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Abstract
SSDs exhibit very different failure characteristics compared
to hard drives. In particular, the Bit Error Rate (BER) of an
SSD climbs as it receives more writes. As a result, RAID
arrays composed from SSDs are subject to correlated fail-
ures. By balancing writes evenly across the array, RAID
schemes can wear out devices at similar times. When a de-
vice in the array fails towards the end of its lifetime, the high
BER of the remaining devices can result in data loss. We
propose Diff-RAID, a parity-based redundancy solution that
creates an age differential in an array of SSDs. Diff-RAID
distributes parity blocks unevenly across the array, leverag-
ing their higher update rate to age devices at different rates.
To maintain this age differential when old devices are re-
placed by new ones, Diff-RAID reshuffles the parity distri-
bution on each drive replacement. We evaluate Diff-RAID’s
reliability by using real BER data from 12 flash chips on a
simulator and show that it is more reliable than RAID-5, in
some cases by multiple orders of magnitude. We also eval-
uate Diff-RAID’s performance using a software implemen-
tation on a 5-device array of 80 GB Intel X25-M SSDs and
show that it offers a trade-off between throughput and relia-
bility.

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Storage Management; D.4.4 [Operating Systems]:
Reliability; D.4.8 [Operating Systems]: Performance

General Terms Design, Performance, Reliability

Keywords RAID, SSD, Flash

1. Introduction
Solid State Devices (SSDs) have emerged in the last few
years as viable replacements for hard drives in many set-
tings. Commodity SSDs can offer thousands of random
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reads and writes per second, potentially eliminating I/O
bottlenecks in high-performance data centers while driv-
ing down power consumption. Though early SSDs were
prohibitively expensive, the emergence of Multi-Level Cell
(MLC) technology has significantly driven down SSD cost
in the recent past.

However, MLC devices are severely hamstrung by low
endurance limits. Individual flash pages within an SSD re-
quire expensive erase operations between successive writes.
Each erasure makes the device less reliable, increasing the
Bit Error Rate (BER) observed by accesses. Consequently,
SSD manufacturers specify not only a maximum BER (usu-
ally around 10−14, as with hard disks), but also a limit on the
number of erasures within which this guarantee holds. For
MLC devices, this erasure limit is typically rated at 5,000
to 10,000 cycles per block. As flash bit density continues to
increase, the erasure limit is expected to decrease as well.

Device-level redundancy is currently the first line of de-
fense against storage failures. Existing redundancy options
– such as any of the RAID levels – can be used without
modification to guard against SSD failures, and to mask the
high BER of aging SSDs. Unfortunately, existing RAID so-
lutions do not provide adequate protection for data stored on
SSDs. By balancing writes across devices, they cause mul-
tiple SSDs to wear out at approximately the same rate. In-
tuitively, such solutions end up trying to protect data on old
SSDs by storing it redundantly on other, equally old SSDs.
Later in this paper, we quantify the ineffectiveness of such
an approach.

We propose Differential RAID (Diff-RAID), a new parity-
based technique similar to RAID-5 designed explicitly for
reliable SSD storage. Diff-RAID attempts to create an age
differential across devices, limiting the number of high-BER
SSDs in the array at any point in time. In other words, Diff-
RAID balances the high BER of older devices in the array
against the low BER of younger devices.

To create and maintain this age differential, Diff-RAID
modifies two existing mechanisms in RAID-5. First, Diff-
RAID distributes parity blocks unevenly across devices;
since parity blocks are updated more often than data blocks
due to random access patterns, devices holding more par-
ity receive more writes and consequently age faster. Diff-
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Figure 1. RBER (Raw Bit Error Rate) and UBER (Uncor-
rectable Bit Error Rate, with 4 bits of ECC) for MLC flash
rated at 10,000 cycles; data taken from [6].

RAID supports arbitrary parity assignments, providing a
fine-grained trade-off curve between throughput and relia-
bility. Second, Diff-RAID reshuffles parity on drive replace-
ments to ensure that the oldest device in the array always
holds the maximum parity and ages at the highest rate. This
ensures that the age differential created through uneven par-
ity assignment persists when new devices replace expired
ones in the array.

Diff-RAID’s ability to mask high BERs on aging SSDs
confers multiple advantages. First, it offers higher reliabil-
ity than RAID-5 or RAID-4 while retaining the low space
overhead of these options. Second, it opens the door to us-
ing commodity SSDs past their erasure limit, protecting the
data on expired SSDs by storing it redundantly on younger
devices. Third, it potentially reduces the need for expensive
hardware Error Correction Codes (ECC) in the devices; as
MLC density continues to increase, the cost of such ECC is
expected to rise prohibitively. These benefits are achieved at
the cost of some degradation in throughput and complexity
in device replacement.

We evaluate Diff-RAID performance using a software
implementation running on a 5-device array of Intel X25-M
SSDs, on a combination of synthetic and real server traces.
We also evaluate Diff-RAID reliability by plugging in real-
world flash error rates into a simulator. We show that Diff-
RAID provides up to four orders of magnitude more relia-
bility than conventional RAID-5 for specific failure modes.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the problem of correlated SSD failures in
detail. Section 3 describes Diff-RAID. Section 4 evaluates
Diff-RAID reliability and performance. Section 5 summa-
rizes related work, Section 6 describes future goals for Diff-
RAID, and Section 7 concludes.

2. Problem Description
2.1 Flash Primer
The smallest unit of NAND-based flash storage that can be
read or programmed (written) is a page (typically 4 KB in
size). All bits in a blank page are set to 1s, and writing
data to the page involves setting some of the bits within
it to 0s. Individual bits within a page cannot be reset to
1s; rewriting the page to a different bit pattern requires
an intermediate erase operation that resets all bits back to
1. These erasures are performed over large blocks (e.g.,
of 128 KB) spanning multiple pages. Blocks wear out as
they are erased, exhibiting increasing BERs that become
unmanageably high once the erasure limit is breached.

