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Abstract
The basic block I/O interface used for interacting with stor-
age devices hasn’t changed much in 30 years. With the ad-
vent of very fast I/O devices based on solid-state memory,
it becomes increasingly attractive to make many devices di-
rectly and concurrently available to many clients. However,
when multiple clients share media at fine grain, retaining
data consistency is problematic: SCSI, IDE, and their de-
scendants don’t offer much help. We propose an interface
to networked storage that reduces an existing software im-
plementation of a distributed shared log to hardware. Our
system achieves both scalable throughput and strong consis-
tency, while obtaining significant benefits in cost and power
over the software implementation.

Categories and Subject Descriptors
B.1.1 [Integrated Circuits]: Types and Design Styles—
Gate arrays; B.3.2 [Memory Structures]: Design Styles—
Mass storage; D.4.2 [Operating Systems]: Storage Man-
agement; D.4.7 [Operating Systems]: Organization and
Design—Distributed systems

1. INTRODUCTION
The advent of NAND flash has brought about a sea change
in the storage industry. Since rotating media are accessed
through a few slow mechanical disk heads, IOPS, especially
random ones, are precious. However, in a flash array, each
memory chip can potentially serve one or two orders of mag-
nitude more random requests than an entire disk. Since
there are many such chips in an array, I/O throughput is
bounded only by the number of channels to the flash. Thus,
the I/O rate of high-end SSDs often outpaces the ability of
a general-purpose computer to issue requests. For exam-
ple, Fusion-io claims to deliver 9 million IOPS [8] through
custom APIs that bypass the operating system. In this en-
vironment, it is easy to see why vendors are moving toward
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appliances that offer specialized network fabrics to intercon-
nect flash arrays as well as high-speed networks to connect
multiple client computers to those arrays [20, 29].

A traditional storage server consists of a network-attached
computer tied to a large storage array. In the past, array ele-
ments were rotating disks and the main problem has always
been to make sure the disks could, in aggregate, keep up.
Now, with lots of flash elements, each 100-1000 times faster
than disk, the tables are turned. The best hope for keeping
the flash busy is to increase the number of servers that a
client can talk to, with many clients doing so concurrently.

Unfortunately, despite all the improvements flash has mani-
fested in latency and I/O throughput, and despite the advent
of fast networked access to such storage, client computers
still access flash arrays through the logical-unit, block-read-
write interface that hasn’t changed all that much in three
decades. Specifically, there has been little work on providing
direct support for multi-client write access to shared storage
and traditional modify-in-place semantics preclude the rec-
onciliation of conflicting writes. Where shared (write) access
to storage is required, an intermediary software service is of-
ten required to multiplex and coordinate request streams
from multiple clients. For example, database and other
transactional systems multiplex request streams in software
long before they reach a disk. Similarly, while distributed
file systems like FDS [18] and GPFS [22] might be able to
stream data directly to block storage, shared access to meta-
data is typically mediated by a single software intermediary
or via a lock server that provides temporary single-writer
access at fine grain. Moreover, most distributed storage
systems require that a server computer interpose between
clients and media, at a minimum, translating between net-
work and storage protocols.

The constraints cited in the previous two paragraphs form a
conundrum. We need more servers to allow clients to drive
the flash at speed, but doing so risks causing inconsistency.
This conundrum is often solved by sharding of data with an
independent mediator assigned to each shard [2]. However,
this only moves the problem, since then operations involving
multiple shards become difficult to coordinate.

This paper posits that an alternative storage device interface
can facilitate shared and coordinated write-access amongst
multiple client computers, and do so scalably without sac-



rificing consistency. We follow the well-worn example of re-
ducing the core of a higher-level system to practice in hard-
ware, specifically we support a distributed shared log. As
previous work demonstrates [4], a shared log implemented
in software can support multiple clients running applications
that require both high thoughput and a total order on up-
dates (such as databases or distributed key-value stores).

In this paper, we describe a hardware implementation that
facilitates such a shared log. Our hardware implements the
shared log protocols directly, without need for a coordinating
server. Our device performs at least as well as previously
published software prototypes. Specifically, it saturates a
1 Gb/s network link. However, the cost (both in dollars
and power-budget) of our hardware implementation is only
a fraction of cost of a server, saving an order of magnitude
compared to the software implementation. Thus, we have a
substantial advantage in scalability. Furthermore, we argue
that special-purpose platforms such as ours, independent of
form factor, present a viable hope for fully utilizing flash as
network speeds increase to 10 Gb/s and beyond.

2. A DISTRIBUTED SHARED LOG
As described in the Introduction, we choose to expose a clus-
ter of devices as a distributed shared log, thus circumventing
the sharding pitfall. This approach follows our earlier work
on the CORFU log [4]. It may be counter-intuitive that
a single global shared log serves to circumvent the central-
ization bottleneck and to boost aggregate throughput. The
trick in CORFU is to advance log-writers position by posi-
tion extremely quickly using a centralized sequencer. Each
reserved log position is filled directly and autonomously by a
unique client, yielding utmost I/O parallelism. In order for
this design to perform well, the sequencer is completely soft-
state, and can orchestrate hundreds of thousands of client
writes to the log per second. There remains the challenge
of filling individual log positions consistently and reliably at
high throughput.

The body of this paper is dedicated to the design of a storage
hardware device capable of supporting CORFU writes, in-
cluding the support for data replication. We refer to this de-
vice hereafter as a shared log interface controller or SLICE.
Figure 1 depicts at high-level the translation of CORFU
log offsets onto individual SLICE Virtual Addresses (SVA),
which are mapped inside the SLICE onto SLICE Physical
Addresses (SPA).

