
Tempest: Soft State Replication in the Service Tier∗

Tudor Marian, Mahesh Balakrishnan, Ken Birman, Robbert van Renesse
Department of Computer Science

Cornell University, Ithaca, NY 14853
{tudorm,mahesh,ken,rvr}@cs.cornell.edu

Abstract

Soft state in the middle tier is key to enabling scalable
and responsive three tier service architectures. While soft-
state can be reconstructed upon failure, replicating it across
multiple service instances is critical for rapid fail-over and
high availability. Current techniques for storing and man-
aging replicated soft state require mapping data structures
to different abstractions such as database records, which
can be difficult and introduce inefficiencies. Tempest is a
system that provides programmers with data structures that
look very similar to conventional Java Collections but are
automatically replicated. We evaluate Tempest against al-
ternatives such as in-memory databases and we show that
Tempest does scale well in real world service architectures.

1 Introduction

Service-Oriented Architectures (SOAs) have emerged as
the paradigm of choice for structuring large datacenter-
hosted systems. Most contemporary large-scale applica-
tions are built as SOAs: online stores, search engines, en-
terprise software and financial infrastructure are some ex-
amples. The canonical design for such systems is a three-
tier architecture: a first tier load-balancing proxies sends
requests to a second tier of state-less service logic which in
turn accesses and updates a third tier of durable databases
or filesystems.

Soft state in the service tier is key to building highly re-
sponsive and scalable SOAs. Soft state is characterized as
data that does not have to be stored durably and can be re-
constructed at some cost [39, 24, 17] — examples include
short-lived user sessions, stored aggregates and transforma-
tions on large datasets, and general purpose write-through

∗This work was supported by DARPA/IPTO under the SRS program
and by the Rome Air Force Research Laboratory, AFRL/IF, under the
Prometheus program. Additional support was provided by the NSF,
AFOSR, and by Intel.

caches for files and database records. Third-tier constructs
are extremely fault-tolerant but correspondingly slow and
expensive, and soft state is typically used to limit their role
in performance-critical data paths. For example, the devel-
oper of an online travel service might use the memory of
the service instance to store intermediate choices made by a
user during the booking process, so that only the final sale
transaction — a small fraction of all user activity — hits the
third-tier database.

In this paper, we consider the availability of soft state
stored in the service tier. When soft state is lost or made
unavailable due to service instance crashes and overloads,
reconstructing it through user interaction or third-tier re-
access can be expensive in time and resources. Replicat-
ing soft state provides applications with two critical capa-
bilities: rapid fail-over to other instances during crashes
and fine-grained load-balancing across instances to prevent
overload [39]. For example, a user request can be trans-
parently redirected during a crash or overload to a different
service instance that has up-to-date session context, without
requiring her to log in again.

Many options exist for adding high availability to
programs that manipulate soft state and these can be
broadly classified into three categories: clustered appli-
cation servers [3], messaging toolkits, and collocated in-
memory databases. However, all these options require
the developer to write code in “state-aware” ways, map-
ping data structures to special replication-aware containers,
replicated state-machine stores and database-style records,
respectively. Such mapping needs to be done carefully
to avoid performance issues — for example, storing fine-
grained variables in a database could result in severe locking
contention [1]. However the natural way for programmers
to store and manage soft state in a service is to use con-
ventional in-memory data structures such as hash tables or
linked lists.

In this paper, we present Tempest, a Java runtime library
designed for easy storage and replication of service-level
soft state. Tempest provides developers with TempestCol-
lections: custom data structures that look similar to con-

ventional Java Collections [35]. Data stored in these struc-
tures is transparently and fully replicated upon multiple ma-
chines, providing fail-over and load-balancing for soft (in-
memory) state with zero extra effort by the developer. Un-
der the hood, Tempest uses a fast but unreliable IP multicast
operation to spread/broadcast invocations to multiple ser-
vice instances and then uses gossip-based reconciliation to
maintain replica consistency in the face of faults and over-
loads. Additional adaptive mechanisms are used to maintain
high responsiveness during failures.

High-performance in-memory databases are used exten-
sively to store soft state in currently deployed systems [6,
30, 13] and we show that Tempest outperforms them in
large-scale SOA settings. Real-world SOAs often have
many services interacting with each other to perform com-
plex tasks — for example, a first-tier front-end could con-
tact a hundred second-tier services to assemble a webpage
[20]. Further, each service is potentially contacted in paral-
lel by a large number of load-balancing first-tier front-ends.
Tempest scales in both the number of front-ends querying
a single service and the number of services being queried
by a single front-end. In contrast, in-memory databases
fail to scale in these dimensions due to contention, large
latency variations and inefficiencies in cross-process inter-
actions between the service and the database.

Accordingly, the contributions of this paper are as fol-
lows:

• We present a Java runtime library that exposes data
structures to programmers that are transparently repli-
cated across multiple nodes.

• We describe the gossip-based mechanisms used within
the system for rapidly replicating data and speeding-up
access to it.

