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Abstract
We consider the problem of migrating user data be-

tween data centers. We introducedistributed storage
overlays, a simple abstraction that represents data as
stacked layers in different places. Overlays can be readily
used to cache data objects, migrate these caches, and mi-
grate the home of data objects. We implement overlays as
part of a key-value object store called Nomad, designed to
span many data centers. Using Nomad, we compare over-
lays against common migration approaches and show that
overlays are more flexible and impose less overhead. To
drive migration decisions, we propose policies for pre-
dicting the location of future accesses, focusing on a web
mail application. We evaluate the migration policies using
real traces of user activity from Hotmail.

1 Introduction
Internet web applications are increasingly important to

our everyday lives, as we rely on them for email, search-
ing, online storage, online calling, and much more. These
applications face a data scalability challenge that is get-
ting worse, for two reasons. First, there is a growing num-
ber of users in an increasing number of regions. And
second, the storage needsper userare growing as more
applications become available online, users accumulate
more data, and systems collect more information from
users to target ads and personalize their experience. As
a result, these applications need to begeo-distributed,
which means they are deployed across multiple data cen-
ters around the world, due to constraints on the size, band-
width, and power consumption of a single data center. Be-
sides providing scalability, geo-distribution also allows a
user to be served from a nearby data center, thereby re-
ducing user response times and bandwidth consumption.
For that, the user’s data should be at the right data cen-
ter, namely, a data center close to the user. This is called
access locality.

Unfortunately, data is not always where it should be:
users relocate, and the load at data centers becomes un-
balanced due to new applications, new data centers, and
changes in the network topologies. In these cases, user
data needs to be migrated from one location to another;
migration is essential to provide access locality and to
balance load. This paper considers the problem of migrat-
ing data across data centers. We propose a simple abstrac-
tion calleddistributed data overlayor overlay in short1,
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which represents data as stacked layers stored in different
places. Overlays are a flexible way to support data migra-
tion; they can be used to cache data at remote data centers,
migrate these caches from one data center to another, and
migrate thehomeof a data object—the data center where
the object is stored when it is not cached. If data is repli-
cated across data centers, overlays can be used to migrate
individual replicas.

With overlays, migration can be performedonline, that
is, while the data is accessible to users. This is important
for three reasons. First, user data can be massive and the
bandwidth across data centers is limited, so that migration
can take a long time and we do not wish to disable the
user account during migration. Second, we want to mi-
grate data opportunistically in the background, using pos-
sibly small amounts of left-over bandwidth. This is so be-
cause large companies such as Microsoft pay for private
links with fixed bandwidth to connect data centers, which
means that unused bandwidth is wasted money. Third, the
policies of when to migrate data can be complex, and we
do not want to complicate them further with constraints
and predictions of when users will access their data.

Online migration is challenging due to races; it requires
careful coordination as clients in the network read and
write data while the migration process copies the data and
the system possibly creates, flushes, and removes caches
at remote locations. Overlays are an easy, flexible, and ef-
ficient way to handle this coordination, as we demonstrate
in this paper.

We implement overlays in a system called Nomad,
which is a key-value object store that supports online mi-
gration. Key-value stores were recently proposed to sup-
port large-scale applications in data centers (e.g., [16]).
Though Nomad is a key-value store, overlays are appli-
cable to other types of storage, such as distributed linear-
address stores [9], block stores [31], and file systems.

We evaluate the mechanism for migration using a wide-
area deployment on five data centers around the world.
Our experiments show that overlays impose a small over-
head and provide flexibility for supporting caching and
migration. They also show that overlay-based migration is
more efficient than existing methods based on data lock-
ing and logging.

The mechanism for migration is independent of the
policies used to trigger migration. We study some sim-
ple policies that track the location of users as they move.
We evaluate these policies using real traces of user ac-
cesses; we compare policies based on access count, time,



and rate, and we show that, although they are all reason-
able, the one based on count performs the best.
Summary of contributions. We consider the problem of
building distributed storage systems deployed over many
data centers, with support for flexible online migration
of data across data centers. We propose distributed data
overlays, a simple but flexible abstraction designed to
hide the complex distributed protocols (which we pro-
vide) required to coordinate access to data at many lo-
cations. We also propose policies for driving the migra-
tion of user data, and evaluate them using real traces from
Hotmail. We implement overlays to produce the Nomad
system, and use it to compare our approach against less
flexible but common alternatives for storage migration.

2 Background
There are many data centers around the world, each

with thousands or more machines, subject to crash fail-
ures. We do not consider Byzantine failures in this paper.
We target a setting where partitions across data centers
are rare in the absence of disasters. This can be achieved
by connecting data centers via private leased lines with
high availability [1,2]; by using redundant links to main-
tain operation during planned link downtime (e.g., using
a ring topology across data centers); and by routing traffic
via the Internet should all the redundant links become un-
available. The data centers run web applications that store
user data, such as these:

Application User data
web mail emails
web phone voice mails
web storage personal files
chat text/image history
search search history
ALL profile, activity logs

This data should often be stored at a data center closest
to the user, where the user logs into. Migration refers to
moving the data from one data center to another—to im-
prove access locality or to balance load across data cen-
ters.Online migration means that, during migration, the
data remains accessible to the applications.

We now illustrate some migration use cases with three
scenarios; we later explain overlays and how they sup-
port these use cases. In these scenarios, “user data” refers
to the data specific to a user that an application needs to
serve that user. For example, it could be the user’s emails.

Scenario 1 (A long trip to China):A French user goes
to China. After several days, the system starts to migrate
her user data to China. If she goes back, the French copy
is updated with any changes made in China. If she stays
in China longer, all her data is migrated and the French
copy is deleted.

Scenario 2 (Backpacking in Asia):The French user
makes a short trip to China and, soon after, the system
creates a cache at a data center in China containing her

recent user data (e.g., recent emails). She then travels to
Russia, and so the system migrates the cache in China to
a data center in Russia. She stays in Russia for some time,
and so the system starts to migrate her data from France
to Russia, which takes several days. Before the migration
is over, she returns to France, so the system applies all
updates done in China and Russia to her data in France.

Scenario 3 (Data center expansion):A data center in
France is nearing maximum storage capacity, and so a
data center in Spain is created and the system migrates
some users from France to Spain. During this migration,
the two above scenarios may happen with some of the
users being migrated from France to Spain.

More generally, migrations can beephemeralor per-
manent. Ephemeral migrations are reversed in the future;
they are implemented by creating a cache of the user data
at a new location and possibly pre-fetching parts of the
data. Later, the cache is flushed if it has dirty data and then
removed. Permanent migrations are not reversed; they are
implemented by copying the user data to the new location,
while coordinating updates to the data so that they go to
the right location. Sometimes, a migration may start off as
being ephemeral, but may end up being permanent—this
could happen, for example, if a user travels to location
and ends up staying there for the rest of her life. In that
case, the cache gets transformed into the home of the data.
Ephemeral and permanent migrations may occur simulta-
neously, say because the user is traveling but her home
data center is being reassigned.

Migration must functionally appear as a no-op: reads
and writes should functionally behave the same way
whether or not migration has occurred or is in progress,
except in terms of performance (a completed migration
will improve performance by reducing the number of re-
mote accesses). Moreover, migration is an optimization
rather than a task required for correct operation of the sys-
tem. We do not wish migration to disrupt the performance
of the system by consuming large amounts of bandwidth
during busy times. We thus expect migrations to occur in
the background with low priority.

3 Distributed data overlays
In this section, we describe our approach to migration

using distributed data overlays or simplyoverlays. Our
description is targeted at a fairly general distributed stor-
age system. In Section 4, we provide the details of over-
lays for a specific key-value store system called Nomad.