As a result of these fundamental constraints on write
operations, early flash-based devices that performed in-place
page modification suffered from very poor random write
latencies; writing to a randomly selected 4 KB page required
the entire 128 KB erase block to be erased and rewritten. In
addition, imbalanced loads that updated some pages much
more frequently than others could result in uneven wear
across the device.

To circumvent these problems, modern SSDs implement
a log-based block store, exposing a logical address space
that is decoupled from the physical address space on the
raw flash. The SSD maintains a mapping between logical
and physical locations at the granularity of an erase block.
A write to a random 4 KB page involves reading the sur-
rounding erasure block and writing it to an empty, previ-
ously erased block, with no expensive erase operations in
the critical path. In addition, the mapping of logical to phys-
ical blocks is driven by wear-leveling algorithms that aim
for even wear-out across the device. SSDs typically include
more raw flash than advertised in order to continue logging
updates even when the entire logical address space has been
occupied; for example, an 80 GB SSD could include an extra
10 GB of flash.

SSDs come in two flavors, depending on the type of flash
used: Single-Level Cell (SLC) and Multi-Level Cell (MLC).
A cell is the basic physical unit of flash, storing voltage
levels that represent bit values. SLC flash stores a single bit
in each cell, and MLC stores multiple bits. SLC provides
ten times the erasure limit as MLC (100,000 cycles versus
10,000), but is currently 3-4 times as expensive. Current
industry trends point towards MLC technology with more
bits per cell.

Flash Error Modes: MTTF (Mean Time To Failure)
values are much higher for SSDs than hard drives due to the
absence of moving parts. As a result, the dominant failure
modes for SSDs are related to bit errors in the underlying
flash. Bit errors can arise due to writes (program disturbs),
reads (read disturbs) and bit-rot over time (retention errors)
[6, 10]. All these failure modes occur with greater frequency



as the device ages1. In practice, SSDs use hardware ECC to
bring down error rates; the pre-ECC value is called the Raw
Bit Error Rate (RBER), and the post-ECC value is called the
Uncorrectable Bit Error Rate (UBER).

Figure 1 shows the RBER and UBER of flash rise with
the number of per-block erasures. We assume 4-bit ECC per
512 byte sector (the current industry standard for MLC flash
[10]); this means that enough ECC is used to correct 4 or less
bad bits in each sector. The RBER data in the figure corre-
sponds to the D-MLC32-1 flash chip in [6], rated at 10,000
cycles; we compute the UBER using the methodology de-
scribed in [10].

2.2 The Problem with RAID for SSDs
Device-level redundancy has been used successfully for
decades with hard drives. The standard block-based inter-
faces exposed by SSDs allow existing redundancy and strip-
ing solutions – such as the RAID levels – to work without
modification. We examine the reliability of a specific RAID
option (RAID-5), though our observations apply in different
degrees to any of the RAID levels. We will first describe the
operation of RAID-5 and then outline the concerns with its
usage.

In an N-device RAID-5 array, data blocks are striped
across N-1 devices and a parity block is computed for each
stripe and stored on the Nth device. The role of the parity
device rotates for each stripe; as a result, each of the N
devices stores an equal fraction of the parity blocks in the
array. Whenever one of N-1 data blocks in the stripe is
written to, the corresponding parity block in the stripe must
also be updated; consequently, parity blocks receive more
write traffic than data blocks for random access workloads.
By rotating the role of the parity device, RAID-5 aims to
eliminate any parity bottlenecks in the array, spreading write
load evenly across the array.

The key insight in this paper is that this load-balancing
of writes can cause correlated failures in SSD arrays.
Since all devices in the RAID-5 array receive similar write
workloads, they use up their erasure cycles at similar rates.
As a result, the array can be in a state where multiple devices
have reached the end of their erasure limit and exhibit high
UBERs, making correlated failures highly probable.

In particular, we are concerned with the case where the ar-
ray experiences a drive failure, and subsequently cannot re-
construct the missing drive due to bit errors in the remaining
drives. Since the array has no redundancy once a drive fails,
any existing bit errors in the array will be uncorrectable. The
corruption of single bits in critical data structures – such
as filesystem super-blocks – can result in massive data loss.
This failure mode has been of increasing concern with multi-
terabyte hard drive arrays, where the sheer quantity of data
makes a bit error likely [12]. To the best of our knowledge,

1 Through this paper, we define ‘age’ in erasure cycles and not in time
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Figure 2. RAID-5 Reliability: the array becomes more un-
reliable as it ages, until all devices hit their erasure limit at
the same time and are replaced with brand new devices.

we are the first to point out its significance for SSD arrays of
any size (in an earlier version of this paper [8]).

Figure 2 shows the probability of data loss for a RAID-5
array (5 devices, 80 GB each) change as data is written to
it; see Section 4 for more details on the simulation setup. At
each point in the graph, we plot the probability that data loss
will occur if one of the devices fails. Each device is replaced
by a new device when it reaches its erasure limit of 10,000
cycles. In the beginning, all devices are brand new and have
low UBERs, and hence the probability of data loss is very
low. As the array receives more writes, the devices age in
lock-step; the peaks on the curve correspond to points where
all devices reach their erasure limits at the same time and
are replaced, transitioning the array to a set of brand new
devices.

Importantly, this phenomenon is not specific to RAID-
5. For example, it occurs in a fixed-parity configuration
(RAID-4) as well, since all data devices age at the same
rate. It occurs to a lesser extent in mirrored configurations
(RAID-1, RAID-10), since both mirrors age at the same rate.
Having two parity devices (RAID-6) prevents data loss on
one device failure; however, data loss is likely if two devices
are lost. Essentially, any RAID solution used with SSDs
offers less reliability than system administrators would like
to believe.

