYBERGENETICS (June 16, 2017), https://perma.cc/XNW3-Q4A6. The

company has presented similar arguments in court. See, e.g., State v. Fair, No. 10-1-09274-5 SEA (Wash. Super. Ct.

King Cty. Apr. 1, 2016).

https://perma.cc/XNW3-Q4A6

One such challenge was made in a federal court in Texas, where the company TLO

argued that disclosing information about their Child Protection System (CPS) would

“significantly degrade the usefulness of CPS as a worldwide investigative tool, as well as

compromis[e] numerous ongoing criminal investigations.”11 While CPS offers a broad suite of

tools, the component allegedly at risk of being compromised is its hashing algorithm. CPS is able

to identify for law enforcement IP addresses that download “notable” images and videos.12

Media is considered notable if it matches the hashes of files previously labeled by law

enforcement as containing child pornography. TLO argues that disclosing information about

their hashing algorithm will allow criminals to evade detection.

This is not the only time that defendants have been refused information on hashing

systems. In New Mexico, Microsoft argued against disclosing their PhotoDNA algorithm and

related software.13 A Federal Court last year denied the defendant access to a report generated by

the hashing algorithm used by Google to search images on Gmail.14 This year, Apple nearly

joined the fray with their own CSAM hashing technology.15 While the Apple’s system was

recalled due to public outcry, the substantial technological effort demonstrates the resources

being put into developing more hashing systems. With this trend comes growing need for a

technological evaluation of these developers’ claims that disclosure will compromise their

products.

11 U.S. v. Ocasio 2013 WL 2458617
12 See Inside the surveillance software tracking child porn offenders across the

globe”https://www.nbcnews.com/tech/internet/inside-surveillance-software-tracking-child-porn-offenders-across-

globe-n1234019
13 United States v. Rosenschein 2020 WL 3572662
14 United States v. Miller 982 F.3d 412
15 See CSAM Detection Technical Summary https://www.apple.com/child-

safety/pdf/CSAM_Detection_Technical_Summary.pdf

The fight for disclosure reaches far beyond hashing algorithms. A particularly high-

profile example is COMPAS, one of the most popular recidivism predictors nationwide.16

Despite – or, perhaps, because of – academic and media criticism of its product,17 the developer

of COMPAS maintains that the weight of the COMPAS inputs for should be protected under

trade secrecy.18 In a similar vein, Cybergenetics argues that courtroom disclosure of its product

TrueAllele would be “financially devastating.”19 These cases differ from the hashing algorithms

because their primary concern is not giving criminals an advantage, but competitors. As these

products continue to be more and more widely used, further analysis of the risk that disclosure

poses to these companies is necessary as well.

In response to these growing issues, this paper will attempt to analyze the benefits and

risks of disclosure. In Part II, it will provide context for the role and reception of software in the

United States Criminal Justice System. In Part III, it will explore the benefits of disclosure by

comparing the evaluation of software with and without access to source code. In Part IV, it will

examine the arguments against disclosure that developers have argued in court. Finally, in Part V

it will conclude that increased source code disclosure seems to be warranted.

Ultimately, this paper aims to provide an initial foray into the broad and under-analyzed

technical claims being made by developers in criminal proceedings. By critically examining the

16How We Analyzed the COMPAS Recidivism Algorithm https://www.propublica.org/article/how-we-analyzed-the-

compas-recidivism-algorithm
17 Yong, Ed. A popular algorithm is no better at predicting crimes than random people. The Atlantic 17 (2018); see

also Layers of bias: A unified approach for understanding problems with risk assessment. Criminal Justice and

Behavior 46.2 (2019): 185-209.
18 State v. Loomis 371 Wis.2d 235
19 Supra note 3; see also When a Computer Program Keeps You in Jail

https://www.nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html (TrueAllele has

submitted affidavits across the country alleging that disclosing source code to defense attorneys would cause

“irreparable harm.”)

costs and benefits of disclosure, this paper aims to help create a foundation for future research

and better equip courts to adjudicate between developers and defendants.

