
Hiding behind the Clouds: Efficient,
Privacy-Preserving Queries via Cloud Proxies

Surabhi Gaur1, Melody Moh1, Mahesh Balakrishnan2
1Department of Computer Science, San Jose State University

2Microsoft Research Silicon Valley

Abstract—This paper proposes PriView, a privacy-preserving
technique for querying third-party services from mobile devices.
Classical private information retrieval (PIR) schemes are difficult
to deploy and use, since they require the target service to be
replicated and modified. To avoid this problem, PriView utilizes
a novel, proxy-mediated form of PIR, in which the client device
fetches XORs of dummy query responses from each of two
proxies and combines them to produce the required result.
Unlike conventional PIR, PriView does not require the third-
party service to be replicated or modified in any way. We
evaluated a PriView implementation for the Google Static Maps
service utilizing an Android OS front-end and Amazon EC2
proxies. PriView is able to provide tunable confidentiality with
low overhead, allowing bandwidth usage, power consumption,
and end-to-end latency to scale sublinearly with the provided
degree of confidentiality.

I. INTRODUCTION

The emergence of ubiquitous, high-bandwidth 3G/4G con-
nectivity has enabled a new class of Internet services designed
to be accessed from smartphones and tablets. Examples range
from mundane services such as maps and restaurant reviews
to more exotic applications such as augmented reality (e.g.,
the Google Glass [1]). Unfortunately, the convenience of
ubiquitous connectivity comes at the price of privacy. When a
user accesses a map of her immediate surroundings, she reveals
her location to the mapping service. When she looks up the
price of a house or a car, she provides information to marketers.
When she browses restaurant reviews, she reveals her dietary
preferences to the review website.

Existing solutions protect privacy by sacrificing either
efficiency or accuracy. In the first category are solutions where
the user’s device makes multiple ‘dummy’ queries to the
Internet service for each valid query [2]. For example, a user
accessing a mapping service might provide multiple locations
in order to hide her actual location; the service then knows
that she is at one of the locations but does not know which
one. However, this approach results in multiple responses (in
this example, maps) being returned to the device from the
service, wasting both bandwidth and power on the device.
A solution of the second category involves ‘jittering’ the
input [3], preventing the service from knowing the exact input
(e.g., the exact location of the user); however, this means that
the user is returned approximate answers (e.g., a map of a
nearby location), which may not always be useful. A different
type of solution places a cloud-hosted proxy between the user
and the service; however, this requires the user to completely
trust the cloud provider, who is aware of both the identity of
the user as well as the contents of the query.

In this paper, we present PriView, a new technique that
allows mobile devices to access Internet services without
sacrificing privacy, efficiency or accuracy. In Priview, to send
a query to an Internet service, the device includes it along
with a single set of dummy queries that it sends to two
different cloud-hosted proxies. Each cloud proxy relays the set
of queries to the third-party service and sends back an XOR
of a predetermined subset of the responses to the device. The
subsets are chosen a priori by the client such that they are
identical across the two proxies, except that one contains the
actual query’s response while the other does not. This ensures
that combining the two XORs cancels out dummy responses
and provides the response to the actual query.

The PriView technique preserves data confidentiality. When
a user issues a query using it, no entity in the system can
determine whether it’s a real or dummy query. Each cloud
proxy is aware of the identity of the querying device but does
not know the actual query being issued, since it is provided
with a set of dummy queries. The Internet service knows
neither the exact query being issued nor the identity of the
querying device. Unless the two cloud proxies collude with
each other, no single entity is aware of the exact query that
was issued. In practice, our assumption that cloud proxies
do not collude can be satisfied by running each proxy in
a different cloud provider (e.g., on Amazon EC2 [4] and
Microsoft Azure [5]).

Importantly, PriView achieves these privacy properties
efficiently. For each query, the device sends two outgoing
messages (one to each proxy), each of which is a list of dummy
query inputs that fits into a single network packet. It receives
back two XORs, each of which is the size of a regular response.
Accordingly, the bandwidth and power consumption of our
technique scale sub-linearly with the degree of confidentiality
(i.e., the size of the dummy set), in contrast to the linear scaling
provided by conventional dummy queries.

