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Abstract

The purpose of this paper is to study the structure of large sparse graphs such as
the graph of the web - the graph consisting of one node per document in the web and a
directed edge from i to j whenever document ¢ has a hypertext link to document j. This
particular graph is of course of interest as being by far the largest “human-made” graph
(with millions of vertices) arising from a “natural setting”. We develop theoretical tools
and algorithms to analyze the density structure of such graphs by relating density to
easy to find Linear Algebra quantities.

1 Introduction

In general, for such large graphs, there are a number of simple questions which one may
easily answer by making “one-pass” through the graph (visiting say each edge once and
doing some minor bookkeeping). Among these are questions like the average in-degree,
the distribution of degrees etc. But looking for sub-structures consisting of even a few
nodes like K33, K4 etc. and estimating their number is very difficult. However, they are
of interest because they reveal small “highly connected” sub-structures. More generally,
one would like to study which parts of the graph are relatively dense (have a lot of edges)
and which are sparse. Such questions have received some attention lately [8],[7] [11], [9].
The motivation for the web-graph is to identify so-called “web communities” - collections
of related documents (which form the dense parts of the graph.) Several combinatorial
heuristics have been proposed to tackle these problems. But the prohibitive size of the
web has meant that while these algorithms do identify some of the communities, they are
not able to exhaustively enumerate them; also while enumerative procedures may tackle
small sub-structures (with less than, say, 10 nodes), they cannot identify larger dense sub-
structures.

The idea of isolating the dense and sparse parts of a graph has also been carried out in
Graph Theory beginning with the fundamental Regularity Lemma of Szemerédi [12], [10].
This lemma roughly states that the vertex set of any graph may be partitioned into a small
number of pieces so that for most pairs of pieces, the density of subparts of the pieces is



close to the density of the whole pieces. This has many applications in Graph Theory and
Number Theory. Constructive versions of the lemma (which find the partition) are now
available [1],[6].But this lemma applies only to graphs whose number of edges is Q(|V|?),
i.e., to dense graphs. Graphs like the web graph are very sparse (in the case of the web
graph, the average degree is in the single digits, while the number of vertices is in the tens
of millions). Thus this theory is not directly applicable to such graphs. However, we will
draw some help from this area.

Here, we will first introduce a different definition of density (quantifying “relatively highly
connected”) suitable for sparse directed graphs like the web graph.

We develop an algorithm which successively finds and removes the (approximately) dens-
est subgraph until there is no more dense subgraph left. [Thus this is also in a sense a
decomposition, like in the setting of the Regularity Lemma, but here, we deal with sparse
graphs.|

We will prove a Theorem relating the density of the densest subgraph directly to the linear
algebraic quantity - the singular value. Then we may use recently developed Monte Carlo
algorithm for the Singular Value Decomposition of a matrix[4],[3]; it is fast enough to be
feasible on graphs of the size of the web graph.

The question these algorithms are capable of addressing is the following : The hypertext
links in the web are of two types; the first is a link caused by what we may call a “global
factor” - i.e., the URL’s interest in a popular topic (examples are - programming, surfing,
baseball, air travel, Theoretical Computer Science ...). One would expect that there are
relatively few such broad topics of interest (perhaps in the several hundreds), but they cause
a large number of links in the web (perhaps in the tens of percentage). One would expect
these links to be highly correlated. The second type of link is caused by what we may call
“local factors” (for example to a cousin’s or friend’s homepage). One expects such links to
be independent and scattered. We can use the methods of Statistics (in particular Principal
Component Analysis) to related these considerations to Linear Algebraic quantities like the
singular values. We elaborate on this in the final paper; the focus of the current write-up is
to formulate the theoretical definitions and results to carry out such an analysis. We plan
to run experiments to identify the role of global and local factors based on the algorithms
and theorems here.