Overlays are an abstraction to provide online migra-
tion. Migration results in partial copies of data at two
or more locations—such as cached fragments and partly-
copied data—which need to be managed carefully while
the system orchestrates accesses, to ensure writes are not
lost and reads return valid data. For example, if data is
written at the old location at the same time it is being



=

Figure 1: Overlays.
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Figure 2: It is easy to use overlays to migrate data from server1
to server2. The black bars indicate regions with data. (a) Initially,
data is in server1, and there is a dirty cache at a data center
close to the user. (b) First, insert an overlay at server2 between
server1 and the cache, and copy data from server1 to server2.
(c) Then, remove the overlay at server1; dirty cache remains in
place. The distributed protocols that implement overlays ensure
that the insertion and removal of overlays will never cause the
loss of data in ongoing read or write operations.

migrated to a new location, the system may fail to mi-
grate the new write. This example becomes more com-
plex when there are dirty caches, those caches themselves
are being migrated, and/or migrations are canceled and
restarted; the number and complexity of the different sce-
narios that must be handled can be problematic for the
system developer. Overlays are an abstraction that helps
dealing with these scenarios in a simple and unified way.

As an everyday analogy, an overlay is a sheet of trans-
parent plastic that is placed over a piece of paper. Where
it is clear, the overlay reveals the contents underneath;
where it is written, the overlay overrides those contents
(Figure 1). Overlays can be stacked, to create many lay-
ers, so that looking at the stack reveals their combined
contents; if many overlays have content at the same place,
the higher overlays occlude the lower ones.

This idea has an analogue to storage systems. We now
explain it in a context where the user data is a byte se-
quence, such as a file, a data object, or the sequence of
blocks on a disk—depending on the nature of the storage
system. Data is stored at some base location and it may
be partly stored in another data center, which serves as a
cache. We can view the base location and cache as a stack
of two overlays, as shown in Figure 2(a), where each over-
lay is stored in a server in a data center. For uniformity,
the base layer is also called an overlay. The combination
of all overlays determines what data is seen on the stack,
with higher overlays having priority over lower overlays.

With the abstraction of overlays, migrating data is
straightforward: (1) we create an overlay below the
caching overlay, residing at the destination server, (2) we
populate the new overlay by copying data from the base
overlay, (3) we delete the base overlay, so that the new
overlay becomes the new base (see Figures 2(b) and 2(c)).
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Figure 3: Standard object store architecture used in Nomad.

Function Description
read(container, oid, off, len, buf) read object
write(container, oid, off, len, buf) write object
create(container, oid, len, buf) create and write object
delete(container, oid) delete object

Figure 4: Nomad API to access objects.

While migration occurs, data can be written at the cache,
and the cache can be flushed by writing its contents to
the new overlay. The protocols implementing overlays
(which are hidden from the designers who just want to
use them) ensure that reads and writes on an overlay stack
go to the right overlay, and that overlays can be created,
inserted, and removed atomically even if reads and writes
occur concurrently. With overlays, it is easy to support
the three scenarios described in Section 2, by inserting
overlays for caches or other copies of data, and copying
data between overlays to migrate. Note that each overlay
is kept at a fixed server, that is, an overlay does not move;
migration is achieved by creating overlays and copying
data between them.

4 Nomad design
We built Nomad, a prototype of a distributed key-value

object store that incorporates overlays to support flexi-
ble and online migration in a geo-distributed setting. We
describe overlays in Nomad for concreteness; however,
overlays are applicable to other types of storage systems,
such as file systems or block storage systems.

4.1 Basic architecture
Nomad has a typical architecture for a distributed key-

value object store, shown in Figure 3. This architecture is
not novel; we describe it in this section for completeness.

Objects are stored on a set of storage servers, which
are commodity machines running a standard operating
system; they store each object as a separate file in the
local file system. Throughout the paper,client refers to
the entity that uses Nomad, which is an application run-



ning at a server in the data center, whereasuserrefers to
the entity that uses the application, which is often out-
side the data center—for example, the user could be a
person using a web mail system. Clients access Nomad
via a client library that implements functions for reading,
writing, creating, and deleting objects, as shown in Fig-
ure 4. There are also functions to read or write multiple
objects in the same request for efficiency; these are not
shown for simplicity. This interface is simple: a write as-
sociates a key with a new value, and a read returns the
latest value associated with the key. Each object is part
of a container, similar to a directory in a file system, a
bucket in Amazon’s S3 [5], or a blob container in Mi-
crosoft Azure [6]. A container is stored in one of the stor-
age servers, and there is a function for enumerating the
object identifiers in a container, and to create/remove con-
tainers (not shown). The mapping of containers to storage
nodes is kept by a directory service, which is replicated
asynchronously across data centers. For flexibility, No-
mad allows any container to be mapped to any storage
server; the mapping is represented as a list of container-
server pairs. The client library caches part of the map-
ping, and the directory service need not keep track of who
caches what: if the mapping changes (because the con-
tainer is migrated), the client library may try to access an
object at the wrong location, in which case the client li-
brary gets an error, consults the directory to find the right
location, and tries again. It is possible to expire entries in
the client cache for efficiency, so that the client does not
use too old information, but Nomad does not do that. The
directory service also indicates amigration coordinator
for each container (Section 4.5).

4.2 Migration granularity
At what data granularity should migration occur? We

discuss this issue from three perspectives: the application,
the system administrator, and the storage system.

From an application perspective, applications should
organize and migrate data in units that are likely to be ac-
cessed together within a given location, to provide local-
ity. For example, in a web application, a user usually logs
in at a data center close to where she lives; her persistent
data, such as personal information and preferences, form
a coherent unit for migration. It would not make sense to
migrate a user’s name without migrating her address, for
example.

From the system administrator’s perspective, the
choice of granularity comes from a balance of manage-
ability and control. On one hand, migration should be fine
enough to allow reasonable control over the allocation of
storage capacity and bandwidth. On the other hand, mi-
gration should be coarse enough so that the number of
units to be administered is small.

From the storage systems perspective, the migration
granularity should match the granularity of the mapping

at the directory service, so that the migration engine does
not have to reimplement this functionality. In particular,
before migration, the directory maps some unit of data to
some server; after migration, this unit must be mapped
to a different server without leaving behind intermediate
mappings.

Consequently, migrations in Nomad are done at the
granularity of a container, and we intend that applica-
tion designers collaborate with system administrators to
choose an appropriate organization around such contain-
ers. For example, in some web applications, all of a user’s
personal information and preferences could be stored in
a container. In a web mail system, there could be a con-
tainer per email folder per user, so that containers are not
extremely large.

A related consideration is the specificity of the desti-
nation of migration. In Nomad, the migration targets are
servers, but a high-level migration decision by an admin-
istrator could be to move a container from one data center
to another. In this case, there has to be a component that
refines this decision and picks actual servers; this com-
ponent, as well as the actual policies for migration, are
orthogonal to the migration mechanisms in Nomad.

