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Abstract
Disk contention is increasingly a significant problem
for cloud storage, as applications are forced to co-exist
on machines and share physical disk resources. Disks
are notoriously sensitive to contention; a single appli-
cation’s random I/O is sufficient to reduce the through-
put of a disk array by an order of magnitude, disrupt-
ing every other application running on the same array.
Log-structured storage designs can alleviate write-write
contention between applications by sequentializing all
writes, but have historically suffered from read-write
contention triggered by garbage collection (GC) as well
as application reads. Gecko is a novel log-structured de-
sign that eliminates read-write contention by chaining
together a small number of drives into a single log, ef-
fectively separating the tail of the log (where writes are
appended) from its body. As a result, writes proceed to
the tail drive without contention from either GC reads or
first-class reads, which are restricted to the body of the
log with the help of a tail-specific caching policy. Gecko
trades-off maximum contention-free sequential through-
put from multiple drives in exchange for a stable and
predictable maximum throughput from a single uncon-
tended drive, and achieves better performance compared
to native log-structured or RAID based systems for most
cases. Our in-kernel implementation provides random
write bandwidth to applications of 60 to 120MB/s, de-
spite concurrent GC activity, application reads, and an
adversarial workload.

1 Introduction
Modern data centers are heavily virtualized, with the
compute and storage resources of each physical server
multiplexed across a large number of applications. Two
trends point to increased virtualization. The first is the
emergence of cloud computing, where multiple tenants
are routinely assigned to different cores on the same ma-
chine. The second trend is the increasing number of
cores on individual machines, driven by the end of fre-
quency scaling, which forces applications to co-exist on
the same server. Virtualization enables applications to
share machine resources without resorting to physical
partitioning, allowing resources such as disk capacity or
network bandwidth to be temporally multiplexed across
many different tenants.

Unfortunately, virtualization leads to contention. In
virtualized settings, applications are susceptible to the
behavior of other applications executing on the same ma-
chine, network and storage infrastructure. In particu-
lar, contention in the storage subsystem of a single ma-
chine is a significant issue, especially when a disk ar-
ray is shared by multiple applications running on dif-
ferent cores. In such a setting, an application designed
for high I/O performance – for example, one that always
writes or reads sequentially to disk – can perform poorly
due to random I/O introduced by applications running
on other cores [8]; later in this paper, we quantify this
effect. In fact, even in the case where every application
on the physical machine accesses storage strictly sequen-
tially, the disk array can still see a non-sequential I/O
workload due to the inter-mixing of multiple sequential
streams [10]. Disk contention of this nature is endemic
to any system design where a single disk array is shared
by multiple applications running on different cores.

Existing solutions to mitigate the effects of disk con-
tention revolve around careful scheduling decisions, ei-
ther spatial or temporal. For instance, one solution to
minimize interference involves careful placement of ap-
plications on machines [8, 9]. However, this requires the
cloud provider to accurately predict the future I/O pat-
terns of applications. Additionally, placement decisions
are usually driven by a wide number of considerations,
not just disk I/O patterns; these include data/network lo-
cality, bandwidth and CPU usage, migration costs, secu-
rity concerns, etc. A different solution involves schedul-
ing I/O to maintain the sequentiality of the workload seen
by the disk array. Typically, this involves delaying the
I/O of other applications while a particular application is
accessing the disk array. However, I/O scheduling sacri-
fices access latency for better throughput, which may not
be an acceptable trade-off for many applications.

A more promising approach is to build systems that
are oblivious to contention by design. For instance, log-
structured designs for storage – such as the log-structured
filesystem (LFS) [18] – can support sequential or ran-
dom write streams from multiple applications at the full
sequential speed of the underlying media. Unfortunately,
the Achilles’ Heel of LFS is read-write contention caused
by garbage collection (GC) [21, 13]; specifically, the ran-
dom reads introduced by GC often interfere with first-
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Figure 1: Chained Logging: all writes go to the tail drive
of the chain, while reads are serviced mostly from the
body of the chain or a cache. Mirrors in the body can be
powered down.

class writes by the application, negating any improve-
ment in write throughput. Additionally, LFS can also be
subject to read-write contention from application reads;
the original LFS work assumed that large caches would
eliminate reads to the point where they did not inter-
fere with write throughput. More recently, systems have
emerged that utilize new flash technology to implement
read caches or log-structured write caches [4] that can
support contention-free I/O from multiple applications.
However, this results in a highly stressful write work-
load for the flash drives that can wear them out within
months [23].

In this paper, we propose Gecko, a new log-structured
design for disk arrays. The key idea in Gecko is chained
logging, in which the tail of the log – where writes occur
– is separated from its body by placing it on a different
drive. In other words, the log is formed by concatenat-
ing or chaining multiple drives. Figure 1 shows a chain
of three drives, D0, D1 and D2. On a brand new deploy-
ment, writes will first go to D0; once D0 fills up, the log
spills over to D1, and then in turn to D2. In this state,
new writes go to D2, where the tail of the log is now
located, while reads go to all drives. As space on D0
and D1 is freed due to overwrites on the logical address
space, compaction and garbage collection is initiated. As
a result, when D2 finally fills up, the log can switch back
to using free space on D0 and D1. Any number of drives
can be chained in this fashion. Also, each link in the
chain can be a mirrored pair of drives (e.g., D0 and D

′
0)

for fault-tolerance and better read performance.
The key insight in chained logging is that the sequen-

tial, contention-free write bandwidth of a single drive is
preferable to the randomized, contention-affected band-
width of a larger array. As with any logging design,
chained logging ensures that write-write contention be-
tween applications does not result in degraded through-

put, since all writes are logged sequentially at the tail
drive of the chain. Crucially, chained logging also elim-
inates read-write contention between garbage collection
(GC) activity and first-class writes by separating the tail
of the log from its body. In the process, it trades off
the maximum contention-free write throughput of the ar-
ray – which is now limited to the sequential bandwidth
of the tail drive of the chain – in exchange for stable,
predictable write performance in the face of contention.
In our evaluation, we show that a Gecko chain can op-
erate at 60MB/s to 120MB/s under heavy write-write
contention and concurrent GC activity, whereas a con-
ventional log-structured RAID-0 configuration over the
same drives collapses to around 10MB/s during GC.