PriView can be viewed as an adaptation of classical Private
Information Retrieval (PIR) schemes [6]. Such schemes typi-
cally require the service (or database) to be replicated multiple
times, as well as modified to return compact summaries (such
as XORs) of multiple items. Replication or modification is typ-
ically not possible with real-world Internet services. Instead,
PriView inserts a replicated proxy layer between the end user
and the Internet service, and then uses PIR between the client
and the proxies. This allows PriView to implement a PIR-like
scheme against an unmodified, unreplicated third-party service
such as Wikipedia or Google Static Maps [7].

We implemented a PriView client for Google Static Maps

on the Android platform, with cloud proxies running Amazon
EC2. In our evaluation on an Android device, we compare
PriView against the strawman solution of issuing dummy
queries. For a degree of confidentiality equivalent to that ob-
tained by issuing 64 dummy queries in the strawman solution,
PriView uses 14% of the bandwidth and 16% of the power
consumed by the strawman, while delivering responses at 40%
of the latency.

The rest of this paper is organized as follows. In section 2
we discuss the existing work in the field of user/query privacy.
Section 3 explains the PriView system in detail, including setup
of the PIR scheme and implementation of the model proposed.
A performance evaluation is conducted in section 4 and section
5 concludes the paper.

II. BACKGROUND

Our primary goal is the following: when a user Bob
sends a query Q to an Internet service S using a mobile
device, our goal is to guarantee that the service S cannot
determine that “Bob searched for Q”. Further, we want to
provide this guarantee without adding too much overhead on
the client device in terms of bandwidth usage, end-to-end
latency, or power consumption. Finally, we want to make
minimal assumptions about the trustworthiness of third party
entities such as cloud providers.

Existing solutions can be categorized according to the
privacy guarantees they provide:

A. Anonymity

One option is to prevent service S from knowing who
issued the query. This can be done by inserting an anonymizing
proxy between the device and the service. If a single proxy is
used, this approach has the disadvantage that the proxy can
now see both the query as well as the source IP address. End-
to-end encryption at the application level between the client
device and the service S eliminates this problem; now the
proxy can only see who sent the request, while the service
S can only see the contents of the request. However, traffic
analysis can still tease out the relationship between the request
sent by the device and that received by the service S; this
problem can be solved by using more sophisticated proxying
techniques such as Onion Routing that use a network of proxies
between the client and the server.

Unfortunately, while techniques such as Onion Routing can
effectively hide the network address of the user’s device, the
service can still discover the identity of the user’s device from
semantic information in the query itself [3]. For example, if
the user searches for “Thai restaurants near 42 Marlin Drive”,
the service can infer that the person who lives at 42 Marlin
Drive likes Thai food, and use public databases to identify this
person as Bob.

B. k-Anonymity

Accordingly, a second class of solutions attempts to prevent
the service S from knowing who exactly out of a group
of k people issued the query (a guarantee known as k-
anonymity [8]). In the case of location-based services, this
can be achieved via ‘spatial cloaking’, where the location

included in the query is jittered slightly so that any person
within a particular radius of a location could have issued
it. For example, the query might become “Thai restaurants
near 46 Marlin Drive”, in which case the service S does not
know which resident of Marlin Drive actually issued the query.
However, this solution only works for applications where
the input domain is continuous and can be jittered without
rendering the output unusable; for example, if Bob wants to
search for “the history of Thailand” on Wikipedia, it’s not
clear how we would jitter this input, and whether the resulting
output would still be useful to Bob. As a result, spatial cloaking
is useful mostly in the context of location-based applications
where certain population density conditions are met, and is too
specific for our use case of querying general-purpose Internet
services.