4.3 Overlays in Nomad
Our description of overlays in Section 3 assumed sim-

plistically that the user’s data and migration granularity
is a sequence of bytes. We extend the description to No-
mad, where the migration granularity is an object con-
tainer, which consists of a set of objects, where each ob-
ject is a sequence of bytes. An overlay for the container is
an overlay for each object in the container plus an overlay
for an array of bytes representing the set of object iden-
tifiers in the container. All objects in the container have
identical overlays, except that the data contents for dif-
ferent objects are different. Thus, for efficiency, Nomad
keeps a singleoverlay structureper container, which rep-
resents the (identical) overlays of all objects in the con-
tainers, without any data; the data is kept separately as a
set of extents for each object at each overlay. An object
may have several extents at a given overlay.
Overlay internal information. Recall that the directory
service maps each container to a storage server, which in
turn stores the base overlay for the objects in that con-
tainer. Normally, the base overlay is the only overlay in
the stack, but when the container is being migrated or
cached, there may be additional overlays. The overlay
structure consists of the following information:

• container-id:container that the overlay refers to;
• location:server that stores the data in the overlay;
• above-pointer:pointer to the overlay above, or nil;
• below-pointer:pointer to the lower overlay, or nil;
• frozen:a flag indicating that overlay pointers cannot

be changed;
An overlay structure is associated with the following:



Function Description
insert(server, overlay, direction, flags) create overlay and insert
remove(overlay) remove overlay
get stack(baseoverlay) get entire overlay stack
start copy(overlay, direction[, list]) copy to adjacent overlay
stopcopy(copy job) stop copying

Figure 5: Operations on overlays.

• data: a set of extents for each object, with aunique
bit and atimestampfor each extent.

The unique bit is unset when the extent is a repetition of
data in a lower overlay; this bit is similar to the dirty bit
in a cache. The timestamp is used to handle concurrent
writes when data is replicated at many overlays: the write
with highest timestamp wins. We explain replication in
Section 4.6.
Reading and writing data. To write data to an object,
the client first finds the highest overlayOhigh, by start-
ing with the base location and successively traversing
the above-pointerat each overlay until it becomes nil.
Then, the client sends the data to be written to the overlay
Ohigh. If theabove-pointeratOhigh remains nil, the stor-
age server atOhigh accepts the write and sets the unique
bit for the newly written extent. (The checking that the
above-pointer is nil and the acceptance of the write must
be performed atomically with respect to the processing
of other client requests for the overlay.) Otherwise, there
has been a concurrent operation to insert an overlay above
Ohigh, so the storage server returns an error together with
the value ofabove-pointer; the client continues the traver-
sal to find the new highest overlay, and retries the write
there. When the client has completed the write, it caches
the identity of the highest overlay it found. In its next
write, the client starts the traversal from the cached over-
lay, for efficiency. The cached value could be an overlay
that no longer exists (because it was removed), in which
case the client gets an error and consults the directory ser-
vice to find the base location again.

To read an object, the process is similar but slightly
more complex, because the highest overlay may not hold
the data to be read; in that case, the client goes back to the
lower overlays until it finds the data it wants. It is possible
that an overlay holds only part of the interval to be read,
in which case the client goes to the lower overlays for the
missing pieces.

Note that when there is a single overlay—which is of-
ten the case for most objects—its location is the server
indicated by the directory service, and a read or write re-
quest proceeds as in a system without overlays, without
additional communication rounds.
Overlay operations. The operations that insert, remove,
and copy overlays are shown in Figure 5. The insert oper-
ation indicates the server for the new overlay, an existing
overlay where the new overlay will be inserted, a direction

(aboveor below) to specify whether to insert above or be-
low the specified overlay, and a flag with properties for the
new overlay. Currently, the only property is whether the
new overlay holds unique data or not. If it does not, then
when a write happens at the overlay, the write is also for-
warded to the overlay below; this mechanism can be used
to implement a write-through cache. Thestart copyoper-
ation copies the objects in the overlay to the overlay above
or below. It can copy all object or just those indicated on
a list—this is useful to populate caches with certain ob-
jects only. The remove operation is self-descriptive; the
system takes care of copying the overlay’s unique data to
the overlay below before removing it. It is not legal to re-
move an overlay if it is the only overlay in the stack. Not
shown in the figure are the operations that return the base
overlay for a container and for an object.

To simplify the design, we require that overlay opera-
tions be executed one at a time per container. This seri-
alization occurs per container, not across containers, and
so it does not pose a performance problem since over-
lay operations on a container are relatively rare. To seri-
alize, overlay operations can be called by only one server
per container: in Nomad, this server is indicated by the
directory service and it is called thecoordinatorof the
container. The coordinator ensures that an overlay has at
most one outstanding overlay operation. To achieve fault
tolerance, we can fail over the coordinator as we explain
later. Note that read and write operations arenot overlay
operations: they can be executed concurrently with over-
lay operations and with each other, at many clients. The
protocols that implement overlay operations, described in
Section 4.5, ensure correct behavior in these cases.

4.4 Using overlays in Nomad
It is easy to use overlays to migrate data, create a cache,

migrate the cache, and migrate data back, as we now de-
scribe. We provide intuitive explanations in English, but it
is easy to translate these explanations into code that calls
the functions in Figure 5.

Migrate data to another server. The system creates an
overlay at the destination server on top of the source over-
lay to be migrated; at this point, writes will no longer go
to the source overlay. The system then invokes the oper-
ation to copy the data from the source to the destination
overlay. When the copy is finished, it removes the source
overlay. As we mentioned, because we designed the over-
lay operations so that clients can concurrently access data,
migration proceeds concurrently with these accesses, and
without causing reads or writes to be lost.

Cancel migration. Sometimes, migration should be
canceled because of changes in the workload. For in-
stance, if a user is traveling for some time and migration
starts, but the user returns before migration has finished,
the system may decide to cancel the migration. This is



easy: we simply stop the copying operation and remove
the new overlay that was created for migration. Recall
that the operation to remove an overlay copies the over-
lay’s content to the overlay below. If the new overlay al-
ready has lots of data, the following optimization is effec-
tive. Note that only data written by the client needs to be
copied, not data written by the migration, which is already
present in the overlay below. To identify these writes, the
writes by the client have a specialuniquebit set (Sec-
tion 4.3), while the writes by the migration do not.

Create cache at a data center. We can create two types
of caches at a data center: write-back or write-through.
(Caching can also be done at the client; this can be done
by the application if desired, not by Nomad.) To establish
a cache, one simply inserts a new top overlay stored in the
desired data center; write-back or write-through behavior
is indicated by theflag parameter of the insert operation,
which indicates whether the overlay will forward writes to
the overlay below or not. To flush the cache, one invokes
the copy operation to the overlay below. To remove the
cache, one invokes the operation to remove the overlay.

Migrate the cache. To migrate a cache (which may have
dirty data), we use the procedure to migrate the data at an
overlay, described above.

4.5 Implementing the overlay operations
We now describe how to implement the overlay oper-

ations of Figure 5. We make the following design deci-
sions: (1) it is reasonable to serialize overlay operations
on the same container, but we should allow operations on
different containers to run in parallel, and (2) an overlay
operation on a container must allow reads and writes on
the container to proceed in parallel, because these opera-
tions are sensitive to performance. Therefore, we assign
a (migration) coordinatorper container, which executes
overlay operations on that container one at a time, and we
design the coordinator protocol carefully so that reads and
writes are never blocked. The coordinator is indicated by
the directory service, and it manipulates the overlay state
at each server via remote procedure calls (RPCs), as we
now explain.

Inserting overlays. To insert an overlayO2 at storage
serverS above overlayO1 and below overlayO3, O1

and O3 must point toO2, andO2 must point to both.
To do so, the coordinator executes the following actions
(using RPCs), in this order: (1) createO2 atS with point-
ers toO1 andO3; (2) changeO1.above-pointer toO2;
(3) changeO3.below-pointer toO2. Note that after (2)
before (3),O2 is already visible to read and write opera-
tions becauseO1 points to it, butO2 is in a funny state
whereO3 does not point to it yet. This is not a problem,
becauseO2 has no data and it is impossible for it to get
any data (writes would go toO3 instead).