To tackle read-write contention caused by application
reads, Gecko uses flash and RAM-based caching poli-
cies that leverage the unique structure of the logging
chain. All new writes to the tail drive in the chain are
first cached in RAM, and then lazily moved to an SSD
cache dedicated to the tail drive. As a result, reads on
recently written data on the tail drive are served by the
RAM cache, and reads on older data on the tail drive are
served by the SSD tail cache. This caching design has
two important properties. First, it is tail-specific: it pre-
vents application reads from reaching the tail drive and
randomizing its workload, thus allowing writes to pro-
ceed sequentially without interference from reads. Based
on our analysis of server block-level traces, we found
that a RAM cache of 2GB and an SSD cache of 32GB
was sufficient to absorb over 86% of reads directed at
the 512GB tail drive of a Gecko chain for all the work-
load combinations we tried. Second, it’s two-tier struc-
ture allows overwrites to be coalesced in RAM before
they reach the SSD cache; as we show in our evaluation,
this can prolong the lifetime of the SSD by 2X to 8X
compared to a conventional caching design.

Chained logging has other benefits. Eliminating read-
write contention has the side-effect that writes no longer
slow down reads. As a result, chained logs can exhibit
higher read throughput for many workloads compared to
conventional RAID variants, since reads are served by ei-
ther the tail cache or the body of the log and consequently
do not have to contend with write traffic. Chained log-
ging can also be used to save power: when mirrored
drives are chained together, half the disks in the body
of the log can be safely switched off since they do not
receive any writes. This lowers the read throughput of
the log, but does not compromise fault-tolerance.

Importantly, Gecko is a log-structured block device
rather than a filesystem; as a result, any filesystem or
database can execute over it without modification. His-
torically, the difficulty of persistently maintaining meta-
data under the block layer has outweighed the benefits of
block-level logging, forcing such designs to incur meta-
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Figure 2: Throughput of 4-disk RAID-0 storage under N
sequential writers + 1 random writer.

data seeks on disk or restricting them to expensive en-
terprise storage solutions that can afford battery-backed
RAM or other forms of NVRAM [5, 6, 25, 19, 14].
Gecko is the first system to use a commodity MLC SSD
to store metadata for a log-structured disk array; accord-
ingly, it uses a new metadata scheme carefully designed
to exploit the access characteristics of flash as well as
conserve its lifetime.

This paper makes the following contributions. First,
we propose the novel technique of chained logging,
which provides the benefits of log-structured storage
(obliviousness to write-write contention) without suffer-
ing from its drawbacks (susceptibility to read-write con-
tention). Second, we describe the design of a block stor-
age device called Gecko that implements chained log-
ging, focusing on how the system utilizes inexpensive
commodity flash for caching and persistence over the
chained log structure. Third, we evaluate a software
implementation of Gecko, showing that chained logging
provides high, stable write throughput during GC activ-
ity, in contrast to log-structured RAID-0; it effectively
prevents reads from impacting write throughput by using
a tail-specific cache; and it outperforms log-structured
RAID-0 in terms of both read and write performance on
real workloads.

2 Motivation
In this section, we first motivate the problem of disk con-
tention in virtualized data centers. We then provide the
rationale for log-structured designs in such settings.

2.1 Disk Contention
Our focus is on settings where multiple applications
share common disk infrastructure on a single physi-
cal machine. A common example of such a setting
is a virtualized environment where multiple virtual ma-
chines (VMs) execute on a single machine and operate on
filesystems that are stored on virtual disks. The guest OS
within each VM is oblivious to the virtual nature of the

underlying disk and the existence of other VMs on the
same machine. In reality, virtual disks are implemented
as logical volumes or files in a host filesystem. While
performance isolation across VMs can be achieved by
storing each virtual disk in a separate disk or disk array,
this defeats the goal of virtualization to achieve efficient
multiplexing of resources. Accordingly, it is usual for
different virtual disks to reside on the same set of physi-
cal disks.

Disk virtualization leads to disk contention. A single
badly behaved application that continually issues random
I/O to a disk array can disrupt the throughput of every
other application running over that array [8]. As ma-
chines come packed with increasing numbers of cores
– and as cloud providers cram more tenants on a sin-
gle physical box – it becomes increasingly likely that
some application is issuing random I/O at any given
time, disrupting the overall throughput of the entire sys-
tem. In fact, throughput in such settings is likely to be
sub-optimal even if every application on the system is
well-behaved and perfectly sequential in its I/O behav-
ior, since the physical disk array sees a mix of multiple
sequential streams that is unlikely to stay sequential [10].

To illustrate these problems, we ran a simple experi-
ment on an 8-core machine with 4 disks configured as a
RAID-0 array. In the experiment, we ran multiple writers
concurrently on different cores to observe the resulting
impact on throughput. To make sure that the results were
not specific to virtual machines, we ran the experiments
with different levels of layering: processes writing to a
raw volume (RAW Disk), processes writing to a filesys-
tem (EXT4 FS), processes within different VMs writing
to a raw volume (VM + RAW disk), and processes within
different VMs writing to a filesystem (VM + EXT4 FS).
In the absence of contention (i.e., with a single sequential
writer), we were able to obtain 300 to 400MB/s of write
throughput in this setup, depending on the degree of lay-
ering. Adding more sequential writers lowered through-
put; with 8 writers, the system ran at between 120 and
300MB/s.

Figure 2 shows the impact on throughput of a sin-
gle random writer when collocated with sequential writ-
ers. We show measurements of system throughput for in-
creasing numbers of sequential writers, along with a sin-
gle random writer issuing 4KB writes. For any number
of sequential writers and any degree of layering, through-
put is limited to less than 25MB/s, representing an order
of magnitude drop compared to 300 to 400MB/s through-
put without the random writer. One interesting point is
that added layering improves throughput in the presence
of a random writer; we believe this is due to scheduling
intelligence in these layers that delays random I/O to im-
prove sequentiality, a hypothesis borne out by observed
I/O latencies.
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This graph is not meant to be a comprehensive picture
of contention in the cloud; rather, it illustrates how easy it
is for a single application to disrupt system throughput in
virtualized settings. Next, we look at how log-structured
systems can help.