II. Automation and Criminal Justice

A. The Rise of Automation

 In recent years the United States government has delegated many of its functions to

automated decision making.20 But preceding this rise of automation, came a proliferation of

expert testimony. A study of over 500 American trials in 1985 and 1986 found that expert

testimony was used in eighty-six percent of trials. One commenter noted that in the United

States, trial by jury was evolving into trial by expert, with experts “readily availab[le]” to testify

in favor of each party.21

 This increased use of experts comes with a heavily reliance on their expertise, but

automation has narrowed the scope of expert authority considerably. Experts used to take the

stand to provide testimony on experiments that they had personally conducted by hand, such as a

forensic scientist describing their fingerprint identification procedure. Today, these expert

witnesses tend to speak to an automated process that they oversaw, testifying the results of DNA

mixture analysis software like TrueAllele with no knowledge of the underlying source code. This

is now affects the vast majority of DNA testimony, as eighty-five percent of American DNA

laboratories are using automated techniques.22

 Given the shrinking expertise of the witnesses conducting forensic tests, it would seem

reasonable for courts to implement separate assurances regarding the robustness and validity of

20 Danielle Keats Citron, Open Code Governance, 2008 U. CHI. LEGAL F. 355, 356-57
21 William T. Pizzi, Expert Testimony in the US, 145 NEW L.J. 82, 82 (1995)
22 William C. Thompson and Dan E. Krane, DNA in the Courtroom, in PSYCHOLOGICAL & SCIENTIFIC

EVIDENCE IN CRIMINAL TRIALS § 11:23 (2003).

the software, or at least to allow defendants to perform an examination. Such inspections are

commonplace in civil litigation, even though the litigants are typically business competitors. It is

so common in fact, that in the United States it is an aberration for a court to refuse requests from

civil litigants challenging the reliability of software to have an independent expert analyze the

code.23 However, in criminal settings the source code generally has only circumstantial

relevance, given that reviewing the code functions to validate the scientific equipment which

generates direct evidence.24

B. Evidence Rules for Scientific Evidence

With this rise in expert testimony and automation have come new standards in the

courtroom. These standards generally apply to two situations: admissibility and pre-trial

discovery.

1. Admissibility

 Until the 1970s, the federal courts and majority of state courts used the Frye standard of

general acceptance for the admissibility of scientific evidence.25 The court recognized that

evidence must have “gained general acceptance” from the scientific community in order to be

sufficiently established. This general acceptance would bring the evidence from “experimental”

to “demonstrable,” making it acceptable to use in the courtroom. Since general acceptance by the

scientific community was necessary, one or even several expert opinions may not have bene

sufficient to establish evidence as admissible.26

23 Christopher M. Mislow, Protecting Source Code from Disclosure During Pretrial Discovery, 12 UTAH B.J. 39,

47 (1984).
24 Edward J. Imwinkelried, Computer Source Code: A Source of the Growing Controversy Over the Reliability of

Automated Forensic Techniques, 66 DEPAUL L. REV. 97 (2016).
25 Frye v. United States, 293 F. 1013, 1014 (D.C. Cir. 1923)
26 See Paul C. Giannelli, The Admissibility of Novel Scientific Evidence: Frye v. United States, A Half-Century

Later, 80 COLUM. L. REV. 1197, 1204 n.41 (1980);

 This bright line changed in 1975, when Article VII of the Federal Rules of Evidence took

effect.27 This Article removed the “general acceptance” language and replaced it with what

would be interpreted as Daubert’s Five-Factor Balancing Test.28 While the checklist is flexible,29

the Daubert definitively shifted the “gatekeeping role” from the scientific community to the

judge.30

 Proof of validation remains an essential under this Daubert standard, although courts

have found that developers can meet this burden without offering testimony about the validity of

the source code. Instead, as prosecutors have successfully argued, the government can meet that

burden by presenting testimony about validation studies investigating the accuracy of the

software.31

2. Pre-trial Discovery

 While prosecutors have almost uniformly prevailed under admissibility standards, pre-

trail discovery has been more mixed.32 There have been two waves of source code discovery

cases, the first regarding breath testing devices and the second regarding probabilistic genotyping

programs. While there were some exceptions,33 in the first wave the courts almost uniformly

27 Act of Jan. 2, 1975, Pub. L. No. 93-595, 88 Stat. 1926 (codified at 28 U.S.C. §§ 2072, 2075 (2012))
28 Katherine L. Moss, Note, The Admissibility of TrueAllele: A Computerized DNA Interpretation System, 72

WASH. & LEE L. REV. 1033, 1060–62 (2015).
29 Daubert v. Merrell Dow Pharms., Inc., 509 U.S. 579, 588 (1993).
30 Id. at 594
31 Joe Palazzolo, Judge Denies Access to Source Code for DNA Software Used in Criminal Cases, WALL ST. J.

