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Abstract

Datacenters are complex environments consisting of
thousands of failure-prone commodity components con-
nected by fast, high-capacity interconnects. The software
running on such datacenters typically uses multicast com-
munication patterns involving multiple senders. We exam-
ine the problem of time-critical multicast in such settings,
and propose Slingshot, a protocol that uses receiver-based
FEC to recover lost packets quickly. Slingshot offers prob-
abilistic guarantees on timeliness by having receivers ex-
change FEC packets in an initial phase, and optional com-
plete reliability on packets not recovered in this first phase.
We evaluate an implementation of Slingshot against SRM,
a well-known multicast protocol, and show that it achieves
two orders of magnitude faster recovery in datacenter set-
tings.

1. Introduction

A contemporary datacenter consists of hundreds to thou-
sands of commodity machines collocated on a building-
wide network. The software base running on such a dat-
acenter is typically structured as a large collection of au-
tonomous, fine-grained services. Each service is spread
over several nodes, for purposes of fault-tolerance and load-
balancing, and application tasks are carried out by multi-
ple services acting in various degrees of coordination. For
instance, a buy order coming into the backend for a com-
mercial website triggers off a flurry of distributed updates
involving different services, each responsible for a small,
individual subtask - such as billing, inventory, user profil-
ing, and so on. As a result of this service oriented style of
computing, many-to-many communication - or multicast,
with many senders - comprises a large fraction of the traffic
within a datacenter. A multicast primitive is, thus, a very
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useful building block for constructing datacenter applica-
tions, provided it counters the failure-prone nature of COTS
hardware and software with coherent, efficiently realized re-
liability guarantees.

In this paper, we consider the problem of time-critical re-
liable multicast within a datacenter. We characterize time-
critical services as requiring low-latency reliable communi-
cation - and willing to pay coherent, tunable overheads for
it. Such time-critical services coexist on datacenter nodes
with other applications of a less urgent nature. During peri-
ods of overload, it is desirable that timely delivery of time-
critical data is continued, even if this involves temporarily
slowing down other protocols on the network. The require-
ments of time-critical applications can vary from hard real-
time guarantees - absolute bounds on both reliability and
timeliness - to probabilistic, best-effort estimates of these
two metrics. In reliable multicast literature, gossip-style
protocols have enabled a transition from absolute guaran-
tees given failure bounds - such as a maximum of k nodes
failing, beyond which all bets are off - to probabilistic guar-
antees that degrade gracefully in the face of any degree of
failure. We believe that similar probabilistic guarantees on
timeliness are of value to applications of a time-critical na-
ture, especially in the COTS world of the datacenter, where
the entire communication stack is composed of unreliable
components oblivious to timing constraints. Traditionally,
this space has been targeted by real-time protocols which
offer deterministic guarantees under bounded failures, but
slow down delivery in the average case to achieve this ob-
jective. For applications dealing in perishable data with
short life-spans, such as stock quotes in a financial center
or location updates coming from military sensors, there is
a need for protocols that deliver a large percentage of data
very quickly, offering performance that degrades gracefully
under arbitrary failure conditions and providing optional re-
covery of remaining data at a higher latency. Our goal is
to design a time-critical multicast primitive offering such
probabilistic guarantees on timeliness.

Reliable multicast is a well-researched field, with a
wealth of existing solutions for timely, guaranteed delivery.



However, the unique combination of a service-oriented ar-
chitecture and a datacenter networking topology is one that
existing protocols are not designed to deal with efficiently.
Communication between and within services results in mul-
ticast groups with many senders transmitting small mes-
sages at uneven rates, across nodes and over time. State-of-
the-art reliable multicast protocols - especially those opti-
mized for delivery time - are not designed to deal with such
communication patterns. Further, datacenter topologies oc-
cupy a unique point in the networking problem space, scal-
ing beyond the reach of conventional LAN protocols while
escaping much of the complexity of WAN deployments.
Exploiting the positive aspects of such topologies - such as
high bandwidth, proximity, and flat routing structure - while
retaining scalability is an open problem.