2.2 Flash and the Return of Log-Structured Sys-
tems

Log-structured filesystems were introduced in the 90s on
the premise that the falling price of RAM would allow
for large, inexpensive read caches. Accordingly, work-
loads were expected to be increasingly write-dominated,
prompting designs such as LFS that converted slow ran-
dom writes into fast sequential writes to disk.

Today, a similar argument can be made for flash in-
stead of RAM. Flash drives have been steadily drop-
ping in price; today, raw flash costs around $1 per GB,
and SATA SSDs typically cost $2 per GB. Given this
trend, it is tempting to imagine that flash will soon re-
place disk, or more pragmatically, act as a write cache
for disk. Unfortunately, cheaper flash translates into less
reliable flash, which in turn translates into limited de-
vice lifetime. The two ways of lowering flash cost – de-
creasing process sizes and cramming more bits per flash
cell (i.e., MLC flash) – both result in much higher error
rates, straining the ability of hardware ECC to provide
disk-like reliability. As a result, lower costs have been
accompanied by lower erase cycle thresholds, which de-
termine the lifetime of the device when it is subjected
to heavy write workloads. In other words, the cost per
GB of flash has dropped, but not the cost per erase cy-
cle; for example, today’s MLC drives offer an order of
magnitude fewer erase cycles compared to drives made
from older SLC technology, while cutting price per GB
by 25% to 50%.

On the other hand, read caches are a more promis-
ing use of flash. Unlike primary stores or write caches,
read caches do not need to see every update immedi-
ately, but instead have leeway in deciding when (and
whether) to cache data. For example, a read cache might
wait for some time period before caching a newly written
block in order for overwrites to be coalesced, extending
flash longevity. It could also avoid caching data that’s
frequently overwritten but rarely read. Crucially, read
caches do not need to be durable and hence the lower re-
liability of flash over time is not as much of a barrier to
deployment; all that’s required is a reliable mechanism to
detect data corruption, which effectively translates into a
cache miss.

Accordingly, our core assumption is nearly identical
to that of the original LFS work: larger, effective (flash-
based) read caches will result in write-dominated work-
loads. Unfortunately, simply using LFS under a flash-
based read cache doesn’t work, because of two key prob-
lems. First, as noted earlier, LFS is notorious for its

garbage collection woes; GC reads (which are unlikely
to be caught by a read cache) can contend with first-class
writes, negating the positive effect of logging writes.
Second, even a small fraction of random reads sneak-
ing past the cache can interfere with write throughput. In
other words, LFS effectively prevents write-write con-
tention but is very susceptible to read-write contention,
both from GC reads and first-class reads. Our goal in this
paper is to build a log-structured storage design that pre-
vents both write-write as well as read-write contention.

In addition to caching reads, MLC flash further acts as
a catalyst for log-structured designs by providing an in-
expensive, durable metadata store. A primary challenge
for any log-structured system involves maintaining an in-
dex over the log. As a result, log-structured designs are
usually found at layers of the stack that already require
indices in some form, such as filesystems or databases.
Designs at the block-level with a logging component (or
indeed, any kind of indirection layer) have historically
been hamstrung by seeks on on-disk metadata, or predi-
cated on the availability of battery-backed RAM or NV-
RAM [5, 6, 25]. Consequently, such designs have been
restricted to expensive enterprise storage solutions. By
providing an inexpensive means of durably storing an
index and accessing it rapidly, MLC flash enables log-
structured designs at lower layers of the stack, such as
the block device.

3 Design
Gecko implements the abstraction of a block device, sup-
porting reads and writes to a linear address space of
fixed-size sectors. Underneath, this address space is im-
plemented over a chained log structure, in which a sin-
gle logical log is chained or concatenated across multi-
ple drives such that the tail of the log and its body are on
different drives. A new write to a sector in the address
space is sent to the tail of the log; if it’s an overwrite, the
previous entry in the log for that sector is invalidated or
trimmed. As the body of the log gets fragmented due to
such overwrites on the address space, it is cleaned so that
the freed space can be reused; importantly, this GC activ-
ity incurs reads on the body of the chained log, which do
not interfere with first-class writes occurring at the tail
drive of the log.

We first present the simplest possible instantiation of
chained logging in Gecko, and then describe more so-
phisticated features. Gecko is implemented as a block
device driver, occupying the same slot in the OS stack
as software RAID; as with RAID, it can also be imple-
mented in the form of a hardware controller. Gecko
maintains an in-memory map (implemented as a sim-
ple array) from logical sectors on the supported address
space to physical locations on the drives composing the
array. In addition, it maintains an inverse map (also a
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Figure 3: Metadata persistence in Gecko: mapping from
physical to logical addresses is stored on flash, with ac-
tively modified head and tail metadata buffered in RAM.

simple array) to find the logical sector that a physical
location stores; a special ‘blank’ value is used to indi-
cate that the physical location does not contain valid data.
Also, Gecko maintains two counters – one for the tail of
the log and one for the head – each of which indexes into
the total physical space available on the disk array.

When the application issues a read on a logical sector
in the address space, the primary map is consulted to de-
termine the corresponding physical location. When the
application writes to a logical sector, the tail counter is
checked and a write I/O is issued to the corresponding
physical location on the tail drive. Both the primary map
and the inverse map are then updated to reflect the link-
age between the logical sector and the physical location,
and the tail counter is incremented.

In the default form of GC supported by Gecko, data
is constantly moved from the head of the chained log to
its tail in order to reclaim space; we call this ‘move-to-
tail’ GC. A cleaning process examines the next physical
entry at the head of the log, checks if it is occupied by
consulting the inverse map, and if so re-appends it to the
tail of the log. It then increments the head and (if the
entry was moved) the tail counter.

The basic system described thus far provides the main
benefit of log chains – logging without interference from
GC reads – but suffers from other problems. It does
not offer tolerance to power failures or to disk fail-
ures. While GC writes do not drastically affect first-class
writes, they do occur on the same drive as application
writes and hence reduce write throughput to some extent.
Further, the system is susceptible to contention between
application reads and writes: reads to recently written
data will go to the tail disk and disrupt first-class writes.
Below, we discuss solutions to address these concerns.