3. Differential RAID
Diff-RAID is a parity-based RAID solution very similar to
RAID-5. We believe a parity-based scheme to be a great
fit for SSDs; their extremely high random read speed elim-
inates the traditional synchronous read bottleneck for ran-
dom writes. On a 5-device array of Intel X25-Ms configured
as RAID-5, we were able to achieve 14,000 random writes
per second to the array; a similar experiment on hard drives



would have been limited to a few hundred writes per second
due to random seeks in the critical path.

Accordingly, our focus is on improving the reliability
of a parity-based scheme. We start with the basic RAID-5
design and improve it in two key ways. First, uneven parity
distribution allows Diff-RAID to age SSDs at different rates,
creating an age differential in the array. Second, parity-
shifting drive replacement allows Diff-RAID to maintain
that age differential when old devices are retired from the
array and replaced by new SSDs.

3.1 Uneven Parity Distribution
Diff-RAID controls the aging rates of different devices in
the array by distributing parity blocks unevenly across them.
Random writes cause parity blocks to attract much more
write traffic than data blocks; on every random write to a data
block, the corresponding parity block has to be updated as
well. As a result, an SSD with more parity receives a higher
number of writes and ages correspondingly faster.

In the following discussion, we measure the age of a de-
vice by the average number of cycles used by each block in
it, assuming a perfect wear-leveling algorithm that equalizes
this number across blocks. For example, if each block within
a device has used up roughly 7,500 cycles, we say that the
device has used up 7,500 cycles of its lifetime.

We represent parity assignments with n-tuples of per-
centages; for example, (40, 15, 15, 15, 15) represents a 5-
device array where the first device holds 40% of the parity
and the other devices store 15% each. An extreme exam-
ple of uneven parity assignment is RAID-4, represented by
(100, 0, 0, 0, 0) for 5 devices, where the first device holds all
the parity. At the other extreme is RAID-5, represented by
(20, 20, 20, 20, 20) for 5 devices, where parity is distributed
evenly across all devices.

For a workload consisting only of random writes, it is
easy to compute the relative aging rates of devices for any
given parity assignment. For an n device array, if aij repre-
sents the ratio of the aging rate of the ith device to that of
the jth device, and pi and pj are the percentages of parity
allotted to the respective devices, then:

aij =
pi ∗ (n− 1) + (100− pi)
pj ∗ (n− 1) + (100− pj)

(1)

In the example of 5-device RAID-4, the ratio of the aging
rate of the parity device to that of any other device would
be 100∗4+0

0∗4+100 = 4; in other words, the parity device ages four
times as fast as any other device. Since RAID-4 is an extreme
example of uneven parity assignment, it represents an upper
bound on the disparity of aging rates in an array; all other
parity assignments will result in less disparity, with RAID-5
at the other extreme providing no disparity.

3.2 Parity-Shifting Drive Replacement
In the long run, uneven parity distribution is not sufficient to
maintain an age differential. To understand this point, con-

Figure 3. Parity-Shifting Drive Replacement for a 4-device
array with parity assignment (70, 10, 10, 10): age distribu-
tion of devices when Drive 1 is replaced (Top), and when
Drive 2 is replaced (Bottom). Drive 2 receives 70% of the
parity after Drive 1 is replaced.

sider a RAID-4 array with 5 devices. With a workload of
random writes, the data devices in the array will be at ap-
proximately 2,500 erase cycles each when the parity device
hits 10,000 cycles and is replaced. If we allow the new re-
placement device to be a verbatim copy of the old device –
as conventional RAID would do – it will hold all parity and
continue to age four times as fast as the data devices. After
the third such replacement of the parity device, the data de-
vices will all be at 7,500 cycles, resulting in an aging and
unreliable array. The fourth replacement of the parity device
will occur when all the devices are at 10,000 cycles.

Intuitively, after each replacement of the parity drive,
the new replacement drive ages at a much faster rate than
the older data devices and hence catches up with them. As
a result, the age differential created by the uneven parity
distribution is not maintained across drive replacements. In
order to ensure that the age differential is maintained, we
would like the aging rate of a device to be proportional to its
age: the older a device, the faster it ages. If this were the case,
any age differential would persist across drive replacements.

Another reason for aging older devices faster is that the
presence of an old SSD makes the array less reliable, and
hence we want to use up its erase cycles rapidly and remove



it as soon as possible. Conversely, young SSDs make the
array more reliable, and hence we want to keep them young
as long as possible. If two SSDs are at the same age, we
want to age one faster than the other in order to create an
imbalance in ages.

Consequently, on every device replacement, we shift the
logical positions of the devices in the array to order them
by age, before applying the parity assignment to them. In
the simple example of RAID-4, each time a parity device is
replaced, the oldest of the remaining data devices becomes
the new parity device (breaking ties arbitrarily), whereas the
new replacement device becomes a data device.

Figure 3 illustrates this scheme for a 4-device array with
a parity assignment of (70, 10, 10, 10); by Equation 1, this
assignment results in the first device aging twice as fast as
the other three devices. As a result, when Drive 1 reaches
10,000 erase cycles, the other three SSDs are at 5,000 cycles.
When Drive 0 is replaced, Drive 1 is assigned 70% of the
parity blocks, and the other SSDs (including the new one)
are assigned 10% each.

Diff-RAID provides a trade-off between reliability and
throughput: the more skewed the parity distribution towards
a single device, the higher the age differential, and conse-
quently the higher the reliability. A skewed parity assign-
ment results in low throughput and high reliability, and a bal-
anced parity assignment results in high throughput and low
reliability. The Diff-RAID parity assignment corresponding
to RAID-4 provides the least throughput – with the sin-
gle parity device being a bottleneck – but the highest reli-
ability, and the one corresponding to RAID-5 provides the
highest throughput but the least reliability. Since Diff-RAID
supports any arbitrary parity assignment, administrators can
choose a point on the trade-off curve that fits application re-
quirements.