For the rest of this section, we briefly re-iterate the ratio-
nale behind the shared log approach; we refer the reader
elsewhere [4] for a detailed discussion of the CORFU shared
log, applications built with it, and its performance.

A shared log is a powerful and versatile primitive for ensur-
ing strong consistency in the presence of failures and asyn-
chrony. It can play many roles in a distributed system: a
consensus engine for consistent replication, providing func-
tionality identical to consensus protocols such as Paxos [15]
(geographically speaking, Corfu and Paxos are neighboring
Greek islands); a transaction arbitrator [10, 23, 25] for isola-
tion and atomicity; an execution history for replica creation,
consistent snapshots, and geo-distribution [14]; and even a
primary log-structured data store that leverages fast ap-
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Figure 1: CORFU high-level architecture

pends on underlying media as in [21, 24]. We expect CORFU
to enable a new class of high throughput distributed, trans-
actional applications suitable for datacenter or cloud infras-
tructure. The key vision here is to persist everything onto
the global log, and maintain metadata in-memory for fast ac-
cess and manipulation. Indeed, we already have several pos-
itive experiences with systems built atop CORFU, includ-
ing a coordination service which exposes an API compati-
ble with ZooKeeper [11], the Hyder database [5], a general-
purpose transactional key-value store and a state-machine
replication library [4], and a log-structured virtual drive.

A shared log is also a suitable abstraction to implement
atop a cluster of flash storage units. As has been argued
before (e.g., see [2]), flash memory is best utilized in a log-
structured manner due to its intrinsic properties. CORFU
takes this approach one step further by treating an entire
flash cluster as a single distributed, shared log, where client
machines append to the tail of a single log and read from its
body concurrently. Each log entry is projected onto a fixed
set of flash pages and data is made resilient by replication
over the page-set. The cluster as a whole is balanced for
parallel I/O and even wear by projecting different entries
onto distinct page sets, rotating across the cluster. In this
design, CORFU completely adopts the vision behind net-
worked, log-structured storage systems like Zebra [9], which
balance update load across a cluster in a workload-oblivious
manner. The difference is that the CORFU log is global and
is shared by all clients. Furthermore, the storage servers
enforce properties discussed in the next section that are re-
quired for a coordinated and shared media.

3. THE SLICE API
Guiding our storage device design is the CORFU vision
that we can avoid any centralized meta-service on the I/O
path from clients to storage, yet support strong consistency.
There are three key effects on the design of a SLICE unit in
this regard:

1. Since multiple clients may attempt to access the same
physical storage page, and barring the use of a meta-



seal(epoch). This command marks all the addresses be-
longing to the epoch as read-only and marks the cur-
rent epoch as sealed at the target SLICE.

read(epoch, sva). This command reads a page of data at
the given virtual page address. On success, it returns
data and the epoch when the data was written. Oth-
erwise, it returns an error value. Reads and writes
operate on 4KB pages. This size was picked to match
the page size of commonly available NAND flash parts,
but there is nothing fundamental about this choice.

write(epoch, sva, data). This command writes a single
page of data to the virtual address. If the epoch is cur-
rent (not sealed), then the command writes the data to
the address and returns a positive acknowledgement.
Otherwise, it returns an error value. A SLICE cannot
count on writes arriving from the network in log order.

Only one write is allowed to each address. If a client
attempts to write a page that has already been written,
an error value is returned.

check(epoch). This command returns the maximal writ-
ten position as well as the maximal extent of contigu-
ously written entries.

trim(epoch, trimtype, sva). This command marks writ-
ten pages that can be erased during garbage collection.
There are two variants of the virtual address argument
referred to as prefix and offset trim. Prefix trim op-
erates on the entire prefix of the address space before
the argument address. Offset trim operates on a single
address alone.

Figure 2: SLICE API

service to manage access capabilities, SLICE exposes
a write-once address space.

2. In order to enforce write-once semantics on pages that
have been written and reclaimed for cleanup, the ad-
dress space of every SLICE grows infinitely, limited
only by the device’s lifetime.

3. To manage configuration changes to the cluster, each
SLICE is marked with a configuration epoch. In this
way, a SLICE can deny service from clients which are
not aware of the current epoch’s configuration.

Figure 2 provides a complete description of the SLICE API,
followed by a full account of its rationale. As originally envi-
sioned in the CORFU publication [4], this API is simple and
concise enough to be implemented in hardware. We do not
designate a specific network protocol underlying this API,
because it can be implemented atop any protocol with rea-
sonable integrity guarantees. Also, we note that although
the focus of this paper is using NAND flash as the under-
lying storage media, this API would apply to other storage
media (i.e., HDD, Phase Change Memory, etc.), with the
most likely difference being in caching and data access gran-
ularity size.

A variety of considerations, which are intertwined with the
CORFU protocol design, contribute to the above API, and

we discuss them below.

Handling Reads/Writes. CORFU is implemented by us-
ing a client-side library to project virtual log-entries onto
page addresses on individual SLICEs. Clients access those
addresses directly so as to perform reads and writes.