We also show in this paper that Linear Algebra can be used to solve the following clustering
problem: Suppose there are m data objects, each with n attributes presented by an m x n
matrix A (where m,n are large), where A;; is the value of the j th attribute of object i.
Define the correlation of objects ¢ and j as ). AjxAjk. (This is sometimes called the
similarity. If it each feature is is either “on” or “off”, then this is the number of common
features turned on.) The average correlation of a subset of objects is the sum of the pairwise
correlations divided by the number of objects. (It may appear at first sight that the more
natural thing is to divide by the number of pairs of objects in the subset, but we will
later argue that the division by the number of objects is more appropriate.) An important
problem is to find the subset of objects with the maximum average correlation. We will
show that our Linear Algebra based method solves this problem too approximately and
that the densest subgraph problem above and this problem are related in a natural way.



[This problem of finding the maximum average correlation can in fact be solved exactly
by flow techniques in polynomial time ; we outline this well- known algorithm in Remark
(2) below. But of course a polynomial time flow algorithm is far too slow for our purpose
here. So, we will develop a simple Linear Algebra based approximation algorithm. But, we
suspect that the problem of finding d(A) exactly is NP-hard.]

Finally, we also show a relation between these quantities and higher order correlations
among objects where we take the correlations of triples, quadruples and so on of objects.

Notation We will prove our results for a general matrices with nonnegative entries. After
scaling, we will assume that 0 < A;; < 1. In the case of graphs, A can be taken to be the
adjacency matrix. R will denote the set of rows of the matrix A and C' the set of columns;
we call A an R x C matrix. For any S C R and T C C, we let A(S,T) = Y ;cq jer Aij-
For each ¢ € R, we denote by deg(i) the sum > jec Aij; if A is the adjacency matrix of a
directed graph, then deg(i) is the out-degree of the node i. [We may define in-degrees as
column sums; but we do not use this.] We also define for 4, j € R (not necessarily distinct)
co-deg(%,j) to be the sum > ;.- AixAji; in the case of a graph, this is the “co-degree” of
the nodes i, j, i.e., the number of nodes to which both 7 and j have edges. In the case that
the matrix A represents the object-attribute matrix (as described above), the co-deg(i, )
is the correlation between the objects ¢ and j.

We also need to recapitulate some Linear Algebra. Every real matrix A can be expressed
as

,
A= Z Jt(A)u(t)v(t)T
t=1

where 01(A4) > 09(A) > ... > 0,(A) > 0 are called the singular values of A and the u(®
form an orthonormal set of column vectors and so do the v(®). (For any matrix P, we denote
by P7 the transpose of P.) Also u®" A = atv(t)T and Av® = ou® for 1 <t < r. This is
the singular value decomposition of A.

We denote by ||A|| the square root of the sum of squares of the entries of A. It is also
known from standard Linear Algebra that

1AI* =) oe(A).
t

2 Main Definitions, Theorems

Definition 1 Let S C R and T' C C'. We define the density of the pair of sets S,T by
A(S, T
d(8,T) = AS.T) (1)

VISIITT

We define the density d(A) of the whole matrix A by
d(A) = max d(S,T).
SCRTCC

Remark 1. It may seem more natural at first sight to have |S||T’| rather than the square
root in the denominator. But if we defined it this way, a pair of vertices with an edge between



them would have the hiFhest density, namely 1. This trivial problem may be avoided by
taking the maximum of % over all sufficiently large subsets S, T'. Besides being
inelegant, such restrictions on sizes of sets make the computational problem of finding
the approximately densest subsets NP-hard, even if we allow for very large approximation

factors. [2], [5].

Remark 2. Suppose A is the maximum row or column sum of the matrix A. We have
trivially :
d(8,T) < Amin(|S[,[T()/(1/IS||T]) < A.

Also, if A is a 0-1 matrix and row ¢ has row sum equal to A, then we may take S = {i}
and T = {j : A;; = 1} and we therefore get d(S,T) > VA.

Remark 3. If S =T, and A is the adjacency matrix of an undirected graph, then note
that d(S,T) is the average degree of the induced subgraph on S. [We note that by using flow
techniques, it is possible to find the induced subgraph of an undirected graph of maximum
average degree (see Remark (2) below) in polynomial time. However, the running time is
not feasible for graph sizes that we are considering.

