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1 Introduction

Suppose A is a fixed m x n matrix of integers of rank n . Let b be a vector
of “right hand sides” that varies over R™ and consider the polyhedron K, =
{z € R": Az < b}. From basic theorems in linear programming, we know
that if K} is nonempty, then it contains a vertex. From this, it follows that
there are at most m™ matrices T, Ty, .. ., each of which is n x m so that for all
b € R™ with K} # (), one of the T;b belongs to K;. We may call T1b, T»b, . ..
a “test set” for linear programming. Note three properties of the test set

e Each function 7} is an affine function that maps b to a candidate point
in R".
e For fixed n, the number of affine functions 77,75, ... is bounded above

by a polynomial.

e For fixed n, the affine functions can be computed in polynomial time
from A.

Theorem (3.1) of this paper will prove an analog for Integer Programming.
The second part of section 3 uses this theorem to derive a decision procedure
(which is polynomial time bounded for fixed p, n) to decide the truth / falsity
of any sentence of the following form (where @) is a given copolyhedron in R?
and A, B, b are given matrices of suitable dimensions. See Notation below.)

Yy € Q/Z! Iz €Z" Ar+By<b.
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The sentence says in words : for every y for which an integer vector z € Z'
exists such that (y,z) is in @), there exists also an integer vector = so that
Ax + By <b.

The first theorem is proved as follows : In [8], Theorem (1.1) below is
proved which describes the structure of K, + Z". (See notation below) as b
varies over a bounded set in R™. The proof of this theorem involved several
recent developments in the Geometry of Numbers. This note is an extension
and application of Theorem (1.1). First, Theorem (1.1) is extended to the
case when b varies over all of R™, not just a bounded subset of it. The
extension is Theorem (2.1). Then the test set theorem is (3.1). The decision
procedure for V3 sentences is described in Theorem (3.2).

Notation

R" is Euclidean n space. The lattice of all integer vectors in R" is denoted
Z™. For any two sets S, C R", we denote by S + T the set {s+1:s €
S;t € T}. For any positive real, A\, we denote by AS, the set {As: s € S}.
For any set W in R"™ and any set V in R!, we denote by W/V the set

{z : x € R" such that there exists a y € V with (z,y) € W}.

W/V is the set obtained by “projecting out” V from W.

A copolyhedron is the intersection of a finite number of half spaces -
some of them closed and the others open. (“co” for closed / open.) If a
copolyhedron is bounded, I will call it a copolytope.

Some statements in the paper will assert “the algorithm finds copolytope
P....... 7. The precise meaning of this statement is as follows : suppose P; is
in R™. The algorithm will find a rational m x (n+1) matrix C' and a rational
m X 1 vector b where [ is at most some polynomial function of n and for each
row of A, either the < or the < sign such that P; equals

<
{z :x € R™ such that there exists a y € R’ with C’(x) (;) b}.
Y

In much of the paper A will be a fixed m X n matrix. If the meaning
of A is clear from the context, for any b in R™, the polyhedron {z € R™ :
Az < b} will be denoted by Kj. In much of the paper, b will vary over some
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copolyhedron in R™. Some bounds in the paper will be in terms of the affine
dimension j, of this copolyhedron. The “size” of a rational matrix is the
number of bits needed to express it. It is assumed that integers are written
in binary notation, so it takes a O(log M) length string to express an integer
of magnitude M.

A basis B of the lattice Z" is a set of n linearly independent vectors
{b1,b9,...b,} in Z", such that each member of Z" can be expressed as an
integer linear combination of {by, by, ... b, }. The “fundamental parallelopied”
corresponding to B is the set {z : z = Y>7 , \;b; where )\; € R satisfy 0 <
Ai < 1}. It is denoted F(B). For each point y in R™, there is a unique lattice
point z such that z+ F'(B) contains y. The parallelopied z+ F'(B) is denoted
F(B;y).

Theorem (1.1)[8] Let A be an m x n matrix of integers of size ¢. Let P
be a copolytope in R™ of affine dimension j, such that for all b € P, the set
Ky, = {z : Az < b} is nonempty and bounded. Let M = (maxycp(|b] + 1)).
There is an algorithm which for any fixed n, j, runs in time polynomial in the
size of ¢,log M and and finds a partition of P x R"™ into subsets Sy, Ss,...S;,
such that :

1. r < (ngmlog M) where d is a constant independent of n, m, M, .