The crux of allowing multiple clients to write concurrently
to the same device lies in how writes are handled. As men-
tioned in the previous section, CORFU utilizes a soft-state
sequencer to prevent clients from attempting to write the
same log position. However, a client that wins access rights
to a page might hang indefinitely, leaving a hole in the log
at a position it had intended to write. If a hole remains
unfilled, then clients that count on reading the entire log
must block, believing that the hole is the end of the log.
CORFU deals with this by permitting log readers to “fill
holes” with recognizable junk as needed. This introduces a
potential race between writers and hole-fillers. In order to
address this potential race, we count on the SLICE address
space to be write-once, so either the writer or the hole-filler
will succeed, but not both.

Handling Replication. More generally, the SLICE write
once semantics allows CORFU to provide fault tolerance
through consistent data replication in a purely client-driven
manner. Briefly, clients replicate writes to multiple servers
using a variant of Chain Replication [28]. A client copies
data from replica to replica using the fixed order of the chain.
We can recover from a failed write by continuing any par-
tially filled chain in the same manner, copying the prefix to
complete the chain.

Handling Trims. Because physical flash isn’t infinite, ap-
plications must occasionally trim the log. As mentioned
above, a SLICE provides two flavors of trim. Prefix trim
can be used to produce a compact log with few trimmed po-
sitions between the log head and tail. An application imple-
menting a strict snapshot-and-log persistent data structure
might make use of such a log. Offset trims, alternatively,
can provide a sparse log with valid data distant from the
active log head. This can be useful, for example, when con-
structing a log-structured file system or block store. When
applications dictate a compact log, the garbage collector has
little to do other than erase storage. However, a sparse log
is more difficult to handle. As in SSD garbage collection, we
must find blocks with the least number of valid pages, relo-
cate those valid pages, and erase the blocks so that they can
be rewritten, while balancing this with block wear-leveling.

Handling Reconfiguration. When storage elements fail or
capacity is added, the system must undergo a reconfigura-
tion to add new SLICEs or remove failed ones. Clients are
alerted to changes in the global configuration when a SLICE
indicates that a client’s working epoch has been sealed. If
such a reconfiguration takes place, all the existing SLICEs
must be sealed so as to deny further mutations within the
old epoch. This protocol ensures inter-client consistency by
prohibiting operations by clients that do not know of the
new epoch.



Why an Infinite Address Space. Putting together write-
once semantics and trimming implies that we cannot recy-
cle SLICE addresses and use a trimmed address to refer
to a reclaimed pages; this might lead to a violation of the
write-once semantics. Hence, a SLICE exports an infinite
space of virtual addresses (called SVA, see Figure 1), which
is mapped onto its finite space of physical addresses (referred
to as SPA in Figure 1). An alternative design would be pos-
sible for prefix trims: handle trims via reconfiguration, thus
generating new epochs to circumvent the need to overwrite
reclaimed addresses. However, a compact log requires the
application to work hard to move old data to the front of the
log. Moreover, sparse logs are useful for a number of work-
loads. We therefore decided to support sparse logs in the
most natural way, allowing local SLICEs to perform local
wear-leveling and garbage collection as do individual SSDs,
but also giving good performance for applications that man-
age logs in a compact fashion.

4. PROTOTYPE IMPLEMENTATION
We implemented our SLICE prototype on an FPGA using
the Beehive many-core architecture [17]. In the following
section, we describe the data structures our prototype uses
to satisfy the requirements of the SLICE API. Then we out-
line the hardware itself and the control flow used in the
processing of shared-log requests. We conclude the section
with a look at a few specific design details.

4.1 Implementing the API
In order to support an infinite address space, the storage
device must provide a persistent mapping from a (potentially
sparse) 64-bit virtual address (SVA) onto a physical address
(SPA). SSDs often use such a structure, although the map’s
domain is usually limited to the nominal disk size of the
SSD, and the granularity of the mapping function is often
coarser than a single page. There is considerable overlap
between what is described here and the functionality of the
Flash Translation Layer (FTL) firmware found in an SSD.
Thus, there is good reason to think about merging these
components. We discusses this possibility in Section 4.6. In
practice, an SVA need only be large enough to support the
maximal number of writes for a given device. Since NAND
flash supports a limited number of erase cycles, we can base
our data structures on the notion that the size of an SVA
is roughly bounded by the number of flash pages times the
maximal erase cycle count.

Our current implementation uses a traditional hash table
to implement a map that resolves to flash pages of size 4
KB. This data structure occupies 4 MB of memory per GB
of target flash. We have designed, but not implemented, a
significantly more compact structure using Cuckoo Hashing
as described in Section 4.4.

The referent of the page map contains per-page state (e.g.:
unwritten, written, trimmed) as well as an SPA if the page
is in the written state or awaiting reclamation. We keep
three pointers with regards to the overall SVA space on each
SLICE: a head pointer to denote the maximum written en-
try; and a minimum unwritten pointer (below which there
are no holes); and a pointer below which all trimmed pages
have been reclaimed. An additional pointer indicating the
minimum written position can also be used to restrict the

set of logical addresses under consideration during prefix
trim. These pointers need not be maintained persistently
since they can be recovered from the mapping table. All
trimmed positions that both lie below the minimum unwrit-
ten pointer and have been reclaimed can be eliminated from
the map.

We optimize the hole-filling operation by using a special
value of flash page pointer to denote the junk pattern that
is used to fill a hole in the log. Thus, hole-filling can be
accomplished by manipulating the mapping table: set the
physical page pointer to the junk value and mark the page
as trimmed. In addition to the mapping structure, the
SLICE implementation must track the set of sealed epochs
and maintain a free list of flash pages for new writes. The
former must be stored persistently, but the latter can be re-
constructed from the mapping table. For best performance,
the ordering of the free list should take into account specific
peculiarities of the media, such as locality or the need to
perform sequential writes within flash blocks.