Our key idea is to employ Forward Error Correction
(FEC) at the receivers of a multicast. FEC is a well-known
technique for introducing reliability into multicast, involv-
ing the injection of redundant packets into a stream to en-
able receivers to recover from packet loss. Traditional FEC
is strictly a sender-based mechanism, and has been used
to good effect in single-sender settings involving steady
constant-rate streams of data. We explore the idea of having
receivers in a multicast group encode incoming data into
FEC packets, which are then exchanged proactively to re-
pair losses. We present a protocol called Slingshot, which
layers unreliable IP Multicast with a gossip-style scheme
for disseminating receiver-generated FEC packets. Sling-
shot offers applications tunable, probabilistic guarantees on
timeliness, and allows users to choose either probabilistic
or complete reliability.

We evaluate Slingshot on a rack-style cluster and com-
pare its time-critical properties to Scalable Reliable Mul-
ticast [8], a well-known reliable multicast protocol. We
believe SRM to be a closer match for time-critical, multi-
sender settings than other existing protocols, and hence
a valid baseline to measure Slingshot against. Slingshot
achieves recovery of lost packets two orders of magnitude
faster than SRM in our evaluation, a finding that highlights
the value of receiver-based FEC in the datacenter. We sup-
plement this evaluation on a real cluster with simulation re-
sults that highlight the scalability of Slingshot to larger sys-
tem sizes.

The rest of the paper is organized as follows: In Section 2
we describe the operating conditions for a datacenter mul-
ticast protocol, in terms of workload and network behav-
ior, and how existing reliable multicast protocols perform
within these constraints. Section 3 describes the operation
of Slingshot in detail, along with its overheads and assump-
tions, and provides an analysis of the protocol. Section 4
presents evaluation results for Slingshot. Section 5 places
Slingshot in context with related work, and Section 6 con-
cludes the paper.

2 Design Space

A reliable multicast protocol aimed at time-critical data-
center settings has to take into account the expected nature
of communication within groups, as well as the character-
istics of the underlying network. As mentioned in the in-
troduction, the service oriented nature of datacenter com-
putation results in multicast groups with large numbers of
senders transmitting at varying rates. We obtain some in-
sight into the characteristics of datacenter networks from a
recent description of the Google File System (GFS) [10],
which is set against a networking backdrop of large clus-
ters of machines distributed across many machine racks,
with switches facilitating inter-rack communication. The
paper’s evaluation setup involves 1 Gbps links between
switches and 100 Mbps links to machines, indicating that
high-bandwidth links are the norm. The combination of
such flat, high-capacity routing structures and inexpensive
commodity hosts results in communication characteristics
in the datacenter being determined by the end-points, rather
than the network. For instance, inter-node latency is domi-
nated by the time spent by packets in either protocol stack,
with a negligible quantum of time spent on the actual wire.
More pertinently for reliable multicast protocols, packet
loss occurs at the end nodes due to buffer overflows, and
not at intermediary routers and switches. This allows a dat-
acenter multicast protocol to assume that packet loss oc-
curs independent of network structure (though other kinds
of loss correlation will exist, such as nodes running the same
services getting overloaded at the same time). Further, the
fact that time-critical data entering a node comprises only
a fraction of the total incoming traffic at that node allows
us to assume that there is no significant temporal correla-
tion of losses; a buffer overflow would affect applications
across the board, and not just the time-critical segment.
Hence, we can assume that the pattern of losses visible to
the time-critical protocol is not bursty and optimize for the
case where packets are lost singly.

With this set of assumptions in mind, we examine the
current solution space available to reliable multicast pro-
tocol designers. Most reliable multicast protocols layer a
packet loss discovery/recovery mechanism over an unreli-
able delivery primitive, such as IP Multicast [6] or some
form of overlay multicast [4]. While IP Multicast is not
widely deployed on the Internet, it is a viable alternative
in a datacenter context, given the attendant administrative
homogeneity and relatively lower number of dimensions in
which scalability is required. Introducing reliability over
this unreliable delivery primitive decomposes into two in-
tertwined questions: detecting that a node has not received
a packet, and recovering that lost packet. Existing reliability
schemes can be divided based on delegation of responsibil-
ity into two classes: sender-based and receiver-based.
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2.1 Sender-Based Reliability