Remark 4. For a regular undirected graph, it is easy to see that we maximize d(S,T)
by putting S =T = V. In this case, d(.,.) does not yield much information. This is as it
should be since no subpart of the graph is really denser than the whole.

Remark 5. For a sparse directed graph with dn edges, where d is O(1) (as in the case of
the web graph) , we have that d(V,V) is O(1). There may be subparts which are denser.
Note that if instead of \/[S[[T] in the denominator, we put (|S||T|)*, where A < 1/2, then
d(S,T) grows with n and so such a criterion is more likely to choose S =T = V than ours.

Remark 6. If we had two disjoint subsets S1, .59 of the rows both of size [ and also two
disjoint subsets 17, T of columns both of size I’, and the number of edges between S; and
T; are equal for all 4 possibilities - 1 < 4,7 < 2, then our criterion would prefer S = 51U S2
and T =Ty UT5 over any individual piece. This is desirable since we want to find as large
“web communities” as possible.

We now define another quantity which measures the average correlation and later we will
show that this is related to the density above.

Definition 2 For any subset S of the rows, define the average correlation of S by :
1
f(S) = S Z co — deg(u,v).
| |um€5

(where we take the sum over all ordered pairs u,v, so that u,v as well as v,u appear
separately in the sum.)

Also define
f(4) = max f(3).

Remark 7. It is easy to see that

£(8) = ﬁ(AAsz, s).



Remark 8. It again may appear that the more natural thing would be to divide by |S|?,
the number of (ordered) pairs of rows for which we sum the co-degrees. But if we use
this definition, it is easy to argue that the singleton set S containing the element 7 with
the maximum }:; A%j would maximize the function. It may be argued that this pathology
arises from our including the correlation of an object with itself in the sum; but even if
we exclude such self-correlations, it is easy to see that the set of two (or a small number
of) objects with the maximum co degree is likely to be the answer. This is of course not
desirable. What our definition does is to allow the inclusion of more and more objects in
the set S as long as they are somewhat correlated with the objects already present. Since
our aim is to find as large sets as possible which are well-correlated, this is exactly what
we would like.

Remark 9. f(A) can be found (exactly) in polynomial time using flow techniques. We
thank Uri Feige and Guy Kortsarz for pointing out this algorithm to us. It uses Remark2
and is as follows : We construct a directed network with a source s, sink . The vertex set
of the network is RU (R x R)U{s, t}. There is an edge in the network from s to each vertex
in R x R with capacity equal to the corresponding entry in the matrix AA”. From each
vertex (i,7), there are two edges - one to 7 and one to j, both of infinite capacity. There
is one edge from each vertex in R to ¢, each such edge of capacity A. [\ is a variable here;
later it will turn out that the maximum value of A will yield the answer.] Now suppose
the minimum s — ¢ cut in the network is P, P where s € P and t € P. Then, clearly,
(1,7) € PN (R x R) implies that 4,7 € PN R . Also, the capacity of the cut is

Y AT +APNR = Y (AAT);—[ Y (AAT); — APNER].
(2,5)E(RX R)\ P (1,5)E(RXR) (i,5)eP

So, the quantity in square brackets is maximized by the cut. Let h(A) = [32(; j)e p(AAT);; —
AP N R)|]. Clearly, h()) is a non-increasing function of A; we find by binary search the
maximum value of A for which h()) is nonnegative. It is now easy to see that this \ is
exactly the answer we seek.

We now prove results connecting the quantities above and the singular value of the matrix
A which is easy to find by standard Linear Algebra in polynomial time.

Theorem 1 Suppose A is an R x C matriz with 0 < A;; <1 for all i,j. Let |C| =n. We

have
1

A)>dA)>
o1(4) (4) 2 glogn+log10(7

1(A).