3.1 Metadata
The total amount of metadata required by Gecko can eas-
ily fit into RAM on modern machines; to support a mir-
rored 4TB address space of 4KB sectors (i.e., 1 billion
sectors) on an 16TB array, we need 4GB for the primary
map (1 billion 4-byte entries), 8GB for the inverse map
(2 billion 4-byte entries) and two 4-byte counters. How-
ever, a RAM-based solution poses the obvious problem
of persistence: how do we recover the state of the Gecko
address space from power failures?

One possibility is to store some part of the metadata
on an SSD. An obvious candidate is the primary map,
which is sufficient to reconstruct both the inverse map
and the tail / head counters. Random reads on SSDs are
fast enough (at roughly 200 microseconds) to exist com-
fortably in the critical path of a Gecko read. However,
the primary map has very little update locality; a series of
Gecko writes can in the worst case be distributed evenly
across the entire logical address space. As a result, the
metadata SSD is subjected to a workload of random 4-
byte writes, which can wear it out very quickly.

Instead, Gecko provides persistence across power fail-
ures by storing the inverse map on an SSD, as shown in
Figure 3. Each 4KB page on the SSD stores 1024 entries
in the physical-to-logical map; we call this a metadata
block. Accordingly, the larger log on the address space
of the disk array is reflected at much smaller scale (a fac-
tor of 1K smaller) on the address space of the SSD. The
ith 4-byte entry on the SSD is the logical address stored
in the ith physical sector on the disk array. On a brand-
new Gecko deployment, each such 4-byte metadata entry
on the SSD is set to the ‘blank’ value, indicating that no
valid data exists at that physical location on the array.

Gecko buffers a small number of metadata pages (in
the simplest case, just one page) corresponding to the tail
of the log in RAM; accordingly, as first-class writes are
issued on the logical address space, these buffered meta-
data pages are modified in-memory. The metadata pages
are flushed to the SSD when all entries in them have been
updated, with the important condition that these flushes
occur in strict sequential logging order. Correspondingly,
Gecko also buffers the metadata pages at the head of the
log during GC, which updates metadata entries to point
to the ‘blank’ value. As a result of the flush-in-order con-
dition, at any moment in time the SSD consists of two
contiguous segments: one containing ‘blank’ entries and
one with non-‘blank’ entries. As a result, on recovery
from power failure, it is a simple task to reconstruct not
only the primary map but also the head and tail coun-
ters, since they are simply the beginning and end of the
contiguous non-‘blank’ segment.

The metadata buffering scheme described above
avoids small random writes to the SSD due to the perfect
update locality of the inverse map. However, it does in-
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troduce a window of vulnerability; all buffered metadata
is lost on a power failure. A useful property of Gecko’s
log-structured design is that any such data loss is con-
fined to a recent suffix of the log; in other words, the
logical drive supported by Gecko simply reverts to an
earlier (but consistent) state. If the application does want
to guarantee durability of data, it can issue a ‘sync’ com-
mand to the Gecko block device, which causes Gecko
to flush its current metadata page ahead of time to the
SSD (and do an overwrite subsequently when the rest of
the metadata page is updated). Alternatively, if Gecko
is implemented as a hardware controller, battery-backed
RAM or supercapacitors can be used to store the meta-
data pages being actively modified.

Under normal operation, this solution imposes a gen-
tle, sequential workload on the SSD. The SSD only sees
two 4KB page writes (one to change the entry from
‘blank’ to a valid location, and another to change it back
during GC) for every 1024 4KB writes to the Gecko
array. One of these writes can be avoided if the SSD
supports a persistent trim command [16], since metadata
blocks at the head can be trimmed instead of changed
back to ‘blank’. In the example above of a 16TB disk
array with a mirrored 4TB address space, an 8GB SSD
with 10K erase cycles (which should cost somewhere be-
tween $8 and $16 at current flash prices) should be able
to support 10K times 8TB of writes, or 80PB of writes.

3.2 Caching
In Gecko the role of caching is multi-fold: to reduce read
latencies to data, but also to prevent application reads
from interfering with writes (read-write contention). In
conventional storage designs, it is difficult to predict
which data to cache in order to minimize read-write con-
tention. In contrast, eliminating read-write contention in
Gecko is simply a matter of caching the data on the tail
drive in the system, thus avoiding any disruption to the
write throughput of the array.

To do so, Gecko uses a combination of RAM and an
SSD (this can be a separate volume created on the same
SSD used for storing metadata, or a separate SSD). When
data is first written to a Gecko volume, it is sent to the tail
drive and simultaneously cached in RAM. As a result, if
the data is read back immediately, it can be served from
RAM without disturbing sequentiality of the tail drive.
As the tail drive and RAM cache continue to accept new
data, older data is evicted from the RAM cache to the
SSD cache in simple FIFO order (taking overwrites on
the Gecko logical address space into account), and the
SSD cache in turn uses an LRU-based eviction policy.

This simple caching scheme also prolongs the lifetime
of the SSD cache by coalescing overwrites in the RAM
cache. It is partly inspired by the technique of using a
hard disk as a write cache for an SSD [23], and similarly
extends the lifetime of the SSD by 2X to 8X.

Additionally, Gecko can optionally use RAM and SSD
(again, another volume on the same SSD or a different
drive) as a read cache for the body of the log, with the
goal of improving read performance on the body of the
log. In the rest of the paper, we use the term ‘SSD cache’
to refer to the tail cache, unless explicitly specified oth-
erwise.

3.3 Smarter Cleaning
Thus far, we have described the system as using move-to-
tail GC, a simple cleaning scheme where data is moved in
strict log order from the head of the log to its tail. While
this scheme ensures that GC reads do not interfere with
write throughput, GC writes do impact first-class writes
to some extent. In particular, GC writes in move-to-tail
GC do not disrupt the sequentiality of the tail drive, but
instead take up a proportion of the sequential bandwidth
of the drive; in the worst case where every element in the
log is valid and has to be re-appended, this proportion
can be as high as 50%, since every first-class write is
accompanied by a single GC write.