In sender-based schemes [14, 12], the sender of a multi-
cast is responsible for ensuring that the data is delivered to
all receivers. The trivial extension of unicast reliability to
a multicast scenario involves positive acknowledgements:
each receiver sends an ACK for every packet back to the
sender. However, if multicast is used heavily, this causes
ACK implosion, where the sender is overwhelmed by ac-
knowledgements from its many receivers. A standard way
to avoid ACK implosion is to use ACK trees, which are used
to aggregate acknowledgements before passing them on to
the sender. For example, RMTP and RMTP-II [14, 12] use
such a hierarchical structure to collect ACKs and respond to
retransmission requests (both are designed for single sender
settings). In a time-critical setting, though, any kind of hier-
archical structure imposes unacceptable latency on the dis-
covery process, since the sender has to wait for a reasonable
amount of time to allow the acknowledgement aggregate to
percolate up the tree before it declares packets lost. In gen-
eral, sender-based reliability mechanisms have several dis-
advantages. In many cases, the sender is likely to be busy,
and going back to it for retransmissions might overload it.
Also, the round trip time to the sender might add unneces-
sary latency to the packet recovery process, particularly if
there are less loaded receivers near the affected node from
which lost packets could be recovered.

2.2 Receiver-Based Reliability

Receiver based schemes [1, 8] for reliable multicast
place the burden of discovering and recovering from packet
loss on the receivers. Many solutions use sender specific
sequencing for discovering packet loss: the sender numbers
the messages it multicasts, and a receiver knows it missed
a message if it receives the next message in the sequence.
If messages are delivered out of order by the transport sub-
system, timeout thresholds are used to determine if a packet
is truly lost. Once a packet is declared lost, one recovery
mechanism is to send a NAK, or negative acknowledgment,
requesting retransmission of the packet. The NAK can be
sent back to the sender, to a nearby receiver, or multicast
to the entire group, as in SRM [8]. SRM discovers loss
only when it receives the next packet from the same sender;
an alternative, such as in Bimodal Multicast[1], is to have
receivers gossiping message histories with each other to ex-
pedite discovery of loss. Here, once a packet is discovered
to be missing, a request for it can be sent back to the node
who initiated the gossip exchange and the packet can be re-
covered.

2.3 Forward Error Correction

Forward Error Correction (FEC) [11, 13, 16] is used
in scenarios where the latency of a two-phase discov-
ery/recovery mechanism is unacceptable, and where con-
tacting the sender for missing packets is undesirable or im-
possible. In its simplest form, FEC involves creating l repair
packets from m data packets such that any m out of the re-
sulting (m + l) packets is enough to recover the original m
data packets [11]. Traditional applications of FEC to reli-
able multicast have the sender generate l repair packets for
every m data packets and inject them into the data stream.
Hence, for every block of m + l packets, a receiver is insu-
lated from l packet losses. FEC is particularly attractive as
a reliability mechanism as it imposes a constant overhead
on the system and has easily understandable behavior under
arbitrary network conditions. However, it is designed pri-
marily for situations where a single sender is transmitting
data at a high, steady rate: for example, bulk file transfers
[2], or video and audio feeds [3].

3 Slingshot

Slingshot uses an unreliable multicast mechanism such
as IP multicast for an initial best-effort delivery, and then
injects point-to-point error correction traffic between re-
ceivers to proactively recover lost packets. Like conven-
tional FEC, it generates a constant percentage of error cor-
rection packets, with the difference that each receiver en-
codes over all incoming packets within a group, as opposed
to a sender encoding on the packets it sends. In some sense,
Slingshot leverages the multiplicative increase in message
density at multicast receivers — the fundamental cause of
ACK implosion — to use error correction techniques that
require a certain critical rate of input packets, decreasing
the latency of packet loss recovery/discovery as a result. Be-
low, we describe the basic operation of Slingshot, describe
the nature of the overheads it imposes and offer analytical
bounds on its performance.

3.1 Protocol Details

Message loss discovery and recovery in Slingshot occurs
in two phases. Phase 1 involves the proactive dissemina-
tion of repair packets between receivers, and guarantees fast
discovery and recovery of a high percentage of lost pack-
ets; this is the main contribution of this paper. Phase 2 is
optional and configurable, and allows for complete recov-
ery of all packets. Slingshot deals with two types of pack-
ets: data packets, which contain the original data multicast
within the group and are uniquely identified by message IDs
in the form of (sender, sequence number) tuples, and repair
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packets, which contain recovery information for data pack-
ets.