• We evaluate Tempest on two datacenter-style testbeds
— the Emulab testbed at Utah [37] and a 252 node
cluster at Cornell. We show that Tempest maintains
rapid responsiveness under heavy loads and outper-
forms in-memory and on-disk databases while scaling
in two important dimensions — the number of front-
ends accessing a single service and the number of ser-
vices composing a single response.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the interface and semantics provided by
TempestCollections to service developers. Section 3 de-
scribes the protocols and mechanisms used by Tempest to
implement the TempestCollection abstraction, and Section
4 provides an evaluation of Tempest on datacenter testbeds.

2 The TempestCollection Abstraction

2.1 Service Model

Services are self-contained entities designed to support
interoperable machine to machine interaction over a net-
work. Each service exposes an API through which a set
of methods can be invoked by clients, and each service of-
fers its own quality of service and availability guarantees.
Take for example the interface of a shopping cart service as
listed in Figure 1.

public interface ShoppingCartIF extends Iterable {
update int add(String itemSymbol, int count);
update int remove(String itemSymbol, int count);
update int update(String itemSymbol, int count);
read int check(String itemSymbol);

}

Figure 1. ‘Shopping Cart’ service interface.

Add, remove and update do the obvious things; these are
classified as update operations because they change state.
Check is a read operation; it retrieves the current number of
items in the shopping cart for the symbol of interest. Clients
issue add/remove/update and check requests against
the service; the service processes each request and in return
sends back a reply. This simple example can be trivially ex-
tended to services like item browsing history, product avail-
ability, product rating, or caching services.

In this work we assume that business logic is collocated
with soft state stored in the memory of the service instance;
as mentioned before, this is a natural design choice for ap-
plications requiring scalability and responsiveness. For ex-
ample, storing shopping cart information in-memory allows
the service to handle a large quantity of browsing traffic that
otherwise would have reached the third tier. A developer
implementing the shopping cart service in Java could use
different data structures to store the state of the cart; a natu-
ral way would involve using a hash table to store mappings
between item identifiers and corresponding counts.

Service state is modified by updates sent to it through its
interface — in the conventional three-tier setup, this refers
to database state hidden by the service, but in our case it in-
cludes soft state maintained by the service. In our shopping
cart example, items are added to or subtracted from the cart.

The implementation of a service as a Java application
running on a single node is obviously prone to crashes, over-
loads and slowdowns. Our goal is to transparently replicate
a service on multiple nodes while retaining the program-
ming ease and familiarity of Java’s built-in Collection data
structures. Accordingly, we provide developers with Tem-
pestCollections — data structures very similar to vanilla
Collections but providing automatic replication of the data
stored in them.

2.2 TempestCollection: Syntax and Se-
mantics

TempestCollections are syntactically identical to stan-
dard Java Collections. For example, a TempestHashtable
exposes get and put methods while a TempestSet has
add,remove methods. Like most Java Collections, ob-
jects stored in a TempestCollection cannot be modified in
place. For example, to change a field inside an Object stored
in a TempestSet, the programmer would have to remove the
Object, modify it and then re-insert it into the set.

This is a very common programming idiom within the
Java Collections framework. For example, Java TreeSets
provide ordered iteration over their elements, and changing
the value of an item in-place can push the TreeSet into an
inconsistent state by modifying the outcome of compare op-
erations. Programmers are expected to instead change val-
ues by removal, modification and re-insertion if they want
the TreeSet to remain consistent and ordered. In general,
many Collections involve comparisons through equals
and compareTo — such as HashMaps, TreeSets or Hash-
Sets — and do not allow safe in-place modification of ob-
jects stored within them. In this respect, TempestCollec-
tions offer identical semantics.

To prevent accidental modification of stored items,
TempestCollections implement by-value parameter passing.
Deep clones of added Objects are stored within the Tem-
pestCollection and clones of stored Objects are returned by
accessor functions. For example, calling put(K, A) on
a TempestHashMap will result in a clone A′ being stored
within the collection, and calling get(K) will return A′′

to the programmer.
However, the Tempest runtime can alter the contents of

TempestCollections by adding and / or removing items to
keep collections consistent across replicas. TempestCollec-
tions provide eventual consistency — all replicas converge
to the same set of objects [12, 10]. An implication of this
model is that the programmer is not provided with ACID
transactions; however, this is not a major limitation for soft
state management [10]. In many soft state applications, data
stored within structures is naturally immutable — for in-
stance, a browsing history service that stores a list of item
identifiers. For others, updates do not depend on current
state — for example, a map from users identifiers to last
viewed items. Even if the soft state is manipulated with ar-
bitrary operations, it is expected by definition to not have
strong semantics — the user is always asked to verify the
contents of a shopping cart or the final itinerary of a travel
plan before committing to it.

To summarize, TempestCollections are data structures
exposing interfaces identical to those in the Java Collections
framework and supporting similar semantics by not allow-
ing in-place modifications of stored Objects. The sole devi-

ation from the Java Collections framework – aside the weak
consistency implications – is that Tempest enforces Object
immutability by passing parameters by-value — a side ef-
fect of this is the possibility for services to operate on stale
data. By deliberately choosing a weaker consistency model
we had more opportunities to provide a massively scalable
solution — as a result developers are required to understand
and account for unreliable soft state.

3 Tempest Architecture

REPLICA

REPLICA

REPLICA

REPLICA

REPLICA

REPLICA

REPLICA

FRONT
END

FRONT
END

FRONT
END

GMS

multicast

gossip

CLIENT

CLIENT

CLIENT

CLIENT

Services

Figure 2. Tempest architecture.