To prevent GC writes from interfering with first-class
writes, Gecko supports a more sophisticated form of
GC called ‘compact-in-body’. The key observation in
compact-in-body is that any valid entry in the body of
the log can be moved to any other position that succeeds
it in the log without impacting correctness. Accordingly,
instead of moving data from the head to the tail, we move
it from the head to empty positions in the body of the log.

The cleaning process for compact-in-body GC is very
similar to that of move-to-tail GC. It examines the next
physical entry at the head of the log, checks if it is occu-
pied by consulting the inverse physical-to-logical map,
and if so, finds a free position in the body of the log
between the current head and current tail. It then in-
crements the head counter but leaves the tail counter
alone (unless no free positions were found in the body
of the log, forcing the update to go to the tail). Finding
a free position requires the cleaning process to period-
ically scan ahead on the inverse map and create a free
list of positions. These scans occur on the metadata SSD
rather than the disk array and hence do not impact read
throughput on the body of the log.

Compact-in-body has the significant benefit compared
to move-to-tail that GC activity is now completely inde-
pendent of first-class writes. It creates space at the head
of the log by moving data to the body of the log rather
than its tail, and hence does not use up a proportion of
the write bandwidth of the tail drive. In addition, it re-
quires no changes to the metadata or caching schemes
described above.

However, as described, compact-in-body does have
one major disadvantage; it randomizes the workload seen
by the metadata SSD, since we are moving data from the
head to free positions in the log, which could be ran-
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domly distributed. In practice, the difference in write
bandwidth of a Gecko chain running move-to-tail GC
versus compact-in-body GC is at most a factor of two,
since move-to-tail GC uses up 50% of the tail drive’s
write bandwidth in the worst case whereas compact-in-
body does not use any. Accordingly, we provide users
the option of using either form of GC, depending on
whether they want to maximize write bandwidth or min-
imize SSD wear.

3.4 Discussion
Chain Length: As mentioned previously, chained log-
ging is based on the premise that the sequential write
throughput of a single, uncontended drive is preferable to
the overall throughput of multiple, contention-hit drives.
This argument obviously does not scale to a large number
of drives; beyond a certain array size, the random write
throughput of the entire array will exceed the sequential
throughput of a single drive. The shorter the length of
the chain, the more likely it is that chained logging will
outperform conventional RAID-0 over the same number
of drives.

However, longer chains have other benefits, such as
the improved read throughput that results from having
multiple disk heads service the body of the log. Another
reason for longer chains is that it allows capacity to be
added to the physical log. This capacity can be used to
either extend the size of the supported address space, or
to lower garbage collection stress on the same address
space. In practice, we find that chains of two to four
drives provide a balance between write throughput, read
throughput and capacity.

Multiple Chains: We expect multiple Gecko chains
to be deployed on a single system; for example, a 32-core
system with 24 disks might have four mirrored chains of
length 3, each serving a set of 8 cores. A single metadata
SSD can be shared by all the chains, since the metadata
has a simple one-to-one mapping to the physical address
space of the entire system. A single cache SSD can be
partitioned across chains, with each chain using a 32GB
cache.

On a large system with multiple chains, each chain can
be extended or shortened on the fly by moving drives
to and from other chains, as the occupancy (and con-
sequently, GC demands) of the supported address space
and the read/write ratio of the workload change over
time. Read-intensive workloads require more disks to
be dedicated to the body of the chain.

System Cost: The design described thus far requires:
an SSD read cache for the tail, an SSD read cache for the
body, a metadata SSD, and a few GB of RAM per chain.
Consider an array of 30 512GB drives (15TB in total), or-
ganized into 5 mirrored chains of length 3. Based on our
experience with Gecko, each such chain requires 2GB of
RAM, 32GB of flash for the tail cache, 32GB of flash

for the body cache, and 1.5GB of flash for metadata; the
total for 5 chains is 10GB RAM and around 340GB of
flash. At current RAM and flash prices, this amounts to
less than $500, a reasonably small fraction of the total
cost for such a system.

Mirroring: As described earlier, a Gecko chain can
consist of mirrored drive pairs. Mirroring is very sim-
ple to implement; since the drives are paired determin-
istically and kept perfectly synchronized, none of the
Gecko data structures need to be modified. Some benefits
of mirroring are obvious, such as fault tolerance against
drive failures and higher read throughput. A more subtle
point is that Gecko facilitates power saving when used
over mirrored drives. Since writes in chained logs only
happen at the tail, drives in the body of the log can be
powered down as long as one mirror stays awake to serve
reads. In a chain consisting of three mirrored pairs, two
drives (or a third of the array) can be powered down
without affecting data availability. With longer chains,
a larger fraction of the array can be powered down.

Additionally, Gecko can potentially perform decou-
pled GC on mirrors, allowing one drive to serve first-
class reads while cleaning the other drive. This compli-
cates the metadata structures maintained by Gecko, both
in RAM as well as the metadata SSD, since it needs to
now maintain state for each drive separately. Due to the
increased complexity of this option, we chose not to ex-
plore it further.

Striping: Gecko can also be easily combined with
striping, simply by having each drive in the chain be a
striped RAID-0 volume. This allows a single Gecko ad-
dress space to scale to larger numbers of drives. One
implication of striping is that the tail drive(s) now have
much greater capacity and may require proportionally
larger SSD caches to prevent reads from impacting them.
Other RAID variants such as RAID-5 and RAID-6 can
be layered in similar fashion under Gecko without any
change to the system design.

4 Evaluation
We have implemented Gecko as a device driver in Linux
that exposes a block device to applications. This de-
vice driver implements move-to-tail GC and a simplis-
tic form of persistence involving checkpointing all meta-
data to an SSD every few minutes. In addition, we also
implemented a user-space emulator to test the more in-
volved aspects of Gecko, such as the metadata logging
design for persistence described in Section 3.1, compact-
in-body GC, and different caching policies. All our ex-
periments were conducted on a system with a 12-core
Intel Xeon processor, 24GB RAM, 15 10K RPM drives
of 600GB each, and a single 120GB SSD.
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Figure 4: Gecko (Top) offers steady, high application throughput (60MB/s or 15K IOPS) for a random write workload
during GC with a 50% trim pattern (Left) and a 0% trim pattern (Right). Log-structured RAID-0 (Bottom) suffers
application throughput collapse to 10MB/s for 50% trims (Left) and provides 40MB/s for 0% trims.