2. Each S; is of the form S!/Z! where S! is a copolyhedron in R™™* and
[ < ndn.

3. Letting S;(b) = {x € R" : (b,x) € S;}, we have for all i and all b € P,

The algorithm also finds corresponding to each S;, a collection B; of at
most 13" bases of Z". Corresponding to each basis B in each B;, it finds an
affine transformation 7'(B) : R™ — R" and a set Z(B) of at most n™ points
of Z™ such that for all 7 and all b € P, we have

(K +Z") N S;(b) =

H U (& +2(B))n F(B;T(B)b))} +Z"| N S(b).

BeB;




2 The case of unbounded right hand sides

This section proves Theorem (2.1) which extends Theorem (1.1) to the case
when P is a copolyhedron. In this case, the parameter ¢, the size of the ma-
trix A will essentially substitute log(max,cp)|b|. Here is a precise statement
of the theorem.

Theorem (2.1) Let A be an m x n matrix of integers of size ¢ with the
property that {z : Az < 0} = {0} (or equivalently, K} is bounded for all
b). Let P be a copolyhedron in R™ of affine dimension j, such that for all
b € P, the set K, = {x : Az < b} is nonempty. There is an algorithm which
for any fixed n, j, runs in time polynomial in the size of the input and finds
subsets a partition of P x R" into subsets R, Ry, ... R, such that :

1. 7 < (ngm)’™™" where e is a constant.

2. Each R; is of the form R!/Z' where R! is a copolyhedron in R™*"*
and [ < n?",

3. Letting R;(b) = {x € R™: (b,x) € R;}, we have for all ¢ and all b € P,
Ri(b) + Z" = Ry (b).

The algorithm also finds corresponding to each R;, a collection B; of at
most n3" bases of Z". Corresponding to each basis B in each B;, it finds an
affine transformation 7'(B) : R™ — R" and a set Z(B) of at most n™ points
of Z™ such that for all 7 and all b € P, we have

(Ky +Z™) N R;(b) =

H U (K +Z(B)) N F(B; T(B)b))} +Z"| N Ri(b).

BeB;

/*END OF STATEMENT OF THE THEOREM*/

I will prove the theorem by using Theorem (1.1). To do so, I will show
using lemma (2.2) below that for any b € P, the description of K} + Z"
can be easily obtained from the description of K.+ Z"™ where ¢ has all its
components in the range [0 n23?]. Further, I will show that c is a “piecewise
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affine” function of b ; i.e., that P can be partitioned into polynomially many
copolyhedra such that for each copolyhedron in the partition, there is an
affine function that maps b to c. This proof will use lemma (2.3). Throughout
this section, I let M denote n23%.

Lemma (2.2) : Let A be an m X n matrix of integers of size ¢. Suppose
b is any point in R™ with b > 0. (So, 0 is in Kj}.) Define o' = (b}, 0),...0.,)
by : b}, = min{b;, n23?}. Then,

Ky+Z" = Ky + Z".

Proof : The proof is based on the following fact due to Cook, Gerards,
Schrijver and Tardos [3] : Let A be the maximum absolute value of any
subdeterminant of A. If a point p belongs to Kj, and if K} contains some
point in Z" then there is a point ¢ € Z" N K, with |p; — ¢;| < nA for
i=1,2,...n. (This fact is true for any “right hand side” b.)

It is clear that

Ky+7Z"D Ky +7Z".

Now, I will prove the converse. Suppose z is any point in K + Z™. Then
K, — x contains an integer point; it also contains —x. So, by the above fact,
there is an integer point z in K —x with |2;+xz;| < nA for all i. By Theorem
3.2 of [21], A is at most 22¢. It is now easy to see that z + z belongs to Ky
finishing the proof of the lemma.