In this section we describe the mechanisms used to im-
plement replicated TempestCollections. Tempest services
reside on second-tier servers; a single server represents the
platform configuration on a single computer and might run
several services. A service instance stores data in one or
more TempestCollections. Multiple instances of a service
execute across different servers, and invocations to a ser-
vice are sent by first-tier front-ends to all the service in-
stances. Figure 2 depicts a front end initiating a multicast to
the servers containing replicas of the same service instance.

The life-cycle of a Tempest invocation begins when a
client sends a request to the datacenter, which gets load bal-
anced to a web-facing front-end node. The front-end is then
responsible for contacting a set of services and aggregat-
ing individual service responses into a composite result that
it returns to the client. Front-ends use IP multicast (there
is a distinct IP multicast group for each replicated Tempest
service) to perform web-service invocations on service in-
stances, allowing very rapid communication in the general
case. When multicast packets are dropped, gossip-based
point-to-point (typically UDP) reconciliation is used to re-
pair gaps and errors in the TempestCollections maintained
by the different service instances of the same service.

3.1 Client Invocations

When a client request enters the datacenter at a front-end,
it’s tagged with a web service invocation identifier (wsiid)
consisting of a tuple containing the front-end node identifier

and sequence number. Front-end node identifiers are ob-
tained by applying the SHA1 consistent hash function over
the front-end’s IP address and port pair. Each Tempest re-
quest is thus uniquely identified by its wsiid.

As mentioned previously, Tempest differentiates be-
tween updates and queries or reads. For updates, Tempest
uses IP multicast to send the operation directly to the full
set of Tempest servers that hold replicas of the service for
which the requests were intended. A hashing mechanism is
employed to determine which server instance is responsible
for replying. In the absence of message loss, the common
case, IP multicast within datacenters is reliable and ordered.

For read requests, front-ends use an adaptive querying
mechanism. Each front-end periodically multicasts a bea-
con to each service and waits for unicast responses from
each instance. It selects the k instances that respond first —
where k is the redundant querying parameter — and subse-
quently directs service read invocations to these instances.

3.2 The Tempest Gossip Mechanism

Tempest is designed under the assumption that the mul-
ticast protocol used might not be fully reliable or might re-
cover lost packets at high latencies. If some replicas miss an
update, they can become inconsistent. Tempest uses a gos-
sip protocol to repair these kinds of inconsistencies rapidly.
Servers use a custom tailored gossip protocol to reconcile
differences between the TempestCollection replicas.

Tempest keeps track of all the operations performed at
the data structure boundary — this is possible due to our
by-value semantics of altering the collections. When an ob-
ject is added to a collection, it is annotated with the web
service invocation identifier of the corresponding invoca-
tion; when an object is removed from a collection, a death
certificate for it is created and annotated with the wsiid. A
death certificate is simply a means of retaining the informa-
tion necessary to identify which objects were removed from
a collection. In particular each TempestCollection keeps a
history of the removed objects in an internal private data
structure not exposed via the standard interface.

The anti-entropy mechanism works by having each
server “gossip about” the sets of web service invocation
identifiers (wsiids) that annotated objects in TempestCol-
lections. Suppose for example that during one gossip round
we have two service replicas r1 and r2 respectively engaged
in an exchange; let their sets of wsiids be denoted by w(r1)
and w(r2). If w(r1) = w(r2) no action is taken, otherwise
some invocations were missed by one (or both) and a “rec-
onciliation” phase is triggered:

• If w(r1) ⊂ w(r2) then r1 missed invocations and
holds a stale version of the state – as a result r1 re-
trieves from r2 the objects and death certificates an-
notated with the wsiids from the set w(r2) \ w(r1).

Objects referred by the death certificates are removed,
newly received objects are added; also r1’s set of wsi-
ids is updated accordingly: w(r1)← w(r2).

• If w(r1) 6⊂ w(r2) and |w(r1)| 6= |w(r2)| (the sets
have different cardinality) both replicas have missed
at least one update each, therefore to make progress
it is safe for any of the replicas to assume the other
replica’s state – without violating the “eventual con-
sistency” guarantees offered by the system. Choose
the replica that has the smaller w set – let it be r1 with-
out loss of generality; r1 performs the following steps:

– For every identifier i in the set w(r1) \ w(r2),
if i annotates an object then the object is dis-
carded, otherwise if i annotates a death certifi-
cate the object referred by the death certificate is
“resurrected” (added back to the collection).

– Fetch from r2 all objects and death certificates
annotated with identifiers from the set w(r2) \
w(r1). Remove objects referred by the death
certificates, add the new objects, and update
w(r1) ← w(r2). Here we used the heuristic of
discarding the state of the replica that received
less invocations, however one can imagine other
criteria.

• If w(r1) 6⊂ w(r2) and |w(r1)| = |w(r2)| then the ini-
tiator of the gossip round between r1 and r2 “plays the
role” of the replica with the smaller w and performs
the same operations as in the previous case.

An upcall is provided such that the service developer us-
ing TempestCollections is notified when a gossip reconcili-
ation was triggered.

If no new invocations are issued against the system, and
if no permanent network partition that splits the servers
into two or more disjoint communication parties occurs the
TempestCollection replicas will eventually contain identical
elements with probability 1 [11].