Should it become necessary to efficiently enumerate very
sparse logs, we could introduce a data structure to track
ranges of reclaimed addresses and an API method to ac-
cess it (e.g, FindNextWritten). However, the applications
we have built so far only walk through the compact por-
tion of logs, so we have not yet found the need to take such
measures. Some of the newer API functions that are part
of the software implementation of the CORFU server have
not yet been fully implemented in hardware. For example,
the minimum unwritten pointer was not part of our original
hardware design. These features can and will be reintegrated
straightforwardly into the current design.

4.2 Hardware Design
Our prototype hardware design is presented in Figure 3.
Each SLICE comprises an FPGA with a gigabit Ethernet
link, a SATA-based SSD, and 2 GB of DDR2 memory. The
design is flexible and scalable: hundreds of SLICEs may be
used to support a single shared log given sufficient network
capacity. We have engineered our SLICE unit to be inexpen-
sive and low-power while delivering sufficient performance to
saturate its Ethernet link. While our prototype unit is built
with an FPGA, we envision that a production device would
be built with a low-cost ASIC and a NAND flash array in-
stead of a SSD, offering a better performance, lower price,
and lower power than the platform that we are currently
using.

Inside the FPGA, we use a variant of the Beehive. Beehive
is a many-core architecture implemented in a single FPGA.
A single Beehive instance can comprise up to 32 conven-
tional RISC cores connected by a fast token ring. Network
interfaces, a memory controller, and other devices, such as
disk controllers, are implemented as nodes on the ring. Con-
trol messages for memory access traverse the ring as do data
writes to memory. Data is returned from reads via a ded-
icated pipelined bus. There are additional data paths to
enable DMA between high-speed devices and memory.

We configure various Beehive cores to take on specific roles,
as shown in Figure 4. Whereas the memory controller, Eth-
ernet core, and System core are common to all Beehive de-



% Idle Instructions

System 15.5% 2,544
PacketProc 0.7% 4,116
Read 8.0% 612
Write 8.9% 634
Metadata 3.95% 712
SATA 5.3% 1,110
Comm N/A 516

Table 1: SLICE per core idle time and number of
assembly instructions. (Comm core code written in
assembly, all other core code written in C.)

signs, we use the following special-purpose cores to construct
a SLICE.

• A packet processing core handles the parsing of net-
work requests and the formatting of responses.

• A metadata core manages the mapping table.

• A SATA core coordinates I/O to the SSD.

• A read and a write core interact with the metadata
core, and initiate and monitor the completion of SATA
requests.

The Beehive architecture enables us to handle requests in
parallel stages while running the FPGA at a low frequency
(100 MHz), thus reducing device power. Note that new func-
tionality can be easily added to the SLICE design. Addi-
tional cores running specialized hardware can enhance the
performance of timing-critical tasks. For example, our cur-
rent design uses a specialized hardware accelerator to speed
up packet processing. At the same time, latency-insensitive
operations can be coded in a familiar programming language
(C), significantly reducing complexity.

Table 1 shows the percentage of time the various cores are
idle under maximal load and number of assembly instruc-
tions per core in the SLICE design. The Comm core has a
slightly different architecture than the rest of the cores (it
runs all its code from ROM and cannot execute/read/write
DRAM except using DMA), thus we did not measure its
idle time. If we need more or differently allocated compute
resources, we can use different configurations of cores. In
an earlier alternative design, we used two Packet Process-
ing Cores running the same code base: one processed even
packets and the other processed odd packets. The earlier
design used more FPGA resources than the current design,
but both designs can run the Ethernet at wire speed. We
could also just as easily add a second Comm, PacketProc,
Read or Write core, should the workload require it.

4.3 An Example Write Request
Requests to a SLICE arrive over the network. As an exem-
plar, we describe, below, the nine steps required to service
a write request as it moves around the ring, as shown in
Figure 4.

1. The SLICE receives a packet at the Communication
(Comm) core.
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Figure 3: SLICE prototype hardware system design.
Each SLICE contains a FPGA which receives re-
quests over gigabit Ethernet and serves them using
an SSD. Future designs may implement 10 gigabit
links and direct access to a NAND flash array.

2. When a packet is received (we support jumbo packets
up to 9,000 bytes) it is placed into a specific location
in DRAM in a circular buffer using DMA and a page
token is created.

3. The Comm Core forwards the page token to the Packet
Processing Core to process the packet header informa-
tion.

4. The Packet Processing Core forwards the page token
to the Write Core. The Packet Processing Core also
starts to construct a reply message for the client while
the packet request is satisfied.

5. The Metadata Core receives the page token to check
the metadata to make sure the SVA has not been writ-
ten or the epoch has been sealed and picks a SPA off
the free-list. The SPA and the memory address for the
data are forwarded to the SATA Core.

6. The SATA Core reads a page from the data buffer
located at the memory address and stores the page on
the SSD at the specified SPA.

7. The SATA Cores informs the Write Core that the re-
quest is complete by sending the page token back,
starting the reverse journey back to the Comm Core.

8. The page token is sent back to the Packet Processing
Core to complete the reply packet.

9. The Comm Core sends the reply packet back to the
client when the page token returns with a pointer to
the reply packet.
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Figure 4: SLICE hardware architecture. Inside the
FPGA, Beehive cores and a DDR memory controller
are connected via a token ring. Specialized cores al-
low the system to interact with peripheral hardware
such as the network and storage.

