
Abstract

Building Privacy-Preserving Cryptographic

Credentials from Federated Online Identities

John Maheswaran

2015

Third-party applications such as Quora or StackOverflow allow users to log in

through a federated identity provider such as Facebook (Log in with Facebook),

Google+ or Twitter. This process is called federated authentication. Examples

of federated identity providers include social networks as well as other non-social

network identity providers such as PayPal.

Federated identity providers have gained widespread popularity among users as

a way to manage their online identity across the web. While protocols like OAuth

and OpenID allow users to maintain a single set of credentials for federated authen-

tication, such federated login can leak privacy-sensitive profile information, making

the user’s online activity more easily tracked.

To protect themselves, users could forego using such identities altogether, or limit

the content of their profiles. Ideally, users could leverage their federated identities but

in a way as to prevent third party applications from accessing sensitive information.

While anonymous authentication techniques have been proposed, their practicality

depend on such technologies as PGP or complex encryption algorithms which most

users lack the knowledge or motivation to use effectively.

While federated identity providers offer a convenient and increasingly popular

mechanism for federated authentication, unfortunately, they also exacerbate many

privacy and tracking risks. We present Crypto-Book, a privacy preserving layer

enabling federated authentication while reducing these risks.

2

Crypto-Book relies on a set of independently managed servers that collectively

assign each federated identity credentials (either a public/private keypair or blinded

signed messages). We propose two components, ”credential producers” that create

and issue clients with privacy preserving credentials, and ”credendial consumers”

that verify these privacy preserving credentials for authentication of clients to third

party applications.

The credential producer servers have split trust and use a (t,n)-threshold cryp-

tosystem to collaboratively generate client credentials. Using their credentials, clients

can then leverage anonymous authentication techniques such as linkable ring signa-

tures or blind signatures to log into third party applications via credential consumers,

while preserving privacy.

We have implemented our system and demonstrate its use with four distinct

applications: a Wiki system, an anonymous group communication system, a whistle

blower submission system based on SecureDrop, and a privacy preserving chat room

system. Our results show that for anonymity sets of size 100 and 2048-bit DSA keys,

Crypto-Book ring signature authentication takes 1.641s for signature generation by

the client, 1.632s for signature verification on the server, and requires 8.761KB of

communication bandwidth. Similarly for partially blind signature authentication,

each phase takes under 0.05s and requires 0.325KB of bandwidth.

Crypto-Book is practical and has low overhead: We deployed a privacy preserving

chat room system built on top of the Crypto-Book architecture. Within the deploy-

ment within our research group, Crypto-Book group authentication took 1.607s end-

to-end, an overhead of 1.2s compared to traditional non privacy preserving federated

authentication.

Building Privacy-Preserving

Cryptographic Credentials from

Federated Online Identities

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
John Maheswaran

Dissertation Director: Bryan A. Ford

December 2015

Copyright c© 2015 by John Maheswaran

All rights reserved.

ii

Contents

1 Introduction 1

2 Background and Related Work 3

2.1 Federated Identity Authentication . 4

2.1.1 Privacy Concerns with Federated Identity 5

2.1.2 Motivating Use-Cases for Crypto-Book 6

2.2 Related Work . 8

3 Definitions 10

4 Architecture Overview 17

4.1 Credential Producers . 19

4.2 Credential Consumers . 23

4.3 Workflow . 24

4.4 Threat Model . 27

5 Credential Producers 30

5.1 Threshold Server Model . 32

5.2 Credential Generation . 33

5.2.1 Key Generation . 33

5.2.2 Blind Signature Generation 33

iii

6 Credential Assignment Mechanism 36

6.1 Alternative Identity Providers . 37

6.2 Trust levels . 38

6.3 Combined Identities . 38

6.4 Credential Collection . 39

6.5 Compromised Credential Producer Servers 40

7 Credential Consumers 43

7.1 OAuth Provider Credential Consumer 44

7.2 Application-Embedded Consumer . 45

7.3 LRS Anonymous Authentication . 45

8 At-Large Credentials 47

8.1 Background: Blind Signatures . 48

8.2 Building Block: Blind Signatures . 48

8.3 Producing At-Large Credentials . 48

8.4 Consuming At-Large Credentials . 49

8.5 Credential Attributes . 49

8.6 Rate-Limits via Attributes . 50

8.7 Security/Privacy Properties . 51

8.8 Discussions . 51

9 Group Credentials 53

9.1 Background: Ring Signatures . 53

9.2 Building Block: Ring Signatures . 54

9.3 Producing Group Credentials . 55

9.4 Consuming Group Credentials . 56

iv

9.5 Security/Privacy Properties . 57

9.6 Discussions . 57

9.7 Neff-Based Group Credential Scheme 58

10 Privacy Preservation 63

10.1 Anonymous Key Distribution . 63

10.2 Anonymity Set . 65

10.3 Ring signatures . 68

10.4 Blind signatures . 69

11 Security Analysis 71

11.1 Security Properties . 71

11.2 Attackers . 72

11.2.1 Application attacker . 72

11.2.2 Identity provider attacker . 73

11.2.3 Credential producer attacker 73

11.2.4 Credential consumer attacker 73

11.2.5 User attacker . 74

11.3 Attacks and Defenses . 74

11.3.1 Single party attacks . 74

11.3.2 Collusion attacks . 78

11.3.3 Miscellaneous attacks . 81

12 Implementation 83

12.1 Credential Assignment Mechanism 84

12.2 Credential Schemes Implemented . 85

12.2.1 DSA-Based Scheme . 85

v

12.2.2 RSA-Based Scheme . 86

12.2.3 Boneh-Franklin Identity-Based Encryption Scheme 86

12.2.4 Blind and Partially Blind Signature Schemes 87

13 Applications 88

13.1 CB-Wiki . 88

13.2 CB-Dissent . 89

13.3 CB-Drop . 90

14 Evaluation 92

14.1 Experimental Setup . 92

14.2 Producing Credentials . 93

14.2.1 Facebook Application Authorization 93

14.2.2 At-Large Credentials . 93

14.2.3 Group Credentials . 95

14.2.4 Neff-Based Group Credentials 96

14.3 Consuming Credentials . 97

14.3.1 At-Large Credentials . 97

14.3.2 Group Credentials . 98

14.4 CB-Dissent Authentication . 100

14.5 Code modification . 101

15 Future Directions 103

16 Conclusions 105

vi

List of Figures

4.1 The Crypto-Book architecture . 18

4.2 Client collects credentials from multiple credential producers. 22

4.3 High level system diagram . 26

6.1 Client collects credentials from servers 42

7.1 Crypto-Book anonymity set selection 46

10.1 Alice anonymously requests her private key 64

10.2 Invitation emails sent with encrypted private key attached. Alice can

decrypt her private key. 65

13.1 The CB-Drop document source interface 91

14.1 Facebook application authorization 94

14.2 Partially blind signature operations (CPU costs) 95

14.3 Distributed keypair generation . 95

14.4 Retrieval of previously generated keys (communication costs) 96

14.5 Neff-based group credential setup costs 97

14.6 Linkable ring signature generation (CPU costs) 100

14.7 Linkable ring signature verification (CPU costs) 100

14.8 Linkable ring signature size (communication costs) 101

vii

14.9 CB-Dissent authentication time . 101

viii

List of Tables

14.1 Partially blind signature size (communication costs) 94

14.2 Real World End-to-end Group Authentication for Group Size of 10 . 98

14.3 End-to-end Group Authentication for Simulated Group Size of 100 . . 99

14.4 End-to-end Group Authentication for Simulated Group Size of 250 . . 99

ix

Acknowledgments

First and foremost, I would like to thank my advisor, Bryan Ford, for all his guidance,

help and advice in the process of preparing this dissertation and throughout the

course of my PhD at Yale. I would also like to thank all my dissertation committe

members, Joan Feigenbaum, Ramki Gummadi and Anil Somayaji. I would also like to

thank the members of our research group, Danny Jackowitz, Ennan Zhai, Weiyi Wu,

Ewa Syta and David Isaac Wolinsky for all their help, support and encouragement

and for all the useful feedback received at All Hands meetings. I also thank Jose

Faleiro.

I also thank my undergraduate final year project advisor and Turing Award

laureate, the late Robin Milner, for sparking my interest in computer science research.

Additionally, I would like to acknowledge Google and the Security team especially

Andrew Sacamano, Cory Hardman and Daryl Seah for facilitating work towards this

disseration, providing me with industry experience and education of security and

cryptography in a software engineering setting. I thank the uProxy team at Google

Ideas and University of Washington, especially Lucas Dixon.

I want to thank the entire computer science department at Yale including all the

faculty. I also want to thank Yale University as a whole. I am extremely grateful to

have had the opportunity to complete my doctoral education here.

I also want thank all my friends for making my time at Yale enjoyable. I also

want to thank my family.

Finally I want to acknowledge funding sources. I am thankful to be a recipient

of a Yale University Fellowship which supported me during my first year.

This material is based upon work supported in part by the Defense Advanced

Research Projects Agency (DARPA) and SPAWAR Systems Center Pacific, SAFER

Contract No. N66001-11-C-4018. Any opinions, findings and conclusions or recom-

mendations expressed in this material are those of the author and do not necessarily

reflect the views of the Defense Advanced Research Projects Agency (DARPA) or

SPAWAR Systems Center Pacific.

xi

Chapter 1

Introduction

Third-party applications (such as Quora [84] or StackOverflow [99]) allow users to

log in through a federated identity provider such as Facebook (Log in with Facebook)

or Google+. This process is called federated authentication. Examples of federated

identity providers include social networks as well as other non-social network identity

providers such as PayPal.

Federated identity providers have gained widespread popularity among users

as a way to manage their online identity across the web. While protocols like

OAuth [49, 50] and OpenID [86] allow users to maintain a single set of credentials

for federated authentication, such federated login can leak privacy-sensitive profile

information [46], making the user’s online activity more easily tracked.

To protect themselves, users could forego using such identities altogether, or limit

the content of their profiles. Ideally, users could leverage their federated identities but

in a way as to prevent third party applications from accessing sensitive information.

While anonymous authentication techniques have been proposed [103, 104, 5, 4, 3,

6, 10, 13, 14, 24, 51, 55, 58, 61, 62, 79, 105], their practicality depend on such

technologies as PGP or complex encryption algorithms which most users lack the

1

knowledge or motivation to use effectively [113].

Crypto-Book interposes an anonymity layer between existing federated identity

providers and the third party applications users may wish to log into. Crypto-

Book prevents the federated identity provider from learning which applications a

user accesses, and prevents the application from learning which user accessed their

application or which other application the same user has accessed.

Roadmap

Chapter 2 motivates Crypto-Book and discusses OAuth and federated login back-

ground as well as related work. Chapter 3 defines technical terms used in this dis-

sertation. Chapter 4 offers an overview of Crypto-Book’s design and outlines its

threat model. Chapter 5 introduces credential producers. Chapter 6 details Crypto-

Book’s mechanism to assign credentials to federated identities. Chapter 7 intro-

duces credential consumers. Chapter 8 discusses the idea of “at large” credentials

and Chapter 9 discusses group credentials. Chapter 10 details privacy preservation

within Crypto-Book. Chapter 11 specifies the system’s security properties, outlines

potential attackers and analyses how these attackers may attempt to violate system

security properties and how well the system defends against these attacks. Chap-

ter 12 discusses the current implementation and Chapter 13 lays out three applica-

tion case-studies, which Chapter 14 experimentally validates. Chapter 15 discusses

limitations and future work, and Chapter 16 concludes.

2

Chapter 2

Background and Related Work

Background and Motivating Use Cases It is often difficult to strike an appro-

priate balance between the following objectives:

• Supporting free speech and free association, and fighting censorship and oppres-

sion.

• Improving the quality of public discourse. Hidden behind an anonymous veil,

people often say or do things they might otherwise not.

These two objectives are often at odds with each other. While Wikipedia would

like to allow anonymous editing, such privileges are often abused for vandalism or

sock-puppetry. We would like a system that allows users to edit pages without

revealing their identity but at the same time allows the Wikipedia site administrators

to sanction site abusers.

Another example placing free speech and quality of discourse are at odds is the

realm of anonymous chat. A covert organization, for example, may wish to discuss

sensitive issues without revealing their individual identities while at the same time

limiting access to their discusssion to people within their organization, in an effort

to prevent repressive authorities or other undesirable outsiders from viewing their

3

communications.

Whistleblowing provides another such scenario, as a journalist taking possession

of sensitive documents may wish to authenticate the documents without compromis-

ing the anonymity of the source.

We used the Crypto-Book framework to implement applications motivated by

the above three scenarios - CB-Wiki, CB-Dissent and CB-Drop, respectively, which

we describe in Chapter 12.

2.1 Federated Identity Authentication

We now give a brief overview of federated identity, focusing on OAuth [49, 50]. A fed-

erated identity protocol allows a user to present credentials from an identity provider

with which they have an account and authenticate themselves to a third party appli-

cation without revealing their actual login information (password). Many protocols,

such as OAuth, also enable the third party to gain limited access to the user’s re-

sources stored by the identity provider. OpenID [86, 87] is another widely used

federated identity protocol. A typical OAuth login proceeds as follows, supposing a

Facebook user wishes to log into StackOverflow.

1. The user clicks Log in with Facebook on StackOverflow

2. StackOverflow redirects the user to Facebook where they login using their Face-

book credentials

3. The user gives permission for StackOverflow to access and/or modify their data

(read contacts, post status updates and so on)

4. Facebook generates a temporary OAuth access token that corresponds to the

granted permissions

5. Facebook redirects the user back to StackOverflow, passing along the access token

4

6. StackOverflow can now use the token to access the user’s Facebook resources in

line with the permissions granted by the user

2.1.1 Privacy Concerns with Federated Identity

Using federated authentication, a user can log in to third party applications without

having to maintain separate accounts for each application. This convenience brings

privacy risks, however, of which Crypto-Book focuses on the following:

• The ID provider learns every application or site the user logs into using the

identity, and every time they use it.

• Third party sites and applications learn the user’s true identity and often many

profile details such as friends lists.

• Companies can link and profile a user across many sites and applications, sharing

or selling profiles to advertisers.

• A compromised ID provider account gives an attacker access to the user’s accounts

on many third-party sites.

Additionally, whenever you visit any page containing ID provider’s “Like” or

“Share” button, the ID provider learns that you visited that page which enables

even more detailed tracking and sale of personal information. Web applications

often demand access to profile information, contacts lists, and even write access

(permission to post on user’s behalf) and it is sometimes unclear to users what these

permissions will be used for, and not obvious after-the-fact how they were actually

used.

5

2.1.2 Motivating Use-Cases for Crypto-Book

In our evaluation we use three different motivating applications which we outline

here.

Privacy-preserving “Log In with Crypto-Book” Crypto-Book may be used

to provide privacy preserving log in functionality to third party websites. A website

may choose to include a “Log in with Crypto-Book” button which allows users to

be authenticated via Crypto-Book. The difference between Crypto-Book privacy

preserving login and existing federated authentication, such as “Log in with Twitter”

is that Crypto-Book login preserves the user’s privacy, while also protecting the third

party websites from abuse. The website learns that the user has been authenticated

by Crypto-Book, and learns a pseudonym for the user, but does not know the user’s

identity, nor can the website map back from the pseudonym to the user’s identity.

For example, while Wikipedia would like to allow anonymous editing, such privi-

leges are often abused for vandalism or sock-puppetry. We would like a system that

allows users to edit pages without revealing their identity but at the same time al-

lows the Wikipedia site administrators to sanction site abusers. CB-Wiki leverages

Crypto-Book to provide anonymous, yet linkable editing in a collaborative environ-

ment wiki system. We built CB-Wiki using MediaWiki [73], the software behind

Wikipedia.

Abuse-resistant anonymous communication Another example placing free

speech and quality of discourse are at odds is the realm of anonymous chat. A

covert organization, for example, may wish to discuss sensitive issues without re-

vealing their individual identities while at the same time limiting access to their

discusssion to people within their organization, in an effort to prevent repressive

6

authorities or other undesirable outsiders from viewing their communications.

The Crypto-Book architecture could be used to give web sites and services a

reason not block Tor, by authenticating users anonymously in an abuse resistant

manner. This would allow websites to counter anonymous abuse without compro-

mising anonymity. The Tor Project issued a “call to arms” seeking solutions to this

issue 1.

CB-Dissent shows how the integration of anonymous authentication with anony-

mous communication systems can better protect the identities of the users of those

systems. We built CB-Dissent using Dissent [28, 114] an anonymous group commu-

nication tool.

Ring-authenticated whistleblowing via SecureDrop Whistleblowing provides

another such scenario, as a journalist taking possession of sensitive documents may

wish to authenticate the documents without compromising the anonymity of the

source. CB-Drop provides anonymous document signing using Crypto-Book iden-

tities, allowing for verifiable leaks without compromising privacy. A whistleblower

authenticates as a member of a “ring” so a journalist can verify that the leak came

from one of the members of the ring, yet does not know which specific member

leaked the document. CB-Drop extends the SecureDrop [93] open-source whistle-

blower platform.

Crypto-Book’s focus is providing convenient, abuse resistant, anonymous authen-

tication, but it does not by itself address the general problem of network level anony-

mous communication, especially under traffic analysis, as systems like Tor [38], Dis-

sent [28, 115], and Aqua [60] do. Crypto-Book is synergistic with such systems but

also usable independently, when a casual level of anonymity is desired but the user

1https://blog.torproject.org/blog/call-arms-helping-internet-services-accept-

anonymous-users

7

https://blog.torproject.org/blog/call-arms-helping-internet-services-accept-anonymous-users
https://blog.torproject.org/blog/call-arms-helping-internet-services-accept-anonymous-users

does not wish to incur the performance costs of full anonymous forwarding.