Suppose v -z = v, is a hyperplane in Euclidean space. It partitions space
into two “regions” - {x : v-x < wv,} and {z : v-x > v,}. Similarly, a set
of [ hyperplanes in R™ partition R™ into (at most) 2! “regions” each region
being determined by which side of each hyperplane it is on. There is another
well-known upper bound on the number of regions - it is

()

For | < m, the sum is 2! and the result is obvious. For [ > m, we proceed by
induction. The number of regions formed by the first [ —1 of the hyperplanes
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is at most ;% (121) by induction. Now imagine adding the [ th hyperplane.
I claim that the number of existing regions that the [ th hyperplane intersects
is at most Y5 (1761) _
regions with the [ th hyperplane form a partition of the [ th hyperplane

(an m — 1 dimensional affine space). Each region intersected by the [ th

to see this, note that the intersections of the existing

hyperplane is divided into two by it. So we get the total number of regions
formed by all the [ hyperplanes is at most

S0 B0 562 ()

which proves the claim. The lemma below follows immediately.

Lemma (2.3) Suppose V is a j dimensional affine subspace of R™. For
any set of [ hyperplanes in R™, the number of regions in the partition of R™
by the [ hyperplanes that V' intersects is at most

£ ()<

k=0

Further, if j is fixed, then given the hyperplanes and V', we can find the
regions intersected by V' in polynomial time.

Proof : The first part is already proved. For the algorithm, we go
again to the first part of the proof and see that a problem with parameters
[, 7 is reduced to two problems one with parameters [ — 1,j and the other
[—1, j—1. If the running time of the algorithm is T'(l, j), we get the recurrence
T(,7) <T({-1,75)+T(—-1,7—1)+0(1) which solves to T(l, ) is in O(I?).

Suppose as in the Theorem (2.1), P is a copolyhedron of affine dimension
Jo in R™. Consider each of the (at most m™) nonsingular n X n submatrices
B of A. For each of these we can define an n X m matrix 7" by augmenting
B! with 0 columns so that the possible corners of any K}, are of the form Tb
for such T'. For each such 7', and each 7, 1 < ¢ < m, consider the hyperplane
{b : a®Tb = b;} in R™. (Reminder : o is the i th row of A.) There
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are at most m"t!

such hyperplanes and so by lemma (2.3) , we have that
P intersects at most m(™t1% of the regions that these hyperplanes partition
R™ into. It is not difficult to see that for fixed n, j,, we can find these regions
in polynomial time. For each such region U, there is a Ty such that Tyb is
in K, for all b € U ; in other words b — ATyb is a nonnegative vector for
all b € U. Consider the m hyperplanes (b — ATyb); = M for i =1,2,...m.
By applying lemma (2.3) again, we see that U intersects at most m’ of the
regions that these m hyperplanes partition space into. We partition U into
these m/ or less parts. Thus we have found so far in polynomial time, a
partition of P into copolyhedra P;, P, ... P, with

and associated with copolyhedron P, in the above partition, we have a
T(Py) and I(Py) C {1,2,...m} such that for all b € Py,

0< (b— AT(P)b); < MVie€ I(P)  and
(b— AT(Py)b); > MYi ¢ 1(P).

For each b € Py, let b’ = b — AT(P;)b, let 0" be defined by b = b} for
i € I(Py) and b = M for other 7. Let " = b" + AT (P,)b. Note that there
is a linear transformation that maps each b to b"”. Now by lemma (2.2), we
see that for all b € Py, we have

Kb’ + 7" = Kbn + Z".
Note that " belongs to the copolytope

P'={b:be P;b < M}

We apply Theorem (1.1) with this copolytope. I will show that an easy
argument then gives us Theorem (2.1). To this end, let S; be one of the sets
in the partition of P’ x R™ that Theorem 1 yields. Corresponding to each
such S; we define one subset R;; of P, x R" for each k. Namely,

Rik = {(b, .’L‘) :be Pk 3 (b”,f[) - T(Pk)b) € Sz}
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It is easy to see that the R;; have all properties 1,2, and 3 in the statement
of Theorem (2.1) with a suitable choice of constant e. By Theorem (1.1), we
have for all b in P,

(Ky +Z") N Si(b") = (Kp +2")NS(0") =

H U ((Kw + Z(B)) N F(B; T(B)b"))} +Z™| N S;(b").