During a gossip round, there can never be more than
3 messages issued per process (by protocol design). Cur-
rently the sets of web service identifiers are monotonically
increasing as new invocations are issued, therefore gossip
messages size increases with time. We are working on a
method for garbage collecting the stale wsiids by append-
ing an epoch number at wsiid generation time — tempest
servers will discard wsiids that are more than δ epochs old
for some choice of parameter δ. Another option is to use
efficient set reconciliation methods like the ones in [27, 5].

The strength of gossip protocols lies in their simplicity,
the fact that they are robust (there are exponentially many
paths information can travel in between two endpoints), and
the ease with which they can be tuned to trade speed of

delivery against resource consumption. The Tempest epi-
demic protocols evolved out of our previous work on sim-
ple primitive mechanisms that enable scalable services ar-
chitectures in the context of large-scale data-centers [26].

3.2.1 TempestCollections Update Order Sensitivity

The gossip protocol described above requires that opera-
tions against TempestCollections be commutative, or order
insensitive – which is the expected common case for most
soft state applications [10]. The framework cannot support
data structures that inherently depend on the order of oper-
ations – e.g. lists, stacks or queues.

Since this is a limitation developers may find hard to
accept, we provided Tempest with a variant of the gossip
protocol that uses for each TempestCollection ordered lists
instead of sets of web service invocation identifiers. The
protocol description is roughly identical with the one pre-
sented above with a few minor differences. Set inclusion
tests are replaced with list prefix matching, and reconcili-
ation between replicas is more elaborate – however due to
space limitations we omit a more in depth description.

3.3 Membership and Failure Detection

Membership in Tempest is handled by the Group Mem-
bership Service (GMS), which maintains the mapping be-
tween servers and service replicas. In addition, it also
acts as a UDDI (Universal Description Discovery and In-
tegration) registry providing appropriate WSDL (Web Ser-
vices Description Language) descriptions for the services
deployed on Tempest servers — consequently it provides
the appropriate mapping between a service identifier and
the corresponding IP multicast group. The GMS also fills
the administrator role for Tempest servers, monitoring the
overall stress and spawning new servers to match the load
imposed on the system. Finally, it monitors components to
detect failures and adapt the configuration.

Tempest assumes that processes fail by crashing and can
be reliably detected as faulty by timeout. Accordingly, Tem-
pest processes monitor the peers with which they interact
using a secondary gossip-based heartbeat mechanism. Pro-
cesses that are thought to be deceased are reported to the
GMS, which waits for f distinct suspicions before actu-
ally declaring it deceased. It then updates and dissemi-
nates group membership information to all interested par-
ties. While in our experiments the GMS is hosted on a
single high-end node, in a datacenter it could potentially
be replicated and partitioned across multiple machines for
scalability and fault-tolerance.

Apache Tomcat

MySQL

Oracle TimesTen

Front-ends

Oracle TimesTen

Primary

Backup

Figure 3. Baseline configurations.

3.4 Node Recovery and Checkpointing

TempestCollections are automatically checkpointed. Pe-
riodically, each Tempest server batches the items in each
TempestCollection and writes them atomically to disk us-
ing a copy-on-write technique. When a node crashes and
reboots, upon starting the Tempest server, the services are
brought up to date with the state that was last written to disk
before the crash.

When a server is newly spawned, or when a server that
has been unavailable for a period of time missed many up-
dates, Tempest employs a bulk transfer mechanism to bring
the server up to date. In such cases, a source server is se-
lected and the contents of the relevant TempestCollections
are transmitted over a TCP connection. When multiple
services are collocated in a single server, the transfers are
batched and sent over a single shared TCP stream.

Newly spawned services and services that rebooted after
a crash will consequently “catch up” gracefully with the rest
of the service replicas by means of the epidemic protocols.

4 Experimental Evaluation

Tempest was implemented in Java, adding new transport
protocols to the Apache Axis Soap [36] web services stack,
i.e. SOAP over TempestTransport instead of SOAP over
HTTP. The deep cloning capability was implemented using
the Java Reflection API. The system components are built
with Java’s non-blocking I/O primitives.

The evaluation is structured as follows: in subsection 4.1
we show that a single replicated Tempest service can pro-
vide rapid response to large numbers of concurrent front-
end requests. In subsection 4.2 we show that this is true
even when services are heavily loaded. Finally, in subsec-
tion 4.3, we show that the two knobs provided by Tempest
— number of replicas per service and number of redundant
queries — enable rapid predictable response for “service-
clouds” composed of many collaborating services with dif-
fering timing characteristics.

4.1 Micro bechmarks

First we ran a set of micro benchmarks to compare Tem-
pest against four multi-tier baseline scenarios. The experi-
ments were run on the Cornell cluster – a pool of 252 ma-
chines, each a 1.33GHz Intel single CPU blade-server with
512MB of RAM and 100Mbps ethernet interfaces and 3
higher end servers each a single 2.8GHz CPU with 1GB
of RAM and 3 1Gbps ethernet interfaces. Nodes are con-
nected through a mesh of 100Mbps/1Gbps switches (HP
ProCurve J4121A 4000m and J4902A 6108). In all con-
figurations we had the same set of front-ends interacting
with the ShoppingCart web service deployed on the high
end servers. We deployed the service on top of the Apache
Tomcat server. The service stores the data using various re-
lational database repositories as shown in Figure 3. In one
configuration we stored the data using the Oracle TimesTen
in memory database co-located with the Tomcat server. In
the second configuration TimesTen resided on a remote
third-tier machine and lastly deployed in a primary-backup
configuration with the primary co-located with the Tomcat
container and the backup on the third-tier machine.