A different way to achieve k-anonymity is to generate a
set of dummy queries in addition to its original query; for
example, the client might send the queries “Thai restaurants
near 42 Marlin Drive”, “Thai restaurants near 77 Turtle Ave”,
and “Thai restaurants near 24 Swordfish Road”, in which case
the service cannot determine which of the three users issued
the query. One problematic aspect of this approach is that it
requires a trusted anonymizing proxy that knows identifying
attributes (e.g., location) of sufficient users in the system so
that it can generate valid queries identifying them. Eliminating
the trusted proxy and generating dummy queries on the client
is possible, but requires distributed mechanisms that allow each
client to know the identifying attributes of other clients in the
system, which in turn requires clients to trust each other.

C. Confidentiality

A promising alternative is for the client to eschew k-
anonymity and instead use randomly generated dummy queries
to provide a different guarantee, in which the service S knows
exactly who issued the query, but does not know which query
was actually issued. In this case, the client simply generates
a set of random dummy queries that do not necessarily corre-
spond to other users in the system, but simply constitute valid,
arbitrarily chosen inputs to the service (e.g., “X restaurants
near GPS coordinates Y”, where X is a random cuisine type
and Y is a random street address) . Such schemes have been
proposed in the context of DNS privacy [9], [10]. While these
dummy queries can be generated by the device inexpensively
without coordinating with other clients or a trusted proxy, the
problem still remains this scheme introduces overhead that
increases linearly with the degree of confidentiality required; a
dummy query set of k messages results in k extra requests and
responses, massively increasing the bandwidth usage, power
consumption, and end-to-end latency of the original query.

D. PIR (Private Information Retrieval)

To make random dummy queries efficient, one avenue is
Private Information Retrieval [6]. In the simplest form of PIR,
the service is replicated twice, and the client makes a query
to each replica with a set of inputs. The sets of inputs in the
two queries are identical, except that one contains the actual
input and the other doesn’t. Each of the replicas returns a
single XOR of the requested responses, which the client then
combines to retrieve the response to its actual input. Such a
scheme has the advantage that it provides a strong guarantee

– each replica of the service does not know which of the
requested inputs is the actual one – in a very efficient manner,
requiring the device to send two requests and receive two
responses, regardless of the number of dummy inputs involved.
However, PIR comes at a significant cost; it requires the service
to be replicated, which may not be possible with real-world
services such as Google Maps or Wikipedia. Additionally, PIR
requires the service to be modified so it returns some compact
function of the set of responses (an XOR in the case of the
2-replica scheme), which again may not be possible with third-
party services.

III. THE PRIVIEW TECHNIQUE

PriView implements PIR without requiring the target ser-
vice to be modified. It achieves this goal by inserting a layer
of proxies in between the client device and the service. In
effect, each proxy appears to the device as a replicated copy
of the service, modified to return XORs instead of first-class
responses.

A. The Basic scheme

• Step 1. When the client wants to issue a query A to
a service, it first generates K other random dummy
queries (K is 2 in the figure, and the dummy queries
are B and C). It then sends a message requesting the
set of queries {A,B,C} to both proxies. Each proxy
can see the identity of the client but does not know
which of the three queries is the actual one.

• Step 2./3. Each proxy separately issues each of the
queries A, B and C to the target service and receives
the responses A′, B′, and C ′. The target service
does not know the identity of the client, and cannot
determine which of the three queries is the actual one.

• Step 4. When a proxy gets back all the responses
from the service, it combines a subset of them into an
XOR. A bitmask determining this subset is provided
by the client to the proxy in each request message.
The subsets XORed by the two proxies are identical,
except that one contains the actual query and the other
doesn’t. For example, in the figure, one proxy returns
{A′, B′} while the other returns {B′}. Whether a
particular query’s response is included in the XOR or
not does not tell the proxy if it’s the actual query or
a dummy query: if it is included in the XOR, it could
also be included in the other proxy’s XOR, and if it’s
not, it might be missing in the other proxy’s XOR.

When the client receives both XORs, it combines them to
reconstruct the response to the actual query. In Figure 1,
(A′ +B′) + (B′) = A′.

This simple scheme provides the client data confidentiality
with respect to the proxies. In other words, the proxy knows
the identity of the client and a set of possible queries, but
does not know exactly which query was issued by the client.
It provides both confidentiality and anonymity with respect
to the target service, which knows neither the identity of the
client device or the exact query it issued.