Our main baseline for comparison is a conventional
log layered over either RAID-0 or RAID-10 (which we
call log-structured RAID-0 / RAID-10), comparable re-
spectively to the non-mirrored and mirrored Gecko de-
ployments. For instance, an array of six drives may be
configured as a 3-drive Gecko chain, where each drive
is mirrored; for this, the comparison point would be a
log-structured RAID-10 volume with three stripes, each
of which is mirrored. To implement this log-structured
RAID design, we treat the entire array as a single RAID-
0 or RAID-10 volume and then run a single-drive Gecko
chain over it; this ensures that we use identical, opti-
mized code bases for both Gecko and the baseline. When
appropriate, we also report numbers on in-place (as op-
posed to log-structured) RAID-0, though most of our
workloads have enough random I/O that in-place RAID-
0 only offers a few MB/s and is not competitive.

Our evaluation focuses on three aspects of Gecko.
First, we show that a Gecko chain implementing move-
to-tail GC is capable at operating at high, stable write
throughput even during periods of high GC activity under
an adversarial workload, whereas the write throughput of
log-structured RAID-0 drops drastically. This validates
our claim that Gecko write throughput does not suffer
from contention with GC reads. Second, we show that
our RAM+SSD caching policies are capable of eliminat-
ing almost all first-class reads from the tail drive for a
majority of tested workloads, while preserving the life-
time of the SSD cache. Thus, we show that Gecko write
throughput does not suffer from contention between ap-
plication reads. Finally, we play back real traces on a
Gecko deployment and show that Gecko offers higher

write throughput as well as higher read throughput com-
pared to log-structured RAID-10.

4.1 Write Throughput with GC
To show that Gecko can sustain high write throughput
despite concurrent GC, we ran a synthetic workload of
random writes from multiple processes over the block
address space exposed by the Gecko in-kernel imple-
mentation. In this experiment, we used a 2-drive, non-
mirrored Gecko chain and a conventional log layered
over 2-drive RAID-0. Midway through the workload,
we turned on GC for Gecko and measured the resulting
drop in total and application throughput. For the log-
structured RAID-0, we triggered GC for the same time
period as Gecko. Figure 4 (Top) shows Gecko through-
put for different trim patterns in the body of the log; e.g.,
a trim pattern with 50% valid data has half the blocks in
the body of the log marked as invalid, while the other
half is valid and has to be moved by GC to the tail.

As shown in the figure, Gecko throughput remains
high and steady during GC activity, while application
throughput drops proportionally to accommodate GC
writes. We trigger GC to clear a fixed amount of phys-
ical space in the log; as a result, the 50% trim pattern
(Top Left) has a GC valley that is approximately half as
wide as that of the 0% trim pattern (Top, Right), since it
moves exactly half the amount of data. The two different
trim patterns on the body of the log do not impact Gecko
write throughput in any way, showing that the strategy of
decoupling the tail of the log from its body succeeds in
shielding write throughput from GC read activity.

In contrast, the log-structured RAID-0 in Figure 4
(Bottom) performs very poorly when GC is turned on for
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Figure 5: With compact-in-body GC (CiB), a log chain
of length 2 achieves 120MB/s application throughput on
random writes with concurrent GC on 50% trims.

the 50% trim pattern; throughput collapses drastically to
the 10MB/s mark. Counter-intuitively, it performs bet-
ter for 0% trim pattern; even though more data has to
be moved in this pattern, the GC reads to the drive are
sequential, causing less disruption to the write through-
put of the array. An important point is that Gecko cleans
2X to 3X the physical space compare to log-structured
RAID-0 in the same time period: the top Gecko graphs
show almost 4GB of log space being reclaimed while the
bottom log-structured RAID-0 graphs show reclamation
of approximately 1.5 GB of log space in a 40 second
(Left) and 60 second (Right) period.

One point to note is that Gecko does suffer from a drop
in application throughput, or goodput, due to GC. In the
worst case where all data is valid and has to be moved
(shown in the top right figure), application throughput
can drop by exactly half. This represents a lower bound
on application throughput, since in the worst case ev-
ery new write requires a single GC write to clear up
space in the physical log. Accordingly, Gecko applica-
tion throughput is bounded between 60MB/s (half the se-
quential bandwidth of a single drive) and 120MB/s (the
full sequential bandwidth of a drive), with the exact per-
formance depending on the size of the supported logical
address space, as well as the pattern of overwrites ob-
served by it. Not shown in the figure is in-place RAID-
0, which provided only a few MB/s under this random
writes workload, as expected.

Next, we ran the Gecko emulator in compact-in-body
mode as well as move-to-tail mode for a random write
workload with a 50% trim pattern. Figure 5 shows that
compact-in-body GC allows application writes to pro-
ceed at the full sequential speed of the tail drive during
GC activity. As discussed previously, this performance
benefit comes at the cost of erase cycles on the metadata
SSD; accordingly, we do not explore compact-in-body
GC further.

4.2 Caching the tail
Having established that Gecko provides high write
throughput in the presence of GC activity, we now fo-

Raw Trace GB of Writes
A. DevDivRelease 176.1
B. Exchange 459.6
C. LiveMapsBE 558.2
D. prxy 778.6
E. src1 883.7
F. proj 342.2
G. MSNFS 102.3
H. prn 76.8
I. usr 95.7

Combination 0 – 7: any 8 from {A,...,I}
Combination 8 – 20: any 4 from {A,...,E}

Table 1: Workload Combinations: from 9 raw traces, we
can compose 8 8-trace combinations and 13 4-trace com-
binations that write at least 512GB of data.

cus on contention between first-class reads and writes.
We show that Gecko can effectively cache data on the
tail drive in order to prevent contention between first-
class reads and writes. In these experiments, we use
block-level traces taken from the SNIA repository [1];
specifically, we use the Microsoft Enterprise, Microsoft
Production Server and MSR Cambridge trace sets. Run-
ning these traces directly over Gecko is unrealistic, since
they were collected on non-virtualized systems. Instead,
we run workload combinations by interleaving I/Os from
sets of either 4 or 8 traces, to emulate a system running
different workloads within separate virtual machines.
We play each trace within its own virtual address space
and concatenate each of these together to obtain a single
logical address space.