In all configurations TimesTen worked in “high per-
formance cache-mode” for in-memory operations only,
thereby offering ACI guarantees instead of full ACID –
without committing durably to disk. The primary-backup
scheme provided by TimesTen that we used is called return
receipt, and it ensures that upon submitting a request to the
master the client application is blocked until the replication
scheme on the master received an acknowledgment that the
update has been received by the backup server.

We also use an ubiquitous on-disk database engine, and
for that purpose we relied on MySQL 5.0 with the InnoDB
storage engine configured for ACID compliance — flush-
ing the log after every transaction commit, and the under-
lying operating system (Linux 2.6.15) with the file system
mounted in synchronous mode and with barriers enabled.
Similarly, we have deployed the ShoppingCart service on
3 replicated Tempest servers gossiping at a rate of once ev-
ery 100 milliseconds — we did not replicate Tomcat for
load balancing since Tempest replicas were configured to
receive all updates. The Tempest ShoppingCart service
stores the data inside a TempestMap.

The workload applied consists of multiple clients issuing
small 1024-byte requests against the ShoppingCart ser-
vice in a closed loop — clients submit a job, receive the
response and then “think” for some amount of time (20ms)
before submitting the next job [33]. Every experiment had
a startup phase in which we populated the data repository
with 1024 distinct objects identified by object identifiers.
Client requests were drawn from a Zipf distribution (with
s=1) over the space of object identifiers – reads and writes
equally distributed. In all experiments clients are the front-

ends from Figure 2. We measure the Web Service Interac-
tion Time, i.e. the request latency as observed by 1, 2, 4,
16, 32, 64, 128, 256, 512, 800 and 1024 concurrent clients
– multiple virtual clients ran on the same 64 physical ma-
chines. During each run, all clients are initially instructed
by a coordinator to start the experiment without taking any
measurements – this warm up period of roughly 20 seconds
is required for various reasons for example it is well known
that to-date JVM’s notoriously underperform until the just
in time compiler is fired up. At this point the coordinator
instructs all clients to start taking measurements – this lasts
20 seconds as well, at which point the coordinator instructs
nodes to cool down for 20 seconds and then stop.

Figure 4 shows that Tempest latency is significantly less
than any of the baselines, thus confirming that fault-tolerant
services with performance-critical properties can be built on
top of the Tempest platform. The graphs also indicate that
Tempest scales well with the number of concurrent requests.

As can be seen from the breakdown of the latency, the
baselines distribution of overhead is bimodal. For up to
64 concurrent clients the database interaction time (data ac-
cess) increases roughly linearly. For more than 64 clients
the data access time remains the same while the total la-
tency continues to increase with the number of concurrent
requests. This indicates that the databases and / or the Tom-
cat application server have some sort of queueing admission
control that takes effect under severe load.

Looking carefully at the breakdown of the latency in Fig-
ure 4 (the 1-to-32 concurrent clients spectrum) one can no-
tice that the time spent by a Tempest service manipulating
the data (i.e. performing object deep cloning, data structure
lock contention, web service invocation identifier tagging
and index maintenance) is an order of magnitude smaller
compared to the database interaction — as a matter of fact
it is around 1 millisecond no matter what the number of
concurrent clients is — thus showing that fine grained data
structures allow for better performance under contention.

4.2 Graceful Recovery under Heavy Load

Next, we ran a set of experiments to report on Tempest’s
behavior in the face of failures. Node crashes turned out
not to be especially interesting since the gossip failure de-
tection protocols quickly detects failed nodes, expels them
from the group and shifts work to other nodes. More details
on the timeliness of a variant of the gossip based failure de-
tector we used can be found in our previous work [26]. We
did however identify a class of overload scenarios that have
a more visible impact on the Tempest replicated services.
These scenarios degrade some service components without
crashing them. The services become lossy and inconsistent,
and queries return results based on stale data. Two ques-
tions are of interest here: behavior during the overload, and

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

tem
pest

ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql

L
at

en
cy

 (
m

s)

Number of concurrent clients

latency
data access

32168421

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

tem
pest

ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql

L
at

en
cy

 (
m

s)

Number of concurrent clients

latency
data access

102480051225612864

Figure 4. Request latency. Each group of bars represent Tempest (tempest), TimesTen on the local
machine with tomcat (ttlocal), TimesTen on a remote machine (tt), TimesTen in primary-backup mode
with the primary on the same machine as tomcat and the backup on a remote machine (ttrepl), and
MySQL on a remote machine (mysql).

the time required to recover after it ends.
We replicated the ShoppingCart service on 6 Tem-

pest low-end servers on the Cornell cluster. A client in-
jects a single source stream of updates at a particular rate of
one update every 20 milliseconds. This client also concur-
rently performs query requests on 8 concurrent threads —
the query rate is therefore roughly 8 times higher than the
update rate. Under these circumstances Tempest nodes are
not overloaded — the overload unfolds as follows:

• At time t, from the start of the experiment 128 “rogue”
clients bombard 3 of the Tempest servers with re-
quests. We call the Tempest services victims.