4.4 Address Mapping Using Cuckoo Hashing
We now present our design for using Cuckoo Hashing to effi-
ciently map an SVA to an SPA. Cuckoo Hashing minimizes
collisions in the table and provides better worst-case bounds
than other methods, like linear scan [19]. Under Cuckoo
Hashing, two (or more) mapping functions are applied to
each inserted key, and such a key can appear at any of the
resultant addresses. If, during insertion, all candidate ad-
dresses are occupied, the occupant of the first such address
is evicted, and a recursive insert is invoked to place it in a
different location. The original insertion is placed in the va-
cated spot. On average, 1.5 index look-ups are required for
successful lookups in such a table. Table lookups for entries
not in the table always require two lookups, one for each
mapping function.

In order to save space in each hash table entry, we store
only a fraction of the bits of each SVA. The remainder of
the bits can be recovered by using hash functions that are
also permutations. Such permutations can be reversed, for
example during a lookup, to reconstruct the missing bits so
as to determine whether the target matches. The end result
of hashing an SVA can then be represented by the mapping
function F which is the concatenation F1 and F2, computed
as described below. The lower order bits of F are used to
index into the mapping hash table and the remainder of F is
stored in the table entry for disambiguation, along with a bit
indicating which mapping function was used. This ensures
that for any given table entry, we can recover all of F from
an entry’s position and contents, and thus we can derive X
and Y , and finally the original SVA.

An example of the forward and reverse process for the map-

Location 1a Location 1b

Location 2a Location 2b

Mapping function 1

Mapping function 2

2-bit 
page 

status
25-bit SPA Residual 19 bits of F(SVA)

Mapping function ID

Cuckoo hash page map table

Figure 5: Cuckoo hash page map and table entry.

ping function is provided below:

• Split the SVA bitwise into two values X and Y of equal
size.

• Given two hash functions, H1 and H2, compute func-
tions F1 and F2 on X and Y as follows:

– F1 = H1(Y )
⊗

X

– F2 = H2(F1)
⊗

Y

• X and Y and hence the original SVA can be recovered
from F1 and F2 as follows.

– H2(F1)
⊗

F2 = H2(F1)
⊗

(H2(F1)
⊗

Y ) = Y

– F1

⊗
H1(Y ) = (H1(Y )

⊗
X)

⊗
H1(Y ) = X

A mapping function can be built using hash functions H1

and H2 from a collection of 256-entry hash-value arrays. By
splitting the argument into byte-sized values Ni, we compute
H1 by treating each Ni as an index into the ith array, and
XORing the results. H2 is computed similarly using 255 −
Ni. This reduces the number or arrays by a factor of two,
reducing on-chip storage requirements.

To express these data structures more concretely, consider
a 128 GB SLICE (32 million 4KB pages). If NAND flash
can be erased 100,000 times, this equates to a device en-
durance of 3 × 1012 page writes, or 42 bits. We use Cuckoo
Hashing with two mapping functions. However, in order
to achieve better memory cache locality, each index bucket
contains two entries, creating four possible spots for each
new SVA insertion. We provision a Cuckoo hash table that
is 20% larger than the number of physical page entries. For
128 GB of flash, we use a table with 226 6 byte entries,
which consumes roughly 240 MB of memory, or about 1.88
MB/GB.

Figure 5 shows the page mapping table with the two map-
ping functions and the required metadata page entry of 48
bits: 25 bits of physical page address, 19 upper bits of F ,
1 bit for flash block status, 1 bit for mapping function ID,
and 2 bits for the page status (e.g., written, trimmed, or
unwritten).

We evaluated a software implementation of the Cuckoo Hash-
ing page mapping scheme and compared it with Chain Hash-
ing. To do so, we ran sequences of insertion / lookup pairs
using a varying number of keys on hash tables of both types,
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Figure 6: Time required to insert and lookup keys
in a Chain hash versus a Cuckoo hash page map.

and then compared the elapsed times. Figure 6 shows the
difference in performance, about 10X, when using the two
page mapping schemes. We used a 64,000 entry table for
both tests. These tests employed a dense key-space with rel-
atively few hash collisions. The advantage of Cuckoo Hash-
ing should increase with the likelihood of collisions.

4.5 Persistence
The stability of SLICE storage depends on the persistence of
its mapping table. Building a persistent mapping table for
a CORFU software implementation is problematic. Writing
separate metadata for every data write is not plausible. The
remaining possibilities either involve batching metadata up-
dates, which risks losing state on power failure, or writing
metadata and data in the same chunk, which reduces the
space available for data. Fortunately, when custom hard-
ware is in play, a further option becomes available. Using
super-capacitors or batteries, we can ensure that the hard-
ware will always operate long enough to flush the mapping
table. Our optimized mapping table takes only a few seconds
to flush to flash, so this is an attractive option for metadata
persistence (and many SSDs use the same technique). We
have specified the hardware needed for this capability, but
not yet implemented it. Ultimately, solid-state storage with
fine write granularity, such as PCM, would provide the best
alternative for storing such metadata and modifying it in
real time.

4.6 SLICE and the Flash Translation Layer
Our SLICE prototype uses an existing SSD rather than raw
flash. Using an SSD, each SPA referenced in our mapping
table is a logical SSD page address. This was an expedient
for prototyping, and it eliminates a raft of potential prob-
lems. For instance, we don’t need to worry about out-of-
order writes, since these are possible on an SSD but prob-
lematic on raw flash. Furthermore, we don’t need to worry
about bad block detection and management or error correc-
tion. But the most significant problem that using an SSD
eliminates is the need to handle garbage collection and wear-
leveling. With an SSD, allocating a flash page during a write
operation is as simple as popping the head of the free list.