To study the effectiveness of Gecko’s tail caching, we
ran multiple such workload combinations over our user-
space Gecko emulator, starting with an empty tail drive.
We then measured the hit rate of Gecko’s hybrid cache
consisting of 2GB of RAM and a 32GB SSD. Recall that
new writes in Gecko go to the tail drive and are simulta-
neously cached in RAM, and subsequently evicted from
RAM to the SSD. A cache hit is when data that resides
on the tail drive is also found in either RAM or the SSD;
conversely, a cache miss occurs when data that resides in
the tail drive is not found in RAM or the SSD, necessitat-
ing a read from the tail drive. Note that any read to data
that does not exist on the tail drive is ignored in this par-
ticular experiment, since it will be serviced by the body
of the log without causing read-write contention.

To avoid overstating cache hit rates, we needed each
workload combination to write at least 512GB (i.e., the
size of the tail drive); as we show later, cache hit rates are
very high as we start writing to the tail drive, but drop
as it fills up. From the 21 SNIA traces, we found 8 8-
trace combinations that lasted at least 512GB (which we
number 0 to 7), and 13 4-trace combinations that lasted
at least 512GB (which we number 8 to 20), for a total
of 21 workload combinations of at least 512GB each.

9
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Figure 6: Effectiveness of tail caching on different work-
load combinations with a 2GB RAM + 32GB SSD cache.
The hit rate is over 86% for all 21 combinations, over
90% for 13, and over 95% for 6.
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Figure 7: Average, min and max hit rates of tail caching
across workload combinations as the tail drive fills up.

These workload combinations used 9 of the 21 raw SNIA
traces, as shown in Table 1; the remaining 12 raw traces
did not have enough writes to be useful for this caching
analysis.

Figure 6 shows cache hit rates – for just the 2GB
RAM cache as well as for the combined 2GB+32GB
RAM+SSD cache – for these 21 workload combinations,
measured over the time that the 512GB tail drive is filled.
The hit rate is over 86% for all tested combinations, over
90% for 13 of them, and over 95% for 6 of them. This
graph validates a key assumption of Gecko: the tail drive
of a chained log can be cached effectively, preventing
application reads from disrupting the sequential write
throughput of the log.

Next, we measured how the cache hit rate changes
over time as the tail drive fills up. Figure 7 shows the
average hit rate across the 21 workload combinations for
the RAM+SSD cache, in each consecutive 100GB inter-
val on the tail drive (the error bars denote the min and
the max across the workload combinations). The hit rate
is extremely high for the first 100GB of data, as the total
amount of data on the tail drive is not much bigger than
the cache. As expected, the hit rate dips as more data is
stored on the tail. Note that Figure 6 previously showed
the cumulative hit rate over 512GB of writes, whereas
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Figure 8: Gecko’s hybrid caching scheme for its tail
drives increases the lifetime of the SSD read cache by at
least 2X for all 21 workload combinations, and by more
than 4X for 13 combinations.

this figure shows the hit rate for each 100GB interval sep-
arately.

We claimed earlier that Gecko’s two-tier RAM+SSD
caching scheme could prolong the lifetime of the SSD
compared to an SSD-only cache by coalescing over-
writes in RAM. Following the methodology in [23], we
calculate the lifetime of an SSD by assuming a one-to-
one ratio between page writes sent to the SSD and erase
cycles used per page, and assuming that the SSD sup-
ports 10,000 block erase cycles. Under these assump-
tions, a constant 40MB/s workload will wear out a 32GB
SSD in approximately 3 months; accordingly, this would
be the lifetime of a conventional SSD-based write or
read cache if the system were written to continuously at
40MB/s.

By using a RAM+SSD read cache and coalescing
overwrites in RAM, we decrease the number of writes
going to the SSD by a factor of 2X to 8X for different
workload combinations. In Figure 8, we plot the num-
ber of days the SSD lasts with write coalescing, under
the assumptions previously stated. For some workload
combinations, we are able to stretch out the SSD lifetime
to over two years even at this high 40MB/s update rate;
for all of them, we at least double the SSD lifetime. A
simple linear relationship exists between these numbers
and the average data rate of the system; at 20MB/s, for
instance, the SSD will last twice as long. Alternatively,
we can use larger capacity SSDs to extend the SSD re-
placement cycle: e.g. with a 64GB SSD, the cycle can
double if one uses the first half until it wears out and then
uses the other half.

4.3 Gecko Performance for Real Workloads
To show that effective tail-caching results in better per-
formance, we played two 8-trace combinations – specifi-
cally, the ones with the highest and lowest cache hit rates
– over the Gecko implementation. In this experiment, we
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Figure 9: Gecko (Left) offers 2X to 3X higher throughput than log-structured RAID-10 (Right) on a highly cacheable
(Top) and less cacheable (Bottom) workload combination for writes as well as reads.

played each trace combination as fast possible, issuing
the appropriate I/Os to either the SSD cache or disk. We
used a single outstanding I/O queue of size 24 for each
trace in the combination, shared by reads and writes.

For Gecko, we used a 3-drive mirrored chain with a
2GB RAM + 32GB SSD tail cache and a separate 32GB
SSD cache for the body of the log. For comparison, we
used a conventional log over a 6-drive RAID-10 volume
with a single unified cache for the entire array, consisting
of 2GB RAM and 64GB SSD.

In the experiment, we played the trace combination
forward until 200GB of the tail was filled before tak-
ing measurements, to ensure that we obtained average
caching performance on the tail. Reads on logical ad-
dresses that had not yet been written were directed to
random locations on the body of the log.