(Feb. 5, 2016, 10:56 AM), http://blogs.wsj.com/law/2016/02/05/judge-deniesaccess-to-source-code-for-dna-

software-used-in-criminal-cases/
32 Supra note 24
33 State v. Bjorkland, 924 So. 2d 971, 973 (Fla. Dist. Ct. App. 2006); State v. Underdahl, 767 N.W.2d 677, 683–84

(Minn. 2009); In re Comm’r of Public Safety, 735 N.W.2d 706, 712–13 (Minn. 2007); State v. Chun, 923 A.2d 226,

226–27 (N.J. 2007), cert. denied, 555 U.S. 825 (2008).

rejected requests for defense experts to be given access to source code.34 The second wave, while

ongoing, appears to be even more lopsided.35

 Similarly to the reasoning in regard to admissibility, these courts reject defendant

requests because they consider source code access to be unnecessary for validating the accuracy

of software.36 In addition, they reject discovery requests on the grounds that disclosing source

code risks the financial wellbeing of the developers,37 and the effectiveness of their products.38

III. The Importance of Source Code

 However, it appears that knowledge of the underlying source code is necessary to

establish an adequate understanding of a program’s behavior and output. This is determined by

first examining the proliferation of software errors, many of which are only caught through an

examination of source code, and then by evaluating the alternative – peer-viewed black box

validation studies. Finally, special attention is given to the specific problems with validation

studies for DNA Mixture Analysis, the most common source of code disclosure cases.

A. Software Errors

Misbehavior in software is common, even in code developed and verified by leading

experts. An infamous example comes from the hole in the ozone layer that went unnoticed for

34 Moe v. State, 944 So. 2d 1096, 1097 (Fla. Dist. Ct. App. 2006); State v. Underdahl, 749 N.W.2d 117, 120–21

(Minn. Ct. App. 2008), aff’d in part, rev’d in part, 767 N.W.2d 677 (Minn. 2009) (affirming the district court’s

denial of production of computer code); State v. Burnell, No. MV06479034S, 2007 WL 241230, at *2 (Conn. Super.

Ct. Jan. 18, 2007); State v. Walters, No. DBDMV050340997S, 2006 WL 785393, at *1 (Conn. Super. Ct. Feb. 15,

2006); People v. Cialino, 831 N.Y.S.2d 680, 681–82 (Crim. Ct. 2007).
35 Commonwealth v. Robinson, No. CC 201307777 (Pa. Ct. C.P. Allegeheny Cty. Feb. 4, 2016) (discussing the

admissibility of test results without disclosing source code in previous trials).
36 Commonwealth v. Foley, 38 A.3d 882 (Pa. Super. Ct. 2012) (The court ruled that the available validation studies

established the reliability of TrueAllele); see also Commonwealth v. Robinson, No. CC 201307777 (Pa. Ct. C.P.

Allegeheny Cty. Feb. 4, 2016)
37 Supra note 18
38 Supra note 11, 13, 14

years because NASA programmers set their software to ignore “unrealistic” outlier data.39 More

recently, a software error from a misplaced less-than symbol (<) in Ireland’s National Integrated

Medical Imaging System caused “potentially thousands of patient records from MRIs, X-rays,

CT scans, and ultrasounds” to be recorded incorrectly.40 A software error caused a large

Australian bank misreport certain transactions for almost three years, leading to widespread

money laundering.41 In rare cases, software is intentionally deceptive, as when Volkswagen

programmed its vehicles to cheat at emissions tests.42

In short, errors are inevitable. The errors in these examples come from software built by

large, trusted entities and responsible for important, sensitive information. As software will

continue to be subject to bugs, and as programs become more complex, errors are liable to

become even more widespread.43

 Forensic software is not immune to these problems, and access to source code has

repeatedly uncovered defects. We can see this in the Forensic Statistical Tool, a probabilistic

genotyping program developed in 2010 by New York City’s Office of the Chief Medical