Similarly, reclaiming a page requires adding it to the free
list and (optionally) issuing a SATA TRIM command to the
drive. Wear-leveling is performed by the SSD.

The downside of using an SSD is that it duplicates Flash
Translation Layer (FTL) functionality. Specifically, our map-
ping table requires a extra address translation in addition to
that done by the SSD. Since SSDs are fundamentally log-
structured, and since we are in practice writing a log, which
is significantly simpler than a random-access disk, one might
hope that this would result in a less complex FTL. A further
downside is that we lose control over the FTL, which might
have been useful to facilitate system-wide garbage collec-
tion. For example, if there are many SLICEs in a system, it
is possible to use the configuration mechanism in CORFU to
direct writes away from some units and allow garbage collec-
tion and wear-leveling to operate in the absence of write ac-
tivity. In addition, if we had access to raw flash, our system
would be able to store mapping-table metadata in the spare
space associated with each flash page and possibly leverage
this, ensuring persistence without special hardware, in the
manner of Birrell et al. [6].

Fortunately, it seems likely that writing a log over an SSD
will in many cases produce optimal behavior. An application
that maintains a compact log works actively to move older,
but still relevant data from the oldest to the newest part of
the log. Doing this allows such applications to trim entire
prefixes of the log. This sort of log management is appro-
priate for applications that maintain fast changing and (rel-
atively) small datasets, such as ZooKeeper [11]. With this
sort of workload, appends to the log march linearly across
the address-spaces of all the SLICEs, and prefix trims at
the head of the log proceed at the same pace. This should
produce optimal wear and capacity balancing across an en-
tire cluster. Assuming that our firmware allocates SSD log-
ical pages in a sequential fashion, the regular use of prefix
trim should help avoid fragmentation at the SSD block level
which is a major contributor to write amplification [1].

In other applications, for example a CORFU virtual disk, it
can be too expensive to move all old data to the head of the
log. Because offset trim operates at single page granularity,
we can support applications that require data to remains
at static log positions. In this case, the flash array must
make the usual tradeoffs between leaving data in place and
balancing wear by moving data, regardless of whether we use
an SSD or raw flash. The FTL in an SSD manages these
tradeoffs all the time, but if we implemented the FTL, we
would then get the option to do it within a SLICE, in a more
distributed fashion, or both.

5. EVALUATION
We evaluate three different CORFU server instances (two
software and one hardware, respectively): traditional Xeon-
based server-attached storage, low-power Atom-based server-
attached storage, and our SLICE prototype. The Xeon
server is a dual socket Dell 2950 with E5345 cores running
at 2.33 GHz. The Atom server is a Zotac dual-core N330
running at 1.6 GHz. The SLICE prototype platform varies
for the different tests described below. Both the Xeon and
Atom-based servers run Windows Server 2008 R2 and a soft-
ware CORFU server as a user-level process.
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Figure 7: SLICE read and append throughput.

5.1 Single Instance Test
Our evaluation first focuses on a single SLICE instance, as
we seek to understand the performance, power and cost (in
terms of die area) benefits of our custom design compared
to more traditional network storage approaches. We do not
compare against more expensive SAN or NAS solutions. Our
SLICE hardware platform for this test is the Xilinx XUPV5
development board [30]. All single instance platforms em-
ploy an Intel X25-M SSD [13] with write-caching enabled.
This SSD is specified to achieve 35K random read and 17K
sequential write operations per second (4 KB). Network con-
nectivity is provided by a 10 Gb/s router with 1 Gb/s down-
links. Requests are generated by clients, running as user-
level processes on Xeon-class Windows machines. All three
platforms handle the same number of I/O requests: reads
generated by a two test clients issuing up to 64 simultaneous
requests. We report average request completion bandwidth
in Figure 7. A UDP-based network stack is used for these
tests with jumbo Ethernet frames.

Given that we use 1 Gb/s links, and accounting for com-
munications overheads, we can at best hope to be able to
handle around 29,000 operations per second. The SLICE
platform achieves around 28K random read IOPS while the
Xeon server achieves around 22K for the same test. The
Atom system is CPU-bound, spending over 80% of its time
in kernel mode handling interrupts. The 8-core Xeon-based
system never exceeds 50% CPU utilization and also spends
the bulk of its time servicing interrupts. The SLICE does
not perform appreciably better when SSD operations are re-
placed with in-memory copies. It is worth noting that the
end-to-end latency of a Xeon-server read operation is several
times longer than that on the SLICE.

As shown by Figure 7, both the SLICE and Xeon servers
perform close to the SSD-manufacturer’s specified sustained
sequential bandwidth during the append test. Because we
are constructing a log-structured store, we hope to get se-
quential write performance. Even though requests can be
reordered on the network, the SLICE implementation has
the ability to place incoming write requests in sequential or-
der on the SSD (since the SLICE controls the mapping to
physical addresses). The functionality is currently lacking
in the Windows version, and thus the Xeon append perfor-
mance is slightly worse. The Atom append performance is
CPU-bound, as it is for reads. Our measurements show that
the Xeon is handling nearly 30,000 interrupts per second,
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Figure 8: Requests serviced per Watt.

while the Atom handles about half that rate. As our results
demonstrate, the low-power Atom is clearly not capable of
handling the number of interrupts required to saturate the
network channel in this configuration. While the Xeon im-
plementation could possibly be further tuned, the read path
is already extensively optimized and we are still experienc-
ing latencies in the critical path. We built a well balanced
SLICE architecture that fully utilizes the cores shown in Fig-
ure 4. As Table 1 shows, at maximum IOPs, the cores are
almost fully utilized. The benefit of the SLICE design is that
if we needed higher performance, we could add more cores,
e.g., use multiple Comm and/or PacketProc cores. On the
other hand, we believe it to be very difficult to extract opti-
mal performance from traditional operating systems running
on multi-core platforms under high interrupt load [31].