A subtle point is that the size of the XORed subset returned
by a proxy has to be exactly half of K + 1 for this scheme
to provide optimal confidentiality (i.e., for the proxy to view
each query as having a 1

K+1 chance of being the actual query).
To understand why, consider the information available to each
proxy: a set of K + 1 queries that it must issue to the target
service, one of which is the actual query, and a T -sized subset
whose responses it must XOR and return to the client. The
proxy knows that the actual query is in the T -sized subset
with probability 1

2 (since there are two proxies, one of which
includes the actual query’s response in its XOR). Accordingly,
the probability that a particular element in the XORed subset
is the actual query is 1

2T ; if T is not equal to K+1
2 , this

probability is greater than or less than 1
K+1 , allowing the proxy

to know that some queries are more likely than others to be
the actual query. In the limit, if T is equal to 1 or K, the
proxy can determine that a particular query has a 50% chance
of being the actual query. Conversely, if T is equal to K+1

2 ,
the probability of a particular element being the actual query
is 1

K+1 , which means that all K+1 queries are equally likely
to be the actual query from the viewpoint of the proxy.

In terms of efficiency, each first-class query issued by the
client results in two outgoing messages, containing a list of
K queries and a bitmask of K bits determining the subset to
be returned, and two incoming messages, each of which is an
XOR of multiple responses. Increasing the value of K provides
a higher degree of confidentiality without increasing overhead
significantly at the client; each additional dummy query results
in a few extra bytes on the outgoing message. The size of the
response XOR only increases if the newly added dummy query
happens to generate the largest response out of all the queries.

B. Multiple proxies for lower latency

In the two-proxy scheme described above, the client has
to always wait for the slowest of the two proxies to respond
before reconstructing the answer. Using more proxies can
mitigate this problem, with each proxy returning a linear
combination of the responses it receives (rather than the XOR
of a subset as before). The linear combinations generated by
different proxies are identical, except that they use different
coefficients for the actual query response. This allows the
client to reconstruct the actual query response from the first
two proxies that respond. For example, if a device wants to
make an actual query A, it constructs a dummy set of queries
{A,B,C,D} and sends this to three proxies P1 and P2 and
P3. The proxies then return:

P1 returns A′ + αB′ + βC ′ + γD′

P2 returns 2A′ + αB′ + βC ′ + γD′

P3 returns 3A′ + αB′ + βC ′ + γD′

The client can then extract the value of A′ from these
two linear combinations, since B′, C ′ and D′ cancel out by
virtue of having equal coefficients. To implement this scheme,
the client includes a set of coefficients in its request message
to the proxies, instead of a bitmask as before. Note that the
simpler two-proxy XOR-of-subset scheme is equivalent to the
case where the linear combination exclusively uses binary
coefficients; the bitmask can be thought of as a set of binary
coefficients.

EC2

Each cloud proxy knows Bob’s identity
and set of possible requests, but does
not know that A is the actual request

Azure

Query: A,B,C

Responses: A,B,C

Bob’s device Internet Service

Bob’s device only sends 2
small messages, receives 2
responses, and performs
one XOR for each actual
request.

Service does not
know Bob’s identity
and does not know
that A is the actual
request.

(1A’+1B’+0C’)
+

(0A’+1B’+0C’)
=
A’

Fig. 1. The PriView technique: each proxy accepts a set of dummy queries from the client, issues them to the service, and returns an XOR of a subset
of the responses to the client. The subsets are chosen so that the actual response required (A′ in this example) can be reconstructed by the client.

The latency benefit of using more than two proxies comes
at a cost. It requires the device to send out more network
packets for each query, one per proxy. In addition, the device
receives multiple responses back, one from each proxy; it
can attempt to short-circuit these responses by notifying the
remaining proxies once it has heard back from the first two,
this requires more outgoing packets that may not always
reach the proxies in time. Each wasted response increases the
bandwidth and battery overhead for the query.