Figure 9 shows the total read plus write throughput of
the system as well as just write throughput over a 120
second period. On top we show the highly cacheable
workload combination; on bottom we show the less
cacheable one. On the left we show Gecko performance,
while on the right we show the performance of log-
structured RAID-10. No GC activity was triggered con-
currently, in order to isolate the impact of first-class reads
on performance.

At a basic level, it’s clear that Gecko outperforms log-
structured RAID-10 by 2X to 3X on both workloads.
Gecko offers lower write performance than expected,
since write throughput is not pegged at 120MB/s; this is
an artefact of our trace playback process, since our fixed-
size window of I/Os ends up clogged with the slower
reads on the body of the log, preventing new writes from
being issued. Surprisingly, Gecko offers much better
read performance than log-structured RAID-10, again

by a factor of 2X to 3X; in effect, separating reads and
writes has a positive effect on reads, which do not have to
contend with write traffic anymore. Especially, all fresh
reads that are not cached from recent writes contend with
writes in both cache and disks for log-structured RAID-
10 and this significantly lowers the throughput for both
reads and writes. An interesting point is that both work-
loads are highly cacheable for reads; our classification of
these workloads as highly cacheable and less cacheable
was based on the cacheability of the tail drive, which
does not seem to correlate to the cacheability of the body.

To test the performance under GC, we triggered move-
to-tail GC in the same setup as in Figure 9 with 700GB of
data pre-filled. Approximately 75% of data was trimmed
for both workloads and the average total throughputs of
Gecko dropped to 65MB/s and 62MB/s for highly and
less cacheable workloads respectively due to contention
between first-class reads and GC reads. However, Gecko
still outperformed log-structured RAID-10 performing
GC by over 2X to 3X. The average application through-
puts of Gecko were 33MB/s and 27MB/s whereas those
of log-structured RAID-10 were 13MB/s and 12MB/s for
the respective workloads.

Finally, we plot the impact of chain length on through-
put in Figure 10. We run the highly cacheable work-
load from the previous experiments on Gecko and log-
structured RAID-0, measuring read and write through-
put while increasing the number of drives used with-
out GC. In Gecko, more drives in the array translates
into more drives in the body of the chain, while for log-
structured RAID-0 it provides more disks to stripe over.
As the graph shows, a single Gecko chain outperforms
log-structured RAID-0 for both reads and writes even
on a 7-disk array. Essentially, two key principles in the
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Figure 10: A Gecko chain outperforms log-structured
RAID-0 even on 7 drives: one uncontended disk for
writes is better than many contention-prone disks.

Gecko design continue to hold even for long chains: a
single uncontended disk arm is better for write perfor-
mance than multiple contended disk arms; and segregat-
ing reads from writes enables better read performance.

5 Related Work
Log-structured storage has a long and interesting history,
starting with the original LFS paper [18]. Much of the
work on LFS in the 90s focused on its shortcomings re-
lated to garbage collection [20, 13, 21]. Other work, such
as Zebra [11], extended LFS-like designs to distributed
storage systems. Attempts to distribute logs focused en-
tirely on striping logs over multiple drives, as opposed to
the chained log design we present.

More recently, contention in data centers has received
increasing attention. Lithium [10] uses a single on-disk
log structure to support multiple VMs, much as Gecko
does, but layers this log conventionally over RAID and
does not offer any new solutions to the problem of read-
write contention. The authors do make two relevant
points: first, that replicated workloads are even more
likely to be write-dominated, and second, that the inabil-
ity of log-structured designs to efficiently service large,
sequential reads is unlikely to matter in virtualized set-
tings where such reads are rare due to cross-VM inter-
ference. Parallax [15] supports large numbers of virtual
disks over a shared block device, but focuses on features
such as frequent snapshots rather than performance un-
der contention. PARDA [7] is a system that provides fair
sharing of a storage array across multiple VMs, but does
not focus as we do on improving aggregate throughput
under contention.

Log-structured designs have made a strong comeback
in recent years. One reason is the emergence of flash,
which requires a log-structured design to minimize wear-
out. Not only do individual SSDs layer an address space
over a log, but filesystems designed to run over SSDs are
often log-structured to minimize the stress on the SSD’s
internal mapping mechanisms [2]. New log-structured

designs have emerged as flash becomes mainstream; for
instance, [3] uses an off-path sequencer to implement
a distributed, shared log over a flash cluster. Another
reason for the return of log-structured designs is the in-
creased prevalence of geo-distributed systems, where the
intrinsic ordering properties of logs provide consistency-
related benefits [24].

Gecko is inspired heavily by a long line of block-
level storage designs, starting with RAID [17]. Such
designs typically introduced a layer of indirection at
the block level for higher reliability and better per-
formance; for instance, the Logical Disk [6] imple-
mented a log-structured design at the block level for
better performance. Log-structured arrays [14] layered
a log-structured design over a RAID-5 array. HP Au-
toRAID [25] switched dynamically between RAID-1 and
RAID-5 for hot and cold data, respectively. Petal [12]
extended this design to a distributed setting, maintaining
an indirection map that could support arbitrary mappings
between a logical address space and physical disks. Such
systems typically used battery-backed RAM for persist-
ing block-level metadata [19, 14]. While Gecko is sim-
ilar to these systems in philosophy, it benefits from the
ready availability of commodity flash for achieving per-
sistence, but consequently has to work around the wear-
related limitations of flash. Finally, we explored this de-
sign previously in a workshop paper, without a working
system or evaluation [22].

6 Conclusion
A number of factors herald a second coming for log-
structured storage designs: the emergence of cloud com-
puting, the prevalence of many-core machines, and the
availability of flash-based read caches. Log-structured
designs have the potential to be a panacea for storage
contention in the cloud; however, they continue to be
plagued by the cleaning-related performance issues that
held back widespread deployment in the 90s. Gecko at-
tempts to solve this long-standing problem by separat-
ing the tail of the log from its body, thus isolating clean-
ing activity completely from application writes. A ded-
icated cache for the tail drive prevents first-class reads
from interfering with writes. Using these mechanisms,
Gecko offers the benefits of a log-structured design with-
out its drawbacks, presenting system designers with a
contention-oblivious storage option in the cloud.
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