To insertO2 at the top, the process is similar except

thatO2’s top pointer is nil, and step (3) above is skipped.
To insert O2 at the bottom, the process is also simi-
lar except thatO2’s bottom pointer is nil, and step (2)
changes the base pointer at the directory service to point
to O2. There one subtlety: the directory service is repli-
cated asynchronously; the coordinator changes only the
directory server in its own data center and the others are
eventually updated; in the meantime, the remove direc-
tory servers may temporarily point to the wrong base;
this is not a problem since the directory service is used
only for finding the top overlay (see “Reading and writ-
ing data” in Section 4.3).

Removing overlays (part 1). To remove an overlayO2,
we first consider the case whenO2 is completely oc-
cluded by the overlay above: that means all data inO2

is covered by data at the overlay above, so that the data
in O2 is useless. In that case, the coordinator can remove
O2 without fear of losing data; to do so, the coordinator
(1) changes the overlay below to point to overlay above,
(2) changes the overlay above to point to the overlay be-
low and sets the unique bit for all extents in the overlay
above2. If there is no overlay below, becauseO2 is the
base overlay, the coordinator changes the base pointer at
the local directory server (instead of the overlay below);
the other replicas of the directory server may temporarily
point to the deletedO2, so we leave a tombstone atO2

pointing to the overlay above; the tombstone is removed
after a period long enough that all directory servers have
seen the update (say, one hour).

Another easy case is to removeO2 when the overlay
below is in the same storage server. In that case, the coor-
dinator asks the storage server to execute three actions:
(1) locally copy the contents ofO2 to the overlay be-
low O1, (2) redirect any writes toO2 so that it goes to
O1, and (3) makeO1.above-pointer point toO2.above-
pointer. These three actions can be done without races
because they are done in the same server. Finally, if there
is an overlay aboveO2, the coordinator makes its below-
pointer point toO1.

The removal process we described so far does not allow
one to remove the top overlay, or some overlay that is not
completely occluded. We come back to that soon, because
such an operation uses the next operation.

Copying data between overlays. To copy data from an
overlay to the overlaybelow, the coordinator asks the
server of the overlay above to send the data to the server
below. This idea can also be used to copy from an over-
lay to the overlayabove, but it is more efficient to ask for
the overlayaboveto pull the data from the overlay below,
because if the overlay above already has data for certain
objects, these objects need not be copied (since the over-
lay above occludes the overlay below at those objects).

2Setting the unique bit this way is a conservative choice.



Removing overlays (part 2). We can now describe how
to remove an overlayO2 that is not completely occluded.
The procedure to do that reduces to invoking existing pro-
cedures that we already described. There are two cases:

1. If there is an overlay aboveO2, the coordinator
invokes the copy operation fromO2 to that overlay, to
occludeO2. The coordinator then uses the previously-
described procedure to remove an overlay that is oc-
cluded. This works without any races, because once an
overlay is occluded, it remains occluded as no writes can
go to it—unless the overlay above is removed, but as we
explained above, this does not happen since all operations
on an overlay are serialized by the coordinator.

2. If O2 is the top overlay then it must have some over-
lay O1 below it at some storage serverS (the last overlay
cannot be removed, which would result in data loss). The
coordinator first creates a new temporary overlayO3 over
O2 at storage serverS. Then, the coordinator removesO2

using the above procedure, sinceO2 is no longer the top
overlay. We are left with overlaysO1 andO3 at serverS.
The coordinator now uses the above procedure to remove
an overlay when the overlay below is in the same storage
server.
Copy optimization. The coordinator serializes overlay
operations, but this is inefficient in one case: the copy op-
eration can take a long time and hence delay further over-
lay operations. For example, suppose that we have a base
overlay and a cache, and we want to migrate the base from
a server to another one. During this migration, we may
want to also migrate the cache to another place, but if the
overlay operations on the same container are serialized,
the cache migration must wait for the server migration
to finish, which is undesirable. We address this problem
by having copy operations run in the background, thereby
allowing concurrent execution of other overlay operations
on the same container. For this to work, we need to restrict
the other overlay operations so that they do not change the
source and destination overlays involved in a copy (for
example, it would be problematic to remove the source
or destination overlay while the copying is going on). We
do this simply by setting a “frozen” flag at the overlay;
an overlay operation that encounters the frozen flag ex-
its with an error and retries later. It suffices to freeze the
lower of the two overlays, because the operations to re-
move the higher or lower overlay or to insert an overlay
between them will access the lower overlay first and find
the frozen flag.
Correctness proof. The operations to insert, remove,
and copy data between overlays ensure that reads and
writes behave equivalently as if they were executing in
a single-overlay system, that is, a system that has a sin-
gle fixed overlay where all the reads and writes occur.3

3This holds when overlays are not replicated. Replication isdis-
cussed in Section 4.6. It provides a consistency guarantee that is dic-

As a consequence, read and write operations are lineariz-
able [20], which provides a strong form of consistency.
Roughly speaking, linearizability ensures that each oper-
ation appears to take place instantaneously at a point be-
tween the invocation and response of the operation.

To show the property of equivalence to a single-overlay
system, we examine the steps of the protocols to insert, re-
move, and copy data between overlays, and we show that
each of these steps always cause a concurrent write or a
read operation to occur at a proper overlay: a write always
occurs at an overlay that is not occluded (at the time the
write is applied to the overlay), so that the write behaves
equivalently as in the single-overlay system; and a read
always occurs at the highest overlay with data. The proof
requires an exhaustive examination of all cases, which is
long but conceptually simple.
Availability and fault tolerance of migration. We op-
timize to provide high-availability for reads and writes;
migration operations may pause due to failures. A coor-
dinator crash affects only its own migration operations:
we designed the protocols so all clients continue reading
and writing consistently without blocking if the coordi-
nator crashes. We recover from coordinator crashes using
standard techniques. The coordinator logs each operation
and each step within the operation; the log is stored in
Nomad itself. If the coordinator crashes, another coordi-
nator reads the log and picks up from where the crashed
coordinator left off.
Moving the coordinator. There is a unique coordinator
per container, indicated by the directory service, but the
coordinator can be easily changed, as follows. The old co-
ordinator finishes its current operation and then performs
three actions: (1) start the new coordinator, (2) change the
pointer at the directory service, (3) stop.

4.6 Replication
Data replication can be implemented at two places in

the component stack: at the storage node level, called
node-level replication, or at the directory level, called
directory-level replication.

With node-level replication, a storage node is respon-
sible for replicating itself, and all the replicas are treated
by the higher layers as a single virtual node. The migra-
tion engine is above the replication mechanism, and we
migrate data from one virtual node to another as if the
node were not replicated at all. For example, if there are
two replicas r1 and r2 of a storage node, they are both
treated as virtual node r; containers in r can be migrated
to another virtual node s that could have replicas s1 and
s2. The advantage of node-level replication is that it is
extremely simple and modular, because migration is de-
coupled from replication. For example, node-level repli-

tated by the replication scheme; for instance, asynchronous replication
provides only eventual consistency.
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Figure 6: Replication of base overlays. The overlays in New York
and San Francisco are asynchronous replicas. There are overlays
in Miami and San Diego used as caches of these locations.

cation can be easily provided using a disk array at the
storage nodes, or by using state machines coordinated via
Paxos [24]. The drawback of node-level replication is that
it cannot benefit from the versatility of overlays—for in-
stance, we cannot use overlays to cache or migrate indi-
vidual replicas, since these replicas are abstracted at a low
level in the system.