This dissertation makes the following contributions:

• Anonymous and abuse resistant authentication using federated identities.

• A pluggable credential design, demonstrated with two different schemes (pub-

lic/private key pairs with LRS, and blind signatures).

• A multiple identity provider credential assignment protocol preventing any fed-

erated identity provider from impersonating a user.

• Security properties and attack analysis of the system.

• Experiments demonstrating the practicality of Crypto-Book for authentication.

2.2 Related Work

Existing work on anonymous credential systems include BLAC [103, 104, 5] which

supports blacklisting of anonymous credentials in certain situations. There have been

a wide variety of other approaches to anonymous credential systems including those

based on group signatures [58, 24, 10, 6, 3, 4], dynamic accumulators [79, 61, 14] and

Nymble systems [105, 62, 55, 51].

Felt and Evans [44] examine privacy protection in social networking APIs. The de-

ployment of public key cryptography over social networks was considered by Narayanan

et al. [76] where they considered key exchange over social networks. They considered

using social networks as a public key infrastructure (PKI), they did not implement

any applications that use the public keys.

Various schemes have been proposed to protect user data within an online so-

cial network [69, 68, 48, 30, 54], by encrypting the content stored within the social

network. However these schemes did not consider the privacy risks involved when

a user uses their online social networking identity to identify themselves with third

8

parties such as logging into other websites using their Facebook credentials. Dey and

Weis [36] proposed PseudoID, a similar system based on blind signatures [16] for pri-

vacy protected federated login, however their scheme does not handle key assignment

or Sybil resistance as our work does. A similar blind signature based system was

proposed by Khattak et al. [57]. Watanabe and Miyake [112] made initial efforts

towards account checking however still did not consider key assignment. Opaak [70]

is a system that attempts to provide some Sybil resistance through relying on a cell-

phone as a scare resource. SudoWeb [59] looked at limiting the amount of Facebook

information disclosed to third party sites but did not consider fully anonymous online

IDs.

Identity based encryption (IBE) refers to an encryption system where a public

key can be an arbitrary string, for example a user’s email address or social security

number. The idea was first proposed by Shamir [95] and since then several IBE

systems have been proposed [34, 53, 72, 107, 101].

9

Chapter 3

Definitions

We now introduce the technical terms that we use in this dissertation. We present

the relevant terms along with the definitions as we are using them in this dissertation

to clarify our intended meaning of them.

• Federated identity provider - An identity provider such as Facebook that

allows a user to log into other websites using their username and password for

the identity provider (for example Log in with Facebook, Log in with LinkedIn).

Examples include social networks such as Facebook, Google+, Twitter, LinkedIn

as well as other systems that support identity management such as PayPal. Also

referred to as an identity provider, ID provider and federated ID provider.

• Third party application - A website or application that allows the user to

log in through a federated identity provider. Examples include Quora [84] and

StackOverflow [99]. Also referred to as an app, third party app, application, web

app or third party website.

• Federated authentication - The process whereby a user logs into a third party

application through a federated identity provider.

• Client - A user of a system. in this dissertation we often refer to the client as

10

Alice.

• Anonymity - The state of being not identifiable within a set of subjects.

• Anonymity set - To enable anonymity of a subject, there always has to be an

appropriate set of subjects with potentially the same attributes. The anonymity

set is the set of all possible subjects who might have caused an action. The

number of subjects in the anonymity set is the size of the anonymity set.

• k-anonymity - A subject has k-anonymity [100] if they are a member of an

anonymity set of size k.

• Authentication - A process that establishes the source of information, provides

assurance of an entitys identity or provides assurance of the integrity of commu-

nications sessions, messages, documents or stored data [80].

• Anonymous authentication - The process of authenticating yourself without

revealing your identity [63].

• Pseudonym - An identifier of a subject (a client). The subject that may be

identified by the pseudonym is the holder of the pseudonym. Pseudonymity

allows the holder of a pseudonym to establish a reputation while using the same

pseudonym. When a user anonymously authenticates to a system they may be

provided with a pseudonym to use within that system.

• Pseudonymity - The use of pseudonyms as identities.

• Ring signature - A ring signature [92] makes it possible to specify a set of

possible signers without revealing which member actually produced the signature.

RSA-based ring signatures [92] have the property of deniability [88].

• Deniability - The property where if you reveal your private key your previous

ring signatures cannot be deanonymized [88].

• 1-out-of-n group signature scheme - A 1-out-of-n group signature scheme [64]

allows any member of a group of n signers to generate a signature such that any

11

public verifier can determine if the signature is generated by a group member.

A 1-out-of-n group signature scheme provides n-anonymity where the anonymity

set is the set of group members.

• Linkable ring signature (LRS) - A 1-out-of-n group signature scheme [64]

which satisfies three properties:

1. Anonymity, or signer-indistinguishability.

2. Linkability: That two signatures by the same signer can be linked.

3. Spontaneity: No group secret, and thus no group manager or secret-sharing

setup stage.

• Blind signature - A blind signature [96, 18, 15, 12, 19, 22, 20, 21, 23, 45, 82] is a

form of digital signature in which the content of a message is disguised (blinded)

before it is signed. The resulting blind signature can be publicly verified against

the original, unblinded message in the manner of a regular digital signature.

• Partially blind signature - A partially blind signature [1] is a blind signature

in which part of the message is unblinded and part is blinded before it is signed.

• Trust level - The degree of trust that someone has in a particular identity.

A Facebook account that has existed for three years and has 300 friends will

have a higher trust level than one that has existed for one day and has zero

friends. Similarly an identity that has been verified against a bank account (such

as PayPal) and has an associated three year old, 300 friend Facebook account

with the same name and date of birth will have a higher trust level.

• Identity based encryption (IBE) - A form of encryption based on elliptic

curve cryptography (ECC) proposed by Boneh-Franklin [9] where a user’s public

key is a public string such as their email address.

• Threshold cryptosystem - A (t, n)-threshold cryptographic primitive [11, 29,

33, 35] where (t ≤ n) is a function, y = f(x1, x2, . . . , xn), where n parties want

12

to collaboratively compute the result y and each of them holds an individual

secret share xi. We say the function f is (t, n)-threshold if any t of n parties can

cooperate to construct y and no group of t− 1 or fewer parties can compute y.

• Key share/private key share/public key share - Several private key share

can be combined to form a private key. Similarly for public keys. For example

for DSA keys, the private key exponents of two private keys can be added to give

a new private key, where the first two private keys are private key shares of the

second. Similarly DSA public keys can be added to make a new DSA public key.

• Verfiable secret sharing (VSS) - Secret sharing [94] is a method for distribut-

ing a secret amongst a group of participants, each of whom is allocated a share

of the secret. Verfiable refers to the fact that participants can check their shares

are consistent.

• Distributed private key generator (PKG) - A distributed PKG [83] is a

system that uses VSS for multiple parties to collaboratively compute private

keys for clients.

• OAuth - OAuth [49, 50] is an open protocol to allow secure authorization from

web and mobile applications. The OAuth 2.0 authorization framework enables a

third-party application to obtain limited access to an HTTP service (for example

a federated identity provider).

• OAuth provider An identity service that provides an API for clients to connect

to and use [49, 50]. Most federated identity providers are OAuth providers.

• OAuth client A third party application that connects to an OAuth provider

(such as a federated identity provider) in order to use authenticate users [49, 50].

• Credential Something that can be used to prove someone is who they say they

are (or prove that they are a member of a group). This is used to authenticate

with a third party. For example a public/private key pair and a set of public

13

keys can be used as a credential to generate an LRS to authenticate oneself with

a third party. A signed blinded message is another example of a credential. The

message can be unblinded and the signature used to authenticate with a third

party.

• Credential producer An entity or collection of entities that creates credentials

for clients.

• Key server A credential producer that serves private and public key shares to

clients. A group of key servers collectively act as a distributed PKG to distribute

private and public keys to clients.

• Signing server A credential producer that signs blinded messages for a client. A

client blinds a message, sends it to a signing server which signs the message and

returns it to the client. The client can then unblind the message and signature

and use the signature to authenticate to a third party application. Several signing

servers act collectively to sign several messages for a client.

• Credential consumer An entity that supports authentication of a client using

credentials (for example an LRS made with a set of public keys and a private key,

or a blind signature that has been unblinded). There are three different types of

credential consumer:

1. A party distinct from the application, credential producers and identity

providers may act as an OAuth provider that verifies credentials of clients

and authenticates them on behalf of the third party. In this case the cre-

dential verifier is itself acting as a federated identity provider.

2. A third party application may run its own OAuth provider internally so they

do not need to trust someone else to verify credentials.

3. A third party application may directly verify credentials themselves, in the

form of a module integrated into their application.

14

• Credential assignment The process of a credential producer giveing a client a

credential (or set of credentials).

• Dissent An anonymous group messaging system [28, 115].

• MediaWiki Open source software to support Wikis (websites with collaborate

editing) [73]. The software used by Wikipedia.

• SecureDrop Open source software for an anonymous drop box where whistle-

blowers can submit leaked documents to journalists [93].

• Sock puppetry A sockpuppet is an online identity used for purposes of decep-

tion. The term refers to a false identity assumed by a someone while pretending

to be another person.

• Abuse resistance A system is abuse resistant if it has some way to sanction,

caution or ban users who violate the system’s terms and rules.

• Trolling Offensive or provocative online posting intended to upser or anger other

people.

• Spamming Sending or posting or large amounts of unsolicited information, often

advertising related.

• Sybil attack An attack where a single entity can gain control of multiple iden-

tities and use these to abuse a distributed system and defeat system redundan-

cies [40].

• Collusion attack An attack on a system where two or more different parties

collude together in order to attack the system or a third party in the system.

• Timing analysis attack An attack where the time of different events occurring

are used to subvert system properties or deanonymize parties.

• Traffic analysis attack An attack where network traffic is examined by an

adversary in order to subvert a system or deanoymize parties.

• Correlation attack A form of traffic analysis attack where traffic entering a

15

network from a client is correlated by an adversary with traffic leaving the network

in order to deanonymize clients.

• Intersection attack An attack where anonymity sets for different actions over-

lap in such a way that the true actor is known to be a member of the intersection

of the intersection of the sets and hence has reduced anonymity [85, 56, 31].

16

Chapter 4

Architecture Overview

Figure 4.3 shows a high level overview of the architecture. Figure 4.1 shows the overall

Crypto-Book architecture. Traditionally a federated identity provider provides an

API to an application via OAuth or a similar protocol. This, however, exposes the

user’s identity to the application. We insert the credential producer and credential

consumer layers between the non-anonymous identity API from the federated identity

provider and a privacy preserving API for applications. The lower parts of the system

stack (federated identity provider and credential producers) do not communicate with

the upper parts of the system stack (credential consumer and applications).

Crypto-Book addresses the user’s identity concern by interposing two additional,

disjoint layers between the federated identity APIs and the third-party applica-

tions that consume them. Credential producers interact with the federated identity

provider to collectively map federated identities to privacy-preserving cryptographic

credentials. Clients then supply these credentials to credential consumers, which en-

able the user to create accounts on and authenticate with cooperating third-party

applications using these credentials in place of their original federated identities.

Since Crypto-Book credential producers derive credentials from OAuth-based iden-

17

Figure 4.1: The Crypto-Book architecture

tities, and Crypto-Book credential consumers can offer OAuth-based identities to

cooperating applications, Crypto-Book in effect acts as a fully backward compatible

privacy-protection layer for OAuth identities.

The Crypto-Book architecture ensures that credentials are assigned in such a way

that, subject to our threat model, throughout the entire authentication process only

the client ever learns enough to complete the mapping, in either direction, between

an underlying federated identity and a Crypto-Book identity on a given third-party

site. This threat model is defined more fully in Section 4.4, and the process by which

Crypto-Book produces credentials is discussed further in Section 5. Finally, Section 7

describes the various ways in which cryptographic credentials can be consumed to

produce anonymous identities.

18

4.1 Credential Producers

Crypto-Book credential producers are a set of independently managed servers re-

sponsible for producing cryptographic credentials from verified federated identities.

We assume each server is run by a respected, technically competent, and administra-

tively independent anonymity service provider. We envision several commercial or

non-profit organizations each deploying a cluster of the credential producer servers,

as either a for-profit or donation-funded community service.1

To obtain cryptographic credentials, Crypto-Book client contacts a threshold t

of the n credential producers, each of which independently authenticates the user

with respect to one or more federated identity providers. This process is outlined in

Figure 6.1, and proceeds as the following three steps.

Step 1. Each credential producer prompts the user to perform a non-anonymous

OAuth federated authentication with each of the federated identity providers (e.g.

Facebook and PayPal). Each credential producer, then, redirects the client to the

federated identity provider’s login page for authentication. For each of such authen-

tications, if the client can successfully log into, the client would receive a unique

OAuth token corresponding to the specific federated identity provider.

Step 2. The client sends these tokens to the producer who initiated that authen-

tication. With these tokens, the corresponding credential producers perform limited

access to the user’s profile information. Credential producers request only the mini-

mum access necessary to verify that the identity is valid. Each credential producer

verifies via federated identity provider’s profile-access API (e.g., the Facebook API)

that the federated identity for which the OAuth token was obtained corresponds to

the federated identity (e.g. Facebook ID) that the user claimed to have. For multiple

1The assumption on servers has been demonstrated to be reasonable in practice [38, 114]

19

federated identity providers (e.g. Facebook and PayPal), each credential producer

also verifies that the user attributes (i.e., date of birth and email address) are the

same for both the Facebook and PayPal accounts. In order to obtain a verified Pay-

Pal account, a user needs to connect her real world bank account or credit card,

which requires showing her real-world identity (e.g. driver license) in person at a

bank. This provides a higher barrier to entry and makes it much more difficult for

someone to assume a fake identity.

Step 3. After each producer verifies all identities with their respective providers

and, if all verify successfully, returns a share of the credential to the client. The

client then combines the shares and stores the resulting cryptographic credential for

use in future privacy-protected logins.

It is crucial that each producer performs its own OAuth authentication and re-

ceives its own OAuth token. A strawman design uses only one OAuth workflow with

a single OAuth token and forwards this token to each of the credential producers.

The problem with this is that each credential producer can forward the token to

other producers to impersonate the user. Having separate OAuth workflows for each

producer protects against this.

While security requires each of multiple credential providers to verify one or

more of the user’s federated identities, we do not wish to subject the human user

to a tedious process of typing passwords into many federated identity provider lo-

gin dialogs in succession. The Crypto-Book client hides the multiple-independent-

authentications from the human user, on the client side using a Chrome plugin.

Crypto-Book credential producers support multiple cryptographic credentials, re-

quiring only that the credential be adaptable to a (t, n)-threshold cryptosystem; any

set at least t honest producers must be able to produce a valid credential which

will be accepted by any honest credential consumer, while any set of fewer than t

20

producers must not be able to produce such a credential.

We later introduce two such credentials, an “at-large” credential using partially

blind signatures and a group credential based on linkable ring signatures. We discuss

the details of credential production for each scheme in §8 and §9, respectively.

21

Figure 4.2: Client collects credentials from multiple credential producers.

22

4.2 Credential Consumers

Credential consumers map cryptographic credentials to cryptographic pseudonyms

that can then be used to authenticate with third-party applications. The crypto-

graphic pseudonyms produced by credential consumers are unlinkable to the actual

federated identities from which they are derived. Credential consumers typically take

one of two forms: OAuth provider or application-embedded consumer.

OAuth provider consumer. OAuth provider consumers operate externally to

third-party applications. They map cryptographic credentials to anonymous iden-

tities and then expose those identities to third-party applications via the OAuth

protocol. Applications interact with OAuth provider consumers just as they would

directly with conventional federated identity providers. Third-party applications al-

ready using federated authentication require little modification to support OAuth

provider credential consumers; such integration, however, requires that the applica-

tion trust the OAuth provider.

Application-embedded consumer. An application-embedded credential consumer

exists directly within a third-party application, either via an imported library or a

custom implementation of the consumer. Using this approach the application need

not trust an external provider, but at the cost of ease of integration with existing

authentication mechanisms.

23

4.3 Workflow

The client initially authenticates with a federated identity provider. The client then

collects their credentials from the credential producer servers.

The credential producer maps credentials to each of the identities from the identity

provider. The credentials are then used by the client to anonymously authenticate

with credential consumers. Credential consumers generate privacy protected identi-

ties (pseudonyms) for the user and provide them to the application layer through an

OAuth API. We propose two pluggable credential designs:

1. Public/private key pairs

2. Blind signatures [18].

The client generates an anonymous signature using these credentials (for example

using the key pair, or by unblinding the blind signature) and sends that to a credential

consumer that verifies their credentials and allows them to anonymously log in to

third party applications.

The credential producer servers have an (t, n)-threshold cryptosystem [11, 29,

33, 35] split trust design such that t of n servers can collectively supply a user’s

credentials and no group of t− 1 or fewer servers can do so. Hence t servers must be

compromised to acquire a user’s credentials. The credential producer servers make

use of existing technologies, such as OAuth, to verify the user’s federated identity

before issuing them with their credentials.

Key pair design In the public/private key pair design, users obtain a component

of their public/private key pair from each key server and use a client-side module

to combine these parts and produce their composite key pair. The key servers ad-

ditionally supply a user with the public keys corresponding to any other federated

identities.

24

A ring signature [92, 90] makes it possible to specify a set of possible signers

without revealing which member actually produced the signature. RSA-based ring

signatures [92] have the property of deniability [88] where if you reveal your private

key your previous ring signatures cannot be deanonymized. DSA [43] based linkable

ring signatures (LRS) [64] provide linkability, that two signatures by the same signer

can be linked.