• At time t + ∆, the rogue clients terminate. At roughly
the same time, the stream of updates also ceases.

In the experiment we report on t is 10, and ∆ is 30 sec-
onds. The rogue clients bombard the victims with multiple
streams of continuous IP multicast requests in the attempt
to saturate their processing capacity and have their kernel
/ NIC queues drop packets. We found that this was not
enough to perturb the normal behavior of the servers, hence
at the same time we superimposed additional background
load on the victim servers. These attacks do not cause the
servers to crash, but they do cause them to become over-
loaded, drop packets and therefore return stale results.

Server overloads will not influence the performance of
Tempest at non-attacked services, hence we report only on
the impact of the disruption at the victim replicas. Fig-
ure 5 shows the number of “stale” query results on the y-
axis against the time in seconds on the x-axis, binned in
2-second intervals. The Tempest gossip rate is set at once

0 50 100 150 200 2500

10

20

30

40

50
Nu

m
be

r o
f s

ta
le

 re
pl

ie
s

Time (s)

Figure 5. Number of stale results.

every 40 milliseconds. Throughout this period, the victim
nodes are overloaded and drop packets, while the Tempest
repair protocols labor to repair the resulting inconsistencies.
Meanwhile, queries that manage to reach the overloaded
nodes could glimpse stale data (not reflecting recent issued
updates since the updates were lost).

Note that once the attack ends, Tempest is able to re-
cover gracefully. The number of stale replies observed fol-
low a tri-modal distribution corresponding to normal oper-
ational regime, response under heavy load (between 30 and
40 seconds in the experiment) and a transient recovery pe-
riod during which the gossip protocol brings the state up to
date (between 40 and 65 seconds in the experiment) – as
mentioned before the update stream ceases at the same time
as the attack does therefore new updates are not responsible

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70

L
at

en
cy

 (
m

s)

Number of service replicas

CPU, VAR
IO, VAR

CPU
IO

CPU & IO
CPU & IO, VAR

Figure 6. PetStore services characteristics.

for “clearing up” the stale state.

4.3 Scalability in the Number of Services

To estimate how Tempest scales in different dimensions
— in particular, the size of the collaborating services, num-
ber of front-ends and number of replicas — we built a syn-
thetic PetStore on top of Tempest and evaluated it on the
Emulab testbed. The application consists of a battery of
front ends issuing requests to a “cloud” of services.

The services in the cloud have different response time
characteristics: some are IO intensive – for example an in-
dexing service may access disk much more often than the
average service, others are CPU intensive – for example
a recommendation service may require considerably more
CPU cycles than the average service, while other services
are both IO and CPU bound. We also consider the response
time variances for these types of services, in particular the
PetStore services have both small and large response time
variance. We observed that services performing multiple IO
operations are likely to suffer from scheduling delays. Lock
contention within Tempest may be another cause for large
response time variance. All PetStore services store soft state
using some form of a TempestMap or TempestSet.

Initially we ran a set of baseline experiments to measure
the behavior of each type of service individually, under nor-
mal load. The experiment consisted of two front ends issu-
ing request streams (half updates half reads) of one query
every 40 milliseconds in closed loop to a single replicated
service. Services have the gossip rate set for once every 100
milliseconds. We repeated the experiment for various num-
ber of replicas and for each of the types of services men-
tioned above. Figure 6 shows the query latency for all ser-
vices; the error bars represent standard error. Note that even
for services that we instrumented to have small response
time variance, if they are IO bound they do exhibit large

0 200 400 600 800
0

20

40

60

80

100

120

140

Q
ue

rie
s

pe
r

bi
ns

 o
f 1

0
m

s

Latency (ms)
0 200 400 600 800

0

20

40

60

80

100

120

140

Q
ue

rie
s

pe
r

bi
ns

 o
f 1

0
m

s

Latency (ms)

Figure 7. Pet-store response time his-
tograms, left: no replicas, right: 8 replicas.

0 2 4 6 8
0

20

40

60

80

100

120

Services per call

La
te

nc
y

(m
s)

1 query, baseline
1 queries, adaptive
2 queries, adaptive
5 queries, adaptive

Figure 8. Pet-store latency, 5 replicas each.

variance — in particular note the CPU & IO bound service
for 42 replicas and the IO bound service for 56 replicas.
For this client request load, the service instances become
overloaded if we drop below 3 replicas, and hence we don’t
report those values (response times are meaningless when
the service is unable to keep up with the request rate).

We evaluated the PetStore as a “cloud” of seven services
— the six with the characteristics presented in the previ-
ous experiments, along with another baseline “null” service
that shows the overhead caused solely by Tempest. Four
clients perform multi-service requests (half queries half up-
dates) against the PetStore in a closed loop, each at a rate
of once every 50 milliseconds — we chose the rate so as to
not completely overload the platform and observe queueing
effects instead. A multi-service request is a set of n parallel
requests sent to n distinct PetStore services — this is how
the PetStore’s front end web page aggregates content.