Further, subsets S, T satisfying d(S,T) >

top singular vectors of A.

mal (A) may be easily found from the

Proof The first inequality is easy to see. We prove the second. Suppose

o1(A) = 3T Ay =" 3455y, lz| = |y| = 1.
i’j



Since the entries of A are nonnegative, we know that x; > 0 and y; > 0 for all 4,5. Let
M = [log2(10\/r_z)'|. For t =0,1,2,... M, define

St:{’l:ERZ2t <z; <2 t—{jEC p

1 1
+1— < 2t+1— )
10[ TV 10[ <y s qpe

Then we have (using the Cauchy-Schwartz inequality in the third step and the fact that for
any unit length vector z, we have |Az| < 01(4)),

sz ijYj < Z 2t+t+2 A(StaTt) Yo mwyiAg+ Y. mwdy
b= NERS v 0119 < 1o

o+t +2 A(S, Ty) 1 o 1 -
<3 (Vo Fioyn & 2 A g g 2 2 A

t,t

1/2 1/2
L oottor4a A(S, Ty )? 1
< / —_ -
< (Z 104n22 |St|[ T | Z 1S,11T] + 501(A)

t,t t,t

1/2 1/2
4 A(Sy, Ty)?
Hence we have —01(4) < | 16 242 i S e
57 )—< 2 y) (Z STy |
A(Sy, Ty )? 2 A(St, Ty)? 2
o 1/2 1/2 t, Ly —4 t, Ly _
Z Z ; |SelTw| ; |Se|| Ty |

This clearly proves that there is some pair ¢,¢' for which we have the lower bound of the
Theorem.

Also note that if we have the singular vectors z,vy a t,t attaining the lower bound may be
easily found.

O

Theorem 2
(d(A))? < f(A) < (d(A))* Inn.

Proof For any subset S define an |R|— vector u(S) by letting u(S); = 1/4/|S| for i € §
and 0 otherwise. Then we have

d(S,T) = u(S)T Au(T) < |u(S )TA| since |[u(T)| =1

But, |u(S)T A|? = u(S)T AATu(S) = Zu(S)ico—deg(i,j)u(S)j Z co-deg(, j),
Y] i,j€S

IS\

and from this the first inequality in the Theorem follows. For the other inequality, consider
any fixed S C R. For convenience, let us number the columns such that degg(j) = Y ;c Aij
satisfy degg(1) > degg(2) > degs(?)) ... By the definition of d(A), we see that for every
t,t € {1,2,...|C|}, we have

t
Zdegs(j) < d(A)y/|S]t. (2)



By Calculus, it is easy to see that subject to (2), the expression 3 ;- degg(j )? is maximized
if we had degg(j) = d(A)V/|S|(vV7 —j —1) for j =1,2,...|C|. Thus we always have

©
D degs(j)* < (d(4))*8| (Z (Vi—=+Vi- )
<l

A8 (G - 1)(1/4G —1)?)  using VIt <1+ g
=2
< (d(A))?|S||C].

But, we note that

Z co-deg(i, ') Z degg(j) 2

i,i'€S jec

each j € C appears precisely degg(j)? times when we add up the co-degrees of all pairs of
nodes in S. Hence the Theorem follows.

O

By similar arguments, we can also prove the following Theorem. [We defer the proof to the
final paper.]

Theorem 3
o1(A)?

glOan + 5logy 10

a1(4)? > f(4) >

Higher order correlations For rows wuq, us, .. . ug, define

co—deg(ul, U,y - - - uk) = Z A’u1,jA’u2,j . Auk,j-
jec

Then for any sunset S of rows and any k > 3 (using a similar Calculus argument as above),

Z co-deg(uy,ug, ... ug) = Z(degs(j))k

UL,U2,. UL ES jec

< (d(A) |S|’“/22f Vi— )E|S[F/2.

However for general k, a clean lower on the sum of correlations is difficult to obtain.

[11] have done some experiments to estimate the number of complete bipartite subgraphs
with s vertices on one side and ¢ on the other for various values of s,? (with the motivation
that such bipartite subgraphs represent one form of highly connected subgraphs.) These
numbers as they observe are hard to compute. Observe that the number of such complete

subgraphs is given by
Z (co—deg(il,ig, . zs))
; .

11,82,...0sER



Obviously then these numbers can be expressed as combinations of the numbers

Z (co-deg(iy, o, ...15))".