With directory-level replication, the directory service
maps an object/container to several servers (instead of a
single server) holding replicas of the base overlay; these
replicas are coordinated by the read-write protocol used
by clients. The migration engine is below the replication
mechanism, and migration moves data from one physi-
cal storage server to another. With directory-level repli-
cation, individual replicas can benefit from overlays, as
illustrated in Figure 6. This scheme is particularly use-
ful when data is replicated across data centers. We now
explain how Nomad can be extended to support repli-
cation of this sort. (This extension is not implemented
in our prototype.) The replicated base overlays are es-
tablished when a client creates a container and indicates
that it should be replicated. Each replicated base over-
lay may subsequently have a different stack of overlays
on top of it, so the stacks are not copies of each other.
The data in the different overlay stacks are kept in sync
using the desired replication scheme. We believe over-
lays should work with most replication schemes, by treat-
ing each overlay stack as a black-box to which the de-
sired replication protocol issues writes and reads. We il-
lustrate how this is done via three well-known replication
schemes—asynchronous primary-backup, asynchronous
timestamped, and synchronous. Under all schemes, the
directory service indicates the locations of all replicas of
the base overlay; when a client writes to one of the overlay
stacks, it performs the write at the other stacks as well; to
write on a given stack, the client uses the write procedure
described in Section 4.3. We now explain the specifics of
each replication scheme.

With asynchronous primary-backup replication, one of
the overlay stacks is designated as the primary and the
other stacks are read-only; writes are only permitted at
the primary stack, and the client applies the write asyn-
chronously (in the background) to the other stacks.

With asynchronous timestamped replication, writes are
permitted at all replica stacks, and the clients apply the
writes asynchronously to the other stacks; a write includes
a unique real-time timestamp to order concurrent writes
by other clients at other replicas. This is a standard tech-

nique: when writes occur at different replicas, the write
with higher timestamp obliterates the other writes; if a
replica receives a write with a lower timestamp than the
data it has, the replica ignores the write. Note that times-
tamps are globally unique (done by appending a machine
identifier to break ties). To obtain timestamps, we assume
that clocks are synchronized, say via NTP; machines with
faulty clocks can be disabled using a simple monitoring
service. Timestamps are kept forever for each extent. We
believe that is a small overhead, but if desired it is pos-
sible to garbage collect the timestamp at a replica after
it is known that the data at other replicas cannot have a
smaller timestamp, using the convention that data with no
timestamp is treated as having a−∞ timestamp.

With both schemes above (asynchronous primary-
backup or timestamped), if a client fails while writing,
the write may be applied to some but not all replicas. For
that reason, the migration coordinator runs a cleaner that
periodically checks for these failed writes and completes
them. To make it easy to recognize the failed writes, the
client leaves a mark in the overlays that it writes to, which
the client clears asynchronously after the client has writ-
ten to all replicas. If the client crashes without having
written to all replicas, the marker will be left at the over-
lay. Both asynchronous schemes described above provide
eventual consistency.

With synchronous replication, when a client issues a
write to one of the overlay stacks, the client must write
to the other replica stacks synchronously (i.e., before
the write is acknowledged to the client). As with asyn-
chronous replication, a write includes a timestamp to or-
der concurrent writes, and we use a marker to recognize
failed writes. To read, a client reads from one of the over-
lay stacks and then checks that the data being read has no
marker (the common case); if it has a marker, the client
writes the data and its timestamp synchronously to the
other replica stacks. This is done to ensure that later reads
at other replicas cannot not return data that is older than
the data being returned by the current read, to provide a
strong form of consistency. This synchronous replication
scheme provides linearizability [20].

With all of the replication schemes, we can migrate a
replica using the procedure described in Section 4.4.

4.7 Multi-way caching and split overlays
In Section 4.4, we described how to use overlays to

cache data at one location. It may be desirable to set up
multi-way caches, where data is cached at many locations
from a single replica. In other words, there is a single
replica of the full data set, and many caches each with
some (possibly overlapping) part of the data set. To do
this, we need the notion of a split overlay, which is illus-
trated in Figure 7. (This extension is not implemented in
our prototype.)

Caches exist for performance, and so they should al-
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Figure 7: Split overlays are used to cache the data in New York at
both San Francisco and Chicago.

low for efficient reads and writes without synchronization
across the caches in different data centers. As a result,
split overlays provide only a weak form of consistency,
namely eventual consistency. A split overlay occurs when
an overlay has several overlays over it on the next level;
each of these overlays is called asplit. A split is estab-
lished using the operation to insert a new overlay of Fig-
ure 5, with a special flag indicating it is a split. This flag
causes the overlay below the point of insertion to store
an additionalabove-pointerto the new overlay. When a
write occurs at one of the splits, the write occurs as in any
other overlay: the data is marked as unique (dirty) and it is
notpropagated to other splits. A client can cause the data
at a split to be copied to the common overlay below, via
thestart copyoperation of Figure 5. This corresponds to
flushing the cache. When the overlay below receives the
data, it invalidates older data at the same position in the
other splits, using the data’s timestamps to decide what
is older. As a result, content initially written to a split is
not visible at the other splits, but as soon as the content is
flushed down, it becomes visible. In the example of Fig-
ure 7, when the dirty writes in Miami are flushed to the
common overlay in New York, New York sends an invali-
dation message to Chicago, which causes Chicago to dis-
card any older writes. Subsequent reads in Chicago will
read the data from New York.

In general, the protocol works as follows. Suppose
there is an overlayO at levelk andm splitsO1, . . . , Om

at levelk + 1. If a write occurs at an overlayOi or above,
the write remains in the split with the unique bit set. Sub-
sequently, when the data atOi is copied to overlayO, the
server of overlayO sends an invalidation message with
the data’s timestamp and position to the other splits at
level k+1. Each of these overlays checks whether it has
older data in the same position and, if it does, removes
such data from the overlay. If there are further overlays
above, the invalidation message is forwarded recursively.
If the server of an overlay crashes and recovers, it may
lose this invalidation message (e.g., it may have received
the message and then crashed without having the time to
process it). For that reason, the overlay that originates the
message retransmits it periodically until it gets acknowl-
edgements from the top overlays in each branch. An over-
lay may process the same invalidation message twice, but
this is not a problem since the message is idempotent.

Now suppose that we want to remove a split overlay—
say, in the example of Figure 7, we wish to remove the
split in Miami and be left with an unsplit stack with New
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Figure 8: Removing a split overlay. Miami (Mia) and Chicago (Chi)
are initially split and we wish to remove Miami.

York and Chicago. We use the procedure to remove an
overlay described in Section 4.5, with a small modifica-
tion to incorporate the invalidation mechanism that we de-
scribed above. More precisely, as shown in Figure 8, we
first create an overlay in New York on top of Miami; we
then copy the data from Miami to the overlay above it in
New York; next we remove the overlay in Miami. We are
left with a split overlay where New York is on top of New
York, as shown in Figure 8(c). The final step is to locally
copy the data from the higher to the lower overlay in New
York, send invalidation messages to Chicago, and finally
remove the higher overlay in New York.

Note that split overlays can be migrated as well, using
the procedure described in Section 4.4. This modularity
makes overlays a flexible mechanism.

5 The policy of geo-distribution
Thus far, we have described the Nomad system and the

mechanismof migration it provides. We now discuss the
policy of migration: what data to migrate, where to mi-
grate it, and when to do so. There is no one-size-fits-all
policy: migration policies depend on the specifics of data
center deployments as well as application requirements.
Below, we describe some of the key deployment factors
that a policy layer must take into consideration.

Data center granularity:A geo-distributed system may
consist of a few large data centers, or many small data
centers. The former characterizes current deployments of
large companies such as Microsoft, while the latter alter-
native is based on the use of containers [12]. Smaller data
centers allow data to be closer to users, but place greater
strain on the migration scheme.

Network costs:A geo-distributed system usually com-
municates on two different networks: an internal one be-
tween data centers, and an external one to connect with
users (the Internet). The cost model for the internal net-
work can vary. If the internal network consists of ded-
icated, privately owned links, the cost and speed of the
network are fixed. Alternatively, network cost on leased
links can depend on the amount of data transferred; for
example, it is common for network operators to bill cus-
tomers based on 95th percentile network utilization. The
external network is provided by Internet ISPs, and the cost
depends on the amount of data transferred in and out.