The user anonymously authenticates [63] with the acquired private and public

keys using linkable ring signatures, which prove that the signer owns the private key

corresponding to one of a list of public keys (the anonymity set), without revealing

which key. This provides k-anonymity [100] for an anonymity set of size k. This

property is useful in scenarios where trust is associated with a group rather than an

individual, such as a journalist verifying that the source of a leaked document is a

member of a particular organization.

We use the linkability property of linkable ring signatures [64] to maintain a 1-

to-1 correspondence between pseudonyms and the federated identities, which both

ensures credibility of pseudonyms and allows applications to block abusive users.

Blind signature design A blind signature [96, 18, 15, 12, 19, 22, 20, 21, 23, 45,

82] is a form of digital signature in which themessage is disguised by the requester

before it is signed. The resulting blind signature can be unblinded and verified

against the original unblinded message. In the blind signature design each credential

producer server signs a message blinded by the user. The user must obtain at least t

signed messages (from n servers) as we have a (t, n)-threshold cryptosystem design.

The user unblinds these signed messages and sends them to a credential consumer

which verifies the signatures and allows the user to anonymously authenticate to

third party applications.

In the blind signature design blind signatures are application specific; the signed

25

Figure 4.3: High level system diagram

messages contain the name of the application they are valid for. Users are also

limited in collecting signed messages, so they can only obtain a certain number

of signed messages for an application within a given timeframe (for example per

month). This allows applications to block pseudonyms used for abusive purposes for

the remainder of that timeframe. This provides abuse resistance while maintaining

user anonymity.

Crypto-Book addresses some common concerns with online anonymity. A Sybil

attack [40] is where a single user can gain control of multiple identities and use

these to abuse a distributed system. Crypto-Book preserves whatever Sybil attack

resistance the underlying federated identity provider offers and limits the number of

pseudonyms a user can generate from their federated identity. For LRS authenti-

cation the linkage tag maintains a 1-to-1 correspondence between pseudonyms and

federated identities. For partially blind signature based authentication, pseudonyms

are time limited so for a given application a user can only obtain one pseudonym per

26

time period (such as one per month).

Due to the split trust credential producer server design, a user need only trust

that no more than t− 1 of the credential producer servers have been compromised.

We present a prototype implementation and evaluation of the Crypto-Book frame-

work using three applications: CB-Wiki, CB-Dissent, and CB-Drop. CB-Wiki lever-

ages Crypto-Book to provide anonymous, yet linkable editing in a collaborative envi-

ronment. CB-Dissent shows how the integration of anonymous authentication with

anonymous communication systems can better protect the identities of the users of

those systems. CB-Drop provides anonymous document signing using Crypto-Book

identities, allowing for verifiable leaks without compromising privacy. We built CB-

Wiki using MediaWiki [73], the software behind Wikipedia, and CB-Dissent using

Dissent [28, 114], an anonymous group communication tool. CB-Drop extends the

SecureDrop [93] open-source whistleblower platform. Our experimental results show

that for anonymity sets of size 100 and 2048-bit DSA keys, Crypto-Book ring sig-

nature authentication takes 1.641s for signature generation by the client, 1.632s for

signature verification on the server, and requires 8.761KB of communication band-

width. Similarly for partially blind signature authentication, each phase takes under

0.05s and requires 0.325KB of bandwidth.

4.4 Threat Model

We make the following assumptions about a potential adversary in the context of our

system. We provide security properties and attack analysis under these assumptions

as well as in the case where we relax these assumptions in Chapter 11.3.

• We assume that the client has the ability to connect to the credential producer

servers through an anonymity network such as Tor [38].

27

• Fewer than t of the n credential producer servers are compromised. The remaining

honest servers do not share their master key or private keys with anyone else.

We use a (t, n)-threshold scheme for the credential producer servers.

• A key server provides consistent public and private keys; given two requests for

the same key, it does not return two different results (we consider the case where

we relax this assumption in Chapter 11.3.1).

• Dishonest servers may collude with each other to share master secrets or private

keys.

• Credential producer servers can see the IP addresses of clients that connect to

them.

• If an adversary compromises a server they have access to the master key and

all private keys from that server from that epoch, but not from previous epochs

(epoch details are described in Chapter 6.5).

• For the single identity provider credential assignment scheme we assume that the

resource server provided by the federated identity provider is honest. In this case

we rely on the federated identity provider to provide identities and assume that

the federated identity provider does not impersonate its users.

• For multiple identity providers credential assignment, we assume that different

identity providers do not collude with each other to obtain a user’s private key.

In this case a single federated identity provider cannot compromise any user’s

private key.

• Different parties (user, ID provider, applications, credential producer) may col-

lude to try to compromise system security properties (see Chapter 11.3).

Crypto-Book’s focus is on authentication and does not directly address network-

based surveillance or active attacks [77]. For users desiring protection from behavior

tracking, linking, or de-anonymization via network-based attackers, Crypto-Book is

28

synergistic with and designed to be easy to use with anonymous communication

systems such as Tor [38], Dissent [28, 115], and Aqua [60].

29

Chapter 5

Credential Producers

In this section we explain how credential producers assign credentials to users of

federated identities. We outline at the threshold server model for credential producers

and how credential producers generate credentials for users. Credential producer

servers use a (t, n)-threshold design to split trust among the servers. An adversary

would need to compromise at least t of n servers to compromise user credentials.

Crypto-Book credential producers are a set of independently managed servers re-

sponsible for producing cryptographic credentials from verified federated identities.

To obtain cryptographic credentials, the user’s Crypto-Book client contacts a thresh-

old t of the n credential producers, each of which independently authenticates the

user with respect to one or more federated identity providers. This process is outlined

in Figure 6.1, and proceeds as follows. Each credentials producer first prompts the

user to perform a non-anonymous OAuth federated authentication with each of the

identity providers (for example Facebook and PayPal). Each credentials producer

redirects the client to the ID provider’s login page to give the credential producer

limited access to the user’s profile. After the client logs into each ID provider, for

each authentication the client receives a unique OAuth token which it passes along to

30

the producer which initiated that authentication. With these tokens the producers

receive limited access to the user’s profile information through the provider’s identity

API. Credential producers request only the minimum access necessary to verify that

the identity is valid.

Each credential producer verifies via ID provider’s profile-access API (e.g. the

Facebook graph API) that the federated ID account for which the OAuth token was

obtained corresponds to the federated ID (e.g Facebook ID) that the user claimed

to have.

For multiple ID providers (e.g. Facebook and PayPal), each credential producer

also verifies that the user attributes (name, date of birth and email address) are

the same for both the Facebook and PayPal accounts. In order to obtain a verified

PayPal account, a user needs to connect their real world bank account or credit

card, which requires showing their ID (e.g. driver’s license) in person at a bank.

This provides a higher barrier to entry and makes it much more difficult for someone

to assume a fake identity.

After each producer verifies all identities with their respective providers and, if

all verify successfully, returns a share of the credential to the client. The client then

combines the shares and stores the resulting cryptographic credential for use in future

privacy-protected logins.

It is crucial to have each producer do its own OAuth authentication and receive

its own OAuth token. A strawman design uses only one OAuth workflow with only

one OAuth token and forwards this to each of the credential producers. The problem

with this is that each credential producer can forward the token to other producers

to impersonate the user. Having one OAuth workflow per producer protects against

this.

While security requires each multiple credential providers to verify one or more

31

of the user’s federated identities, we do not wish to subject the human user to a

tedious process of typing passwords into many federated ID provider login dialogs in

succession. The Crypto-Book client hides the multiple-independent-authentications

from the human user, on the client side using a Chrome plugin.

Crypto-Book credential producers support multiple cryptographic credentials, re-

quiring only that the credential be adaptable to a (t, n)-threshold cryptosystem; any

set at least t honest producers must be able to produce a valid credential which

will be accepted by any honest credential consumer, while any set of fewer than t

producers must not be able to produce such a credential. We later introduce two

such credentials, an “at-large” credential using partially blind signatures and a group

credential based on linkable ring signatures.

5.1 Threshold Server Model

We use a (t, n)-threshold server model in our architecture. We have n credential

producer servers and credentials from t of them are required to construct a user’s

overall credential.

We leverage a threshold cryptosystem in our system architecture design. Under

our threat model (Chapter 4.4), we assume that at most t − 1 of the credential

producer servers are compromised and all other servers may be colluding to try to

compromise a client’s credentials.

Leveraging a threshold server model means that we do not have to rely on a single

trusted server that would be an obvious point of attack. In a single server model an

adversary would have to get access to only that server’s private key to compromise a

client, however in the threshold model an adversary would have to get access to the

private keys on at least t of n servers in order to compromise the client’s credentials.

32

5.2 Credential Generation

We developed two different pluggable forms of credentials. These are public/private

key pairs and blind signatures. Key pairs can be used to anonymously authen-

ticate by using them to create a ring signature that proves a user is a member of a

group. Blind signatures can be used to authenticate the user unblinding them and

using the signatures to anonymously authenticate to an applications. Our pluggable

credential assignment design means that alternative forms of credentials could also

be used instead of key pairs or blind signatures.

5.2.1 Key Generation

For the case of keys as credentials, we use a (t, n)-threshold cryptosystem to generate

key pairs in a distributed manner. For DSA keys Pedersen’s private key generator

(PKG) algorithm can be used [83]. Boneh and Franklin proposed a similar threshold

algorithm for generating RSA keys [7, 8].

In the PKG, for each client key k key server i holds a private key share ki. The

client collects key shares from at least t of n key servers then uses some key combin-

ing function f that takes each of the private key parts k1, k2, . . . , kt and combines

them into their private key k = f(k1, k2, . . . , kt) according to the appropriate PKG

algorithm (Pedersen or Boneh-Franklin).

5.2.2 Blind Signature Generation

For the case of blind signatures as credentials we again use a (t, n)-threshold model.

The client first generates n random strings to use as the messages. Each message

m is then blinded by the client using a blinding factor to give a blinded message,

m′. The blinded message m′ is sent to a credential producer server (signing server)

33

which signs the blinded message and sends the blinded signature s′ back to the client.

The client then unblinds this to reveal the signature s. The client must obtain at

least t signatures s1, s2, . . . , st from n servers which the client can use to authenticate

anonymously to applications.

We use partially blind signatures [1] to provide two additional features, abuse

resistance and attribute verification. Partially blind signatures include an info field

as part of the message that is not blinded.

Abuse resistance To provide abuse resistance the client must put in the info

fields the names of the applications they wish to access (one application per message).

They must then send a set of k messages to each signing server to be signed. The

signing server rate limits these requests (for example users might only be able to get

one message signed for the StackOverflow application per week or per month). The

user then uses these application specific signed messages to authenticate to specific

applications. If a user abuses that application, that pseudonym may be blocked and

they will not be able to obtain another signed message for that application until

the time period (for example one week or one month) has expired. This provides

abuse resistance. We will also have generic messages that do not have application

specific information in them. Applications will be able to decide whether or not

they choose to allow authentication using generic messages (which do not provide

abuse resistance) or if they require application specific messages that provide abuse

resistance.

Attribute verification To provide attribute verification clients add additional

attributes in the unblinded part of the message (for example, their age or location).

When they submit the message to be signed, the signing server verifies these at-

tributes against their federated identity and only signs the message if the attributes

can be successfully verified. Applications learn these attributes and can in turn use

34

them to provide appropriate content without learning the user’s identity.

35

Chapter 6

Credential Assignment Mechanism

We now explain how a client collects their credentials. The primary steps for the

client are as follows:

• Anonymously request a link to collect their private key (only for keys as creden-

tials design).

• Authenticate with one or more federated identity providers.

• Collect their credentials from the credential producer servers.

• Anonymously authenticate using credentials through credential consumers to ap-

plications.

Key credential assignment has an initialization phase (not required for blind sig-

nature credentials). Key distribution begins with a client request for their private

key. If the client simply connected to the key servers and requested their private

key, this could compromise their anonymity when authenticating with third party

sites as a dishonest key server could collude with a third party site to perform a tim-

ing analysis attack correlating private key pickups with subsequent authentications

to the third party site. To mitigate this, the client anonymously requests a list of

Crypto-Book invitations to be sent out.

36

Suppose Alice wants to collect her private key. She anonymously connects to a

key request server (through an anonymity network) and supplies a list of federated

identities (say Bob’s and Charles’), to form an anonymity set. Each key server then

sends out an invitation link to each of the federated identity accounts (for example via

social networking message in the case of a social network federated identity provider)

to sign up and use the Crypto-Book service.

Alice then receives an invitation to sign up to Crypto-Book. When she clicks

the link she is redirected and has to authenticate herself with a federated identity

provider.

6.1 Alternative Identity Providers

Crypto-Book supports alternative identity providers for example different social net-

works or other online identity providers such as financial institutions. Crypto-Book

integrates with any federated identity provider that is OAuth compliant. Users may

want to use different identity providers. For example Alice may not have a Twitter

account, but has a Facebook account whereas Bob may be the other way around.

Support for multiple identity providers means that more people will have access to

the service. Additionally, these different identity providers may provide different

trust levels. For example bank-confirmed PayPal accounts have a higher barrier to

entry than Facebook accounts. Using a PayPal accounts may lead to a higher degree

of trust in the identities they represent.

37

6.2 Trust levels

Our design incorporates the idea of identities having various trust levels. Some

pseudonyms are likely to be more trusted than others. For example a Facebook

account that has been active for three years and has 1000 friends is more trusted that

one that was created one day ago and has zero friends. If a pseudonym was generated

by the user authenticating with multiple federated identity accounts, this will be

more highly trusted than if they authenticated with only a single federated identity

account. If one of these accounts has had they employer or school email verified (for

example LinkedIn or Facebook networks) the identity will be more trusted. If one of

the accounts has been bank account or SSN verified (for example PayPal or online

banking/financial services provider) the identity will be yet more trusted.

6.3 Combined Identities

In addition to supporting alternative identity providers, Crypto-Book also allows

users to authenticate with multiple identity providers and hence obtain credentials

that are tied to all of these accounts. This attests to the fact that a user has, for

example, both a Facebook and a PayPal account. Credential producer servers may

also verify that these accounts are in the same name and/or have other consistent

identifying information associated with them such as date of birth, address or phone

number. In the combined identities case, it is not possible for a single federated

identity provider to impersonate the user and obtain their credentials, as they would

also need access to the user’s accounts on the other identity provider sites.

38

6.4 Credential Collection

Returning to our example, Alice must now authenticate with one or more federated

identity providers to collect her credentials. Upon authenticating, Alice receives one

OAuth token per credential producer server from each federated identity provider.

Note that each token is only compatible with a single credential producer server. If

only one token were provided for all servers, a malicious server could forward the

token onto other servers to impersonate Alice. Step 1 of Figure 6.1 shows the client

authenticating with Facebook and PayPal.

Since there is one token per server, if there are n servers, there will be n cor-

responding federated identity provider apps (for example Facebook apps), each re-

quiring user authorization. To simplify this process, we provide a Chrome extension

that the user can download to automatically authorize all server apps with a single

sign in (our Chrome extension is designed to authorize Facebook apps).

Alice then forwards the appropriate OAuth tokens to the servers (each server

receiving a token from each identity provider) as shown in step 2 of Figure 6.1. In

the case of blind signature credentials, Alice also forwards a blinded message to each

server along with the OAuth token. The servers contact the identity providers, for

example Facebook and PayPal, to verify the tokens (and any attributes present in

the case of partially blind signature credentials). If verification succeeds, the key

server distributes its share of the client’s private key to the client as shown in step 3

of Figure 6.1.

In the case of key credentials, once the client has received all private key shares,

they combine them to get their private key.

An alternative approach to having the client locally run software to collect the

credentials would be to have an intermediary server acting as a trusted web proxy

39

whose job is is to authenticate the user, then collect their credentials on their behalf.

The advantage of this is that the user does not have to run any program locally

themself however they have to trust the web proxy with their credentials.

6.5 Compromised Credential Producer Servers

One threat that we need to consider is what happens if a credential producer server’s

storage is compromised. For example if the master key is leaked or if a thief breaks

into the data center and illicitly obtains the key server’s physical hardware. The

adversary would obtain access to the master private key. While this does not in

itself compromise the user’s credentials it is still undesirable. We propose an epoch

based scheme to mitigate this vulnerability.

Under this scheme we have the server work in epochs, where the server’s master

private key is valid only during a given epoch and gets randomly reinitialized in each

successive epoch. If we want previously generated ring signatures/blind signatures

to still be verifiable after the epoch, the server must maintain a list of public keys

containing all the public keys generated in that epoch. Then in subsequent epochs

the server will be able to serve requests for older public keys to allow for verification

of old ring signatures/blind signatures.

Since the master private key gets randomly reinitialized in each successive epoch,

each user can thus get new credentials in each server epoch. The server is only able

to serve a client’s credentials for the current epoch so that in case of compromise,

only the user credentials in the latest epoch are compromised, not those of all past

epochs. We envisage epochs being realtively long, of the order of months, or new

epochs triggered in the event of a key server compromise.

The epoch based server scheme used in conjunction with the threshold cryp-

40

tosystem credential generation/assignment scheme significantly reduces the risk of a

client’s private key being compromised by an adversary.

We include a more detailed analysis of attacks and defenses in Chapter 11.3.

41

Figure 6.1: Client collects credentials from servers

42

Chapter 7

Credential Consumers

A credential consumer is an entity that supports authentication of a client using

credentials (for example a LRS made with a set of public keys and a private key, or a

blind signature that has been unblinded). In this section we explain how credential

consumers fit into our design.