C. Generating dummy queries

The PriView technique requires an effective, inexpensive
way to generate random dummy queries. Some services
provide hooks for generating random queries; for example,
Wikipedia provides a special URL (http://en.wikipedia.org/
wiki/Special:Random) that returns the article corresponding to
a random query. For other applications, random queries can be
generated algorithmically; for example, a Google Maps query
is simply a latitude/longitude pair.

However, a truly random dummy query can fail to provide
sufficient privacy. If a proxy is presented with a dummy
set of multiple latitude/longitude pairs, of which one is in
a major urban center while the others are in less populated
areas, it can deduce that the former is the actual query
being made. Accordingly, care has to be taken that dummy
queries are indistinguishable from actual queries; in the case
of geographical locations, this can be achieved by biasing the
sampling process, such that the probability that a location is
chosen is proportional to its population density.

D. Limitations

PriView does have limitations. It requires the Internet
service to respond deterministically to a given query; if the two
cloud proxies can get different responses for the same dummy

queries, the device can no longer retrieve the original query’s
response by combining the two returned XORs. In addition,
PriView is not relevant for services that require a user login
and store user-specific state, such as email or social networks;
in this case, the service already knows the identity of the user.
Finally, as described above, it assumes that an efficient means
exists for generating random dummy queries to the service.

IV. EVALUATION

A. Experimental setup

We implemented an Android-based PriView client for the
Google Static Maps [7] service, with proxies running on
Amazon EC2. We evaluated this client on a MK802 Android
Mini-PC running Android 4.0.3, as well as a Samsung S5570
Galaxy Mini running Android 2.3.3. Our comparison point was
a client that issued multiple dummy requests for each query
directly from the device. Both PriView and this strawman client
offer the same confidentiality guarantee: if we use K dummy
requests for each actual query, the service cannot tell which
of K + 1 requests the device actually made. We call K the
degree of confidentiality. The strawman client running with
degree of confidentiality K = 0 corresponds to an unmodified,
conventional client that does not provide any confidentiality.
We do not plot K = 0 for PriView, since our mechanism
requires at least one dummy query to be issued.

B. Bandwidth usage

Figure 2 shows the average bandwidth used by each query
as we increase the degree of confidentiality by issuing more
dummy requests per query. As PriView issues more dummy
requests, the size of its outgoing messages go up linearly while
the size of the returning messages increases sub-linearly; each
returning message is an XOR of multiple responses, hence its
size is equal to that of the largest response. Since each outgoing

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 1 2 4 8 16 32 64

B
an

dw
id

th
 U

se
d

(K
B

)

Degree of Confidentiality

PriView
Dummy Requests

Fig. 2. As the degree of confidentiality (i.e., the total number of requests
seen by the service per query) is increased, bandwidth increases sub-
linearly for PriView as request packets become larger, and linearly for
conventional dummy queries.

message is simply a list of dummy inputs to the service (e.g.,
GPS coordinates or Wikipedia URLs), it is much smaller than
the returning message, which can be roughly 25 KB in the
case of Google Static Maps. As a result, total bandwidth used
by PriView increases sub-linearly as the number of dummy
requests is increased and the degree of confidentiality rises.

In contrast, we expect our comparison strawman to show a
linear increase in bandwidth usage, since it sends and receives
K +1 distinct requests and responses for each query, in order
to get a degree of confidentiality equal to K. Interestingly,
we instead see sub-linear scaling of bandwidth for small
numbers of dummy queries; for example, going from K = 1
to K = 2 does not double bandwidth used. This is an
artefact of naive dummy query generation; since we pick
random GPS coordinates for each dummy query, they are
likely to fall on the ocean and return a highly compressible
image of 2 to 3KB with no features. As a result, adding
dummy queries does not necessarily double bandwidth for the
strawman. However, if we used more intelligent dummy query
generation based on population density, the returned maps
would be feature-rich and non-compressible, in which case
we would observe linear scaling of bandwidth. In summary,
this graph makes two important points: PriView is bandwidth-
efficient compared to conventional dummy requests, and it
does not add much bandwidth overhead over an unmodified,
non-confidential client (as seen by the K = 0 data point).