The results of these performance tests suffer high variance,
particularly for append. This is exacerbated by variable
SSD performance and by the peculiarities of interrupt thread
affinity on multi-core machines (both client and server).

Power Consumption. Eliminating the server from the net-
work-attached storage equation reduces power and improves
system efficiency. In Figure 8 the log-based y-axis records
the number of requests that can be serviced per Watt for the
three systems in the single server test. The Xeon consumes
about 300 W during our tests, whereas the Atom platform
consumes at 26 W and the SLICE consumes 23 W. (We
do not count the power consumption of the sequencer un-
der the assumption that it is amortized over the cluster.)
The Xeon and SLICE systems are not CPU-bound, and as
expected, the appends require more power because of the
additional steps required to perform an append, resulting in
fewer appends per Watt. In contrast, the Atom platform
is CPU-bound, capping the number of requests that can
be serviced and limiting the number of requests per Watt
to be the same for both reads and appends. Notably, the
Atom provides more requests per Watt than the more pow-
erful Windows machine. However, the SLICE provides 4-18
times better performance in this metric than both software
implementations.

5.2 FPGA Utilization and ASIC Area
We use the Xilinx LX110T Virtex-5 FPGA to realize the
SLICE prototype. Although we used the Virtex-5, this de-
sign could be realized on a much cheaper Spartan-6. Table 2



SLICE LUTs BRAM
V5-LX110T 36% 24%

Table 2: Small FPGA utilization for the SLICE pro-
totype.

SLICE ARM A9 (power) ARM A9 (perf)
0.618 mm2 2.30 mm2 3.35 mm2

Table 3: 40 nm area estimates for the SLICE, power
optimized ARM Cortex-A9 and performance opti-
mized ARM Cortex-A9 [3], respectively.

provides LUT and BRAM usage which includes the memory
controller, caches for the cores, and necessary buffering for
the pages.

If the SLICE were a high-volume part, an ASIC could be
a possible target, providing lower chip costs, higher perfor-
mance, and lower power. We used the FreePDK technol-
ogy library for the 45 nm silicon process [26] to estimate
the area our design would occupy on an ASIC. We pulled
out the memory structures from the SLICE design and used
the Synopsys Design Compiler to provide area estimates.
The memory structure area for the caches, FIFOs and other
memory structures are estimated using SRAM bit cell esti-
mates that include standard overheads for these structures.
Finally, we scaled down the device area to a 40 nm process
to match the ARM published area estimates for an A9 ARM
core [3], commonly used in NAS or other embedded systems
as a reference point. The low area overhead demonstrates
the low effort and cost required to implement the SLICE as
an ASIC. As shown in Table 3, the SLICE, occupying less
than 1 mm2, is approximately 18 to 27% the size of a per-
formance or power optimized A9 core, respectively. In fact,
our area estimate is pessimistic because it includes the area
of a memory controller, which is part of the system-on-chip
and not included in the ARM Cortex-A9 core area [3].

5.3 Scale Test
The final part of our evaluation focuses on scaling in a dis-
tributed context. We use a CORFU server configuration
with no replication in which 16 clients generate requests
for up to eight SLICEs. The SLICEs are implemented on
the BEE3 [7], a multi-FPGA development platform. The
SLICEs from each BEE3 are connected to different top of
rack switch with 1 Gb/s downlinks and one 10 Gb/s uplink.
The clients run on the same Xeon-class machines used in
the single-server experiment, and are connected to a switch
similar to that used for the SLICEs. The BEE3 and client
switches are connected through a single 10 Gb/s switch.

We compare the BEE3 results to those obtained from a set
of software CORFU servers running on a setup similar to
the clients, again on an isolated switch. We report BEE3
numbers using a UDP protocol stack with jumbo frames,
while the software server stack employs TCP, which cur-
rently gives better performance than our UDP server imple-
mentation. Although our system can scale to more than 8
SLICEs, even with our current configuration we are nearing
the point where the 10 Gb/s switch is a bottleneck.
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Figure 9: SLICE append and read scaling.

All of the SLICE instances and software servers include a
single Intel 320 SSD at 120 GB capacity. This drive is newer
than, but quite similar in random-read performance to the
X25-M used in the single instance test. The Intel specifica-
tion [12] states that it can achieve 38K random 4KB read
IOPS, 14K random 4KB write IOPS, and 130 MB/s of se-
quential writes.

Figure 9 shows aggregate system throughput for appends
and reads using a constant number of clients and a varying
number of servers. Read tests are bounded by the 1 Gb/s
links for both platforms. For two to eight servers reads scale
linearly. As can be seen in the figure, the SLICE marginally
outperforms the Xeon platform for reads. In the eight server
case, we are able to obtain network goodput equaling 89%
of the available bandwidth to the each SLICE, while only
about 77% using the Xeon. The remaining bandwidth is
partially occupied by network packet overheads. It is to be
expected that the software server bandwidth would be some-
what lower due to the absence of jumbo Ethernet frames.