There are three different types of credential consumer:

1. A party distinct from the application, credential producers, and identity providers

may act as an OAuth provider that verifies credentials of clients and authenticates

them on behalf of the third party. In this case the credential consumer is itself

acting as a federated identity provider.

2. A third party application may run its own OAuth provider internally so they do

not need to trust someone else to verify credentials.

3. A third party application may directly verify credentials themselves, in the form

of a module integrated into their application.

These three options have different tradeoffs in terms of usability and trust. Using

an external OAuth provider to verify credentials makes it easy to integrate Crypto-

Book authentication with existing applications providing the applications are willing

43

to trust the provider with verification. We implemented an OAuth compliant cre-

dential consumer. A third party application may choose to run their own OAuth

provider in house to verify credentials. This requires the additional overhead of the

application of setting up an maintaining the OAuth provider server, however they

do not have to trust someone else to perform credential verification. Finally, a third

party may choose to forego OAuth providers altogether instead opting to use a cus-

tom credential verification module integrated into their application to verify user

credentials. The application does not have to trust anyone externally with credential

verification but has to bear the overhead of integrating the module.

7.1 OAuth Provider Credential Consumer

We now consider the case of a credential consumer as an OAuth provider in more

detail.

The Crypto-Book architecture serves as an OAuth compliant identitity provider

allowing websites that include a Log in with Facebook button to authenticate users

to similarly include a Log in with Crypto-Book button to do so anonymously and

accountably. Crypto-Book as an OAuth identity provider works as follows, starting

from when the third-party redirects the user to Crypto-Book to authenticate:

In the LRS authentication design, Crypto-Book presents a challenge to a the user

in the form of a random string that the user is requested to sign using a linkable ring

signature. In the blind signature case the user obtains signed blinded messages from

credential producers and then unblinds them. The user uploads their signatures (LRS

or unblinded blind signature) to Crypto-Book which then verifies the signature. If the

signature is successfully verified, Crypto-Book obtains the pseudonym corresponding

to that user by hashing the linkage tag (in the case of LRS) or the m message value

44

(in the case of blind signatures). Crypto-Book then generates an OAuth token and

associates it with that pseudonym, storing the pair in a database, and redirects the

user back to the third party site passing the OAuth token as a parameter.

The third party site now knows that the user successfully authenticated with

Crypto-Book. The site can then include the OAuth token in future requests to query

Crypto-Book for the user’s pseudonym and the anonymity set they authenticated

with (for LRS). The fact that the pseudonym is derived from the linkage tag means

that if the user tries to authenticate multiple times they will always be given the same

pseudonym and thus can be prevented from repeatedly conducing abuse on the third

party application in the same way as a non-anonymous user. Hence Crypto-Book

allows any third-party site or app that is an OAuth-compatible client to provide

anonymous, abuse resistant login.

7.2 Application-Embedded Consumer

An application-embedded credential consumer exists directly within a third-party

application, either via an imported library or a custom implementation of the con-

sumer. Using this approach the application need not trust an external provider, but

at the cost of ease of integration with existing authentication mechanisms.

7.3 LRS Anonymous Authentication

This section discusses how anonymous authentication is performed in the case of LRS

as unlike blind signatures, LRS have the additional feature of an anonymity set. Once

a client has obtained their own private key and a list of public keys corresponding to

other users’ federated identities, the client constructs a ring signature [92, 90] with

45

Figure 7.1: Crypto-Book anonymity set selection

all the identities as the anonymity set. Figure 7.1 shows our system where a user is

choosing to have Brad Pitt, Barack Obama and Tiger Woods in their anonymity set

by entering their Facebook profiles. A ring signature has the property that a third

party can verify using only the public keys that the signature was created by one of

the members of the anonymity set. However they cannot determine which person

in the anonymity set specifically created the signature. Hence they can be used to

protect the anonymity of the user.

The ring signature is now used by the user as a form of anonymous online identity

and could be used in a multitude of different scenarios. For example the user could

anonymously sign a document to give a credible leak, join an anonymous chat group

open only to a specific set of users, or anonymously comment on blog posts.

A credential consumer verifies an LRS against the list of public keys of those in

the anonymity set (the LRS ring) in order to authenticate a user to an application.

46

Chapter 8

At-Large Credentials

We first discuss at-large credentials, which do not explicitly constrain the anonymity

set of a user but instead represent that the user has been verified as the owner of some

federated identity. The anonymity set for each at-large credential is then implicitly

all users who have ever collected a credential in the time period before the credential

was used.

We then extend at-large credentials to optionally include credential attributes,

such as “age over 18” or “identity active for at least one year”, which are also

verified with the identity provider at the time of credential production. Section 8.5

discusses credential attributes in detail.

The following sections introduce an at-large credential construction which uses

only existing, standard cryptography in both the production and consumption of

credentials; Section 8.8 then discusses ways in which more specialized cryptography

could lead to improved constructions.

47

8.1 Background: Blind Signatures

A blind signature [96, 18, 15, 12, 19, 22, 20, 21, 23, 45, 82] is a form of digital signature

in which the signer never learns the contents of the message they are signing. To

obtain a signature on message m, the requester first obscures their message with a

secret blinding factor to produce blinded message m′ and sends m′ to the signer. The

signer then produces a signature on this blinded message and returns the blinded

signature s′ to the requester. The requester, with knowledge of the secret used to

blind the message, removes the blinding factor to reveal the unblinded signature s.

The orginal message m and the unblinded signature s can then be verified by a third-

party using only the signer’s public key, just as for a traditional digital signature.

8.2 Building Block: Blind Signatures

The blind signature [2, 17] is a cryptographic primitive, where a requester can request

a signer to sign one or more messages, while the signer cannot learn the signed

message’s content. Given the message-signature pair, a public verifier is able to

verify the legitimacy of the signature. In our architecture, the client is the requester,

each credential producer is a signer and the credential consumer is a verifier (of

multiple signatures).

8.3 Producing At-Large Credentials

To obtain a threshold t at-large credential for use with consumer with identity idc,

a client first generates a random value r which identifies the credential. The client

hashes this value r with the identity of the consumer to produce message m =

H(r, idc). The client then contacts at least t of the n credential producers with

48

signature requests, uniquely blinding the message m to produce m′i for each request.

Before signing the message, each credential producer verifies the client’s feder-

ated identity and, if successful, returns blinded signature s′i to the client. The client

unblinds the signatures from each of the credential producers to obtain a vector of un-

blinded signatures s1, s2, . . . , st which serves at the at-large credential for anonymous

identity r with credential consumer c.

8.4 Consuming At-Large Credentials

To authenticate with a credential consumer requiring a threshold t at-large creden-

tial, a client must provide the credential consumer with the value r defining their

anonymous identity along with a vector s1, s2, . . . , st of signatures from at least t

unique credential producers. The consumer first hashes this value with it’s own

identity to produce message m = H(r, idc). The consumer, using the public keys

of the credential producers, then verifies that each signature is, in fact, valid for

message m and, if successful, authenticates the client as anonymous identity r.

8.5 Credential Attributes

Credential attributes allow credential consumers to enforce general restrictions on

the at-large credentials they accept. For example, some credential consumers may

require that all users be at least 18 years of age. Credential attributes can also be

used to provide a higher barrier to entry by requiring, for example, that a Facebook

identity has been active for at least one year.

The at-large credential scheme supports credential attributes by using partially

blind signatures. Partially blind signatures [1] are a modification to blind signatures

49

in which part of the message, the info tag, remains visible to the signer. This allows

the signer and verifiers to share additional information about the context of the blind

signature.

Clients bind attributes to at-large credentials by including each desired attribute

in the info tag of their signing requests. Each credential producer then additionally

verifies all of the attributes with the federated identity provider and produces a

signature only if all check out. Credential consumers enforce credential attributes by

ensuring that each signature presented by the client contains all required attributes

in the info tag. An inherent restriction on credential attributes is that they must be

verifiable with the federated identity provider.

8.6 Rate-Limits via Attributes

Credential attributes additionally allow for finer control over the rate-limits imposed

on at-large credential production. Rather than relying on producers to choose a

proper default rate for all applications (e.g. x credentials per identity per week),

clients can instead specify a time interval (e.g. 3 days) with each credential request;

only if the producer has not already issued the federated identity an at-large creden-

tial during the preceding interval does production succeed. As credential attributes

are accessible by credential consumers, a consumer can inspect the interval associ-

ated with each credential and in turn elect to accept only those credentials satisfying

criteria the consumer itself defines. Some consumers may accept 1-hour credentials

while other, more abuse-conscious consumers may require 1-month credentials, al-

lowing consumers themselves to determine the degree of accountability they wish to

enforce.

50

8.7 Security/Privacy Properties

The at-large credential scheme is designed to provide the following properties:

• Anonymity During credential production, the credential producer learns the

user’s federated identity, but not the anonymous identity, m. The credential

consumer learns m, but not the user’s federated identity. Only the user himself

knows both pieces needed to complete the mapping between identities.

• Unlinkability For any two at-large credentials, neither credential producers nor

consumers can determine whether they correspond to the same federated identity.

• Abuse Resistance Each at-large credential is bound to anonymous identity m.

If m misbehaves, he can be banned by the consumer just as any non-anonymous

identity. Producers provide abuse resistance by rate-limiting the credentials as-

signed to each federated identity.

• Unforgability Each at-large credential requires a signature from t of the n cre-

dential producers; no colluding group including fewer than t dishonest producers

can produce a forged credential that will be accepted by an honest consumer.

We provide a security analysis of how Crypto-Book provides these properties and

which attacks it does and does not protect against in Appendix 11.

8.8 Discussions

Crypto-Book’s current at-large credential scheme requires the client to obtain a sep-

arate blind signature for each third-party application or site the user wishes to visit

for the first time, to protect the user from being linked across applications. This

limitation may be an inconvenience, especially if Crypto-Book’s rate-limits inter-

fere with a user’s legitimate attempts to explore several third-party sites in a short

time period. Adopting a more sophisticated cryptographic credential scheme such as

51

BLAC [103, 104, 5] might allow the client to pick up a single credential and then “re-

blind” it for use across multiple sites while maintaining cryptographic unlinkability

and abuse-resistance. Since Crypto-Book’s immediate goal is not to find the “ulti-

mate” cryptographic credential scheme but to fit cryptographic credentials (of any

kind) into a usable OAuth-compatible architecture, we leave more advanced at-large

credential schemes to future work.

52

Chapter 9

Group Credentials

9.1 Background: Ring Signatures

Proposed by Rivest et al. [92, 90], ring signatures build on group signatures [25] and

allow third-parties to verify that a message was signed by one of a well-defined set

of private keys, but not which specific key. Ring signatures are particularly useful

for associating properties of a group as a whole, such as credibility in our CB-Drop

example, with the signed message. We use ring signatures to provide credentials that

provide anonymity within a specific group.

Liu et al.’s [64] proposed linkable ring signatures (LRS) extend ring signatures

with the additional property of linkability - for any two linkable ring signatures, a

third party can determine whether or not the two signatures were produced using the

same private key by comparing the linkage tag properties of the signatures. We use

the linkability property to add accountability to anonymous credentials. Creating a

linkage ring signature requires the public DSA keys of all members of the group plus

one corresponding private key. Crypto-Book solves the problem of the creation and

retrieval of these keys.

53

Liu et al.’s [64] proposed linkable ring signatures (LRS) are based on discrete

logarithm DSA [43] keys. Linkable ring signatures are similar to traditional RSA

ring signatures with the additional property of linkability. Linkability refers to the

fact that given any two signatures, a third party can determine whether or not

they were produced by the same person. While LRSs provide linkability, they do

not provide deniability in the way that RSA ring signatures do. If a private key is

compromised by an attacker, then the attacker may use that to unmask previously

generated LRSs to tell whether or not they were indeed produced by that private

key.

9.2 Building Block: Ring Signatures

Ring signatures [92] rely on group signatures [26] and allow third-parties to verify

that a message was signed by one of a well-defined set of private keys, but do not

reveal which specific key. Ring signatures are particularly useful for associating

properties of a group as a whole, such as credibility in our CB-Drop example, with

the signed message. Liu et al. propose linkable ring signatures (LRS) [65]. LRS is an

extended version of ring signatures with the additional property of linkability – for

any two linkable ring signatures, a third party can determine whether or not the two

signatures were produced using the same private key by comparing the linkage tag

properties of the signatures. We use the linkability property to add accountability

to anonymous credentials. Creating a linkage ring signature requires the public DSA

keys of all members of the group plus one corresponding private key. Crypto-Book

solves the problem of the creation and retrieval of these keys.

54

9.3 Producing Group Credentials

A ring credential consists of two components - the user’s individual private key and

the set of public keys of all other members of the desired anonymity set.

Credential production begins with an initialization phase. Suppose a user Alice

wants to collect her private key. She first connects to a credential producer through an

anonymity network (such as Tor) and supplies a list of federated identities, including

her own, as her desired anonymity set. The credential producers then work together

to create public/private key pairs for each federated identity using Pederson’s PKG.

Under this scheme, each of the n credential producers holds a single share of each

key, t of which are necessary to reconstruct the key.

After all keys have been generated, each credential producer sends an invitation

to each of the federated identities (via Facebook message, for example) inviting then

to join the Crypto-Book service and collect their private key. This indirection is nec-

essary as if a user directly requested their private key a credential producer colluding

with a credential consumer could potentially deanonymize a user via a timing analysis

attack by correlating the private key request with subsequent authentications.

Alice (and, independently, the other identities who have received invitations)

then follows the invitations to collect a share of her private key from each of the

credential producers. Before releasing the share, each producer first requires Alice

to authenticate with her federated identity provider via OAuth, proving that she,

in fact, owns the identity corresponding to the private key. After collecting shares

from at least t of the n credential producers, Alice combines the shares to recover

her private key.

Obtaining the set of public keys is much simpler as Alice need not prove her

identity to the credential producers. This time, Alice directly contacts each credential

55

producer and requests a share of the public key for each identity in her anonymity

set. After receiving at least t shares of each key, Alice recovers the set of public keys.

In practice, clients bundle all key requests for a given anonymity set and producers

return all shares in a single response, to minimize transmission overhead and latency.

9.4 Consuming Group Credentials

This section discusses how anonymous authentication is performed in the case of

LRS as unlike blind signatures, LRS have the additional feature of an anonymity

set.

Credential consumers authenticate group credentials by requiring users to supply

a valid linkable ring signature over a message of the consumer’s choosing; typically,

a fresh, random message. Such a challenge prevents replay attacks and ensures that

the user knows a valid private key for the ring.

The user first contacts the credential consumer with an authentication request.

The consumer then replies with a challenge, which the user signs using their group

credential and returns to the consumer. In some instances, the user also supplies

the anonymity set to which the group credential corresponds; in others, this set

is implicitly determined by the consumer itself. In either case, the consumer first

asserts that the anonymity set contains valid Crypto-Book identities for the given

consumer.

The consumer then collects public key shares for all members of the anonymity set

from at least t credential producers and verifies the ring signature against the result-

ing public keys. If the signature verifies, authentication succeeds and the consumer

maps the user to an anonymous account based on the linkage tag of the signature,

creating a new account if this was the first authentication for the given tag.

56

9.5 Security/Privacy Properties

The group credential scheme is designed to provide the following properties:

• Anonymity During credential production, each credential producer learns only

a single share of a user’s private key. No colluding group of fewer than t dishonest

produces can recover the private key needed to de-anonymize the user.

• Abuse Resistance Linkability of the signatures produced by group credentials

ensures that a given credential always maps to the same anonymous identity.

Thus group credential identities can be banned just as any non-anonymous iden-

tity.

• Unforgability Any valid group credential must include a private key for a valid

Crypto-Book identity. Shares for such a key must be obtained from at least t

credential producers. Thus no colluding group including fewer than t dishonest

producers can produce a forged credential that will be accepted by an honest

consumer.

We provide a security analysis of how Crypto-Book provides these properties and

which attacks it does and does not protect against in Chapter 11.

9.6 Discussions

Crypto-Book’s current group credential scheme uses linkable ring signatures whose

size is linear in the anonymity set size; their efficiency on large anonymity sets could

be improved using accumulator-based schemes [14, 61, 62] at the cost of more complex

computations.

Another disadvantage is that using any form of signatures for authentication

leaves a non-repudiable trail, which might expose a user whose private signing key is

later compromised. This limitation might be addressed by adopting techniques from

57

deniable authentication protocols [37, 75].

Finally, in practice it may be hard for users to pick “good” anonymity sets. If

all the other users a whistleblower conscripts into his “anonymity set” turn out to

be implausible for some reason to an investigating adversary, e.g., because none of

the other members could have had access to the leaked document, then the chosen

anonymity set may prove ineffective. We make no suggestion that group credentials

are straightforward to use safely: only that, if the user’s only other alternative is

to disclose his identity completely (e.g., to persuade the journalist of his credibil-

ity), then group anonymity may be better (and perhaps at least more “plausibly

deniable”) than no anonymity.

A ring signature has the property that a third party can verify using only the

public keys that the signature was created by one of the members of the anonymity

set. However they cannot determine which person in the anonymity set specifically

created the signature. Hence they can be used to protect the anonymity of the user.

9.7 Neff-Based Group Credential Scheme

One consideration for group credetials is the case of large sized groups. We would like

to have a scheme that allows clients to authenticate to forums with large numbers

of users for example. In these cases, we would rather not impose on the clients the

computation overhead of linkable ring signature generation as this scales linearly with

group size. We propose a group credential scheme based on the Neff key shuffle [78].

In the description below we use the use case of authenticating to an anonymous

group chatroom.