3.3 Analysis of Age Distribution Convergence
Interestingly, if we continue shifting parity over multiple de-
vice replacements for a given parity assignment, the device
ages observed at replacement time eventually converge to a
stationary distribution. Figure 4 plots the distribution of de-
vice ages at replacement time for a 5-device array with a
parity assignment of (80, 5, 5, 5, 5). After a number of re-
placements, the ages of the devices at replacement time con-
verge so that the oldest remaining device is always at 5,750
erase cycles, with the other devices at 4,312.5, 2,875 and
1,437.5 cycles respectively. Figure 5 shows the stationary
distributions for a number of different parity assignments;
on the x-axis is the percentage of parity on a single device,
with the remaining spread evenly across the other devices.
Importantly, the number of replacements over time does not
depend on the parity assignment: Diff-RAID uses exactly as
many replacements as conventional RAID-5.

We can show that any parity assignment eventually con-
verges to a stationary distribution. Let us denote the different
rates at which disks age via a vector (t1, t2, ..., tk). Recall

that Equation 1 allows us to compute this vector given any
parity assignment, assuming a perfectly random workload.
This vector is normalized and sorted, so that t1 = 1, and
for all j, tj >= tj+1. This means that during a period of
time that device 1 ages 100 units, device 2 ages t2 ∗ 100
units, device 3 t3 ∗ 100 units, etc. In practice, the aging vec-
tor is a function of both the workload and the parity assign-
ment. In our analysis, we assume a random workload, with
the aging-vector reflecting only the parity assignment; how-
ever, the analysis should work with any aging vector derived
from a real workload and parity assignment.

Suppose that the expected life of a device is A aging-
units. Now, think of a new device which is brought into the
system when device 1 burns out. Let us number this new
device k + 1. Device 2 replaces the role of device 1 when
device k + 1 enters; at this point, it has aged A ∗ t2, and
it continues aging at rate t1; device 3 replaces device 2 at
age A ∗ t3 and continues aging at rate t2, etc. Denote by
A2 the number of aging units that device 2 suffers during
the period until it, too, burns out. During this period, device
k + 1 ages A2 ∗ tk. Then device 3 becomes the first device,
and burns out afterA3 aging units, during which time device
k + 1 ages A3 ∗ tk−1. And so on. The last aging period until
device k + 1 needs to replace the first device in the array is
Ak, and its aging increment is Ak ∗ t2.

In summary, when device k + 1 replaces the first device
in the array it has age A2 ∗ tk +A3 ∗ tk−1 + ...+Ak ∗ t2. We
obtain the burnout time Ak+1 remaining for device k + 1
from this value onward by putting Ak+1 = A − (A2 ∗
tk + A3 ∗ tk−1 + ... + Ak ∗ t2). More generally, for any
d, Ak+d is the burnout period remaining after it reaches age
A1+d ∗ tk +A2+d ∗ tk−1 + ...+Ak−1+d ∗ t2.

We want to design the aging vector so that Ak+d is a cer-
tain fixed, positive value, so that when a new device replaces
the first one, it has a reasonable remaining life expectancy.
In practice, we probably need to worry only about a few de-
vice replacements, since it is hard to imagine the same RAID
of SSDs undergoing more than a handful of device replace-
ments before the entire technology is upgraded.

Nevertheless, we can design a replacement strategy that
keeps Ak+d fixed for any number of replacements. Denote
by B the desired remainder life-expectancy for a replacement
device. During the period that device 1 ages A units, device
2 should age at rate r1,2 = (A − B)/A. Device 3 should
reach age A−B after aging at rate r1,3 for period A, and at
rate r2,3 for period B. That is, A−B = A ∗ r1,3 +B ∗ r2,3.
And so on.

After performing k device replacements, there is a steady-
state allocation that fixes B forever, simply by fixing t2+t3+
...+ tk = (A−B)/B. We obtainAk+d = A− (A1+d ∗ tk +
A2+d ∗ tk−1 + ...+Ak−1+d ∗ t2) = A−B ∗ (A−B)/B =
B, and the invariant continues to hold. Conversely, if the
aging vector is fixed, then the remaining life of the second
array-device upon replacement converges toB satisfying the
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equation above. Briefly, to see that this holds, observe that if
the remaining lives of replacement devices exceed B by ε,
then the remaining life upon replacement of device k + 1 is
A − (B + ε)((A − B)/B) = B − ε ∗ (A − B)/B. And
conversely, if it was B − ε, it becomes B + ε ∗ (A−B)/B.
Hence, the life of a replacement device gradually converges
to B.

For example, we could have three devices, with steady-
state aging rates (1, 1

2 ,
1
2 ). In the first replacement period,

we need to age device 3 at rate 1
4 . After device 2 becomes

the first in the array, we continue aging at rates (1, 1
2 ,

1
2 )

forever. Each device replacement occurs when the first de-
vice reaches its full life period; the second device 1

2 , and
the third 1

4 . The second device moves to be the first in the
array, having suffered 1

2 of its burnout load; the third de-
vice moves to be second, with 1

4 burnout, and a fresh new
device is deployed in the third array position. Then, after
another 1

2 life, the first device in the array burns out; the sec-
ond device has age 1

4 + 1
2 ∗

1
2 and moves to replace the first

one; the third device has age 1
2 ∗

1
2 = 1

4 and replaces the
second. In numbers, the series of successive replacements is
(1, 1

2 ,
1
4 ), ( 1

2 + 1
2 ,

1
4 + 1

2 ∗
1
2 ,

1
2 ∗

1
2 ), and so on.

3.4 Deployment Issues
Bootstrapping Convergence: The convergence property of
Diff-RAID can be extremely useful in designing an array
with stable reliability and performance properties. Given a
predictable workload, it is possible to compute the stationary
distribution for any parity assignment; if the array starts off
its constituent devices already fitting the age distribution, it
will reach that distribution every time the oldest device in
the array hits the erasure limit. As a result, the worst case
unreliability of the array is very easy to predict.