Access protocols:When a user accesses the service via
the web, the request is redirected via DNS-based load-



balancing to a local data center. If the data the user needs
(e.g., her inbox) is in a different data center, the system
has two options:

• Redirect.The system redirects the user to the appro-
priate data center. Subsequently, the local data center
is not in the communication path, and the communi-
cation from the user to the appropriate data center is
via the Internet. This option saves bandwidth on the
internal network, but may impair the user experience
because the Internet provides no quality of service.

• Relay.The local data center continues to serve the
user and fetches needed data from the remote data
center using the internal network. Thus, the local
data center is in the communication path. This op-
tion tends to provide more predictable access times,
and it allows the local data center to satisfy parts of
the request locally (e.g., ads). However, this option
is more expensive because one must provision the
internal network adequately.

Against this backdrop, a migration policy must trade
off migration bandwidth on the internal network for re-
duced access latencies. If the system uses theRelayop-
tion, the policy also has to factor in the bandwidth cost on
the internal network of remote accesses on non-migrated
data; in theRedirectmodel, this is not a factor.
A policy layer for online services. In addition to the
deployment factors listed above, migration policies also
depend on application characteristics. For example, No-
mad could be used with a policy layer that periodically
computes optimal placements for data given the location
of recent accesses of users and the capacity of each data
center, as in the Volley system [7]. The effectiveness of
this policy depends on the application; it works well if
user movements tend to be permanent, but can result in
excessive migration if users move back and forth.

We describe a new policy layer based on predictions
of future user movement. This layer provides insight into
how predictions of user movement can be used to achieve
access locality while eliminating unnecessary migrations.

Our policy layer makes the decision to migrate a user
based on the cost of doing so versus its predicted fu-
ture benefit. If we could perfectly predict the benefit, this
choice would be easy; since we cannot, we must settle for
heuristics that use past behavior to try to predict future ac-
cesses at the same location. We consider three simple mi-
gration policies. They all monitor the location of the user
when she accesses the data, and trigger migration when a
condition is met. The three conditions we consider are the
following:

• Count:Data is accessed from the same remote loca-
tion a certain number of times (e.g., 10 times);

• Time: Data is accessed from the same remote loca-
tion for a certain period (e.g., 10 days);

• Rate:Data is accessed from the same remote loca-
tion above a certain rate (e.g., 3 accesses per day).

For example, suppose Alice moves from Redmond to
London. Suppose she accesses her mailbox twice on each
of the first five days in London, twelve times on the sixth
day, and then returns to Redmond on the seventh day. The
Count-based policy with a threshold of 10 accesses mi-
grates her mailbox to London on the fifth day; the Time-
based policy with a threshold of 10 days does not migrate
her mailbox. The Rate-based policy with a threshold rate
of 3 accesses per day migrates her mailbox to London on
the sixth day. In this case, the Time-based policy is the
best. Since Alice returns to Redmond after a short trip,
her mailbox should not be migrated. In other cases, the
Count and Rate-based policies may work better.

We later report on the efficacy of these different poli-
cies when applied to real user traces taken from a large
web mail service. Since these policies are predicated on
the movement of users in the real world (rather than the
semantics of a specific application like webmail), we be-
lieve the results to be relevant for other web applications,
such as the ones mentioned in Section 2.

6 Implementation
We implemented overlays in a prototype of Nomad as

we described in Section 4, except that we did not im-
plement replication (Section 4.6) and split overlays (Sec-
tion 4.7)—which are unnecessary to compare Nomad to
other migration schemes. The Nomad prototype has 6,000
lines of C# code, comprising a client library, a storage
server, and directory server. The directory server provides
RPCs to get and set the location of the base overlay of a
container given its 64-bit identifier. A storage server pro-
vides RPCs for the following: (1) Read/write to an over-
lay; (2) Get the overlay above and below of an overlay;
(3) Delete an overlay; (4) Create new top overlay at an-
other storage server for a given overlay; (5) Copy data of
an overlay to its upper overlay; (6) Migrate an overlay to
another storage server.

Storage servers store data for an overlay as a directory
in the local file system, containing a metadata file and one
file for each extent of the overlay, named by the object
id, start offset and end offset. A write to an overlay may
merge extent files. Storage servers cache overlay meta-
data in memory to improve read performance.

7 Evaluation of mechanism
In this section, we evaluate the use of overlays for mi-

gration, through experiments that measure overlay over-
heads, verify their flexibility, and compare their perfor-
mance against alternatives.

7.1 Alternative schemes for migration
We consider two alternative schemes for migration,

which are often used in practice:



• Lock-based migration:While the data is copied from
the old location to the new location, the system
blocks write operations. Read operations are not
blocked; they are served at the old location. Writes
are unblocked after the old location is marked as in-
valid and the directory is updated to point to the new
location.

• Log-based migration:The system creates a log at the
old location to store the updates while the data is
copied from the old to the new location. During the
copying, reads and writes are served at the old loca-
tion. Once the copying is finished, the system blocks
write operations, copies the log from the old to the
new location, marks the old location as invalid, mod-
ifies the directory to point to the new location, and
then unblocks write operations.

7.2 Experimental setup
Our setup consists of machines in data centers in

five locations: Mountain View (CA), Redmond (WA),
Boston (MA), Cambridge (UK), and Beijing (CN). Each
machine consists of a PC with two quad-core 2.27 GHz
Xeon processors, 16 GB of RAM, an internal disk array
with several 10,000 rpm SAS disks, running 64-bit Win-
dows Server 2008 R2. Machines are connected to a Gi-
gabit switch, and the various locations are connected by
a dedicated network. The median ping latencies between
locations are as follows, in ms:

WA MA CN UK
CA 19 112 167 237
WA 79 141 204
MA 220 283
CN 345

7.3 Overhead of overlays
We now evaluate the overhead imposed by overlays.

Access latency. In this experiment, we measure the la-
tency that overlays incur on accesses to data. A client
reads or writes a small object with up to five overlays in
different locations, as we measure the latency of reads or
writes in two separate experiments. The client is in the
same location as the top overlay, which is typical of hav-
ing a cache at the local data center.

Figure 9 shows the results for writes. We see that the
first write incurs a higher latency, because the client needs
to traverse overlays in different locations from bottom to
top. Once the client learns the top overlay, it caches it for
the entire container; subsequent writes on any object of
the container are much faster, incurring only a local-area-
network latency plus a disk-write latency. We can avoid
the higher latency for the first write by keeping a hint of
the location of the highest overlay at the directory service.
We implemented this optimization, but Figure 9 shows the
unoptimized scheme, representative of the worst case.

For reads, the situation is similar (not shown). The first
read discovers the overlays, while subsequent reads are
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Figure 9: Write latency using several overlays in many geograph-
ical locations. The x-axis indicates the number and location of
overlays.

faster. The exact latency for subsequent reads depends on
the first overlay that has the data: if it is the top over-
lay, it is just a local-area-network latency, otherwise it is
the sum of the latencies to communicate with each suc-
cessive overlay until data is found. We implemented an
optimization so that if a read does not hit the top overlay
then it writes the data there so that the next read of the
same data will be faster—thereby treating the top overlay
as a cache. A client-settable flag determines whether this
optimization is enabled or not.

Overlay space. We measure the space overhead of over-
lays. The on-disk or in-memory metadata for each overlay
is smaller than 1 KB. A larger overhead occurs because
lower overlays may store useless data occluded by higher
overlays. In theory, a container’s storage space across all
servers could be multiplied by the number of overlays.
In practice, most overlays are usually empty, but even if
they were not, it is easy to introduce a garbage collection
mechanism that periodically detects and erases occluded
data (we have not implemented this). The garbage col-
lection period can be many minutes because most storage
systems are over-provisioned.