In Phase 1, Slingshot introduces a constant percentage
overhead on communication by having receivers send each
other repair packets. For every r data packets that a node
receives via the underlying unreliable multicast, it gener-
ates a repair packet using FEC and sends it to c other ran-
domly selected receivers. Slingshot uses XOR, the simplest
and fastest form of FEC, which allows the recepient of a
repair packet to recover from one missing data packet. To
ensure that both data and repair packets are sent in the net-
work without fragmentation, data packets are limited to a
size slightly smaller than the Maximum Transmission Unit
(MTU); this ensures that a repair packet has space for the
XOR, which is equal to the size of a single data packet, and
a list of contents, comprised of r message IDs describing
data packets which can be recovered using it. We say that
a data packet is contained within a repair packet if it can
be recovered from the latter. The fraction of overhead traf-
fic and the resulting percentage of lost packets recovered
by Phase 1 are directly determined by the 2-tuple parameter
(r, c), which we call the rate-of-fire. We give an analysis for
the expected percentage of lost packets recovered in Section
3.4.

To facilitate recovery of lost data packets from repairs,
each node maintains a data buffer, where it stores incom-
ing data packets. When a node receives a repair packet, it
first checks the list of contents to determine if there are data
packets included that it has not received. If only one such
packet is included in the repair, it retrieves the other r − 1
data packets from its data buffer and combines them with
the XOR contained in the repair packet to recover the lost
packet. Further, each node maintains a repair bin where it
stores pointers for upto r recently received data packets, to
be included in the next repair packet it sends.

The probabilistic nature of Phase 1 results in a small per-
centage of lost packets going unrecovered. This usually
happens when all incoming repairs at a node containing
a particular lost data packet include other losses, making
them useless, and also in the unlikely event that a node does
not receive a repair containing the lost packet, due to the
random manner in which nodes pick destinations for repair
packets. The probabilities attached to these two cases de-
pend on the rate-of-fire parameter, allowing us to tune the
reliability provided by Phase 1 to desired levels. Even if the
FEC traffic in Phase 1 does not enable packet recovery, it
ensures that loss is discovered very quickly. In the case that
the packet is not recoverable due to all relevant incoming re-
pairs containing multiple losses, discovery takes place when
the first such repair is received. At this point, the node can
either wait for more repair packets to arrive, or run Phase 2
after some timeout period has elapsed.

In Phase 2, the node initiates recovery of the lost packet

by sending an explicit request to some other node. If we
use a scheme similar to Bimodal Multicast, this explicit re-
covery request is sent to some arbitrarily chosen receiver of
the multicast - for instance, the sender of the repair packet
- which services the request from its data buffer. Figure
1 illustrates the difference between Slingshot and Bimodal
Multicast, if Phase 2 is structured in this manner. Another
option is to send the retransmit request back to the sender,
which requires senders to either buffer sent packets or del-
egate responsibility for reconstructing the packet to the ap-
plication, as in SRM. Algorithm 1 gives the complete Sling-
shot algorithm, substituting the first option for Phase 2.
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Figure 1. Comparison with Bimodal Multicast.

3.2 Overheads

In Phase 1, Slingshot imposes a constant percentage
communication overhead on the data sent through, which
depends on the rate-of-fire (r, c); for every r packets a node
receives, it sends out c additional repair packets. The ratio
of incoming repair packets to data packets over all nodes in
the system is given by the simple formula: (1−p)c

r
, where

p is the probability - independent, consistent with our as-
sumptions in Section 2 - of a packet being dropped at an
end-node. Other than the rate-of-fire (r, c), the principal
parameter to Slingshot is the size of its data buffer. Our ex-
periments show that in an 8 Mbps group, lost packets are re-
trieved within a few milliseconds of the time they were orig-
inally sent at, which reduces buffering requirements to tens
of milliseconds worth of data, or a few hundred Kbytes. An
optional data structure is the pending repairs buffer, where
repair packets containing multiple missing packets are tem-
porarily stored, in case all but one of their included lost
packets is recovered through other means; in practice, we
achieve good results with the size of this buffer set to twenty
packets. Finally, the computational overhead imposed by
Slingshot is minimal and easily quantifiable: every incom-
ing data packet is XORed incrementally to a buffer to pre-
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Algorithm 1 Slingshot algorithm.

1: Code of receiver pi:

2: Initialisation:
3: DataBuffer← ∅ {Contains received Data Packets}
4: RepairBin ← ∅ {Data packets to create next Repair Packet}
5: LastSeqNo[]← ∅{Last known data packet from each sender}
6: KnownLost← ∅ {List of Message IDs thought to be lost}

7: upon r-multicast(dp) do
8: send (dp) to all processes in v.