Examiner (OCME). Despite being a public entity, OCME spent years fighting any independent

review of FST’s source, even under a protective order. This finally ended in 2016, during a

39 Michael King & David Herring, Research Satellites for Atmospheric Sciences, 1978-Present, Serendipity and

Stratospheric Ozone (Dec. 10, 2001), https://earthobservatory.nasa.gov/Features/

RemoteSensingAtmosphere/remote _sensing5.php.
40 Jack Power, Software Company Behind HSE Scan Glitch Begins Investigation, IRISH TIMES (Aug. 5, 2017),

https://www.irishtimes.com/news/ireland/irish-news/software-company-behind-hse-scan-glitch-begins-

investigation-1.3178349
41 Allie Coyne, CBA Blames Coding Error for Alleged Money Laundering, itnews (Aug. 7, 2017), https://www.

itnews. com.au/news/ cba-blames-coding-error-for-alleged -money-laundering-470233.
42 Guilbert Gates et al., Explaining Volkswagen’s Emissions Scandal, N.Y. TIMES (July 19, 2016),

http://www.nytimes.com/interactive/2015/business/international/vw-diesel-emissionsscandalexplained.html?_r=0;

Russell Hotten, Volkswagen: The Scandal Explained, BBC (Dec. 10, 2015), http://www.bbc.com/news/business-

34324772; Sonari Glinton, How a Little Lab in West Virginia Caught Volkswagen’s Big Cheat, NPR Morning

Edition (Sept. 24, 2015), http://www.npr.org/2015/09/24/44305367 2/how-a-little-lab-in-west-virginia-caught -

volkswagens-big-cheat
43 Roger A. Grimes, Five Reasons Why Software Bugs Still Plague Us, CSO Online (July 8, 2014),

https://www.csoonline.com/ article/2608330/security/5-reasons-why -software-bugs-still-plague-us.html.

http://www.bbc.com/news/business-34324772
http://www.bbc.com/news/business-34324772

criminal case when a federal judge ordered OCME to turn over FST’s source code for review. 44

Over the process of that review, the defense expert identified many critical issues. There was a

“secret function” that “tending to overestimate the likelihood of guilt.” 45 The software did not

use the methodology described in sworn testimony and peer-reviewed publications.46

 Following these findings, STRmix – the software chosen to replace FST in New York –

was analyzed by independent researchers and found to have programming errors that created

false results in 60 out of 4,500 cases in Queensland, Australia.47

In a wave of cases involving breath testing devices for drunk driving, courts repeatedly

asserted that there was no need for discovery of the source code because the defense had “other

avenues of challenge.”48 They noted that defendants could access the device’s calibration records

and the operator’s checklist in order to determine whether the device was working and properly

used.49 Yet, an eventual study of the source code for New Jersey’s breath testing devices

“uncovered a variety of defects that could impact the test results.”50 The courts had ignored the

fact that checks for human error cannot identify software defects, and defendants paid the price.

44 See United States v.Johnson, 15-CR565 (VEC) (S.D.N.Y.June 7, 2016).
45 Stephanie J. Lacambra, Jeanna Matthews, and Kit Walsh. Opening the Black Box: Defendants’ Rights to Confront

Forensic Software https://lin-web.clarkson.edu/~jmatthew/publications/FINALARTICLE_pg28-

39_Lacambra_Forensic_Software_May_2018_07102018_608BCX.pdf
46 Id.
47 David Murray, Queensland Authorities Confirm ‘Miscode’ Affects DNA Evidence in Criminal Cases, COURIER

MAIL (Mar. 20, 2015), http://www.couriermail.com.au/news/ queensland/queensland-authorities -confirm-miscode-

affects-dna-evidence-in -criminal-cases/news-story/833c580d3f1c 59039efd1a2ef55af92b.
48 People v. Robinson, 860 N.Y.S.2d 159, 165 (App. Div. 2008) (quoting People v. Alvarez, 515 N.E.2d 898, 900

(N.Y. 1987)).
49 Robinson, 860 N.Y.S.2d at 166 (discussing “calibration records,” records which are “showing “that the machine

was . . . properly maintained or that the test was . . . properly administered”).
50 State v. Underdahl, 767 N.W.2d 677, 685 (Minn. 2009) (describing a report in State v. Chun, 943 A.2d 114, 132–

33 (N.J. 2008)).