7.4 Flexibility of migration mechanism
In terms of functionality, overlays provide the flexibil-

ity to migrate data while clients are concurrently reading
and write data; during migration, the system may create
or flush a remote cache, and the cache itself could be in-
dependently migrated. Lock-based and log-based migra-
tion do not provide this flexibility, but they could sup-
port a static cache layer, which cannot be removed or
added. With extensions, lock-based and log-based migra-
tion could support migration of the cache layer, possibly
concurrently with migration of the storage layer, but this
requires additional careful design. The flexibility of each
scheme is summarized in the table below.



support create remove migrate
Scheme static cache cache cache

cache layer layer
Lock-based Yes No No Extension
Log-based Yes No No Extension
Overlay Yes Yes Yes Yes

We devised an experiment to demonstrate the flexibil-
ity of overlays as a user moves between four locations.
The user is initially at the United Kingdom (UK), where
she has 50 MB of data. Her workload consists of reading
or writing small objects within some working set of size
2 MB. At time 60s, she moves to Boston (MA). At that
time, we start a process to migrate her data to MA, start-
ing with her active set, using 300 Kbps of bandwidth. This
could be the maximum bandwidth a given user is allowed
to consume in a system with many users. The entire mi-
gration will take around 1600s, but her active set can be
copied in 60s. At time 180s she moves to Redmond (WA),
but the migration UK-MA has not finished yet, so we cre-
ate a cache in the WA data center and start populating it
with her working set, copying the data from the MA data
center at a rate of 400 Kbps. At time 300s, she moves
to California (CA), and we migrate her cache from WA
to CA at a rate of 400 Kbps. There are separate experi-
ments for reads and writes. Note that in this experiment,
we compress travel time so that we can fit the scenario in
one small graph. In a more realistic setting, the user may
remain at a location for several days, and the correspond-
ing graph would look like the one we give, except it would
have large segments depicting no interesting information
while the user remains at a location.

Figure 10 shows the latency of the user’s reads and
writes during this scenario. The latency refers to a client
running on the user’s behalf at the data center closest to
the user—this client could be a web application that reads
and writes within the data center. We can see that ini-
tially the latency is close to 0, reflecting a local access. At
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Figure 11: Read and write latency before, during, and after migra-
tion. Migration starts at 50s and completes at around 300s.

60s, once the user moves and migration starts, the latency
spikes to around 1s for a few accesses: this is the time it
takes to lookup the user’s data and traverse the overlay
stack. Soon after, the write latency drops to≈0, because
writes are now done locally. The read latency gradually
drops as the working set is migrated from UK to MA,
which takes≈70s. At 180s and 300s, we observe the same
phenomenon, except that the working set is copied faster,
in ≈40s, since more bandwidth is available for populating
or migrating the client’s cache.

7.5 Performance comparison
In this experiment, we evaluate the latency of accesses

to data during migration. A container with 50 MB of data
is initially located in the WA data center (source location)
and a client periodically reads or writes small objects in
that container from the CA data center. At 50s, the sys-
tem starts migrating the container to CA (destination lo-
cation), which is the same data center as the client, using
2 Mbps of bandwidth. We measure the latency of reads
and writes to the objects as the migration progresses.

Figure 11 shows the results for Nomad and log-based
migration. With the latter, there is a period of write un-
availability at the end of migration when the log is copied.
The write unavailability is given by the formula:

filesize
migrate-rate

×

write-rate
migrate-rate

=
filesize× write-rate

migrate-rate2

wherewrite-rate refers to the new writes during migra-
tion, andmigrate-rateis the rate at which data is copied.

The unavailability can be reduced by using a second
log to store updates while the log is being migrated (and
this can be done repeatedly).

Log-based migration has two other drawbacks com-
pared to Nomad. First, read and write latency remains
high during migration because operations are served at
the source location until migration is completed. In con-
trast, with Nomad, the write latency immediately de-
creases when the migration starts while the read latency
progressively decreases, because the client reads ran-
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>2000 miles for >3 weeks with >7 accesses. Disclaimer: sample is
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domly chosen objects and, as time passes, a larger frac-
tion of these objects are in the same location as the client.
Another drawback of log-based migration is that it con-
sumes three times as much bandwidth for new writes
done during migration (not shown on the graph). These
writes must be (1) received at the source, (2) sent from the
source, and (3) received at the destination. Intuitively, this
is because writes during migration are sent to the source.
This must be so, because reads are served at the source. In
contrast, with overlay-based migration, writes can go di-
rectly to the destination, because the system can use over-
lays to serve reads from a combination of the source and
the destination.

We also tried lock-based migration (not shown on the
graph). The result is what one would expect: during mi-
gration there are no writes, and reads have high latency
since they are served at the source location.

8 Evaluation of policy
We evaluate three simple migration policies using real

traces from Hotmail. Generally, migration can be trig-
gered by a combination for factors, including balancing
of storage capacity, balancing of bandwidth, and move-
ment of users. The policies we consider here are based
on movement of users; a more comprehensive set of poli-
cies may consider the other factors as well [7]. We evalu-
ate policy independent of the mechanism used for migra-
tion, to separate concerns. Our traces comprise the login
records of≈50,000 randomly chosen Hotmail users, col-
lected over two months (Aug-Sept 2009). For each user,
it contains the login time and IP address from which the
user logged in. We use a public IP-based geolocation ser-
vice to map each IP address to latitude, longitude coor-
dinates. To apply our policies, we view each login as a
separate access, and the unit of migration is a mailbox.
Figure 12 shows examples of the movement patterns in
the trace.

To eliminate errors introduced by the geo-location ser-
vice, we first pre-process the trace by clustering se-
quences of close-by accesses by a user (less than 150

miles from each other) intovisits. Thus, if a user logged
in twice from New York City and twice from New Jersey
(which are very close), we consider that as a single visit
of four accesses. If the user then logs in from Seattle, and
later again from New York City, that is three visits.

As we explained in Section 5, data center granularity
is an important consideration: the movement of a user is
only relevant for migration if the closest data center to the
user changes. We consider that the data center changes
only if the distance between one visit and the next is
above a threshold. We consider three such thresholds, cor-
responding to three data center granularities:

• Large-DC: Threshold is2000miles, corresponding
to a deployment with massive data centers serving a
large area. 1% of the users in the trace have visits
that satisfy this criteria.

• Medium-DC:Threshold is1000miles, correspond-
ing to data centers serving a mid-sized geographical
region. 1.8% of the users in the trace have visits that
satisfy this.

• Small-DC: Threshold is 450 miles, correspond-
ing to having data centers for individual states or
metropolitan areas. 3.5% of the users in the trace
have visits that satisfy this.

For each data center granularity, we study the three mi-
gration policies described in Section 5. For each user, we
scan the trace until we find aremotevisit—a visit whose
distance from the first visit exceeds the distance thresh-
old (2000, 1000 or 450). We then apply the policy to that
remote visit to see if migration is triggered; for example,
the Count policy with a threshold of 10 triggers migration
if the visit contains 10 or more accesses.

Figure 13 shows what fraction of users trigger migra-
tion as a function of each policy’s threshold. The fraction
is relative to the users with at least one remote visit.

We now examine the effectiveness of the three policies
using the metric ofsaved remote accesses, which mea-
sures the benefit of migration: these are accesses that,
without migration, would have been served at the origi-
nal data server far from the user, but with migration, are
served from a data center close to the user. For example,
if a user accesses her mailbox 500 times during a trip,
and we use the Count policy with a threshold of 50, the
number of saved accesses is 450.