BeB;

Translating the sets on both sides of the above equation by T'(FPy)b, we
obtain

(Kp +Z™) N Ry (b) =

[{ U (Ky» + Z(B)) N F(B; T(B)Y" + T(Pk)b))} +Z"| N Ry (b).

BeB;

Since Ky» C K,, we may replace Ky» on the right hand side (rhs) of the
above equation by Kj. (Note that then we would have lhs contained in the
rhs. The converse is obvious.) Further, there is an affine transformation,
say, () that takes b to b”. So, we may now define the affine transformation
corresponding to the basis B to be

T(B)Q + T(P)

to complete the proof.

3 Test sets for Integer Programs, V4 sentences
and maximal lattice-free K,

For linear programming problems, we know that if there is a feasible solution,
there is a basic feasible one. This can be expressed as follows :

Suppose as before A is an m x n matrix. Consider as before, each of the
(at most m™) nonsingular n x n submatrices B of A. For each of these we
can define an n x m matrix T' by augmenting B~! with 0 columns so that the



possible corners of any K, are of the form Tb for such 7. Then we can say
that for all possible right hand sides b, if K} is nonempty, then one of the T'b
belongs to K. This section proves a similar theorem for Integer Programs.

Theorem (3.1) : Let A be an m x n matrix of integers of size ¢ with the
property that {z : Az < 0} = {0} (or equivalently, K} is bounded for all b).
Let P be a copolyhedron in R™ of affine dimension j,. For n, j, fixed, there
is a polynomial time algorithm that finds a partition of P into copolyhedra
P, P, ...P. withr < (mnqﬁ)jO”d" and for P;, finds a set 7; of pairs (T,7")
affine transformations where 7' : R™ — R"™ and 7" : Z" — Z" such that for
all 7 and for all b € P;,

K,NZ"#0 < 3(T,T)eT : T'|Th| € K,

Further, for each i, the set 7; contains at most n*" pairs (T, 7").

Proof: Let L = Z™. Note that K,NL is empty iff K;+ L does not contain
0. We apply Theorem (2.1) to get the partition of P x R™ into Ry, Rs, ... R,.
Let P, ={b:0 € R;(b)}. Tt is easy to see that P; is of the form P//Z' where
P! is a copolyhedron and [ is a constant (for fixed n). In fact a stronger
statement is true. The P; are actually copolyhedra. To see this, we have to
go into the proof of Theorem (1.1). The partition of P x R™ into Sy, Ss, . ..
in that theorem (where S; = S!/Z' ) has the following property : for each
(b,x) € S; (with b € P,z € Z"), there is a unique y € Z' so that (b, x,y)
belongs to S;. In fact, each component of y is of the form F'| Fx| where F', F
are affine transformations. This is easily proved by induction on n noting
that in (4.5) of [8], the z is in fact forced to be |+ 1 — j3].

Also, from Theorem (2.1), we have for b in P;,

(K, +Z"NZ" =

nZ".

BeB;

The left hand side in the above equation is empty if and only if for each B,
the unique lattice point zg(b) in F'(B;T(B)b) has the property that zp(b) —
Z(B) does not intersect Kj. It is quite straightforward to see that for each
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p € Z(B), we can find a pair of affine transformations (7,7") as required
in the statement of Theorem (3.1), such that zg(b) — p = T'(|Tb]). This
completes the proof of the theorem.

I now give a decision procedure for deciding the truth or falsity of certain
sentences in Presberger arithmetic.

Theorem (3.2) : There is an algorithm which takes as input an m x n
matrix A and an m X p matrix B and an m x 1 matrix b all made up
of integers and a copolyhedron @) in RP*! by a set of defining inequalities,
decides whether the following sentence is true.

Yy €Q/Z' Fx e Z: Az + By < b.

Further for fixed n, p, [, the algorithm runs in time bounded by a polyno-
mial in the length of the input.

Remark : Note RP and ZP are both special cases of sets of the form
Q/Z'. The first is obvious. For the second, we can make [ = p and Q =

{(y,y) 1y € R?}.