58

Initialization

The setup step is for creating the group. A chatroom configuration file is created

stating the Facebook group which the chatroom will be created for. The configuration

file also specifies a refresh period. The refresh period is how often to check whether

the Facebook group has new members. This will be short, for example once per day.

Group refresh

When the group is initially created and every refresh period afterwards, each creden-

tial producer server downloads the list of Facebook members in the Facebook group,

obtained from Facebook. Each server publishes and commits it’s list to all other

servers. Servers then pick the group members that appear in each the majority of

the lists as the chatroom members. This ensures that a malicious server cannot drop

members or Sybil-attack the membership by adding many fake members.

After agreeing on the group membership list, each server looks up, or generates as

necessary, their share of each Facebook ID’s corresponding public/private keypair.

The usual process is followed the same as if the server were handing public key

requests for each group member.

Each server now has a list of Crypto-Book public keys, one for each member of

the group, G. The servers now collectively perform the simple Neff verifiable key

shuffle [78]. This Neff shuffle takes a list of public keys Y1 = gx1 , . . . , Yn = gxn, rebases

the keys to use a new h as the generator: Y ′1 = hx1 , . . . , Y
′
n = hxn and returns a

permutation (shuffle) of these rebased public keys. The output of this process is a

list of permuted public keys for all members of G, rebased to a generator h. The

corresponding private keys are unmodified however no entity will know which rebased

public key corresponds to which original public key.

59

Client Authentication

When the client wishes to authenticate to the chatroom, the chatroom application

queries the servers for the list of rebased public keys for group G. Additionally, the

chatroom application retrieves the common generator h for the rebased keys and

sends it to the client as an authentication challenge. Note that only h needs to be

sent to the client, not the entire list of public keys.

The client verifies each server’s signature on h and computes their corresponding

public key, Y ′ = hx where x is the client’s private key. The client sends Y ′ to the

chatroom application along with a plain digital signature generated using x. The

chatroom verifies that Y ′ is on the rebased membership list for group G and verifies

the client’s digital signature. The chatroom server can now use Y ′ as a unique

pseudonym for the client in the chatroom in place of a linkage tag.

The client authenticates using a standard public-key digital signing operation,

the cost to of client authentication is constant, not dependent on group size. Group

refreshes scale linearly with group size. Although the clients pseudonymous public

key Y is not a secret, the Neff shuffle ensures that no entity can tell which original

public key Y corresponds to a client’s rebased public key Y ′, hence protecting the

client’s anonymity.

Membership changes

On each refresh, the servers shuffle and rebase the public keys for all members of

the group. If the keys were previously rebased using generator h, a new generator

h′ must be used next time to avoid disclosing which new members of the group have

been added. Whenever the group changes, each client gets a fresh rebased public

key Y . The client uses their most recent rebased public key to authenticate to the

60

chatroom. Once authenticated the client may remain connected to the chatroom

potentially across rebase events. Clients must reauthenticate if they disconnect from

the chatroom. The chatroom may optionally require clients to periodically reauthen-

ticate to prevent clients who have been removed from the group from remaining in

the chatroom.

Human-readable pseudonyms

Human readable pseudonyms (for example “anonymous fox”) are assigned using a

simple pseudonym allocation mechanism. When a client connects and authenticates

to a chatroom, the client also requests a pseudonym for the duration of the connec-

tion. This will be the client’s screen name. The screen name must be unique so if

a client chooses a pseudonym that is already in use, the chatroom will require them

to pick another one instead that is unique. Once logged in, the cleint will be able to

keep that pseudonym for the duration of the connection. IRC systems use a similar

mechanism to this.

Multi-connection sock-puppetry

One potential hazard is that a client may open a new connection each refresh period

and keep the old connections open in order to obtain multiple pseudonyms in the

chatroom for a sock-puppetry attack.

To prevent this the chatroom can require each client to reauthenticate and reveal

their new public key each refresh period. Say a client has authenticated using rebased

public key Y1 based on generator g1. After a rebasing occurs the client now has a new

rebased public key Y2 based on generator g2. The chatroom now informs the client

that the group has been rebased from g1 to g2 and requires the client to produce and

61

sign Y2 and prove its correspondence to Y1. This now means that the chatroom knows

the latest rebased public key for each connected client and so can reject attempts of

an existing client making additional connections under different pseudonyms. This

protects against sock-puppetry attacks.

62

Chapter 10

Privacy Preservation

In this section we consider how user privacy is preserved in our architecture. We first

look at how anonymity set choice affects user privacy, then discuss how ring signatures

are used to provide k-anonymous authentication, as well as blind signatures.

10.1 Anonymous Key Distribution

One possible threat comes from intersection attacks [85, 56, 31] where a compromised

key server allows an adversary to see who is requesting their private key. When

subsequent ring signatures are created and used, the adversary may be able to deduce

who created a ring signature, for example if only a small subset of the anonymity set

had actually collected their private keys. We propose an anonymous key distribution

protocol that helps to protect client anonymity in the face of these intersection

attacks.

Say that Alice wants to collect her private key part from a key server, but we

do not want the key server to know that Alice has picked up her private key. Alice

connects through an anonymity network to the key server using a secure SSL con-

nection but this time does not log in with Facebook or otherwise identify herself to

63

the key server. Alice then requests that the key server deliver her private key. She

does this by supplying a list of email addresses that includes her own email address

along with other email addresses that form the anonymity set as shown in Figure

10.1. The server then generates a private key for each email address and encrypts

each private key using the same single symmetric key. The server sends over the

secure connection to Alice the symmetric encryption key along with instructions on

how to decrypt her private key.

Figure 10.1: Alice anonymously requests her private key

Each encrypted private key is then attached to an email inviting that user to

sign up to the service as shown in Figure 10.2. The emails are then sent out such

that each email address only receives their own encrypted private key. Alice can now

check her email, find the attachment to the invitation email and decrypt it to obtain

her private key part. In order to prevent the system from sending out too many

messages rate limiting could be employed.

Since her private key was encrypted, her email provider or anyone who compro-

mises her email or intercepts is does not have access to it. Additionally since the

server received an anonymous request and sent out multiple private keys to multiple

64

Figure 10.2: Invitation emails sent with encrypted private key attached. Alice can
decrypt her private key.

emails, the server does not know who in the end was able to decrypt and use their

private key, hence protecting Alice against intersection attacks from a compromised

server.

Although this scheme may seem somewhat complicated, Alice only needs to carry

it out once per key server (for example if there are three key servers, Alice need only

do it three times). Alice can then construct her private key and keep it saved for

future use so as to avoid having to participate in anonymous key distribution again.

In addition to being deployed over email, this protocol could also be deployed

over other communication channels such as social network messaging or SMS text

messaging.

10.2 Anonymity Set

One important consideration from the standpoint of maintaining user anonymity is

the selection of the anonymity set used when generating the ring signature. One

option is to leave it up to the user to construct their anonymity set. The benefit

of this is that the user may want the set to correspond to some group of people

in the real world, such as a group of employees all working in the same corporate

65

division or government department. One a hazard of allowing users to choose their

own anonymity set, however, is that they may inadvertently choose a set that com-

promises their anonymity. An alternative approach is for the system itself to batch

users together into groups.

In some cases users may benefit from having the option of defining explicit

anonymity sets. For example, a company employee may want to leak documents

of public interest to the press but at the same time show that they come from a

credible source. In this case the employee would like to have the option of choosing

their own anonymity set where all members of the set are employees at the same

company. This way, when a journalist verifies who signed the document, they know

for sure that it came from an employee of the company, they just do not know which

specific employee leaked the document. We implement an application that supports

this functionality called CB-Drop that we describe in Chapter 13.3.

The way user groups are chosen will vary with application and may have impli-

cations for the degree of privacy protection afforded to users. The extent of these

implications is an interesting area for future work which we discuss in Chapter 15.

A possible threat to user privacy comes from the fact that third party sites may

collude to attempt to deanonymize and uniquely identify users. If a user authen-

ticates themself as a member of a group across many third party sites, this vector

of group membership may threaten the user’s anonymity. The extent of this risk

depends on how the anonymity set is chosen. If different sites use different groups,

for example a user is in group A on site 1 but group B on site 2, there may be some

risks to user privacy the extent of which would depend on the way groups are chosen.

We consider such intersection attacks and defenses in Chapter 11.3.

However if groups are defined by Crypto-Book, users do not face this risk as they

would always be in the same group regardless of which third party site they logged

66

into. We propose using this scheme where Crypto-Book puts users into groups in

order to protect user privacy.

Protecting users from intersection attacks when choosing anonymity

sets

One possible attack we consider in Chapter 11.3 is the case where few people in

an anonymity set collect their private keys. If the credential producer or identity

provider colludes with applications, they may be able to eliminate certain people

from the anonymity set and threaten user anonymity. The blind signature scheme

is not succeptible to this attack. We propose the following scheme for picking an

anonymity set in the case where a user wants to authenticate using LRS but is

worried about other people not having collected their private key:

Previous work [74, 108, 66] has found that there are many public participants

active in social networks who choose to join various social actions. We envisage

groups being created on social networks which users who are interested in anonymous

authentication join. All members of the group will have collected their private key

(they may have to sign something to join the group using their private key). People

will join the group to provide a large group of people that can be used in anonymity

sets without worrying that they have not collected their private key. People will join

for similar reasons that people volunteer to run Tor exit nodes.

Our solution is a dynamic anonymity set generation technique. First, clients

construct their anonymity sets using real world communities such as a group of

employees all working in the same corporate division or government department.

The intuition behind this design is clients can hide themselves in a group of people

with similar interests. Then, the clients randomly include some active federated

67

identity users with the similar interests in their anonymity sets.

The client then randomly chooses some member from the social network groups on

anonymous authentication to include in their anonymity set. Combining the two sets

of social network identities, (the members of the client’s real world community and

active members of an anonymous authentication social networking group) would form

a sophisticated anonymity set for the client where the client knows at least some of

the other anonymity set members have collected their private keys. Hence protecting

the client from intersection attacks even if the identity provider or credential producer

colludes with applications.

10.3 Ring signatures

Ring signatures are a cryptographic scheme proposed by Rivest et al. [92, 90]. Ring

signatures build on group signatures [25] in that a message signed with a ring sig-

nature is endorsed by someone in a particular group of people however it is difficult

to determine which of the group members’ keys were used to produce the signature.

Ring signatures differ from group signatures in that ring signatures do not require

any initial setup and can be created on an ad hoc basis.

Rivest et al.’s ring signatures are based on each participant having a personal

RSA public private keypair. The signer must obtain the public keys of all other

parties in their anonymity set, in addition to their own RSA private key in order

to generate a ring signature. Rivest et al.’s ring signatures provide the property of

deniability : Even with access to the private keys, given an RSA ring signature it is

not possible to unmask the original signer. Even if a private key is leaked it does not

compromise the anonymity of existing ring signatures due to the deniability property.

68

Linkable ring signatures

Liu et al.’s [64] proposed linkable ring signatures (LRS) are based on discrete log-

arithm DSA [43] keys. Linkable ring signatures are similar to traditional RSA ring

signatures with the additional property of linkability. Linkability refers to the fact

that given any two signatures, a third party can determine whether or not they were

produced by the same person. While LRSs provide linkability, they do not provide

deniability in the way that RSA ring signatures do. If a private key is compromised

by an attacker, then the attacker may use that to unmask previously generated LRSs

to tell whether or not they were indeed produced by that private key.

We cannot trust a single server to maintain the private keys. To counteract

this, a distributed PKG such as Pedersen’s scheme for DSA keys [83] or Boneh and

Frankin’s scheme for RSA keys [7] should be used to serve keys.

Linkable ring signatures are used in our architecture to provide an anonymity

preserving identity to a user. The ring signature may be used to authenticate with

a third party website or service so the third party knows that the user is a member

of a group of users, but the specific user’s identity is not revealed to the third party,

protecting the user’s privacy and anonymity.

10.4 Blind signatures

Blind signatures are a cryptographic scheme originally proposed by Chaum [18] and

since then many other schemes have been proposed [96, 15, 12, 19, 22, 20, 21, 23,

45, 82]. Blind signatures provide a way for a signer to sign a message without being

able to view the message content (a blinded message). Message m is blinded by the

requester to give a blinded message m′ which the requester sends to the signer. The

signers signs the blinded message returning a blinded signature s′ to the requester.

69

The requester can then unblind the signed message to reveal a signature s and send

this along with the message m to a third party verifier who can check the signature

against the message.

Partially blind signatures

Partially blind signatures were subsequently proposed [1] and are a modification of

blind signatures where part of the message, called the info tag is not blinded. This

allows some transparent information that can be read by the requester, signer and

verifier to be included in the signed message.

In our architecture we use partially blind signatures for anonymous authentication

including attributes in the info tag to provide user attributes to the application. We

also include the application name in the info tag and limit the number of signed

messages a user can obtain for any given application within a specific time period.

This allows the user to be blocked by the application if they abuse the application and

prevents the user from obtaining more signed messages for that application within

that time period (they can still obtain signed messages for other applications). This

provides abuse resistance in our system.

We have multiple signing servers (credential producers) and users must obtain t

signed messages from n servers in order to authenticate through a credential con-

sumer to an application. This means that an adversary must compromise at least t

of n servers in order to compromise the system. Specific attack analysis details are

given in Chapter 11.3.

70

Chapter 11

Security Analysis

This section presents a security analysis of the Crypto-Book architecture and its at-

large and group credential schemes. We first outline the types of attackers primarily

relevant to Crypto-Book, then cover a variety of threats these attackers can introduce

and how Crypto-Book does (or does not) address them.

11.1 Security Properties

We now outline the different security properties that our system has. We analyse

these against different potential attacks on the system in Chapter 11.3.

Our system design provides the following security properties.

• Anonymity Given a pseudonym on a third party application, it is not pos-

sible to determine from which underlying federated identity a pseudonym was

generated, and vice versa. No single party other than the user can map forward

from federated identity to pseudonym, or backward from pseudonym to federated

identity.

• Unlinkability Given two pseudonyms, one on each of two different third party

applications, it is not possible to determine whether they are controlled by the

71

same person (underlying federated identity).

• Abuse resistance A user can be punished if they engage in abuse such as

spamming on a third party application. The user cannot get another pseudonym

and continue abusing the application.

• No impersonation It should not be possible for any party to act on behalf of

the user and authenticate as that user to an application.

• Valid authentication It should only be possible for a user to authenticate to

applications using their own credentials. It should not be possible for any party

to authenticate to applications without the use of such valid credentials. Users

with valid credentials should be able to authenticate to applications and should

not be denied service (except in the case of abuse resistance where the application

decides to block that user).

11.2 Attackers

We now outline the different potential attackers that may act as adversaries in our

design along with the different behaviors they may engage in. Parties in our design

may themselves misbehave, or be compromised by an external adversary and be used

for nefarious purposes. We analyse how our well our design withstands these different

attackers and collusions between attackers in Chapter 11.3.

11.2.1 Application attacker

A third party appication may act as an attacker in the system. The application

may try to compromise the user’s privacy. The application can track when user’s

authenticate to them through a credential consumer and can track across time when

different pseudonyms accessed the application. The application knows all activities

72

each user performs on that site and may keep track of and analyse this.

11.2.2 Identity provider attacker

A federated identity provider may act as an attacker. The identity provider may act

as a passive attacker where it saves which users have authenticated with them, as

well as when each user has authenticated with them to a credential producer (and

hence knows with high probability when a user has collected their credentials from a

credential producer). The identity provider may also act as an active attacker where

the identity provider itself attempts to impersonate the user for nefarious purposes,

for example to the credential producer.

11.2.3 Credential producer attacker

A credential producer attacker knows when a user has collected their credentials. It

knows when a user has authenticated with a federated identity provider and which

identity provider they authenticated with. In the case of the credential producer

being a set of key servers, the key servers know when private keys are collected but

do not know who has collected public keys as no authentication is required for this.

In the key server case, each server knows one of the private key shares for each user.

In the signing server case, each server knows their own private key that they use to

sign blinded messages.

11.2.4 Credential consumer attacker

The credential consumer attacker knows which anonymous credentials have been

used to authenticate to a third party application. They know which LRSs have been

used to authenticate and who the members of the ring in the LRS are. If two users

73

authenticate at two different times using the same anonymity set, the attacker can

determine whether or not they are the same user (using the linkability property of

LRSs). In the blind signature case the attacker knows the messages that were signed

and can keep track of these.

11.2.5 User attacker

The user may misbehave in the system in order to attack other parties. The user

may attempt to troll or span an application. The user may create multiple accounts

on a federated identity provider to perform Sybil attacks or sock puppetry attacks

on an application. A user may also decide to publish their private key.

11.3 Attacks and Defenses

We now present a variety of different attacts on our system and discuss how well our

design withstands them.

11.3.1 Single party attacks

Each attacker may individually try to compromise the overall system by themself.

This section details such attacks.

Application attacks

Logging pseudonym use An application that keeps track of when pseudonyms are

used cannot directly compromise anonymity by itself. It knows when pseudonyms

are used but cannot determine which federated identities they correspond to (due to

anonymity property of LRSs and blind signatures).

74

Hosting malicious code An application may host malicious code (for example

drive-by-downloads) to try to attack the user by infecting their system with a virus

or keylogger to deanonymize them. This is outside the scope of our attack model

and our system does not protect against this. We propose using our system with

existing works [41, 42, 89, 67, 97, 52] that protect against drive-by-downloads.

Phishing/social engineering An applcation may try to trick a user into pro-

viding their federated identity username and password or otherwise trick the user

into deanonymizing themself. This is outside the scope of our attack model and our

system does not protect against this. We propose using our system with existing

works [116, 119] that protect agains phishing attacks.

Identity provider attacks

Passive attacks An identity provider can save user logins and when credentials are

collected. This information does not by itself compromise the anonymity of users.