One possibility is that system administrators will boot-
strap new Diff-RAID arrays by burning through flash cycles
on the first set of devices used (or conversely, by throwing
away the devices before they reach their erasure limit). At
first glance, this seems like an expensive proposition, given
the high cost of flash. However, the bootstrapping process
represents a one-time cost involving a fixed amount of flash:
in the example of a (80, 5, 5, 5, 5) array, it involves wasting a
little over 14K erasure cycles, or around a device and a half
worth of flash.

For example, consider a 5-device Diff-RAID array with a
5-year lifetime, where a single SSD has to be replaced every
year. Assuming that a single SSD costs 300$, the total cost
of storage would be 3000$ over the five years (not taking



dropping SSD costs into account). The cost of the wasted
flash in this case would be around 450$, or around 15%
extra. Since this represents a one-time dollar cost, we believe
it to be a practical solution.

Of course, it is entirely possible to run Diff-RAID without
first putting it in a stationary distribution. As we will show in
our evaluation, the resulting array will not be as predictably
reliable, but it will still be orders of magnitude more reliable
than conventional RAID-5 on average.

Implementation of Drive Replacement: We expect ad-
ministrators to replace worn out devices by simply remov-
ing them and replacing them with new devices, and trigger-
ing RAID reconstruction. In addition to reconstruction, par-
ity has to be redistributed across the devices. A naive way
to implement the redistribution is to retain the same parity
mapping function, but simply shift the logical order of the
devices to the left; if the replaced device was at position 0,
the new device now occupies position 3 (in a 4-device array),
and all the other devices shift one position to the left. While
this simplifies the logic in the RAID controller immensely,
it requires all parity blocks in the array to be moved.

A faster option is to retain the logical order of devices,
but change the parity mapping function to a new function
that satisfies the parity assignment percentages with mini-
mal movement of parity blocks. For example, if the parity
assignment is (70, 10, 10, 10) in a four device array, and de-
vice 0 is replaced by device 4, we need to move 60% of the
parity blocks from device 4 to device 1; it needs 70% in all
and already has 10%. Such a movement of parity blocks will
leave 10% on device 4, and no changes occur on device 2
and device 3, which already have their allotted 10%. As a
result, only 60% of the parity blocks need to be moved. This
is Diff-RAID’s default drive replacement implementation.

An alternative option is to delay parity redistribution and
do it incrementally during the execution of actual writes to
the array. Whenever a random write occurs, we simply write
the new parity to its new location, moving the data block at
that location to the old parity location. However, this option
slows down writes to the array for an unspecified period
of time. Importantly, none of the redistribution options use
up too many flash cycles by redistributing parity blocks;
rewriting all the parity blocks uses up a total of a single
erasure cycle, summed across all the devices in the array.

Workload Sequentiality: Conventional RAID-5 con-
trollers designed for hard drives do their utmost to extract
full-stripe writes from the workload: writes that span the en-
tire stripe and can be executed without first reading the old
data and parity blocks. They do so using optimizations such
as write caching within the controller to coalesce multiple
random writes into single full-stripe writes. However, ex-
isting RAID-5 implementations have had limited success in
this regard; existing enterprise applications such as database
servers are notoriously non-sequential, leading to the grow-
ing unpopularity of RAID-5.

For SSD arrays in general, reads and writes are extremely
fast and full-stripe writes are not required for performance;
our evaluation will bear out this observation. For Diff-RAID
in particular, full-stripe writes are in fact detrimental to re-
liability; each device gets written to in a full-stripe write,
reducing the disparity in write workloads observed by the
devices. Full-stripe writes do have the advantage of conserv-
ing flash cycles by performing fewer parity writes; however,
the level of write caching required to extract them creates
a window of unreliability while the data is cached on the
controller, and also adds complexity to the controller. As a
result, we don’t implement any optimizations such as write
caching to leverage full-stripe writes.

4. Evaluation
In this section, we evaluate the reliability and performance
of Diff-RAID and compare them to traditional RAID-5 ar-
rays. To measure reliability, we implemented various RAID
configurations on a simulator and evaluated them using bit
error rates from real devices. To measure performance, we
implemented a software Diff-RAID that runs on an array of
5 Intel X25-M SSDs [7]; performance measurements were
gathered by running synthetic benchmarks as well as real
workloads collected from enterprise servers.

Diff-RAID Array Configurations: In the following
evaluations, we use a 5-SSD array, where each SSD is 80 GB
in size. All the SSDs in the array are homogeneous, using
the same controller logic and flash chips. The SSDs have
MLC chips rated at an erasure limit of 10,000 cycles. For
reliability simulations, we assume that SSDs in the array are
replaced when they hit this limit.

Given an array of SSDs, various Diff-RAID configura-
tions are possible depending upon how much parity is as-
signed to each device. In order to narrow down the solu-
tion space, we focus on a subset of possible assignments
that concentrate a particular percentage of parity on the
first device and evenly distribute the rest of the parity over
the other devices in the array. Specifically, we evaluate the
following 9 different configurations: (100, 0, 0, 0, 0) (i.e.,
RAID-4), (90, 2.5, 2.5, 2.5, 2.5), ... and (20, 20, 20, 20, 20)
(i.e., RAID-5).

Bit Error Rates: To measure the reliability of a specific
Diff-RAID configuration, we must first understand the bit
error rates for the MLC flash chips. We use raw bit error rate
curves for 12 different flash chips obtained from two pub-
lished studies. The first study by Grupp, et al. [6] provides us
with 10 different RBER curves. We obtain two more curves
from the second study, by Mielke, et al. [10] (specifically,
we use the Diamond and Triangle flash chips, in the nomen-
clature of that paper).