Proof : Let Q/R! = Q'. The set Q' includes the set Q/Z! - the set of all
the y of interest. For y in @)', the quantity b — By is in an affine subspace P
of R™ of dimension p or less. So by theorem (3.1), we can find in polynomial
time (since n, p are fixed) a partition of P into copolyhedra Py, P, ... P, with

r< (nqﬁm)p”dn

and for each P;, a collection 7; of pairs of affine transformations (7,7")
satisfying the conditions of that theorem. The sentence

Yy e Q/Z' Tz eZ": Ax+ By <b
is false iff there is some P; with the property that

Jy e PNQ/Z YT, T") € T, : T'\T(b — By)| ¢ {z: Ax < b— By}.
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This will be true iff one of the Mixed Integer programs set up below is feasible
. Consider each of the m™" maps f from pairs (T,T") in T; to {1,2,...m}.
For each such map, we will have one MIP that asserts that there exists a
y € P,NQ/Z" with (T'|T(b — By)]) violating the f(T,T") th constraint for
each (T,T"). Note that the floor of a real variable w can be expressed using
a new integer variable which is constrained to be in the interval (w — 1 w].
Also the condition that y € @Q/Z' can be expressed by introducing ! new
integer variables. For convenience, order the pairs (7,7") and refer to them
as (T,T");. The MIP will read as follows :

JyeRP,z€Z2,2,... € Z": (y,2) € Q;y € P
T;(b— By) — 1 < 2z < T;(b — By); (AT} z) sr;vy, > bycryrr

Clearly, we may solve each MIP for each P; in turn and if one of them is
feasible, return false for the sentence otherwise, true.
It is not difficult to see that the required bound on the running time.

The rest of the section discusses properties of the set of right hand sides
b for which K, N Z" is empty.
Let
LF(A,P)={b:be P,K,NZ" = (}.

Let Pi, P,, ... be the partition of P that Theorem (3.1) yields. Let
LF(A,P) = U;LF(A,P).

LF(A, P;) can be described by linear constraints with the introduction of
some extra integer variables as the following shows : we consider all mappings
f of the following sort : f takes as argument a pair (7,7") in 7; and its range
is {1,2,...m}. Let V (i, f) be the set of b satisfying

e b belongs to P;.

e T'(|Tb]) violates constraint number f(7,T") of the m constraints Az <
b.
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To express the floor, we can introduce a new integer variable and linear
constraint. Thus, we see that LF(A, P;) is the union of a polynomial number
of sets each of the form copolyhedron/Z! where [ is a constant for fixed n, j,.
We use this discussion in a slightly different context below.

Suppose as above A is a fixed m x n matrix of integers with {z : Az <
0} = {0}. For any b € R™, as before, we let K, = {z : z € R"; Az < b}.
We say that a K, is maximal-lattice-point free if it has no points of Z"
in its interior and any convex set that strictly contains K}, does. We can
replace the last condition by the requirement that every facet of K;, have a
lattice point interior to it [14]. By a theorem of Bell [1] and Scarf [16], a
maximal lattice free Kj has at most 2™ facets. We choose all subsets of the
m inequalities Az < b of cardinality at most 2", and for each subset, we will
study the positions of the facets that result in maximal lattice free sets; we
only incur an extra factor of m?" by this which is polynomially bounded for
fixed n. Then arguing as for the case of lattice-point-free sets and adding the
condition that each facet have a lattice point, we get the following theorem.

Theorem (3.3) : Suppose n is fixed. Then for any m x n integral matrix
A, there exists a collection of sets {Uy, Us,...U;}, where ¢ is bounded by a
polynomial in the size of A, and each Uj; is of the form U!/Z!, where [ is
a constant, and U] is a copolyhedron such that the collection of maximal
lattice point free sets K} is precisely the collection{ Ky : b € Uy UU, U. .. U;}.

Remark : Note that a similar theorem is not true for just lattice-point-
free b - there we would have also needed to assume that m was fixed or else
at least the affine dimension of P over which b varied was fixed. The theorem
of Bell and Scarf helps us dispense with this assumption for mazimal lattice
point free sets.

Acknowledgments I thank Imre Barany, Bill Cook, Mark Hartmann,
Laci Lovasz, Herb Scarf and David Shallcross for many helpful discussions.
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