Active attacks An identity provider may impersonate a user to a credential

producer. In the case where only a single identity provider is used, the identity

provider can collect the user’s credentials and impersonate the user. The multiple

identity provider design protects against this. Credential producers require users to

authenticate with multiple identity providers (for example Facebook and LinkedIn

and PayPal with matching name and date of birth) in order to collect their creden-

tials. In this case a single identity provider cannot obtain a user’s credentials.

Credential producer attacks

Key server publishes private key shares A key server could publish its master

private key or private key shares that it has generated for users. Our system is based

on a (t, n)-cryptosystem so as long as fewer than t servers publish their private key

75

shares, it is not possible to obtain a user’s private key and so is not possible to violate

their anonymity, link their different pseudonyms, or to impersonate that user.

Signing server publishes private key A signing server could publish its pri-

vate key that it uses to sign blinded messages. Our system is based on a (t, n)-

cryptosystem so it would require at least t servers to be compromised in order to be

able to sign the t messages required to authenticate with an application. As long

as fewer than t servers are compromised it is not possible to sign the number of

messages required to impersonate a user to an application.

Credential server denial of service A key server or signing server could be

offline, not responding to requests or otherwise unavailable. So long as t out of n

servers are still accessible, it will still be possible to collect private and public keys

since our design uses a (t, n) cryptosystem.

Key server public keys inconsistent with private keys Key servers sign

every public or private key that they return using their own private key. A client

can request their own public key at a different time or though a different network

route. If the private key share they receive is inconsistent with their public key share

they receive, they can publish both to show the server is misbehaving (as they are

signed by the server). Publishing one private key share does not compromise user

anonymity as it requires at least t private key shares to construct the user’s private

key.

Signing servers signs messages without verifying client A signing server

may sign messages without verifying the client with a federated identity provider,

or without verifying the hash of the client’s identity in the message is correct. t

servers would need to be compromised in order to have sufficient signed messages to

impersonate the user to applications since we use a (t, n) cryptosystem.

76

Credential consumer attacks

Invalid credential authentication An OAuth provider credential consumer could

authenticate users to applications without checking their credentials, or when their

credentials are invalid. An credential consumer could also fail to authenticate users

who have valid credentials to applications (a denial of service attack). These behav-

iors would violate the valid authentication security property. An application that

does not want to trust an external OAuth provider to validate credentials could

instead opt for one of the other credential consumer designs: either maintaining

their own OAuth provider credential consumer interally, or directly verifying user

credentials within the application itself.

User attacks

Trolling/spamming A user may abuse their pseudonymity on an application to

troll or spam that application, attempting to violate the abuse resistance system

security property.

• The partially blind signature use case means that the application can block

that pseudonym. The partially blind signature contains the application name in

the unblinded part of the signature (the info field) and these are rate limited

by credential producers so only a fixed number can be issued to a user per time

period. If a user conducts abuse on an application, the application will block

their pseudonym. The user will not be able to obtain another pseudonym for

that application until the time period expires. Hence they will be blocked from

conducting abuse for the remainder of that time period. This provides the abuse

resistance security property on a per time period basis.

• The LRS use case provides abuse resistance as an LRS contains a linkage tag

where if a user authenticates at two different times using the same anonymity set,

77

the LRSs will have the same linkage tag. The application can blacklist a linkage

tag of an abusive user to prevent them from authenticating in the future. The

linkage tag cannot be reversed to the user’s federated identity without knowing

the user’s private key hench providing abuse resistance without violating user

anonymity.

Multiple social network accounts (Sybil attack) A user may create many

social network or other federated identity accounts in an attempt to perform Sybil

or sock puppetry attacks on an application, violating abuse resistance. The multiple

identity providers use case partially protects agains this as if a user has an account on

a more trusted, verified identity provider, such as PayPal where identities are verified

against bank accounts, then it will be difficult for a user to have several accounts

without having multiple real life bank accounts in different names. However the

general case of detecting Sybil accounts in social networks remains outside the scope

of our attack model and is not protected against in our system. We suggest using

existing system such as SybilGuard [118] or other Sybil defenses [117, 102, 110, 109,

111] along with Crypto-Book to detect and defend against Sybil accounts in social

networks.

User publishes private key A user could opt to share their private key with

other people or otherwise publish it. This would allow other people to impersonate

the user, violating the no impersonation security property. However if the user

themselves decides to publish their private key we know that they no longer desire

this security property.

11.3.2 Collusion attacks

Attackers may collude with each other in order to have more collective power in order

to compromise the system security properties. This section details such attacks.

78

Key server collusion Key servers may collude with each other to share private

key shares of users. We use a (t, n) cryptosystem so as long as fewer than t key

servers collude, it is not possible for them to obtain a user’s overall private key and

hence cannot impersonate a user or compromise their anonymity.

Credential producer or identity provider colludes with application A

credential producer server (and the identity provider) knows which users collected

their credentials and an application knows when a user authenticates to them but

they do not know which user authenticated. A credential producer server (or identity

provider) may collude with an application to perform a timing analysis attack to

try to link credential pickups to authentications violating user anonymity. A user

may mitigate such attacks by separating in time their credential pickup from their

credential use. Another attack is that they might launch is on the LRS system. An

application may collude with a credential server or identity provider to know which

members of the anonymity set have collected their private key and which have not.

This could threaten the anonymity of the users if only one or two of them have

collected their private keys. The previously proposed anonymous key distribution

protocol [71] could be used to anonymously distribute private keys. Alternatively if

a user is worried that few or no other members of their anonymity set are likely to

have collected their private key and they do not want to have the overhead of sending

additional messages associated with the anonymous key distribution protocol, they

could instead use the blind signature based scheme to anonymously authenticate to

the application.

User colludes with identity provider A user attacker could collude with an

identity provider to launch a Sybil attack on an application, violating the abuse

resistance security property. The multiple identity provider use case prevents this if

only one identity provider is colluding with the user. However if multiple identity

79

providers collude with a user they may attempt to launch a Sybil attack. Sybil

resistance remains outsite the scope of our attack model and we suggest using existing

systems such as SybilGuard [118] or other Sybil defenses [117, 102, 110, 109, 111]

along with Crypto-Book to protect against such Sybil attacks.

Credential producer colludes with user If a user colludes with a credential

producer, the credential producer could keep issuing the user fresh credentials to

allow them to have an unlimited number of pseudonyms and hence conduct abuse on

applications without being able to be blocked. This violates abuse resistance. Our

design incorporates a (t, n)-threshold cryptosystem as the solution which means that

at least t of n credential producer servers have to be compromised or agree to collude

with the user to be able to launch this attack.

Multiple identity providers collude to impersonate users Multiple identity

providers such as PayPal, Facebook and Twitter could collude in the multple identity

provider use case to impersonate users. Colluding would enable them to violate the

no impersonation security property as well as compromise user anonymity. Using a

wide selection of diverse identity providers who mutually distrust each other (such

as competing companies, those in different jurisdictions) would mitigate the risk of

such an attack and likely make such an attack infeasible in practise.

Apps collude to share anonymity sets (intersection attack) Applications

could collude to share the anonymity sets used to authenticate to them. They could

attempt so see common members of the anonymity sets in order to perform an

intersection attack [85, 56, 31] and threaten user unlinkability. To guard against this

a user could ensure they always have some common members in their anonymity

set when authenticating to multiple applications, especially if they are engaging in

similar activities across multiple applications. Alternatively users could use the blind

signature approach with distinct signed messages, one per application to protect

80

against this attack.

Apps collude to share signed messages used to authenticate If users

reuse signed messages used to authenticate to one app, to authenticate to a second

app, then apps could collude to share these messages an threaten user unlinkabil-

ity. To protect against this users should not reuse signed messages across different

applications.

11.3.3 Miscellaneous attacks

ISP level adversary traffic analysis An adversary who can observe large parts of

the network may be able to correlate traffic between users and credential producers

or identity providers, with subsequent traffic between users and applications. They

may be able to use traffic analysis to perform a correlation attack to threaten user

anonymity. Such a powerful adversary is outside the scope of our attack model and

we suggest using anonymous communication systems such as Dissent [28, 60] along

with Crypto-Book to guard against such attacks.

LRS replay attack An adversary may manage to illicitly obtain an LRS gen-

erated by another user (for example by hosting a malicious app) and then try to

reuse the LRS to authenticate as that user to a different application. This would

violate the no impersonation security property. To prevent against this credential

consumers present a challenge with significant entropy to users which they must use

to generate a fresh LRS on each time they authenticate.

Credential producer hardware compromised An adversary may physically

break into a data center and gaining access to credential producer server hardware.

They may take the server offline (denial of service) or copy the master private key.

Since we use a (t, n)-threshold scheme, compromising fewer than t servers does not

compromise user private keys. Additionally so long as t of n servers are still online,

81

user private keys could still be served so the service would not be denied. An epoch

scheme could be employed by servers whereby master private keys are rotated each

epoch (for example every few months) or in the case of a server compromise. If a

server is compromised, the adversary will get access to user private key shares for

that epoch, but not previous epochs.

82

Chapter 12

Implementation

To demonstrate the feasibility of our architecture, we implemented a prototype of our

system. The system allows a user to log in using Facebook, Paypal, or both, and to

connect to the key servers and collect their private key. We also implemented three

applications built on the Crypto-Book framework, CB-Wiki, CB-Dissent and CB-

Drop. CB-Wiki is a Wikipedia style site where users can log in using Crypto-Book

to edit the Wiki anonymously and accountably. CB-Dissent combines the Crypto-

Book anonymous authentication architecture with the Dissent [28] chat system. CB-

Drop is a verifiable whistleblowing application that allows users to anonymously

yet credibly submit documents to journalists. We implemented OAuth provider

functionality on top of Crypto-Book to allow other applications to be more easily

built on top of Crypto-Book.

We used both Facebook and PayPal federated identity providers. We imple-

mented DSA [43] and Boneh-Franklin IBE [9] key systems, RSA [91] based ring

signatures [92] and DSA based LRS [64]. We implemented a (t, n)-threshold cryp-

tosystem using Pedersen’s distributed PKG [83] for credential producer servers to

assign credentials to clients. We also implemented blind signature [96] and partially

83

blind signature schemes [1]. We implemented an OAuth compliant credential con-

sumer and built three applications on top of it (CB-Wiki, CB-Dissent and CB-Drop).

We deployed our credential producer servers across 10 servers globally using Planet-

Lab [27]. We also implemented a Google Chrome extension to automate the process

of collecting a private key from the distributed servers. Since each key server is tied

to a different Facebook app, the user must in turn authorize 10 Facebook apps - to

automate this process we implemented a Chrome extension which requires only that

the user log in to Facebook a single time in order to collect their private key.

12.1 Credential Assignment Mechanism

We implemented a credential assignment mechanism using keys as credentials. We

implemented two alternative ways of collecting and assembling the key parts into a

composite key:

• A downloadable application allowing the user to pickup and assemble the key

parts on his own machine

• A trusted web proxy

Key distribution works as follows: the user logs into Facebook and PayPal and

collects an OAuth token from each provider. The user then sends these tokens to each

of the key servers to request their private key. Once a key server receives a private

key request and corresponding OAuth token, it makes a request to the Facebook

and PayPal APIs to verify that the credentials on the two accounts match and to

obtain the user’s corresponding Facebook username. If the authentication succeeds

and a valid username is returned then the key server will lookup the corresponding

private key in its database and return it to the requester (the proxy or the desktop

app). For public key requests, the requester sends to the key server the Facebook

84

username that they want to obtain the public key for, and the key server looks up

the key and returns it to the requester. If for any request the server does not already

have a keypair saved for that Facebook username, the server will generate a keypair

and store it in its database, returning the appropriate key to the requester.

Once the requester receives responses from all of the servers it will compute the

composite private and public keys. The requester, now in possession of all necessary

keys, generates the linkable ring signature for the specified file.

12.2 Credential Schemes Implemented

We implemented three different key credential schemes – one based on DSA [64],

one basd on RSA [92] and one based on elliptic curve cryptography (Boneh-Franklin

identity based encryption [9]). We implemented two different blind signature cre-

dential schemes - one based on Shen et al.’s blind signatures [96] and one based on

partially blind signatures [1].

12.2.1 DSA-Based Scheme

We implemented an LRS scheme [64] based on DSA keys. DSA keys operate in a

group G of order p and are of the form Y = gx mod p where Y is the public key and

x is the private key. A composite key can be formed from a set of keys by adding

the private keys and multiplying the public keys.

Our distributed key distribution relies on the fact that we can generate a com-

posite private key xc from a list of private keys x0, x1, . . . , xn by summing them

such that xc = x0 + x1 + · · · + xn mod q. The corresponding composite public key

Yc = gx0+x1+···+xn mod q mod p. This is equivalent to multiplying the corresponding

public keys Yc = y0 ∗ y1 ∗ · · · ∗ yn mod p so we can calculate the composite public key

85

without knowledge of the private keys.

12.2.2 RSA-Based Scheme

We implemented ring signatures [92] using RSA keys. Unlike DSA based LRS, RSA

based ring signatures are not linkable. However they provide the additional property

of deniability so even if a user’s private key is compromised, their previously generated

ring signatures cannot be deanonymized. Hence RSA based ring signatures provide

stronger anonymity guarantees than DSA based linkable ring signatures, although

RSA based ring signatures do not provide the abuse resistance that DSA based LRS

provides.

12.2.3 Boneh-Franklin Identity-Based Encryption Scheme

In addition to the DSA-based scheme, we also implemented a scheme using Boneh-

Franklin [9] identity-based encryption (IBE) keys. Boneh-Franklin is a scheme based

on elliptic curves where a string such as a user’s Facebook ID is their public key.

Their private key is generated for them by a private key generator (PKG). We im-

plemented a distributed PKG where a user’s private key is split among n key servers

using Shamir secret sharing [94].

A Boneh-Franklin PKG generates a user’s private keys using a master private

key, s. The PKG multiplies this by QID which is derived from the user’s public

key, to compute the user’s private key, Qpriv = sQID. The master private key s can

be split among n key servers by giving each server a Shamir secret share si of the

master private key. Each key server now returns to the client a private key part

Q
(i)
priv = siQID. Using the appropriate Lagrange coeffiecients λi the user can then

construct their overall composite private key Qpriv =
∑
λiQ

(i)
priv from the private key

86

parts Qi
priv.

We demonstrated the use of Boneh-Franklin keys by implementing an encrypted

Facebook messaging app that allows a user to send an encrypted Facebook message

to any other Facebook user using Boneh-Franklin identity based encryption. The

recipient, even if they have not previously registered with the service, can then

collect their private key from the key servers and decrypt and view the message.

12.2.4 Blind and Partially Blind Signature Schemes

We implemented two credential schemes using blind signatures as credentials, one

based on blind signatures [96] and one based on partially blind signatures [1]. The

partially blind signatures are more complex to implement but can be used to provide

attributes and abuse resistant credentials. Our results in Chapter 14 show that they

also give better performance than the traditional blind signatures.

87

Chapter 13

Applications

We built on our implementation from Chapter 12 to develop three realistic applica-

tions using Crypto-Book. These are CB-Wiki, CB-Dissent and CB-Drop described

below in Chapter 13.1, Chapter 13.2 and Chapter 13.3 respectively.

13.1 CB-Wiki

CB-Wiki is a system based on the software behind Wikipedia that allows users to

log in as an accountable, anonymous user instead of as a personally identifiable user.

This allows users to edit Wiki pages without disclosing their identity but at the same

time provides resistence to abuse.

CB-Wiki provides privacy preserving accounts instead of traditional accounts.

Instead of having to create a Wikipedia account in order to be able to edit pages,

users instead are able to Log in with Crypto-Book in a similar way that many sites

allow users to Log in with Facebook. When a user chooses to log in with Crypto-Book,

they are redirected to the Crypto-Book website. They are then required to submit a

linkable ring signature (via file upload) to the Crypto-Book servers for verification.

If it is valid, the servers redirect the user back to CB-Wiki where they will log-in

88

with an anonymized account.

The anonymous ID is derived from the linkable ring signature that the user

provides. The signatures proves that they are a member of some group and the

linkage tag is used to tell if two people signing in are the same user. If a user signs

in with Crypto-Book and then abuses the Wiki site, the user’s linkage tag can be

blocked so they will no longer be able to access the site, ensuring accountability.

CB-Wiki site administrators are able to interact with that anonymized user in

exactly the same way as with regular, non-anonymous users (which are also supported

by CB-Wiki). For example administrators can message that user, interact with them

on their talk page, view their edits to the Wiki and block or ban them if necessary.

This allows for user accountability while simultaneously protecting user privacy.

13.2 CB-Dissent

CB-Dissent is a system that combines the Crypto-Book anonymous authentication

architecture with the Dissent[28, 115] chat system. Dissent is a practical group

anonymity system that offers provable anonymity with accountability. CB-Dissent is

an anonymous authentication platform for Dissent [28, 115], consisting of two major

components:

• Anonymous Dissent chat group creation

• Anonymous authentication to Dissent

Dissent group requests Using CB-Dissent, users request Dissent chat groups

as follows: The client uses their web browser to connect to the the Crypto-Book

servers. The client then generates a linkable ring signature using keys collected from

the CB-Dissent key servers corresponding to the Facebook users they want in their

anonymous Dissent chat group. The client sends the ring signature to the CB-Dissent

89

servers to be verified. The Crypto-Book servers then verify the ring signature. If the

signature is successfully verified by CB-Dissent, then CB-Dissent checks its database

to determine whether there is already a Dissent session running for that group. If

there is no active Dissent session for that group then CB-Dissent starts three Dissent

servers, computes a group authentication code and inserts a corresponding record

into the database along with the group members.