B. The Sufficiency of Validation Studies

 The courts have repeatedly accepted validation studies to demonstrate the performance of

forensic software.51 In the case of TrueAllele, courts have decided that the existence of validation

studies makes source code disclosure unnecessary.52 However, considering the proliferation of

coding errors, it is unclear what guarantees these validation studies are able to provide.

The errors described in the above section create distinction between software and

scientific principles that has not been acknowledged in legal scholarship. The procedures tested

by empirical validation studies in chemistry or epidemiology rely on universal scientific

principles. These principles motivate the reaction that one chemical has when exposed to

another. And while software is subject to coding errors, these scientific principles have no such

bugs. In “The Problem With Software and Its Assurance” John Rushby writes

“the traditional disciplines are founded on science and mathematics and are able to model

and predict the characteristics and properties of their designs quite accurately, whereas

software engineering is more of a craft activity, based on trial and error rather than

calculation and prediction.”53

51 Joe Palazzolo, Judge Denies Access to Source Code for DNA Software Used in Criminal Cases, WALL ST. J.

http://blogs.wsj.com/law/2016/02/05/judge-deniesaccess-to-source-code-for-dna-software-used-in-criminal-cases/;

see DAVID KAYE ET AL., THE NEW WIGMORE, A TREATISE ON EVIDENCE: EXPERT EVIDENCE 263–

77 (2016 Supp.); Katherine L. Moss, Note, The Admissibility of TrueAllele: A Computerized DNA Interpretation

System, 72 WASH. & LEE L. REV. 1033, 1060–62 (2015). Moss addresses the following decisions, all of which

that the available validation studies established the reliability of TrueAllele: Queen v. Colin Duffy & Brian Shivers,

[2011] NICC 37 (N. Ir. Crim.).; Commonwealth v. Foley, 38 A.3d 882 (Pa. Super. Ct. 2012).; Ohio v. Shaw, CR-13-

575691, at *21 (Cuyahoga Ct. C.P. Oct. 10, 2014).
52 Paula Reed Ward, Judge to Allow DNA Evidence in Deaths of Wolfe Sisters, PITT. POSTGAZETTE (Oct. 30,

2015, 12:00 AM), http://www.post-gazette.com/local/city/2015/10/30/allowDNA-evidence-in-deaths-of-East-

Liberty-Wolfe-sisters/stories/201510300182; see Susan A. Greenspoon et al., Establishing the Limits of TrueAllele

Casework: A Validation Study, 60 J. FORENSIC SCI. 1263 (2015); Mark W. Perlin et al., TrueAllele Casework on

Virginia DNA Mixture Evidence: Computer and Manual Interpretation in 72 Reported Criminal Cases, 9 PLOS

ONE (2014); Mark W. Perlin et al., New York State TrueAllele Casework Validation Study, 58 J. FORENSIC SCI.

1458 (2013)
53 John Rushby. Formal methods and their role in the certification of critical systems. Safety and reliability of

software based systems. Springer, London, 1997. 1-42.

Certainly chemical and epidemiological procedures are subject to human error as well, but only

in software do we find widespread, elusive, systematic human error built into the innerworkings

of the operation.

 There are many reasons then why validation studies cannot always be counted on to catch

software errors. Validation studies do not test every possible circumstance that may cause a bug

to arise. Depending on the kind of error, it may not be obvious when an error has occurred. But

beyond the theoretical explanations, as we saw in the section above, history shows that software

errors exist despite validation studies.