Figure 7 shows response time distributions for multi-
service requests sent to all services — every request issued
by a front-end is sent in parallel to each of the seven ser-
vices, the front end returning when all replies are received.
Requests have the redundant querying parameter k=2. Each
histogram shows the number of requests per bins 10 mil-

liseconds wide. We show two scenarios: the one in which
none of the services is replicated, and the one in which ser-
vices have 8 replicas each – for a yield of 7 distinct multicast
groups of 8 servers each. The graphs show that replication
provides more opportunities for queries to be absorbed by
load balancing — fewer queries reach each replica.

Figure 8 shows response times for multi-service requests
(with standard error denoting the error bars). Every multi-
request issued by a front-end chooses at random n distinct
services, where n is the number of services per query, pre-
sented on the x-axis. We used the adaptive query algorithm
with the k parameter set to 1, 2 and 5. For baseline we used
a simple query discovery algorithm by which the first query
for a service is multicast, and all subsequent queries are sent
to the one replica that replied the fastest to the multicast. We
conclude that adaptive redundant querying does indeed im-
prove performance when replicas are not overloaded, with
the largest payoff for k = 2.

5 Related Work

Amazon’s Dynamo [10] provides a highly available key-
value persistent storage system. Dynamo also sacrifices
consistency for availability and uses object versioning and
application-assisted techniques for conflict resolution. Un-
like Tempest, where data structures are fully replicated, Dy-
namo works like a zero-hop distributed hash table (DHT)
with data replicated over the N predecessor nodes.

Like Tempest, Sinfonia [1] introduces a set of abstrac-
tions that support building scalable distributed systems.
However Sinfonia replaces the message passing model by
providing a distributed shared memory abstraction. Devel-
opers would simply design and manipulate data structures
on top of a flat, unstructured fine-grained shared address
space. At its core, Sinfonia uses a lightweight minitransac-
tion primitive that applications use to atomically access and
conditionally modify data across distributed memory nodes.

Soft state mechanisms have been used extensively in net-
work protocols [38, 15], as well as in large cluster-based
services like Porcupine [32] and others [17, 7, 34]. Propos-
als exist for extending the standard web-service model to
include soft state — a prominent example is the Grid Com-
puting standard [16]. Recovery-oriented computing [8] is
an alternative approach to providing fast failover and avail-
ability in the face of failures — however, it does not replace
replication as a mechanism for balancing heavy load across
multiple machines. Distributed data structures have been
proposed before [21, 25] as building blocks for clustered
services. They follow a strictly defined consistency model:
all operations on its elements are atomic, in that any oper-
ation completes entirely, or not at all — however transac-
tions across multiple elements are not supported. The work
in [39] is very similar in spirit to Tempest, but examines

the orthogonal question of providing customizable durabil-
ity levels through a single storage abstraction; one of these
levels is meant for soft state that needs to be replicated for
high availability. SSM [24] is a system for managing and
storaging a particular category of soft state — user session.

Clustered application servers like BEA WebLogic [3],
IBM WebSphere [22], JBoss [23], to mention a few, al-
low storage of state in special containers that are typi-
cally stored within persistent databases. Most often than
not, these middleware solutions handle soft state using dis-
tributed cache infrastructures, at times relying on third party
products like Oracle Coherence [29] or GemFire Enter-
prise [18] for example. There has been a large amount of
work in the field of fault-tolerant middleware, especially
around CORBA [2, 28, 14], but most of this work does not
consider interaction with a database third tier. DBFarm [31]
is an architecture for scaling a core of multiple clustered
databases through the use of less reliable replicas.

Google’s Bigtable [9] is a distributed storage system for
managing petabytes of structured data across thousands of
commodity nodes in a datacenter. It relies on the Google
File System [19] to store log and data files and the Chubby
lock service [4] to store metadata. These systems address
problems orthogonal to Tempest, such as enabling high vol-
ume computations over massive amounts of data.

6 Conclusion

Modern three-tier architectures achieve scalability and
responsiveness through the extensive use of soft state tech-
niques in the service tier. Availability and rapid fail-over re-
quires data replication, and Tempest provides programmers
with data structure abstractions for storing and managing
replicated soft state. Tempest scales well in key dimensions
— the number of front-ends contacting a service and the
number of services contacted by a front-end — and outper-
forms in-memory databases in realistic settings. As a result,
Tempest simplifies the construction of highly responsive
systems that seamlessly mask load fluctuations and faults
from end-users.

Acknowledgements

We would like to thank our shepherd Jay Wylie for the
insightful dialog that significantly shaped the final version
of the paper and our reviewers for their extensive comments.
We thank Danny Dolev for his support and guidance.

References

[1] M. K. Aguilera, A. Merchant, M. Shah, A. C. Veitch, and
C. T. Karamanolis. Sinfonia: a new paradigm for building
scalable distributed systems. In SOSP, 2007.

[2] R. Baldoni and C. Marchetti. Three-tier replication for FT-
CORBA infrastructures. Software Practice and Experience,
June, 2003.

[3] BEA Systems, Inc. Clustering the BEA WebLogic
Application Server, 2003. http://e-docs.bea.com/wls/
docs81/cluster/overview.html.

[4] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In OSDI, 2006.

[5] J. Byers, J. Considine, and M. Mitzenmacher. Fast approx-
imate reconciliation of set differences. Boston University
Computer Science Technical Report 2002-019., 2002.