9: upon reception of data packet dp from sender pj do
10: deliver dp to the application
11: DataBuffer← DataBuffer ∪ {dp}
12: RepairBin ← RepairBin ∪ {dp}
13: markLost(dp.id)
14: KnownLost← KnownLost− {dp.id}
15: composeRepairPac()

{Phase 1 Recovery}
16: upon reception of repair packet rp from sender pk do
17: for all message id id ∈ rp.MsgIdList do
18: markLost(id)
19: if |{id|id ∈ KnownLost∧ id ∈ rp.MsgIdList}| = 1

then
20: Recover data packet dp corresponding to this id
21: deliver dp to the application
22: DataBuffer ← DataBuffer ∪ {dp}
23: KnownLost← KnownLost− {dp.id}

{Marks unreceived messages preceding passed-in id as lost}
24: procedure markLost(id)
25: for i = lastseqno[id.sender] + 1 to id.seqno do
26: KnownLost← KnownLost∪ {(id.sender, i)}
27: lastseqno[id.sender]← id.seqno

{Constructs FEC repair packet}
28: procedure composeRepairPac
29: if |RepairBin| ≥ r then {(r, c) denotes the rate-of-fire}
30: DestinationSet← select c processes q s.t. q ∈ v
31: generate repair packet rp
32: send rp to all q in DestinationSet
33: RepairBin ← ∅

{Phase 2}
34: upon receiving request message rm(MsgIdList) from

sender pk do
35: for all data packet dp s.t. dp.id ∈ MsgIdList ∧ dp ∈

DataBuffer do
36: send dp to pk

{Phase 2: runs periodically}
37: task
38: for all Msg ID id in KnownLost for longer than δt do
39: MsgIdList←MsgIdList ∪ {id}
40: send request message rm(MsgIdList) to an arbitrary pro-

cess pl

pare the outgoing repair packet, and during recovery, r − 1
XORs are performed to extract the missing data packet from
the repair packet. Phase 2 recovery imposes the extra over-
head of an explicit request and response; we do not consider
this significant, since we expect Slingshot’s rate-of-fire to be
tuned such that the percentage of packets left unrecovered
in Phase 1 is very small.

3.3 Membership

Slingshot needs a weakly consistent membership service
to provide each node with the list of other nodes in the
group, known as a view, from which it can pick targets for
repair packets randomly. The more accurately this view re-
flects actual group membership, the better Slingshot’s dis-
covery and recovery mechanism performs; the repair pack-
ets sent to nodes who are in a view but not in the group
are wasted, and members of the group who are not accu-
rately represented in views are less likely to receive suf-
ficient repair packets. However, Slingshot’s probabilistic
nature allows it to perform well despite weakly consistent
membership, allowing it to be layered over gossip-based
membership protocols [15]. Slingshot also works well with
partial views, where each node knows only a subset of the
group; hence, a scalable, external membership service pro-
viding uniformly selected partial views, such as Scamp [9],
can be used underneath it. In our implementation we in-
clude a simple state-machine replicated membership server
that provides nodes with view updates, and have nodes per-
form failure detection in a ring. We believe such a solu-
tion to be appropriate for datacenter settings, where group
sizes are limited to thousands of nodes and churn is not a
concern. Because we do not require strong consistency,
the overhead imposed by the underlying membership ser-
vice is negligible: in our implementation, each node pings
one other node once a second and membership updates are
propagated lazily to nodes by the central service.

3.4 Analysis

We present a simplistic analysis to predict how the prob-
ability of a lost packet being recovered depends on the rate-
of-fire parameter, the size of the group, the partial view size,
and the probability of packet loss. We assume that packets
are dropped at end node buffers with some fixed indepen-
dent probability p, and that routers do not drop packets; this
is consistent with our assumptions in Section 2. Given a
group size NG, a partial view size Nv and a rate-of-fire pa-
rameter (r, c), we want to predict the probability of recov-
ering a given data packet dp lost at node n. We make the
assumption that the partial view at a node is a uniformly
chosen subset of the whole group membership, and always
includes the node itself.
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Now, let X be a random variable signifying the number
of nodes in the system which have n in their partial views.
Since each partial view is a uniformly picked subset of the
group membership, the probability of n being included in

a view other than its own is pv = (NG−2
Nv−2)