These challenges for validation, it is useful to examine practices within the Computer

Science discipline. To start, experiments are generally understood differently. Experiments are

frequently used as proofs of concept rather than validation for a specific product.54 In cases

where specific products are being tested, the limits of empirical tests are widely recognized. For

life-critical software, scholars have found that experimental validation is insufficient.55

Experimental validation is insufficient when the tests are not broad enough to capture

undesirable behavior. To supplement these experiments, best practices in Computer Science

include adherence to industry standards and other formal methods.56 Still, even with these best

practices, “the gap between the dependability requirements and what we can achieve in terms of

delivering and measuring such dependability is huge.”57

54 See Marvin Zelkowitz and Dolores Wallace, Experimental models for validating technology. Computer 31.5

(1998): 23-31. (“Experimentation is one of those terms frequently used incorrectly in the computer science

community… Here, ‘experiment’ really means an example that the technology exists or an existence proof that the

technique can be employed. Very rarely does it involve any collection of data to show that the technology adheres to

some underlying model or theory of software development, or that it is effective”)
55 Ricky W. Butler George B. Finelli. The infeasibility of experimental quantification of life-critical software

reliability. Proceedings of the conference on Software for critical systems. 1991.
56 Bowen, Jonathan, and Victoria Stavridou. Safety-critical systems, formal methods and standards. Software

engineering journal 8.4 (1993): 189-209.
57 Bowen, Jonathan, and Victoria Stavridou. Formal methods and software safety. Safety of Computer Control

Systems 1992 (SAFECOMP'92). Pergamon, 1992. 93-98.

This is a problem faced by manufacturers of safety-critical systems who must release

products quickly to remain competitive, while also ensuring they are safe for public deployment.

Interesting work has been done on for manufacturers can navigate this limited-information

problem, with some researchers using Bayesian estimates of the bug discovery rate58 and

defining manufacturer’s position as a belief-state Markov decision process.59 But crucially, these

models assume that existing bugs are identified,60 something that was rarely seen in the above

section when source code remained secret.

While creating industry standards and other formal methods could make an attractive

alternative to disclosing source code, the success of these processes relies on their actual

adoption. Without source code disclosure, it is unclear if errors would ever surface, which

compromises incentives for developers and the potential for formal methods as a solution. For

these reasons, the scholarship ultimately seems to suggest that reviews of the source code are

essential for discovering errors and truly validating software.

C. DNA Mixture Analysis

Developers of DNA mixture analysis software frequently argue that access to source code

is unnecessary because validation studies in peer-reviewed journals are sufficient to establish

efficacy.61 Cybergenetics is the particularly notorious for this, as it refuses to make its TrueAllele

source code available for inspection to any third party. The courts’ acceptance of this refusal is

58 Tom Chavez. A decision-analytic stopping rule for validation of commercial software systems, IEEE Transactions

on Software Engineering, vol. 26, no. 9, pp. 907– 918, 2000.
59 Jeremy Morton, Tim A. Wheeler, and Mykel J. Kochenderfer. Closed-loop policies for operational tests of safety-

critical systems. IEEE Transactions on Intelligent Vehicles 3.3 (2018): 317-328.
60 Id.
61 See Computers Are Helping Justice, CYBERGENETICS (June 16, 2017), https://perma.cc/XNW3-Q4A6. The

company has presented similar arguments in court. See, e.g., State v. Fair, No. 10-1-09274-5 SEA (Wash. Super. Ct.

King Cty. Apr. 1, 2016).

https://perma.cc/XNW3-Q4A6

troubling since – beyond the general risk of missing software errors – DNA mixture analysis

validation is particularly limited.

Compared to other software tests, validation involving DNA are fairly narrow in scope.

Where hashing algorithms can take advantage of massive image databases, DNA samples are

considerably harder to acquire. Small sample sizes make testing ineffective at catching most

errors, especially for specialized populations like Hasidic Jews.62 This is especially troubling

since some errors in STRmix were only found after it was used in thousands of cases.63

Limited testing narrows the scope of validation studies in other ways as well. While the

likelihood ratios used in TrueAllele are a mathematically sound concept, they rely heavily on

assumptions about DNA profiles.64 These assumptions must be empirically verified to be

legitimate, so when TrueAllele is given samples containing animal DNA or more people than

was present in validation studies, the usefulness of validation studies is further limited.

While source code disclosure on its own will not allow defendants identify all errors

arising from these situations, it can help catch some missteps as developers and prosecutors

continue to apply these validation studies beyond their intended scope.