[6] L. Camargos, F. Pedone, and M. Wieloch. Sprint: a middle-
ware for high-performance transaction processing. In Euro-
pean Conference on Computer Systems (EuroSys), 2007.

[7] G. Candea, J. Cutler, and A. Fox. Improving availability
with recursive microreboots: a soft-state system case study.
Perform. Eval., 2004.

[8] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot - a technique for cheap recovery. In
OSDI, 2004.

[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: a distributed storage system for structured data. In
OSDI, 2006.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s Highly Available Key-
Value Store. In SOSP, 2007.

[11] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintenance. In
Proceedings of the sixth annual ACM Symposium on Princi-
ples of Distributed Computing, 1987.

[12] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer,
and B. Welch. The Bayou Architecture: Support for Data
Sharing among Mobile Users. In IEEE Workshop on Mobile
Computing Systems & Applications, 1994.

[13] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stone-
braker, and D. A. Wood. Implementation Techniques for
Main Memory Database Systems. In SIGMOD, 1984.

[14] P. Felber, X. Défago, P. Eugster, and A. Schiper. Replicat-
ing CORBA objects: a marriage between active and passive
replication. In Second IFIP International Working Confer-
ence on Distributed Applications and Interoperable Systems
(DAIS’99), pages 375–387, Helsinki, Finland, 1999.

[15] S. Floyd, C. Liu, S. McCanne, and L. Zhang. A reliable
multicast framework for light-weight sessions and applica-
tion level framing. IEEE/ACM Transactions on Networking
(TON), 5(6):784–803, 1997.

[16] I. Foster, K. Czajkowski, D. Ferguson, J. Frey, S. Graham,
T. Maguire, D. Snelling, and S. Tuecke. Modeling and Man-
aging State in Distributed Systems: The Role of OGSI and
WSRF. Proceedings of the IEEE, March 2005.

[17] A. Fox, S. Gribble, Y. Chawathe, E. Brewer, and P. Gauthier.
Cluster-based scalable network services. SOSP, 1997.

[18] Gemstone. GemFire Enterprise. http://www.gemstone.com
/products/gemfire/enterprise.php.

[19] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. SOSP, 2003.

[20] J. N. Gray. A Conversation with Werner Vogels: Learning
from the Amazon technology platform. ACM Queue, 4(4),
May 2006.

[21] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. E.
Culler. Scalable, distributed data structures for internet ser-
vice construction. In OSDI, 2000.

[22] IBM. WebSphere Information Integrator Q replica-
tion, 2005. http://www-128.ibm.com/developerworks/db2
/library/techarticle/dm-0503aschoff/.

[23] JBoss. http://labs.jboss.com/projects/docs/.
[24] B. C. Ling, E. Kiciman, and A. Fox. Session state: beyond

soft state. In Proceedings of the 1st Symposium on Net-
worked Systems Design and Implementation (NSDI), 2004.

[25] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and
L. Zhou. Boxwood: Abstractions as the Foundation for Stor-
age Infrastructure. In OSDI, 2004.

[26] T. Marian, K. Birman, and R. van Renesse. A Scalable Ser-
vices Architecture. In Proceedings of the 25th IEEE Sympo-
sium on Reliable Distributed Systems (SRDS), 2006.

[27] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconcilia-
tion with nearly optimal communication complexity. IEEE
Transactions on Information Theory, 2003.

[28] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.
Lessons Learned in Building a Fault-Tolerant CORBA Sys-
tem. In Proceedings of the International Conference on De-
pendable Systems and Networks, 2002.

[29] Oracle. Oracle Coherence. http://www.oracle.com/products/
middleware/coherence/index.html.

[30] M. Pezzini. The Evolution of Transaction Processing in
Light of .NET and J2EE. Business Integration Journal On-
line, November 2005.

[31] C. Plattner, G. Alonso, and M. T. Özsu. Dbfarm: A scalable
cluster for multiple databases. In Middleware, 2006.

[32] Y. Saito, B. N. Bershad, and H. M. Levy. Manageability,
availability and performance in Porcupine: a highly scal-
able, cluster-based mail service. In Proceedings of the 17th
ACM symposium on Operating systems principles, 1999.

[33] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open vs
closed: a cautionary tale. In NSDI, 2006.

[34] K. Shen, T. Yang, L. Chu, J. L. Holliday, D. A. Kuschner,
and H. Zhu. Neptune: scalable replication management and
programming support for cluster-based network services. In
Proceedings of the 3rd conference on USENIX Symposium
on Internet Technologies and Systems (USITS), 2001.

[35] Sun Microsystems. The Collections Framework. http://
java.sun.com/docs/books/tutorial/collections/index.html.

[36] The Apache Software Foundation. Apache Axis, 2006.
http://ws.apache.org/axis/.

[37] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-
grated experimental environment for distributed systems and
networks. In OSDI, 2002.

[38] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: a new resource reservation protocol. Communica-
tions Magazine, IEEE, 40(5):116–127, 2002.

[39] X. Zhang, M. A. Hiltunen, K. Marzullo, and R. D. Schlicht-
ing. Customizable service state durability for service ori-
ented architectures. Sixth European Dependable Computing
Conference, 0:119–128, 2006.