(NG−1
Nv−1)

. Thus, X has a

binomial distribution with parameters NG and pv .
Given that the number of nodes including n in their

views is a particular value i, let Y be a random variable
denoting the number of repair packets originating at these
nodes that include the data packet dp and are targeted at n.
The upper bound on the total number of such packets is i,
for the case that each of the i nodes receives dp without loss
and sends out a repair packet to n. At any of the i nodes,
the probability of n being selected as one of the c destina-

tions is pc = (Nv−2
c−1 )

(Nv−1
c ) . If we also consider the probability p

of the sender of the repair packet dropping dp, then Y has a
binomial distribution with parameters i and pc(1 − p).

If we set the number of repair packets which include dp
and are targeted at n to a value j, then the number of such
packets received without loss by n is represented by a ran-
dom variable Z that has a binomial distribution with param-
eters j and 1−p. Let us set Z to the value k. Now, we need
to compute the probability pk of dp being recovered if n
receives k repair packets containing it. We can recover dp
if, for at least one of the incoming repair packets containing
it, n has all the other r − 1 data packets included in that
repair packet. We derive inclusive upper and lower bounds
pkL and pkU for pk , where k ≥ 1; it is equal to zero when
k = 0. The lower bound corresponds to the case where all k
repair packets have the same contents, and the upper bound
is given by the case where all k repair packets are pair-wise
disjoint; i.e they include completely different data packets.
Hence, pk is bounded by:

pkL = (1−p)r−1 ≤ pk ≤ pkU = 1−(1−(1−p)r−1 )k

Hence, the final probability Pn,dp of a data packet dp lost at
node n being recovered successfully is bounded by:

NG∑

i=0

P (X = i)
i∑

j=0

P (Y = j)
j∑

k=0

P (Z = k)pkL ≤ Pn,dp

≤
NG∑

i=0

P (X = i)
i∑

j=0

P (Y = j)
j∑

k=0

P (Z = k)pkU

4 Evaluation

We evaluated an implementation of Slingshot on a rack-
style cluster of 64 nodes, consisting of four racks of blade-
servers connected via two switches. We believe this clus-
ter to be fairly typical of a datacenter setup, with average

Tuning Slingshot's Rate-Of-Fire: Changing c with fixed r
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Figure 2. Tuning a Slingshot implementation on a 64-
node cluster: tradeoff points available between reliability,
timeliness and overhead by changing the rate-of-fire (r, c).
Reliability and Overhead are plotted against the left y-axis,
and Average Recovery Time on on the right y-axis.

ping roundtrip time at around 100 microseconds. Unless
indicated otherwise, our loss model involves packets being
dropped at end nodes with .01 independent probability.

4.1 Reliability and Timeliness vs. Overhead

Figure 2 shows how changing the rate-of-fire parameter
affects the amount of overhead induced and the resulting re-
liability and timeliness characteristics. Figure 2a shows the
effect of varying c for constant r = 8, and Figure 2b shows
results for different values of r, keeping c at r/2 to maintain
the same level of overhead. In these experiments, each node
multicasts a packet once every 64 milliseconds, resulting in
1000 packets/second in the group. Note that the average re-
covery time includes discovery of packet loss. Most packet
recovery mechanisms, including SRM [8], present only the
time taken to recover packets in their results, ignoring dis-
covery time. In a multi-sender setting, discovery time using
sender-based sequencing would heavily dominate recovery
time, averaging at 64 milliseconds in this experiment. In
contrast, Slingshot performs both discovery and recovery
within a few milliseconds. We run only Phase 1 of Slingshot
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here, and the graph includes the fraction of packets recov-
ered in this phase; running a second phase would provide
complete reliability. After a certain point, increasing the
amount of overhead by raising c has diminishing returns;
for the rest of our simulations we set the rate-of-fire to be
(8, 5).

Comparison of Slingshot and SRM: c.d.f on Logarithmic Time axis
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Figure 3. Comparison of Slingshot implementation
against SRM on a 64 node rack-style cluster: c.d.f. of pack-
ets recovered for a 1000 packets/sec workload.