We assume that the data in the flash are protected with
ECC. We model 4-bit ECC protection per 512-byte sector,
which is the current industry standard for MLC flash. We use
the UBER equation from the second study (page 1 of Mielke,



Flash Type Raw Bit Error Rate Uncorrectable Bit Error Rate
5 K 10 K 5 K 10 K

B-MLC8-1 2.99e-07 3.60e-07 2.26e-20 6.80e-20
B-MLC8-2 1.78e-07 3.58e-07 0.00e+00 0.00e+00
B-MLC32-1 1.92e-06 4.84e-06 6.31e-17 6.40e-15
B-MLC32-2 8.17e-07 2.62e-06 7.47e-19 2.99e-16
C-MLC64-1 1.12e-06 3.67e-06 4.36e-18 1.61e-15
C-MLC64-2 1.85e-06 9.51e-06 5.26e-17 1.85e-13
D-MLC32-1 6.70e-07 1.18e-05 4.40e-19 5.31e-13
D-MLC32-2 7.14e-07 2.16e-06 6.03e-19 1.14e-16
E-MLC8-1 3.07e-08 1.79e-07 2.82e-21 4.44e-20
E-MLC8-2 1.93e-07 6.70e-07 0.00e+00 4.40e-19
IM-1 5.50e-07 1.16e-06 1.17e-19 5.32e-18
IM-2 5.22e-08 1.09e-07 2.20e-20 1.28e-19

Table 1. Bit error rates for various flash types when used for
5K and 10K erasure cycles.

et al. [10]) on the RBER values to compute the UBER for the
12 flash chips. Table 1 presents the RBER values from these
two previous studies and the UBER values that we calculated
for various flash chips, when the chips have used up 5,000
and 10,000 erasure cycles. All but one of the flash chips
are rated at 10,000 cycles; IM-1 is rated at 5,000 cycles.
For our reliability simulations, we model the SSD array to
consist of one of these flash types, whose UBER values are
subsequently used to compute RAID reliability estimates, as
explained below.

Data Loss Probability (DLP): UBER only gives the
probability of an uncorrectable error in a bit. We use UBER
to calculate the probability of a data loss in a single SSD
and then use it to calculate the same for an entire Diff-RAID
array. Specifically, given that a single SSD has failed (or is
removed after all its erase cycles are used), we calculate the
probability of one or more uncorrectable errors occurring
during a RAID reconstruction event; we denote this by ‘Data
Loss Probability’ (DLP). For example, a DLP of 10−6 means
that 1 out of a million RAID reconstruction events will fail
and result in some data loss.

We consider the DLP of an array into two cases: ‘oldest’
refers to the case where the oldest device in the Diff-RAID
array has failed; ‘any’ refers to the case where a randomly
chosen device in the array has failed. In typical scenarios,
‘oldest’ is the common case for SSD arrays, occurring rou-
tinely when a device hits the erasure limit and is replaced by
a newer device. Note that in a RAID-5 array, since all the
SSDs age at the same rate, no SSD is older than any other
and therefore, ‘oldest’ and ‘any’ cases are the same.

4.1 Diff-RAID Reliability Evaluation
We measure the reliability of Diff-RAID configurations by
running a simulator with UBER data for various flash chips.
In most evaluations, we use a synthetic random write work-
load; we also evaluate the reliability under real-world enter-
prise workloads using a trace playback. In all the following
measurements, we quantify the reliability through DLP; the
lower the DLP, the better the reliability.
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Figure 6. Diff-RAID reliability changes over time and con-
verges to a steady state; the RAID-5 curve from Figure 2 is
reproduced here for comparison.

The simulator operates by issuing simulated writes to ran-
dom blocks in the address space exposed by the array; each
of these array writes results in two device writes, one to the
device holding the data block and the other to the device
holding the parity block. The simulator then tracks the cor-
responding increase in erasures experienced by each device
(assuming a simplistic model of SSD firmware that trans-
lates a single write to a single erasure). At any given point
in the simulation, the DLP is computed by first assuming
that a device has failed and then using the flash UBER to
calculate the resulting probability of data corruption. If the
‘oldest’ failure mode is chosen, the failed device is the old-
est one in the array. If the ‘any’ mode is chosen, the returned
DLP value is an average across multiple DLP values, each
of which is computed for the failure of a particular drive in
the array.

4.1.1 Reliability of Diff-RAID
Figure 6 shows how the DLP of a Diff-RAID array changes
as it is written to; in the process, SSDs get replaced at the
end of their lifetime and new SSDs are added to the array.
Eventually, the DLP converges to a steady state, where it
is low and tightly bounded. For this experiment, we sim-
ulate a 5-SSD Diff-RAID array with a parity assignment
of (90, 2.5, 2.5, 2.5, 2.5) and use the D-MLC32-1 flash (we
choose this flash as it has the highest UBER). We assume
that each SSD is replaced when it hits the erasure limit of
10,000 cycles.

After 10 to 15 replacements, the reliability curve reaches
a steady state; this is a direct result of the age distribution
converging. Once the age distribution converges, the data
loss probability is bounded between 10−7 and 10−5. As
mentioned previously, one may start the array in the steady
state by using SSDs whose erase cycles have already been
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Figure 7. Diff-RAID provides tunable reliability. X-
axis shows % of parity on first device, with remain-
ing parity divided evenly across other devices. Left-
most bar corresponds to (100, 0, 0, 0, 0) and right-most to
(20, 20, 20, 20, 20).

used by appropriate amounts (or replacing them early by
treating them as devices that have already used up erase
cycles). For the remaining experiments in this section, we
focus on the DLP of Diff-RAID at its steady state, ignoring
the initial fluctuations.

4.1.2 Reliability of Diff-RAID Configurations
The reliability of Diff-RAID depends on its specific configu-
ration. Figure 7 shows the DLP of different Diff-RAID parity
assignments. The DLP is calculated on a model where each
SSD in the array uses flash type D-MLC32-1 and the oldest
device fails on a 5-SSD array. The left-most bar corresponds
to an assignment with 100% of the parity on a single device
(i.e., similar to RAID-4). The right-most bar corresponds to
an assignment of 20% of the parity to each device (i.e., simi-
lar to RAID-5). Intermediate points concentrate some parity
on a single device and spread the remainder across all other
devices. As expected, the reliability of the array goes up as
we concentrate more parity on a single device.