When a client is successfully authenticated by CB-Dissent as being a member

of the group, the servers send the group authentication code to the client. The

client uses this authentication code to connect to the Dissent servers: They send the

authentication code to another CB-Dissent service which checks the authentication

code, looks up the Dissent servers for that group and conneccts the user’s Dissent

client to the Dissent anonymous chat group.

Dissent anonymous authentication We also implemented anonymous authen-

tication directly within Dissent using linkable ring signatures. The Dissent servers

maintain a ring of public keys for that group. When a client attempts to connect to

a Dissent server they are challenged to provide a valid linkable ring signature cor-

responding to the ring of keys for that group. The client generates this using their

private key (which corresponds to one of the public keys in the ring) and sends the

signature to the server. The server verifies the signature against the ring of public

keys and, if successful, allows the client to connect.

13.3 CB-Drop

CB-Drop builds on SecureDrop [93], an open-source whistleblower submission system

managed by Freedom of the Press Foundation. SecureDrop allows journalists to

accept sensitive documents from anonymous sources via a web interface. CB-Drop

90

Figure 13.1: The CB-Drop document source interface

adds credibilty to leaks by allowing a source to anonymously sign a document using

a relevant anonymity set and the DSA based scheme described in Chapter 12.2.1

before submitting it via SecureDrop as shown in Figure 13.1. Upon retrieving the

document, a journalist can then verify the signature, increasing confidence in the

authenticity of the leak without compromising the source’s anonymity.

To retrieve a verifiably leaked document, a journalist connects to the SecureDrop

journalist web interface using Tor. They then download and decrypt any waiting

documents using their private key. At this point, CB-Drop provides the additional

option to verify the document by processing the signature and retrieving the signing

anonymity set. This information, combined with past submissions associated with

the codename, allows the journalist to make a more informed decision regarding the

authenticity of the leak.

91

Chapter 14

Evaluation

To evaluate the practicality of Crypto-Book we consider both end-to-end measure-

ments in expected deployment scenarios and microbenchmarks focusing on scalability

of specific components. We first describe the experimental setup and then evaluate

credential production and consumption in both proposed credential schemes. We

conclude by evaluating Crypto-Book in the context of our example applications.

14.1 Experimental Setup

The experimental setup for the following evaluations include three classes of ma-

chines, based on role in the system:

• Clients are consumer laptops with 2.4GHz Intel Core i5 processors and 8GB of

RAM.

• Credential producers are nodes on the geographically distributed PlanetLab [27]

network. A typical PlanetLab node has a 2.4GHz Intel Xeon processor and 4GB

of RAM.

92

• Credential consumers are commercial shared hosting providers also with 2.4GHz

Intel Xeon processors and 16GB of RAM.

In selecting experimental key pairs we followed NIST recommendations [81] for

DSA keys where the tuple (L,N) specifies the bit-length of the p and q parameters,

respectively. If a parameter tuple is not specified, it is assumed to be (1024, 160).

14.2 Producing Credentials

In this section we evaluate the production of credentials in both the at-large and

group credential schemes.

14.2.1 Facebook Application Authorization

In both the at-large and group credential schemes a first-time user must authorize

a credential producer’s application with a supported federated identity provider be-

fore retrieving any credentials from that producer. We evaluated the time taken to

complete this step for a varying number of credential producers, with Facebook as

the federated indentity provider. We used our Chrome extension to automate the

authorization process and performed all authorizations in parallel. Results are pre-

sented in Figure 14.1, drawing distinction between time spent authenticating with

Facebook and time spent authorizing the Crypto-Book application. The times shown

are those of the last credential producer to return. A client only ever needs to

perform this setup step once, the first time they ever use Crypto-Book.

14.2.2 At-Large Credentials

An at-large credential consists of partially blind signatures from t credential produc-

ers. As each signature is obtained independently from all others, we focus on time

93

 0

 5

 10

 15

 20

1 2 3 4 5 6 7 8 9 10
T

im
e

 (
s
)

Key servers

Facebook login
Facebook app authorization

Figure 14.1: Facebook application authorization

Key Parameters Signature Size (Bytes)

(1024,160) 210

(2048,224) 287

(2048,256) 325

(3072,256) 326

Table 14.1: Partially blind signature size (communication costs)

taken to obtain a single signature. As discussed in Section 8, a signature is generated

collaborately by the client and a producer. Network overhead consists of two round

trips between producer and client where the second trip is dependent on the size

(and hence strength) of the signature. Signature sizes for varying signing key sizes

are shown in Table 14.1.

The computation costs for partially blind signature operations are shown in Fig-

ure 14.2. Credential production consists only of the signing operation, which, for

a 2048-bit signing key, takes approximately 50ms of computation time, with effort

divided fairly evenly between client and producer.

94

 0

 0.01

 0.02

 0.03

 0.04

 0.05

(1024,160)

(2048,224)

(2048,256)

(3072,256)
T

im
e

 (
s
)

Client
Producer
Consumer

Figure 14.2: Partially blind signature operations (CPU costs)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

s
)

Key servers

Figure 14.3: Distributed keypair generation

14.2.3 Group Credentials

Keypair Generation In our group credential scheme, the first time a key pair is re-

quested it must be collectively generated by the credential producers. We evaluated

the time required to generate a single key pair for a varying number of credential

producers and present the results in Figure 14.3. Times shown include only oper-

ations involving producers; returning the keys to the client is evaluated separately.

For a reasonable number of producers, we find that the results scale approximately

linearly.

Key Retrieval We next evaluate the time taken for a client to retrieve a single

95

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10
T

im
e

 (
s
)

Key servers

Public
Private

Figure 14.4: Retrieval of previously generated keys (communication costs)

key, either private or public, from the set of credential producers. Requests to all

producers are performed in parallel. We present the results in Figure 14.4. For

public keys, we find near constant response. Times shown for private keys include

Facebook authentication, which accounts for the difference when compared to public

key requests. Private key requests will be rare, as after retrieval users retain

their private keys locally, stored in the Chrome extension.

14.2.4 Neff-Based Group Credentials

The primary cost involved with the Neff-based group credential scheme is the initial

setup cost, that is the Neff key shuffle and rebasing. Once keys have been shuffled

and rebased by credential producers, clients can simply authenticate to credential

consumers using simple digital signature authentication (constant time). Figure 14.5

shows the setup cost of for Neff-based group credentials for 3, 5 and 7 servers (cre-

dential producers). Setup costs for Neff-based group credentials are significant in

comparison to other schemes we propose, however may be acceptable for certain

applications since the setup need only be carried out once. After that clients can

authenticate in constant time. This is the tradeoff between setup costs (credential

96

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 50 100 150 200 250 300
T

im
e

 (
s
)

Ring size

3 servers
5 servers
7 servers

Figure 14.5: Neff-based group credential setup costs

production) and authentication costs (credential consumption).

14.3 Consuming Credentials

In this section we evaluate the consumption of credentials in both the at-large and

group credential schemes.

14.3.1 At-Large Credentials

In evaluating the consumption of at-large credentials we assume that all credential

producers’ signing keys are well-known to all credential consumers. As a result, au-

thentication via at-large credentials consists only of the transmission and verification

of partially blind signatures. As shown previously in Figure 14.1, a threshold t at-

large credential is approximately 300t bytes in size; at these sizes credential upload

times are heavily dependant on network properties.

To evaluate the costs of verification we considered t = 1 at-large credentials for

varying key size. Results are shown in Figure 14.2; for a 2048-bit key verification

takes less than 20ms. As each signature verification is completely independent of

all others, for expected values of t (≤ 10), signature verification can be performed

97

Entity Operation Type of Cost Time (s)

Client Produce LRS CPU 0.257

Credential Consumer Fetch Public Keys Communication 1.011
Verify LRS CPU 0.035

Client-Consumer Network Latencies Communication 0.304

Total User-Observable 1.607

Table 14.2: Real World End-to-end Group Authentication for Group Size of 10

largely in parallel.

14.3.2 Group Credentials

In order to perform an end-to-end evaluation of authentication using group cre-

dentials, we first created a group credential including ten Facebook identities belong-

ing to members of the author’s research group. Users then each collected their group

credential and used our Chrome extension to authenticate to an internal website

with their Crypto-Book identity. We used an application-embedded consumer and

three credential producers on networks different from the consumer’s. We recorded

timings for each phase of 117 authentications and present the averages in Table 14.2.

On average, the total user-observable authentication time was 1.6 seconds; this is

approximately a 1.2 second overhead compared to non-anonymous federated authen-

tication with Facebook.

In addition to the real world deployment within our research group, we also sim-

ulated the experiment for group sizes of 100 and 250. The results are shown in

Table 14.3 and 14.4 respectively. For group sizes of less that 100 which we would

consider for practical usage, costs are primarily communication bound. For larger

group sizes, costs become CPU bound. This scheme is reasonable for practical pur-

sposes. If faster authentications are desired, the Neff-based group credential scheme

could be used. The tradeoff here is that there is a bigger initial setup cost when

98

Entity Operation Type of Cost Time (s)

Client Produce LRS CPU 1.641

Credential Consumer Fetch Public Keys Communication 0.885
Verify LRS CPU 1.632

Client-Consumer Network Latencies Communication 0.453

Total User-Observable 4.612

Table 14.3: End-to-end Group Authentication for Simulated Group Size of 100

Entity Operation Type of Cost Time (s)

Client Produce LRS CPU 4.263

Credential Consumer Fetch Public Keys Communication 0.799
Verify LRS CPU 4.120

Client-Consumer Network Latencies Communication 0.484

Total User-Observable 9.666

Table 14.4: End-to-end Group Authentication for Simulated Group Size of 250

initializing the group, however after that login times are constant as they consist

of a simple digital signature signing and verification as opposed to a linkable ring

signature. The scalability of setup times for Neff-based group credentials are shown

in Figure 14.5.

To investigate how group credential authentication scales with group size, we

considered each operation from Table 14.2 separately. We found that by bundling

public key requests we were able to fetch up to 1000 public keys in near-constant

time, identifying the ring signature operations as the limiting factor for larger groups.

We then measured the computation time for each ring signature operation, varying

the ring size between 1 and 1000. Results for signing and verification are shown in

Figures 14.6 and 14.7, respectively. Both operations scale linearly with ring size and,

for ring sizes near 100 and 2048-bit keys, both operations complete in one second.

We additionally measured the size of the linkable ring signature produced for

varying ring sizes. This signature is what the client sends to the credential consumer

with each authentication, thus overall client-consumer network latency depends on

99

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000
T

im
e

 (
s
)

Ring size

(3072,224)
(2048,256)
(2048,224)
(1024,160)

Figure 14.6: Linkable ring signature generation (CPU costs)

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

T
im

e
 (

s
)

Ring size

(3072,224)
(2048,256)
(2048,224)
(1024,160)

Figure 14.7: Linkable ring signature verification (CPU costs)

signature size. Results are shown in Figure 14.8. We found that signature size scales

linearly with ring size and that, for ring sizes near 100 and 2048-bit keys, signatures

are less than 10kB.

14.4 CB-Dissent Authentication

Finally, we evaluated group authentication in our CB-Dissent implementation. This

experiment measures the time required for a client to authenticate with a single

Dissent server acting as an application-embedded consumer. We again varied the

group size between 1 and 1000, presenting the results in Figure 14.9. For a group

100

 0.1

 1

 10

 100

 1 10 100 1000
S

iz
e

 (
K

B
)

Ring size

(3072,224)
(2048,256)
(2048,224)
(1024,160)

Figure 14.8: Linkable ring signature size (communication costs)

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

T
im

e
 (

s
)

Ring size

(3072,256)
(2048,256)
(2048,224)
(1024,160)

Figure 14.9: CB-Dissent authentication time

size of 100 and 2048-bit keys, authentication again takes under 1 second. While this

is a significant overhead compared to traditional pre-exchanged key authentication,

it remains well within practical limits.

14.5 Code modification

We used CLOC [32] to count the lines of code that we had to add to modify Media

Wiki, Dissent, and SecureDrop to integrate with Crypto-Book. Only small modifi-

cations were required in all cases:

101

• Media Wiki required only 96 additional lines of code to integrate it with our

Crypto-Book login system (deployed externally of Media Wiki).

• Dissent group request was implemented entirely outside of the Dissent codebase,

making only command line level calls to Dissent services, so required no modifi-

cation of Dissent code.

• Dissent anonymous authentication was implemented as an additional module to

Dissent requiring 574 additional lines of code. This is in comparison to Dissent’s

pre-existing authentication system that consisted of 838 lines of code.

• SecureDrop integration with our Crypto-Book signing system required only 35

additional lines of code.

102

Chapter 15

Future Directions

An area for future work may be in investigating the impact different anonymity set

choices have on user privacy protection. In this dissertation we have used a scheme

where users are batched into groups by Crypto-Book and where these groups are

shared across all third party sites and services. Future work is required to investi-

gate how custom, per third party service group definition can be applied without

threatening user privacy.

A limitation of the current system is that linkable ring signature size scales linearly

with ring size. Dodis et al. [39] proposed a scheme for constant space ring signatures.

These signatures also have the property that both the signer and the verifier can per-

form a one-time computation proportional to the size of the ring which then allows

them to produce and verify many subsequent signatures in constant time. Future

work could incorporate such a scheme to reduce signing and verification time. In

subsequent work, Tsang et al. [106] proposed a scheme for constant space accumu-

lator based linkable ring signatures. Future work could incorporate such schemes to

reduce signature size.

Another interesting line of inquiry may be investigating how our privacy pro-

103

tecting identities can be tied back into anonymous posting within Facebook as is

proposed in the Faceless framework [98]. This would allow for anonymous discussion

within existing social networking sites. Other anonymous credential schemes such as

BLAC [103, 104, 5] could be integrated with Crypto-Book.Finally, it may be worth-

while to look at what other applications could be developed on top of Crypto-Book

using our privacy protecting identities. For example an anonymous group Twitter

application similar to GroupTweet [47] with improved end user privacy guarantees

that do not require the end user to trust the service provider with their identity.

104

Chapter 16

Conclusions

We have demonstrated Crypto-Book, a novel architecture for providing privacy pre-

serving online identities based on federated identity providers. We have implemented

three major applications, CB-Wiki, CB-Dissent, and CB-Drop, on top of Crypto-

Book and shown them to have good scalability properties. We believe that Crypto-

Book is a practical way to provide federated identity users with abuse resistant

pseudonyms. There remain a large number of areas for future research based on

our architecture as well as many applications that could be developed on top of our

framework leaving open a wide range of areas for investigation building on our results

in future work.

105

Bibliography

[1] Abe, M., and Okamoto, T. Provably secure partially blind signatures. In

Advances in CryptologyCRYPTO 2000 (2000), Springer, pp. 271–286.

[2] Abe, M., and Okamoto, T. Provably secure partially blind signatures. In

20th CRYPTO (2000).

[3] Ateniese, G., Camenisch, J., Joye, M., and Tsudik, G. A practical

and provably secure coalition-resistant group signature scheme. In Advances

in CryptologyCRYPTO 2000 (2000), Springer, pp. 255–270.

[4] Ateniese, G., Song, D., and Tsudik, G. Quasi-efficient revocation of

group signatures. In Financial Cryptography (2003), Springer, pp. 183–197.

[5] Au, M. H., Kapadia, A., and Susilo, W. Blacr: Ttp-free blacklistable

anonymous credentials with reputation.

[6] Boneh, D., Boyen, X., and Shacham, H. Short group signatures. In

Advances in Cryptology–CRYPTO 2004 (2004), Springer, pp. 41–55.

[7] Boneh, D., and Franklin, M. Efficient generation of shared rsa keys. In

Advances in CryptologyCRYPTO’97. Springer, 1997, pp. 425–439.

[8] Boneh, D., and Franklin, M. Efficient generation of shared rsa keys.

Journal of the ACM (JACM) 48, 4 (2001), 702–722.

106

[9] Boneh, D., and Franklin, M. Identity-based encryption from the Weil

pairing. In Advances in Cryptology - CRYPTO 2001 (2001), Springer, pp. 213–

229.

[10] Boneh, D., and Shacham, H. Group signatures with verifier-local revoca-

tion. In Proceedings of the 11th ACM conference on Computer and communi-

cations security (2004), ACM, pp. 168–177.

[11] Boyd, C. Digital multisignatures. Cryptography and coding (1986).

[12] Brands, S. Electronic cash systems based on the representation problem in

groups of prime order. Preproceedings of Advances in CryptologyCRYPTO93

(1993), 26–1.

[13] Brickell, E., and Li, J. Enhanced privacy id: A direct anonymous attesta-

tion scheme with enhanced revocation capabilities. In Proceedings of the 2007

ACM workshop on Privacy in electronic society (2007), ACM, pp. 21–30.

[14] Camenisch, J., and Lysyanskaya, A. Dynamic accumulators and appli-

cation to efficient revocation of anonymous credentials. In Advances in Cryp-

tologyCRYPTO 2002. Springer, 2002, pp. 61–76.

[15] Camenisch, J. L., Piveteau, J.-M., and Stadler, M. A. Blind signa-

tures based on the discrete logarithm problem. In Advances in CryptologyEU-

ROCRYPT’94 (1995), Springer, pp. 428–432.

[16] Chaum, D. Blind signatures for untraceable payments. In Crypto (1982),

vol. 82, pp. 199–203.

[17] Chaum, D. Blind signatures for untraceable payments. In CRYPTO (1982).

107

[18] Chaum, D. Blind signatures for untraceable payments. In Advances in cryp-

tology (1983), Springer, pp. 199–203.

[19] Chaum, D. Blind signature system. In Advances in cryptology (1984),

Springer, pp. 153–153.