In the append results, we would expect performance to be
bounded by the SSDs for the Xeon configuration and by the
network for the SLICE. The Xeon servers consistently get
near 14K IOPS per server, which is the maximum provided
by the SSD for random writes. As expected, the software
server can only achieve the random write rate because ap-
pends can and do appear out of order, and they are not re-
ordered on the way to disk. We expect this limitation to be
more important here as compared to the single instance test
given the greater number of clients. On the other hand, the
SLICE gets over 16K IOPS because it always writes sequen-
tially. Although this is less than the full sequential speed of
the SSD, it is not clear that relatively small sequential and
asynchronous write requests can actually run the disk at full
sequential speed.

In order to understand the limits of scaling on appends for
greater numbers of servers, we must investigate the CORFU
log sequencer. We can add SLICEs to increase append band-
width, assuming an adequate network, but performance is
ultimately limited by the sequencer. We have demonstrated
a fast sequencer in user space on a standard multi-processor



and that can issue 570K tokens per second on pre-existing
TCP connections with no batching. This sequencer uses
the Windows Registered I/O Networking Extensions [16] to
avoid buffer pinning and kernel wakeup overheads. It’s im-
portant to note that a NIC fully capable of distributing in-
coming network load across multiple processors is required
because IP-stack traversals would limit performance if exe-
cuted serially. Even two-fold batching of sequence numbers
would result in service well over 1 million per second, thus
requiring more than 64 SLICEs for full append utilization
even if network bottlenecks could be avoided. The challenge
will be to find distributed applications that require so much
throughput.

5.4 Discussion & Future Work
Our performance results are not surprising in the context of
the previous work by Suzuki et al. [27], which demonstrates
how to use an FPGA architecture to extend a PCIe bus over
Ethernet so as to access a fast SSD. Unlike [27], our work is
focused on a shared, distributed flash storage solution that
gives performance and consistency. We also remove the in-
termediary server to reduce power consumption and use a
consumer-grade SSD. In fact, our numbers are only some-
what lower than those of Suzuki even though they used a
faster network and a much more capable and expensive SSD.
Moreover, we were not entirely sure that we could saturate
even a 1 Gb/s network using the very slow 100 MHz Beehive
soft cores. As it turned out, our concerns were unwarranted.

Our SLICE implementation uses polling rather than asyn-
chronous interrupts and thus avoids the interrupt bottle-
necks experienced by general-purpose servers [31]. Since
all our cores perform a dedicated function, polling cycles
are never wasted cycles. Furthermore, we can easily substi-
tute hardware logic in performance critical code paths, and
have done so to optimize various part of our design such as
an Ethernet offload engine and SATA DMA engine. More-
over, our device’s low power-consumption helps realize the
true energy-savings that are possible with network-attached
solid-state storage.

There are several topics for future work. Clearly, it would
be preferable to address raw flash rather than an SSD. We
believe there are efficiencies to be gained by integrating our
SLICE architecture and an FTL. For example, there cur-
rently are two logical-to-physical mappings in our prototype,
where only one would be optimal.

Wear-leveling and garbage collection is a simple matter if
the SLICE log is always contiguous and moving forward.
However, management of flash is more complicated if data
becomes static, creating gaps in log order. In this case,
there may be advantages in constructing a distributed FTL
to perform wear-leveling holistically across an entire cluster.

Finally, in our SLICE design, we did not address the ques-
tion of persistence for metadata, for example mapping ta-
bles. We assume that battery or super-capacitors can be
used for power while we flush metadata to stable storage
in the case of catastrophic failure. We view this as a re-
quirement for a production system and drop-in hardware
solutions exist.

6. CONCLUSIONS
In this paper, we have demonstrated a hardware implemen-
tation of an API that allows direct, networked-client access
to a distributed shared log. This API requires no intermedi-
ary server to arbitrate conflicts between concurrent writes.
With a 1 Gb/s NIC, our FPGA implementation is bounded
by the network for reads. Its performance equals or sur-
passes that of a general-purpose server implementing the
same API. Yet, the cost in parts and power of our FPGA
solution is much less than the comparable generic server
box. We cannot claim that our implementation is optimal,
but its storage throughput is well-balanced with its network
interface capacity, and that was the ultimate goal.

The question that remains to be answered is what will hap-
pen at 10 Gb/s and beyond. There is considerable evidence
that SSDs will continue to scale up in IOPS and bandwidth.
However, even our small experiments at 1 Gb/s suggest that
general-purpose computers and operating systems find it dif-
ficult to keep up when packet transmissions take single digits
of microseconds and below. In this domain, it seems likely
that intermediary software running as a user-level process
will become a bottleneck if forced to handle every request.
Even running a simple storage server such as the CORFU
software implementation at speed becomes challenging (as
we have learned from work-in-progress building a fast se-
quencer). Moreover, since processor cores are no longer
getting much faster, the only path to better performance
on a general-purpose architecture is to utilize more cores.
However, coordinating multiple cores with the network and
storage stacks such that everything is fully utilized is not
easy.

Our work suggests that one viable way forward is for SSDs to
be run in parallel, much as cores are on a multi-processor.
With many SSDs in play, it makes sense to interconnect
them with a network fabric to increase connectivity between
clients and servers. And finally, as latencies decrease, stor-
age platforms that are more specialized to the task at hand
will likely win out, using techniques such as polling rather
than interrupts, and with implementations close to, or in,
hardware.
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