Figure 14 shows the average number of saved accesses
per migrated mailbox on the y-axis. Each point corre-
sponds to a different threshold for each policy, for the
Large-DC and Small-DC granularity (the Medium-DC is
between those two, and not shown). The x-axis has the
percentage of migrated users using that threshold; points
to the right correspond to thresholds that migrate more
users. For the Count and Rate policies, the curves de-
crease monotonically as more users are migrated; there-
fore, most of the migration benefit is obtained by choos-
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Figure 13: Effect of varying thresholds for Count (Left), Time (Middle) and Rate (Right) policies.
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Figure 15: Distribution of # of accesses during remote visits.

ing a threshold that migrates few users, with more aggres-
sive thresholds providing diminishing returns. The graph
shows that the Count and Rate-based policies are better
than the Time-based policy.

Figure 14 can be used to determine the break-even
point for each policy, where the benefit of migration
(saved remote accesses) outweighs the cost of migration,
assuming theRelayaccess model (Section 5), in which
remote accesses and migration consume bandwidth on
the same internal network and can be quantitatively com-
pared. The line marked “Migration Cost” illustrates a spe-
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Figure 16: Effectiveness of policies in saving remote accesses.

cific case where the bandwidth needed for migration is
equivalent to 100 remote accesses (e.g., for migrating re-
cent emails). This number could be different, correspond-
ing to different horizontal lines. The break-even point is
where the horizontal line intersects the curve of each pol-
icy.

In both theRelayand theRedirectmodel, the inter-
nal network may have limited bandwidth for migration if
other traffic is given priority. In this case, migration can be
done opportunistically, using spare bandwidth during in-
termittent idleness of the links. Which mailboxes should
be migrated to offer the greatest benefit? Figure 14 indi-
cates that mailboxes migrated by the largest thresholds of-
fer more benefit than those migrated with smaller thresh-
olds. This argues for adaptively changing the threshold to
match available bandwidth.

Figure 15 explains why the Count policy works well. It
plots the distribution of the number of accesses per remote
visit; we see that the distribution is linear on a log-log
scale and can be fitted to a heavy-tailed Pareto distribu-
tion, with a few visits containing many accesses. This ex-
plains the monotonically decreasing benefit of the Count
policy on the previous graph: it can be analytically shown
that a Pareto distribution always exhibits this property (we
omit the analysis for lack of space).



Finally, we determine the overall effectiveness of the
different policies by measuring the total percentage of re-
mote accesses saved. Figure 16 plots this metric on the
y-axis. The Count and Rate policies are very effective in
saving remote accesses; for example, with thresholds that
migrate 10% of all users, both policies save 55 to 60% of
all remote accesses in the Large-DC case. As expected,
the Time policy is not very effective, requiring almost all
users to be migrated to achieve similar savings.

9 Related work
Migration mechanism. There has been a lot of work
on distributed file systems [15, 17, 18, 21, 23, 28, 32–34].
These systems either do not support migration, or em-
ploy lock-based or log-based migration. For example,
AFS [21] allows a volume to be moved from one server
to another using log-based migration. xFS [33] allows a
client to borrow a file for exclusive writing, but this is dif-
ferent from migration since the file is ultimately returned
to its home server, which serves as a coordination point
(e.g., if multiple clients want to write). In Pangea [32], mi-
gration is achieved by simply creating a new replica, but
the system provides only eventual consistency, in contrast
to Nomad. Ceph [34] allows (the metadata of) a directory
to be moved from one server to another, using lock-based
migration. Coda [28] allows clients to hoard files for dis-
connected operation; this is different from migration since
hoarded files are eventually returned to the server that
owns the file. Farsite [17] appears to support migration of
metadata, by changing the mapping from identifier pre-
fixes to servers, using a lock to avoid races. GFS [18] ap-
pears to support migration of chunks, by copying a chunk
from one server to another, and then updating the map-
ping from chunk id’s to servers at the master using a lock
to avoid races.

Migration of a virtual machine (VM) is a well under-
stood technology, done by VMware [3], and a couple of
years later in Xen [13]. This technology is about moving a
functional VM to another host. In a first round, the entire
VM’s memory is copied; if a page of memory changes af-
ter being copied, it is marked dirty and the marked pages
are copied in a subsequent round. The system may ex-
ecute many rounds as further pages are marked, until it
decides to pause the VM, copy the remaining dirty pages,
and start the destination VM. Subsequent work on VM
migration considered the copying of direct attached stor-
age [22]. This body of work is different from ours because
it focuses on migration of data accessed by a single ma-
chine whether in memory or disk, whereas we consider a
distributedsetting and must address the required coordi-
nation among several servers (which we do via overlays).

In PNUTS [14], data is replicated across data centers
and migration consists of changing the master replica.
This scheme requires many replicas across data centers,

which we must avoid. Cloud storage services support mi-
gration between different locations. In Amazon’s storage
server [4], the approach to migrate an elastic block store
(EBS) is as follows: (1) the user stores a snapshot of the
EBS in S3, and (2) the user creates an EBS at a differ-
ent location and populates it with the content in S3. This
scheme, though simple, will fail to migrate any writes
done on the original EBS during migration.

Distributed object systems support migration of objects
(see [11, Section 5.2.2]), which is more complex than mi-
grating data, since objects have threads, TCP connections,
and other contextual state. The migration mechanism em-
ployed is lock-based migration.

Commercial disk array solutions such as the HP-UX
logical volume manager [26] support online migration by
essentially using the logging technique. In this context,
Aqueduct [25] is a system that controls migration traffic
to maintain low access latencies during migration.

The work in [8,19,27,30] shows how to add or remove
replicas in a replicated state machine or a quorum system.
These techniques can be used for migration, by adding
a replica at a new location and removing from the old
location. This work is theoretical and would be inefficient
for wide-area-network storage.

Migration policy. Volley [7] uses system logs of ac-
cesses to determine placement of data across data cen-
ters, based on data access interdependencies, who has ac-
cessed the data and when, and a balance of storage capac-
ity across data centers. This is different from our work
because of four reasons: (1) Volley’s placement algo-
rithm computes a global placement forall data, whereas
our scheme determines where a particular piece of data
should be migrated, (2) Volley’s algorithm does not con-
sider the cost of migrating data, so the algorithm is not
applicable to our setting where migrationhasas a cost;
in fact, the consideration of cost-benefit of migration is
central to our scheme, (3) Volley does not propose mecha-
nisms for migration, (4) Volley does not attempt to predict
future user movement.

Previously, data placement has been extensively stud-
ied in the context of web servers and Content Delivery
Networks (CDNs) [29]. Since data in these settings is
read-only, most of these solutions are centered on replica
creation and placement.

Predicting the movement of users has been explored
in mobile systems [10]. In contrast to this work, we are
concerned with predicting movement at coarse grain (e.g.,
is user staying in Asia or returning to Europe?) instead of
precise locations.

10 Conclusion
This paper addresses the problem of providing online

migration of data across data centers—a problem that oc-
curs as users move and/or data centers become unbal-



anced due to new applications, unforeseen growth, and
new data centers. To design a migratable storage system,
we propose an abstraction called distributed data over-
lays, which has a simple real-world analogy based on
transparent pieces of paper. We implemented this abstrac-
tion within a prototype of a key-value object store called
Nomad, which spans multiple data centers and allows for
migration and caching of object containers across data
centers. It is very easy to use overlays to implement mi-
gration; the complexity is hidden by the protocols that im-
plement overlays (which we provide), as these protocols
must coordinate concurrent reads, writes, migrations, and
the dynamic creation and removal of remote caches. We
also study some policies that might trigger the migration
mechanism based on user movement, but other policies
could be applied as well [7].
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