11,82,...8sER

These are in a sense higher moments of the co-degree numbers. Thus studying the co-
degrees will also give us the numbers of complete subgraphs. Of course, the difficulty is
there are too many such co-degrees so that it is not possible to compute each one. We
outline a way of achieving some savings in the running time in the next paragraph.

In [4],[3], simple randomized algorithms have been developed which estimate the singular
values and vectors of the large matrix A by finding such quantities for randomly chosen
sub-matrices. At the heart of their proofs is a lemma which says that if we choose at
random a small number of columns of A according to a certain probability distribution,
then the co-degrees of pairs of rows with respect to A will be close to the co-degrees of
those pairs of rows with respect to S (in the sense of sum of squared errors.) We believe
this lemma can be extended to a similar statement about higher order co-degrees; so their
computation can also be sped up; this will be analyzed in the final paper.

3 Algorithms using Sampling

The Algorithm
The general idea for decomposing the matrix A will be :

Find 01(A) and the corresponding singular vectors. Then as in Theorem 1, find a dense
S, T pair and remove edges between this pair and repeat.

To find the singular values and vectors, we could use the recent randomized algorithms of
[3]. Their approach is the following : we pick a row of A with probabilities proportional
to the length squared of the row. We repeat this experiment s times independently to get
a s X n matrix S, where we then scale each row to be of length 1. Their result is that
from a singular value decomposition of S, we may infer an “approximate” singular value
decomposition of A itself. It can be shown that the choice of probabilities - proportional
to the length squared- is optimal; also as they point out, by making one pass through the
entire matrix A, we may compute the length squared of each row and set up a sampler
which will then take only O(1) time per sample.

There is one difficulty in applying this algorithm to our situation here. Qur matrix A has
about 600 million rows and as many columns (at last count). So the one pass is itself
difficult (it seems to involve wading through the 600 million URL’s unless one has access
to the web graph).

We circumvent this problem by sampling the rows of the matrix uniformly at random. This
is feasible since for example, Google allows us to read in a random URL. We first derive
from simple first principles, theoretical bounds on the variance of the uniform sampler
below (on lines similar to the papers above). As one may intuitively expect, the uniform
sampler is not bad compared to the length squared sampler if the lengths of the rows are



not too disparate. We will quantify this and then derive actual numerical guarantees on
our estimates in the final paper.

The following basic lemma give us a bound on the variance. Note that S is a random
sub-matrix of s rows of A (picked independently uniformly). The first trick which makes
the bounds work is to compare S7S and AT A (entry by entry) which are both n x n
matrices. The second trick is to just sum the variances of all the entries which simplifies
the calculations. While both these tricks are very simple, they keep the expressions from
getting out of hand.

Lemma 1 Suppose A is an m X n matriz with |A;;| <1 and we pick s rows uniformly at
random from A to form the s x n matriz S. Then we have

2
B(I7sTs - ATAP) <= % (Z Aij) = 2 3 (degli)?)
J i

i

Perhaps of more direct interest is the following Corollary of the lemma which follows directly
by applying the Hoffmann-Wielandt Theorem of Linear Algebra to the real symmetric
matrices - S7S and AT A.

Corollary 1

E (Z ((on(4))* - (ot<5))2)2> <=y (z A,-j>2.

t i

These only bound how far apart the singular values of A and S are. We can also argue that if
we have the singular vectors of S, we can derive from them, a good low-rank approximation
to A. This we will do in the final paper, where we will describe further interpretations of
the singular vectors.

Proof of lemma : We first sample with replacement (rather than without) to get S - i.e.,
for each of the m rows of A, we independently choose a random variable X; which is 1 with
probability ;> and 0 with probability 1 — ;> and include row i of A in § if X; is 1.

Then for each fixed j,1,1 < 4,1 < n, we have

m
(ST8)ji =" AyAuX;.

i=1

So,
s
B((S78)z) = (AT A)
and then the independence implies that
m
s
Var((STS)jl) S ZAUAZZE

=1

Summing over all j,/ and using 221:1 AjjAy = (Zj Aij)Q, we get the lemma.
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