4.1.3 Reliability with Different Flash Types
Next, we want to understand how the reliability of the overall
array varies depending on the type of flash chip used. In
addition, we also want to estimate the system reliability
when any device (not just the oldest device) fails.

Figure 8 compares the DLP of conventional RAID-5 to
a specific Diff-RAID parity assignment of (80, 5, 5, 5, 5),
for different types of flash chips. For failures involving the
oldest device in the array, Diff-RAID is one or more orders
of magnitude more reliable than RAID-5 for 7 out of 12 flash
types. For failures involving any device, Diff-RAID is twice
as reliable as RAID-5 for 9 out of 12 flash types.
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Figure 8. For various flash chips, Diff-RAID is more reli-
able than RAID-5 under two cases: when the oldest device
fails and when any device fails. RAID-5 performs identically
in both these cases.
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Figure 9. Diff-RAID can lower hardware ECC require-
ments. For example, Diff-RAID (with (80,5,5,5,5) parity) on
3-bit ECC flash is equivalent to RAID-5 on 5-bit ECC flash.

4.1.4 Reliability with Different ECC Levels
Since Diff-RAID provides better reliability than conven-
tional RAID-5 with the same number of ECC bits, it is
also possible that Diff-RAID provides similar reliability to
RAID-5 while using fewer ECC bits. Such guarantees can
mitigate the need for expensive ECC protection in hardware.

Figure 9 compares Diff-RAID and conventional RAID-5
reliability on flash type D-MLC32-1 with different levels of
ECC. Diff-RAID uses a parity assignment of (80, 5, 5, 5, 5),
and we consider the failure of the oldest SSD. On the x-
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Figure 10. Diff-RAID can extend SSD lifetime by a few
1000s of cycles without high data loss probability.

axis, ECC level ‘t’ represents the ability to correct t bit
errors in a 512-byte sector. The important point made by this
graph is that Diff-RAID can be used to lower hardware ECC
requirements; in this example, Diff-RAID on flash with 3-bit
ECC is equivalent to conventional RAID-5 on the same flash
with 5-bit ECC.

4.1.5 Reliability Beyond Erasure Limit
Figure 10 compares Diff-RAID and RAID-5 reliability on
flash type D-MLC32-1 when the flash is used past its era-
sure limit of 10,000 cycles. Again, the Diff-RAID assign-
ment used is (80, 5, 5, 5, 5), the failure mode is ‘oldest’, and
we assume 4 bits of ECC. For each bar in the graph, de-
vices in the array are replaced when they hit the extended
erasure limit represented by the value on the x-axis. RAID-
5 data loss probability hits a value of 1.0 immediately be-
yond 10,000 cycles, while Diff-RAID’s data loss probability
climbs slowly and hits 1.0 at 20,000 cycles. It is clear that
Diff-RAID allows flash to be used beyond its erasure limit;
if each device in the array is used for 13,000 cycles, less
than one out of 1000 failure events involving the oldest de-
vice will result in some data loss.

4.1.6 Reliability on Real Workloads
Thus far, we evaluated Diff-RAID on a synthetic random
write workload. In order to evaluate Diff-RAID’s reliability
under different workloads, we used a number of enterprise
traces taken from a previous study [11]. For real workloads,
the stripe size (the size of an individual stripe chunk) is
crucial in determining access patterns skews (i.e., a certain
device being written to more often) and the frequency of
full-stripe writes. We plot the reliability of our synthetic
workload as a straight line; the RAID stripe size does not
matter at all for purely random writes, since the fraction of
full-stripe writes is zero irrespective of stripe size.
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Figure 11. Diff-RAID reliability with different traces and
stripe sizes shows that there’s no universally good stripe size,
but Diff-RAID works well with different workloads if the
stripe size is selected carefully.

In Figure 11, each set of bars corresponds to a particu-
lar trace; within a set of bars, the lightest bar corresponds
to the smallest stripe size used (4 KB), and each darker bar
increases the stripe size by a factor of 2. The darkest bar cor-
responds to a stripe size of 1 MB. We can see that increasing
the stripe size does not affect different traces consistently.
Importantly, Diff-RAID continues to provide excellent reli-
ability for multiple real workloads, across all stripe sizes.

Only one of the traces (src1) had a significant number of
full-stripe writes; as the stripe size was increased to 16 KB,
full-stripes were converted into random writes, resulting in
a 30% increase in the number of flash page writes. For all
other traces, the fraction of full-stripe writes were low even
with a small stripe size, and the difference in the number of
flash page writes for different stripe sizes was less than 10%
in all cases.

4.2 Diff-RAID Performance Evaluation
To measure the performance trade-offs between RAID-5 and
other Diff-RAID configurations, we implemented a software
Diff-RAID controller, which uses the Windows raw device
interface to access the SSDs. Our software Diff-RAID can
run synthetic benchmarks (e.g., random 4 KB writes) and
also issue I/Os from trace files. Importantly, we disable the
actual XOR parity computation to eliminate the potential
CPU bottleneck; we believe that hardware implementations
of Diff-RAID will compute XORs using specialized hard-
ware. As mentioned previously, we don’t implement write
caching in the RAID controller, nor do we optimize half-
stripe writes by reading missing data; these optimizations are
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Figure 12. Diff-RAID throughput under various parity as-
signments.

usually used to improve RAID-5 performance on hard drive
arrays, but are not required for SSDs and can hurt Diff-RAID
reliability.