IV. The Risks of Disclosure

A. Financial Harms

 In cases with DNA mixture analysis programs and risk prediction algorithms, the primary

concern being balanced against the potential insights from source code disclosure is the

62 Stephanie J. Lacambra, Jeanna Matthews, and Kit Walsh. Opening the Black Box: Defendants’ Rights to Confront

Forensic Software https://lin-web.clarkson.edu/~jmatthew/publications/FINALARTICLE_pg28-

39_Lacambra_Forensic_Software_May_2018_07102018_608BCX.pdf
63 Id.
64 Jill Presser and Kate Robertson. AI Case Study: Probabilistic Genotyping DNA Tools in Canadian Criminal

Courts. Law Commission of Ontario: Toronto, ON, Canada (2021).

developer’s proprietary interest in their software. These developers have argued in court that the

disclosure of their products would be “financially devastating.”65

However, these risks may be overblown. Source code leakage is not uncommon in the

technology sector. In 2013, the source code for several Abode products was leaked.66 In 2018,

Snapchat’s source code and a portion of Apple’s Operating System went public.67

In addition, recent research challenges the connection between these leaks and severe

economic harms. Researchers have found that the leakage of various trade secrets – including

source code – do not cause a lasting, statistically significant impact to the victims.68 Cybercrime

literature generally supports these results, finding a surprisingly minimal response to data theft

with limited statistical significance.69 While the risk does increase for smaller firms with fewer

trade secrets,70 a more critical analysis of these developer’s risks appears to be necessary.

 All this analysis also assumes that a leak happens in the first place. Protective orders,

sealing orders, and limiting disclosure to expert witnesses can all limit the risk of leaks in the

first place. TrueAllele’s competitor STRmix has a policy of limiting disclosing to expert

witnesses, which may be what allows it to provide its source code and remain financially viable.

65 Supra note 3; see also “When a Computer Program Keeps You in Jail”

https://www.nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html (TrueAllele has

submitted affidavits alleging that disclosing source code to defense attorneys would cause “irreparable harm.”)
66 Adobe Addressing Massive Data Breach, Source Code Leak

https://www.crn.com/news/security/240162259/adobe-addressing-massive-data-breach-source-code-leak.htm
67 Snapchat Code Leaked and Posted to Github https://www.vice.com/en/article/ywkqew/snapchat-code-leaked-

online-github-removed; Apple iBoot leak was an inside job, and the hacker has more iOS source code

https://www.techrepublic.com/article/apple-iboot-leak-was-an-inside-job-and-the-hacker-has-more-ios-source-code/
68 Nicola Searle and Andrew Vivian, Surprisingly Small: The Effect of Trade Secret Breaches on Firm Performance.

(2021).
69 Alessandro Acquisti, Allan Friedman, and Rahul Telang, 2006. Is there a cost to privacy breaches? An event

study. ICIS 2006 Proceedings, 94.; see also Richardson, V., Smith, R. and Watson, M., 2019. Much Ado about

Nothing: The (Lack of) Economic Impact of Data Privacy Breaches. Journal of Information Systems, 33(3), pp.227-

265.; Gilles Hilary, Benjamin Segal, and May H. Zhang. Cyber-risk disclosure: Who cares?. Georgetown

McDonough School of Business Research Paper 2852519 (2016).
70 Anthony Arundel. (2001). The relative effectiveness of patents and secrecy for appropriation. Research Policy,

30(4), 611–624. https://doi.org/10.1016/S0048-7333(00)00100-1

https://www.crn.com/news/security/240162259/adobe-addressing-massive-data-breach-source-code-leak.htm
https://www.vice.com/en/article/ywkqew/snapchat-code-leaked-online-github-removed
https://www.vice.com/en/article/ywkqew/snapchat-code-leaked-online-github-removed
https://www.techrepublic.com/article/apple-iboot-leak-was-an-inside-job-and-the-hacker-has-more-ios-source-code/

STRmix is in a very similar situation to TrueAllele, and as such its willingness to disclose seems

to substantially undermine TrueAllele’s position.

 What would be much more likely to hurt forensic software developers is if judges and

defendants begin to find errors in developers’ code. Having their products deemed inadmissible

in court would have severe financial consequences for the developers. In short, developers can

only lose by having their products placed under scrutiny, but it seems the greater risk is from the

scrutiny itself, rather than a leak.