C. End-to-end delay

Figure 3 shows a similar trend for end-to-end latency. With
the degree of confidentiality at 1, the number of messages
at the device is the same for both approaches, but PriView
has higher latency since it routes messages through its cloud
proxies while the strawman directly accesses the service.
PriView begins to outperform the strawman once the degree
of confidentiality is reasonably high, since its large bandwidth
advantage over the strawman outweighs the delay imposed by
its proxy layer.

D. Power consumption

Finally, Figure 4 plots the power consumed per query for
PriView and the strawman. Since the MK802 device we used

 0

 2

 4

 6

 8

 10

 12

0 1 2 4 8 16 32 64

L
at

en
cy

 (
se

cs
)

Degree of Confidentiality

PriView
Dummy Requests

Fig. 3. As the degree of confidentiality is increased, latency increases
sub-linearly for PriView.

 0

 1

 2

 3

 4

 5

 6

 7

0 1 2 4 8 16 32 64

Jo
ul

es
 p

er
 q

ue
ry

Degree of Confidentiality

PriView
Dummy Requests

Fig. 4. Power consumption increases sub-linearly for PriView as degree
of confidentiality is increased.

does not have an internal battery and relies on external AC
power, we were able to measure instantaneous power draw
with a Kill A Watt [11] monitor. As shown in the graph,
PriView’s power consumption stays nearly constant even as
the degree of confidentiality is increased, while the strawman
client’s power consumption increases rapidly.

V. CONCLUSION

Enabling privacy-preserving access to existing Internet
services from mobile devices is a challenging problem: de-
vices are resource-constrained, while services cannot easily
be modified or replicated. PriView uses a novel approach to
Private Information Retrieval that utilizes cloud-based proxies
to provide confidentiality, without imposing high overhead
on the device or requiring the target service to be modified
or replicated. Our evaluation showed that PriView works
with existing services and provides tunable confidentiality
that imposes a sub-linear cost in terms of latency, bandwidth
usage and power consumption. As future work, we plan on
extending our implementation to support more than two prox-
ies, evaluating the system with proxies running on different
cloud providers, running against a wider range of services,
and exploring techniques for improving the quality of dummy
query generation. Ultimately, PriView’s goal is to provide
a general-purpose, privacy-preserving querying platform for
real-world services.

REFERENCES

[1] “Google Glass.” [Online]. Available: http://www.google.com/glass/start/
[2] H. Kido, Y. Yanagisawa, and T. Satoh, “Protection of location privacy

using dummies for location-based services,” in Proceedings of the 21st
International Conference on Data Engineering Workshops. IEEE
Computer Society, 2005, p. 1248.

[3] S. Amini, J. Lindqvist, J. I. Hong, M. Mou, R. Raheja, J. Lin,
N. Sadeh, and E. Tochb, “Caché: caching location-enhanced content
to improve user privacy,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 14, no. 3, pp. 19–21, 2010.

[4] “Amazon EC2,” http://aws.amazon.com/ec2/.
[5] “”microsoft windows azure”,” http://www.windowsazure.com/en-us/.
[6] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-

tion retrieval,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 965–981,
1998.

[7] “Google static maps,” https://developers.google.com/maps/
documentation/staticmaps/.

[8] L. Sweeney, “k-anonymity: A model for protecting privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 05, pp. 557–570, 2002.

[9] F. Zhao, Y. Hori, and K. Sakurai, “Analysis of privacy disclosure in dns
query,” in Multimedia and Ubiquitous Engineering. IEEE, 2007, pp.
952–957.

[10] H. Federrath, K.-P. Fuchs, D. Herrmann, and C. Piosecny, “Privacy-
preserving DNS: analysis of broadcast, range queries and mix-based
protection methods,” in Computer Security–ESORICS 2011. Springer,
2011, pp. 665–683.

[11] “P4400 Kill A Watt,” http://www.p3international.com/products/P4400.
html.