We use an array of 5 Intel X25-M SSDs each of 80 GB
in size. According to Intel’s data sheet, each SSD is speci-
fied to provide 3.3K IOPS of random write throughput, 35K
IOPS of random read throughput, 70 MB/s of sequential
write throughput and 250 MB/s of sequential read through-
put [7]. In order to bring the SSDs performance to a steady
state, we ran each device through a burn-in process that in-
volved writing sequentially to the entire address space (80
GB) and subsequently wrote 1 million 4K pages at random
locations (4 GB of data). In addition, we also ran many mi-
crobenchmarks on each device prior to the burn-in process;
as a result, all the SSDs had used up between 3% and 8% of
their erase cycles.

4.2.1 Diff-RAID Throughput
As explained earlier, Diff-RAID provides a trade-off be-
tween reliability and performance. Figure 12 presents the
random write throughput on our SSD array setup. We evalu-
ated various Diff-RAID parity assignments from (100, 0, 0, 0, 0)
(left most bar), corresponding to a RAID-4 configuration,
to (20, 20, 20, 20, 20) (right most bar), corresponding to a
RAID-5 assignment. In between these two extremes, we
assign a specific percentage of parity on one device and dis-
tribute the rest evenly on rest of the SSDs. We notice two
points from Figure 12: first, Diff-RAID provides excellent
random I/O throughput, varying from 8 K to 15 K IOPS,
driving the point that parity-based schemes such as Diff-
RAID are suitable for SSD arrays in enterprise settings; sec-
ond, Diff-RAID is flexible, letting the administrator choose
the reliability-performance trade-off suitable for the specific
workload setting.
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RAID-5 Naive Minimal
Reconstruction
Time (minutes) 16.68 62.14 26.08

Table 2. Reconstruction time for an 80 GB SSD in a 5-
device array. Minimal parity shifting uses only 56% more
time than standard RAID-5 reconstruction.

4.2.2 Performance Under Real Workloads
In addition to measuring the performance of Diff-RAID un-
der random writes, we also evaluated the system using the set
of enterprise traces described previously. Figure 13 presents
the trace playback time when the trace was issued at full
speed under various Diff-RAID configurations. Since writes
are crucial and take more time to complete, we only issued
the writes from each trace. Diff-RAID configurations show a
clear trend in the performance (RAID-5 performing the best,
RAID-4 performing the worst, and other configurations in
the middle) for all the traces.

4.2.3 Recovery Time
Finally, we evaluate the recovery performance of Diff-RAID
compared to conventional RAID-5. Diff-RAID recovery
time is expected to be higher than RAID-5’s due to the re-
quired reshuffling of parity assignments. This parity shift-
ing can be performed during RAID-5 reconstruction, either
naively (by moving all parity) or using a minimal number of
parity block movements. Table 2 presents the recovery time
for RAID-5 and Diff-RAID’s naive and minimal strategies.
By shifting parity minimally, Diff-RAID can recover and
move to the next parity configuration with just 56% more
time than RAID-5. Note that reconstruction times for SSDs
are much shorter than for hard drives, reducing the possibil-
ity of another device failure occurring during reconstruction.



5. Related Work
Commodity SSDs are already being used in enterprise set-
tings. A recent case study by Fusion-io reports on the bene-
fits when MySpace moved to solid state storage [4]. The re-
sults of our paper can assist administrators in assessing and
improving the reliability of enterprise flash deployments.

An example of a research system that uses clustered flash
is FAWN, a large array of low-power nodes with flash stor-
age used as a low-power data intensive computing clus-
ter [1]. The principle behind Diff-RAID could be used to
enable redundancy schemes within FAWN-like systems that
avoid correlated failures.

Since an SSD consists of an array of flash chips, it is
possible to provide built-in redundancy within the SSD to
handle failures at the chip level. Greenan et al. [5] propose
erasure coded stripes which span pages from different chips.
SSDs with such inherent redundancy can improve the DLP
of the whole Diff-RAID array. On similar lines, RamSan-
500 is a commercially available SSD that includes built-in
redundancy [13]. Unlike commodity SSDs, it uses smaller
ECC-based code words (64 bytes instead of the conventional
512 bytes) and applies RAID-3 internally across replaceable
flash memory modules. While better than RAID-5, RAID-
3 still suffers from correlated failures if the conventional
replacement strategy is used.

This paper is a full-length version of an earlier workshop
paper on the Diff-RAID system [8]. Several previous works
have analyzed the bit error rates of flash chips and showed
how they correlate to the age of the flash [3, 6, 10]. None
of these studies look at the correlation of failures across
multiple SSDs.

Multiple systems have been proposed that use SSDs in
concert with hard drives, usually as read caches [2, 9]. While
such systems are critical for introducing flash into the stor-
age stack, we believe that there’s much value in examining
storage designs composed purely of commodity flash, espe-
cially if the associated reliability concerns can be countered
with redundancy.

6. Future Work
An important avenue of future work involves extending Diff-
RAID to multiple parity schemes such as RAID-6 or more
general erasure coded storage. We believe that uneven parity
placement could improve the reliability of such solutions.
It is interesting to note that a simple version of the Diff-
RAID technique can be applied to RAID-1, where one of
the mirrors is burnt to 50% of its erase cycles; this places the
two-device array in a convergent age distribution, with every
device replacement occurring when the mirror is at 50% of
its erase cycles.

We are currently implementing a prototype version of
Diff-RAID within the Windows 7 volume manager; this will
enable users to create and manage Diff-RAID arrays via
standard administrative interfaces in Windows.

7. Conclusion
Diff-RAID is a new RAID variant designed specifically for
SSDs. It distributes parity unevenly across the array to force
devices to age at different rates. The resulting age differential
is maintained across device replacements by redistributing
parity on each device replacement. Diff-RAID balances the
high BER of aging devices against the low BER of younger
devices, reducing the chances of correlated failures. Com-
pared to conventional RAID-5, Diff-RAID provides a higher
degree of reliability for SSDs for the same space overhead,
and also provides a fine-grained trade-off curve between
throughput and reliability. It can potentially be used to oper-
ate SSDs past their erasure limit, as well as reduce the need
for expensive ECC within SSDs.
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