4.2 Comparison with SRM

Figure 3 shows a comparison of the time-critical prop-
erties of Slingshot against SRM. The experiment involves
64 nodes multicasting every 64 milliseconds, to achieve
a data rate of 1000 packets per second within the group.
The graph is a cdf of packets recovered against time taken
(since the original unreliable send), on a logarithmic x-axis.
SRM discovers packet loss through sender-based sequenc-
ing, which explains the steep rise of the ”SRM Discovery”
curve at around 64 milliseconds; a lost packet is not discov-
ered until its sender multicasts again, 64 milliseconds later.
In this particular run of SRM, roughly 53% of all traffic
is repair overhead, while the Slingshot configuration used
(rate-of-fire = (8, 5)) results in 38% of all traffic being over-
head. Unless SRM is allowed to facilitate faster discovery
by sending blank messages between actual multicasts, using
up even more overhead, its recovery time is bounded below
by the inter-send time. Hence, even if recovery were made
faster by optimizing SRM’s timing parameters for datacen-
ter settings, it cannot take place faster than the inter-send
time. Running only Phase 1 of the Slingshot protocol, we
achieve recovery of almost all lost packets (97.5% in this
run) two orders of magnitude faster than SRM.

4.3 Scalability

To assess the scalability of Slingshot beyond the limits of
our 64-node cluster, we ran a simulation of the protocol on

a 400 node network. Our topology consisted of 20 switches
forming a star network around a gateway router, with each
switch having 20 end-hosts under it. As in the implementa-
tion setup, end-hosts drop packets with 1% probability, and
routers and switches do not drop packets. In Figure 4, we
randomly select nodes from the 400 node topology to fill a
group of a given size, and evaluate the percentage of pack-
ets recovered by Slingshot’s Phase 1 in the resulting group.
We also used the simulator to assess the impact of partial
view size on Slingshot’s performance. Figure 5 shows that
Slingshot works as well with small, partial views as it does
with global views.

Scalability in Group Size
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Figure 4. Effect of sroup size on Slingshot’s Phase 1 re-
covery percentage in a 400 Node simulated datacenter.
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Figure 5. Effect of changing the partial view size in a 400
node simulated datacenter.

5 Related Work

Slingshot lies in the intersection of various distributed
systems technologies, such as reliable multicast, FEC
schemes, and real-time protocols. Amongst the reliable
multicast protocols discussed in Section 2, the one closest to
Slingshot is Bimodal Multicast (see Figure 1); they are both
layered over IP Multicast, and involve receivers exchanging
recovery information with each other. Slingshot has the ob-
vious advantage over Bimodal Multicast of requiring only
a single message send for recovery, as opposed to three.
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Also, running Bimodal Multicast in time-critical settings
would involve exchanging message digests at a very high
rate. When digests are sent this frequently, the case where
some receivers get a packet before others could trigger off
many unnecessary two-step recoveries. Slingshot does not
suffer from this problem, as recovering a packet from a re-
pair is a very fast operation. The passing resemblance of
Slingshot to Bimodal Multicast is partially by construction;
we believe that this is one way of enhancing reliable mul-
ticast with receiver-based FEC, but one can imagine other
alternatives, such as deterministically flooding repairs on an
overlay, that offer guarantees of a different flavor.

Slingshot is closer to the reliable multicast space than to
real-time protocols, due to the nature of its guarantees and
operating assumptions. Real-time protocols either assume
timing guarantees at a lower level or characterize the vio-
lation of timing assumptions as failures. For instance, the
delta-t protocol [5] offers deterministic bounds on delivery,
given a certain number of such failures. Our characteriza-
tion of time-criticality as a need for very small, probabilis-
tic time bounds is, hence, quite different from traditional
notions of real-time requirements.

Lastly, FEC has long been a topic of extensive research;
nonetheless, we are not aware of any existing work that pro-
poses encoding repair packets at the receiver end. Most
current research in FEC is focused on providing efficient
ways to perform complex encodings that allow recovery
from multiple losses in a stream. While we have restricted
ourselves to using XOR for encoding, using more powerful
forms of FEC is an avenue open to further exploration.

6 Conclusion

Slingshot offers unique probabilistic guarantees on time-
liness in datacenter settings by placing FEC at the receivers
of a multicast. It exploits the accumulated multicasting rates
of multiple senders to achieve faster packet loss detection
and recovery at the receivers. In our evaluation setup of
a 64-node rack-style cluster, Slingshot recovers packets two
orders of magnitude faster than Scalable Reliable Multicast,
underscoring its utility as a building block for time-critical
datacenter applications.
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