B. Harms to Product

 While scholarship has focused largely on programs designed to connect suspects to

crimes, such as DNA Mixture Analysis Software, some automated techniques like hashing

algorithms serve to identify crimes. The developers of these programs have raised another issue

in court: that the disclosure of their code could allow criminals to modify their behavior and

evade detection.71 This concern has primarily been raised in the context of hashing algorithms.72

TLO, for example, argued that disclosing information about their Child Protection

System (CPS) would “significantly degrade the usefulness of CPS as a worldwide investigative

tool, as well as compromis[e] numerous ongoing criminal investigations.”73 In doing so they

contradict scholarship arguing that security is increased through open-source systems.74 In

71 Supra note 11, 13, 14
72 Olivia Solon. Inside the surveillance software tracking child porn offenders across the globe

https://www.nbcnews.com/tech/internet/inside-surveillance-software-tracking-child-porn-offenders-across-globe-

n1234019
73 Supra note 11
74 Jaap-Henk Hoepman and Bart Jacobs. Increased security through open source. Communications of the ACM 50.1

(2007): 79-83.; George Lawton.Open source security: opportunity or oxymoron?. Computer 35.3 (2002): 18-21.;

Christian Payne. On the security of open source software. Information systems journal 12.1 (2002): 61-78.

cryptography there is an applicable concept called Kerckhoffs’ Principle, the fundamental

principle that the security of a system should not depend on keeping the algorithm secret.75

There are several benefits to this approach. Systems are generally considered more secure

if they require fewer and simpler secrets to be kept. Systems should also be designed to fail

gracefully.76 In addition, most organizations do not have the expert manpower to adequately test

private algorithms. Making algorithms public would then help make it less likely that a

vulnerability is missed.

While hashing systems like CPS are not designed to be public, this is not due to an

immutable aspect of hashing. Algorithms can be public and follow Kerckhoffs’ Principle by

using “private keys.” So long as the private key remains secret, these algorithms can be both

public and highly secure. Already hashing methods with private keys have been published,77

meaning that they can be adopted by organizations like TLO.

So, while some current hashing systems might be compromised by disclosure, the loss of

effectiveness would likely be temporary and the robustness of hashing algorithms may even be

improved.

V. A Path Forward

 As the Criminal Justice System becomes more and more automated, it is crucial that the

algorithms being used function properly. As expert witnesses become more limited in their

expertise, the “circumstantial” issues surrounding source code will become more important.

75 Sasa Mrdovic and Branislava Perunicic. Kerckhoffs' principle for intrusion detection. Networks 2008-The 13th

International Telecommunications Network Strategy and Planning Symposium. IEEE, 2008.
76Charles Mann. HOMELAND INSECURITY One of the nation's top security experts-Bruce Schneier-warns that the

nation's approach to protecting itself is all wrong, and could actually make America more vulnerable than

ever. Atlantic Monthly 290.2 (2002): 81-103.
77 Rosario Gennaro et al. Publicly Evaluatable Perceptual Hashing. International Conference on Applied

Cryptography and Network Security. Springer, Cham, 2020.

Under Daubert, Courts almost universally accept validation studies as sufficient for

admissibility, despite validation studies missing a wealth of critical errors in FST, STRmix, and

New Jersey’s breath testing devices. While courts have had more mixed decisions regarding

discovery, they still tend to accept developers’ arguments regarding the merits of disclosure. In

response to these arguments, we find that access to source code catches errors that other methods

do not, developers’ financial risk is likely limited, and the leakage of hashing algorithms is not

necessarily damaging. These considerations indicate that current standards are failing to properly

gatekeep the scientific evidence from software, or to balance the needs of developers and

defendants. Given shortcomings of alternatives such as industry standards and other formal

methods, increased requirements for disclosing source code seem necessary to preserve the

legitimacy of algorithms in the courtroom.

	I. Introduction
	II. Automation and Criminal Justice
	A. The Rise of Automation
	B. Evidence Rules for Scientific Evidence
	1. Admissibility
	2. Pre-trial Discovery

	III. The Importance of Source Code
	A. Software Errors
	B. The Sufficiency of Validation Studies
	C. DNA Mixture Analysis

	IV. The Risks of Disclosure
	A. Financial Harms
	B. Harms to Product

	V. A Path Forward