[20] Chaum, D. Privacy protected payment, smart card 2000, 1989.

[21] Chaum, D., den Boer, B., van Heyst, E., Mjølsnes, S., and Steen-

beek, A. Efficient offline electronic checks. In Advances in CryptologyEURO-

CRYPT89 (1990), Springer, pp. 294–301.

[22] Chaum, D., Fiat, A., and Naor, M. Untraceable electronic cash. In

Proceedings on Advances in cryptology (1990), Springer-Verlag New York, Inc.,

pp. 319–327.

[23] Chaum, D., and Pedersen, T. P. Wallet databases with observers. In

Advances in CryptologyCRYPTO92 (1993), Springer, pp. 89–105.

[24] Chaum, D., and Van Heyst, E. Group signatures. In Advances in Cryp-

tologyEUROCRYPT91 (1991), Springer, pp. 257–265.

[25] Chaum, D., and Van Heyst, E. Group signatures. In Advances in Cryp-

tology EUROCRYPT’91 (1991), Springer, pp. 257–265.

[26] Chaum, D., and Van Heyst, E. Group signatures. In EUROCRYPT

(Apr. 1991).

[27] Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawr-

zoniak, M., and Bowman, M. Planetlab: an overlay testbed for broad-

coverage services. ACM SIGCOMM Computer Communication Review 33, 3

(2003), 3–12.

108

[28] Corrigan-Gibbs, H., and Ford, B. Dissent: accountable anonymous

group messaging. In Proceedings of the 17th ACM conference on Computer

and communications security (2010), ACM, pp. 340–350.

[29] Croft, R., and Harris, S. Public-key cryptography and re-usable shared

secrets. Cryptography and Coding, Institute of Mathematics & Its Applications

(IMA) (1989), 189–201.

[30] Cutillo, L. A., Molva, R., and Strufe, T. Safebook: A privacy-

preserving online social network leveraging on real-life trust. Communications

Magazine, IEEE 47, 12 (2009), 94–101.

[31] Danezis, G., and Serjantov, A. Statistical disclosure or intersection at-

tacks on anonymity systems. In Information Hiding (2005), Springer, pp. 293–

308.

[32] Danial, A. Counting Lines of Code. http://cloc.sourceforge.net/.

[33] Desmedt, Y. Society and group oriented cryptography: A new concept. In

Advances in CryptologyCrypto87 (1988), Springer, pp. 120–127.

[34] Desmedt, Y., and Quisquater, J.-J. Public-key systems based on the

difficulty of tampering (is there a difference between DES and RSA?). In

Advances in Cryptology - CRYPTO86 (1987), Springer, pp. 111–117.

[35] Desmedt, Y. G. Threshold cryptography. European Transactions on

Telecommunications 5, 4 (1994), 449–458.

[36] Dey, A., and Weis, S. Pseudoid: Enhancing privacy in federated login. Hot

topics in privacy enhancing technologies (2010), 95–107.

109

http://cloc.sourceforge.net/

[37] Di Raimondo, M., Gennaro, R., and Krawczyk, H. Deniable authen-

tication and key exchange. In CCS (2006).

[38] Dingledine, R., Mathewson, N., and Syverson, P. Tor: The second-

generation onion router. Tech. rep., DTIC Document, 2004.

[39] Dodis, Y., Kiayias, A., Nicolosi, A., and Shoup, V. Anonymous iden-

tification in ad hoc groups. In Advances in Cryptology - EUROCRYPT 2004

(2004), Springer, pp. 609–626.

[40] Douceur, J. R. The sybil attack. In Peer-to-peer Systems. Springer, 2002,

pp. 251–260.

[41] Egele, M., Kirda, E., and Kruegel, C. Mitigating drive-by download

attacks: Challenges and open problems. In iNetSec 2009–Open Research Prob-

lems in Network Security. Springer, 2009, pp. 52–62.

[42] Egele, M., Wurzinger, P., Kruegel, C., and Kirda, E. Defending

browsers against drive-by downloads: Mitigating heap-spraying code injection

attacks. In Detection of Intrusions and Malware, and Vulnerability Assessment.

Springer, 2009, pp. 88–106.

[43] Federal Information Processing Standards Publication. Digital

signature standard (DSS), July 2013. FIPS 186-4.

[44] Felt, A., and Evans, D. Privacy protection for social networking apis. 2008

Web 2.0 Security and Privacy (W2SP08) (2008).

[45] Ferguson, N. Single term off-line coins. In Advances in CryptologyEURO-

CRYPT93 (1994), Springer, pp. 318–328.

[46] Golijan, R. Consumer Reports: Facebook privacy problems are on the rise.

110

[47] GroupTweet. http://www.grouptweet.com/.

[48] Guha, S., Tang, K., and Francis, P. NOYB: Privacy in online social

networks. In Proceedings of the first workshop on Online social networks (2008),

vol. 1, ACM, pp. 49–54.

[49] Hammer-Lahav, E. RFC 5849: The OAuth 1.0 Protocol (2010).

[50] Hardt, D. The OAuth 2.0 Authorization Framework.

[51] Henry, R., Henry, K., and Goldberg, I. Making a nymbler nymble using

verbs. In Privacy Enhancing Technologies (2010), Springer, pp. 111–129.

[52] Hsu, F.-H., Tso, C.-K., Yeh, Y.-C., Wang, W.-J., and Chen, L.-

H. Browserguard: A behavior-based solution to drive-by-download attacks.

Selected Areas in Communications, IEEE Journal on 29, 7 (2011), 1461–1468.

[53] Hühnlein, D., Jacobson, M., and Weber, D. Towards practical non-

interactive public key cryptosystems using non-maximal imaginary quadratic

orders. In Selected Areas in Cryptography (2001), Springer, pp. 275–287.

[54] Jahid, S., Mittal, P., and Borisov, N. EASiER: Encryption-based access

control in social networks with efficient revocation. In Proceedings of the 6th

ACM Symposium on Information, Computer and Communications Security

(2011), ACM, pp. 411–415.

[55] Johnson, P. C., Kapadia, A., Tsang, P. P., and Smith, S. W. Nymble:

Anonymous ip-address blocking. In Privacy Enhancing Technologies (2007),

Springer, pp. 113–133.

[56] Kedogan, D., Agrawal, D., and Penz, S. Limits of anonymity in open

environments. In Information Hiding (2003), Springer, pp. 53–69.

111

http://www.grouptweet.com/

[57] Khattak, Z. A., Manan, J.-l. A., Sulaiman, S., et al. Analysis of

open environment sign-in schemes-privacy enhanced & trustworthy approach.

Journal of Advances in Information Technology 2, 2 (2011), 109–121.

[58] Kiayias, A., Tsiounis, Y., and Yung, M. Traceable signatures. In Ad-

vances in Cryptology-EUROCRYPT 2004 (2004), Springer, pp. 571–589.

[59] Kontaxis, G., Polychronakis, M., and Markatos, E. P. SudoWeb:

Minimizing information disclosure to third parties in single sign-on platforms.

In Information Security. Springer, 2011, pp. 197–212.

[60] Le Blond, S., Choffnes, D., Zhou, W., Druschel, P., Ballani, H.,

and Francis, P. Towards efficient traffic-analysis resistant anonymity net-

works. In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM

(2013), ACM, pp. 303–314.

[61] Li, J., Li, N., and Xue, R. Universal accumulators with efficient non-

membership proofs. In Applied Cryptography and Network Security (2007),

Springer, pp. 253–269.

[62] Lin, Z., and Hopper, N. Jack: Scalable accumulator-based nymble system.

In Proceedings of the 9th annual ACM workshop on Privacy in the electronic

society (2010), ACM, pp. 53–62.

[63] Lindell, Y. Anonymous authentication. Journal of Privacy and Confiden-

tiality 2, 2 (2007), 4.

[64] Liu, J. K., Wei, V. K., and Wong, D. S. Linkable spontaneous anonymous

group signature for ad hoc groups (extended abstract). In ACISP (2004),

pp. 325–335.

112

[65] Liu, J. K., and Wong, D. S. Linkable ring signatures: Security models and

new schemes. In ICCSA (May 2005).

[66] Liu, Y., Gummadi, K. P., Krishnamurthy, B., and Mislove, A. Ana-

lyzing facebook privacy settings: user expectations vs. reality. In Proceedings

of the 2011 ACM SIGCOMM conference on Internet measurement conference

(2011), ACM, pp. 61–70.

[67] Lu, L., Yegneswaran, V., Porras, P., and Lee, W. Blade: an attack-

agnostic approach for preventing drive-by malware infections. In Proceedings of

the 17th ACM conference on Computer and communications security (2010),

ACM, pp. 440–450.

[68] Lucas, M. M., and Borisov, N. Flybynight: mitigating the privacy risks

of social networking. In Proceedings of the 7th ACM workshop on Privacy in

the electronic society (2008), ACM, pp. 1–8.

[69] Luo, W., Xie, Q., and Hengartner, U. Facecloak: An architecture

for user privacy on social networking sites. In Computational Science and

Engineering, 2009. CSE’09. International Conference on (2009), vol. 3, IEEE,

pp. 26–33.

[70] Maganis, G., Shi, E., Chen, H., and Song, D. Opaak: using mobile

phones to limit anonymous identities online. In Proceedings of the 10th in-

ternational conference on Mobile systems, applications, and services (2012),

ACM, pp. 295–308.

[71] Maheswaran, J., Wolinsky, D. I., and Ford, B. Crypto-Book: An ar-

chitecture for privacy preserving online identities. In HotNets-XII: Proceedings

of the 12th ACM Workshop on Hot Topics in Networks (2013), ACM.

113

[72] Maurer, U., and Yacobi, Y. Non-interactive public-key cryptography. In

Advances in Cryptology-EUROCRYPT’91 (1991), Springer, pp. 498–507.

[73] MediaWiki. http://www.mediawiki.org.

[74] Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., and Bhat-

tacharjee, B. Measurement and analysis of online social networks. In

Proceedings of the 7th ACM SIGCOMM conference on Internet measurement

(2007), ACM, pp. 29–42.

[75] Naor, M. Deniable ring authentication. In ’02 CRYPTO (2002).

[76] Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., and

Boneh, D. Location privacy via private proximity testing. In Proc. of NDSS

(2011), vol. 2011.

[77] Neal, R. W. Edward snowden reveals quantum insert: Nsa and gchq used fake

linkedin and slashdot pages to install spyware.[online] international business

times, november 11, 2013.

[78] Neff, C. A. A verifiable secret shuffle and its application to e-voting. In 8th

CCS (Nov. 2001).

[79] Nguyen, L. Accumulators from bilinear pairings and applications. In Topics

in Cryptology–CT-RSA 2005. Springer, 2005, pp. 275–292.

[80] NIST Special Publication 800: Recommendation for Key Manage-

ment. http://web.archive.org/web/20140703231420/http://csrc.nist.

gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf.

[81] The FIPS 186-4 Digital Signature Algorithm Validation System. http://csrc.

nist.gov/groups/STM/cavp/documents/dss2/dsa2vs.pdf.

114

http://www.mediawiki.org
http://web.archive.org/web/20140703231420/http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://web.archive.org/web/20140703231420/http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/dss2/dsa2vs.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/dss2/dsa2vs.pdf

[82] Okamoto, T., and Ohta, K. Universal electronic cash. In Advances in

CryptologyCRYPTO91 (1992), Springer, pp. 324–337.

[83] Pedersen, T. P. A threshold cryptosystem without a trusted party. In

Advances in CryptologyEUROCRYPT91 (1991), Springer, pp. 522–526.

[84] Quora. http://www.quora.com.

[85] Raymond, J.-F. Traffic analysis: Protocols, attacks, design issues, and open

problems. In Designing Privacy Enhancing Technologies (2001), Springer,

pp. 10–29.

[86] Recordon, D., and Fitzpatrick, B. OpenID Authentication 1.1. Finalized

OpenID Specification, May (2006).

[87] Recordon, D., and Reed, D. OpenID 2.0: a platform for user-centric

identity management. In Proceedings of the second ACM workshop on Digital

identity management (2006), ACM, pp. 11–16.

[88] Reich, E. Deniable Ring Signatures. PhD thesis, Massachusetts Institute of

Technology, 2007.

[89] Rieck, K., Krueger, T., and Dewald, A. Cujo: efficient detection and

prevention of drive-by-download attacks. In Proceedings of the 26th Annual

Computer Security Applications Conference (2010), ACM, pp. 31–39.

[90] Rivest, R., Shamir, A., and Tauman, Y. How to leak a secret: Theory

and applications of ring signatures. In Essays in Memory of Shimon Even

(2006), pp. 164–186.

115

http://www.quora.com

[91] Rivest, R. L., Shamir, A., and Adleman, L. A method for obtaining

digital signatures and public-key cryptosystems. Communications of the ACM

21, 2 (1978), 120–126.

[92] Rivest, R. L., Shamir, A., and Tauman, Y. How to leak a secret. In

Advances in Cryptology - ASIACRYPT 2001. Springer, 2001, pp. 552–565.

[93] SecureDrop. https://pressfreedomfoundation.org/securedrop/.

[94] Shamir, A. How to share a secret. Communications of the ACM 22, 11 (1979),

612–613.

[95] Shamir, A. Identity-based cryptosystems and signature schemes. In Advances

in cryptology (1985), Springer, pp. 47–53.

[96] Shen, V. R., Chung, Y. F., Chen, T. S., Lin, Y. A., et al. A blind

signature based on discrete logarithm problem. INTERNATIONAL JOUR-

NAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL 7,

9 (2011), 5403–5416.

[97] Song, C., Zhuge, J., Han, X., and Ye, Z. Preventing drive-by download

via inter-module communication monitoring. In Proceedings of the 5th ACM

symposium on information, computer and communications security (2010),

ACM, pp. 124–134.

[98] Song, X., Wolinsky, D. I., and Ford, B. Faceless: decentralized anony-

mous group messaging for online social networks. In SNS (2012), E. Yoneki,

D. Frey, and I. Brown, Eds., ACM, p. 13.

[99] StackOverflow. http://www.stackoverflow.com.

116

https://pressfreedomfoundation.org/securedrop/
http://www.stackoverflow.com

[100] Sweeney, L. k-anonymity: A model for protecting privacy. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 05 (2002),

557–570.

[101] Tanaka, H. A realization scheme for the identity-based cryptosystem. In

CRYPTO (1987), pp. 340–349.

[102] Tran, D. N., Min, B., Li, J., and Subramanian, L. Sybil-resilient online

content voting. In NSDI (2009), vol. 9, pp. 15–28.

[103] Tsang, P. P., Au, M. H., Kapadia, A., and Smith, S. W. Blacklistable

anonymous credentials: blocking misbehaving users without ttps. In Proceed-

ings of the 14th ACM conference on Computer and communications security

(2007), ACM, pp. 72–81.

[104] Tsang, P. P., Au, M. H., Kapadia, A., and Smith, S. W. Blac: Revok-

ing repeatedly misbehaving anonymous users without relying on ttps. ACM

Transactions on Information and System Security (TISSEC) 13, 4 (2010), 39.

[105] Tsang, P. P., Kapadia, A., Cornelius, C., and Smith, S. W. Nymble:

Blocking misbehaving users in anonymizing networks. Dependable and Secure

Computing, IEEE Transactions on 8, 2 (2011), 256–269.

[106] Tsang, P. P., and Wei, V. K. Short linkable ring signatures for e-

voting, e-cash and attestation. In Information Security Practice and Expe-

rience. Springer, 2005, pp. 48–60.

[107] Tsujii, S., and Itoh, T. An ID-based cryptosystem based on the discrete

logarithm problem. Selected Areas in Communications, IEEE Journal on 7, 4

(1989), 467–473.

117

[108] Viswanath, B., Mislove, A., Cha, M., and Gummadi, K. P. On the

evolution of user interaction in facebook. In Proceedings of the 2nd ACM

workshop on Online social networks (2009), ACM, pp. 37–42.

[109] Viswanath, B., Mondal, M., Clement, A., Druschel, P., Gummadi,

K. P., Mislove, A., and Post, A. Exploring the design space of so-

cial network-based sybil defenses. In Communication Systems and Networks

(COMSNETS), 2012 Fourth International Conference on (2012), IEEE, pp. 1–

8.

[110] Viswanath, B., Mondal, M., Gummadi, K. P., Mislove, A., and

Post, A. Canal: Scaling social network-based sybil tolerance schemes. In

Proceedings of the 7th ACM european conference on Computer Systems (2012),

ACM, pp. 309–322.

[111] Viswanath, B., Post, A., Gummadi, K. P., and Mislove, A. An

analysis of social network-based sybil defenses. ACM SIGCOMM Computer

Communication Review 41, 4 (2011), 363–374.

[112] Watanabe, R., and Miyake, Y. Account management method with blind

signature scheme. Engineering and Technology, World of Science, 59 (2011),

2069–2073.

[113] Whitten, A., and Tygar, J. D. Why johnny can’t encrypt: A usability

evaluation of pgp 5.0. In Usenix Security (1999), vol. 1999.

[114] Wolinsky, D., Corrigan-Gibbs, H., Ford, B., and Johnson, A. Scal-

able anonymous group communication in the anytrust model. In EuroSec

(Apr. 2012).

118

[115] Wolinsky, D. I., Corrigan-Gibbs, H., Ford, B., and Johnson, A.

Dissent in numbers: Making strong anonymity scale. 10th OSDI (2012).

[116] Yee, K.-P., and Sitaker, K. Passpet: convenient password management

and phishing protection. In Proceedings of the second symposium on Usable

privacy and security (2006), ACM, pp. 32–43.

[117] Yu, H., Gibbons, P. B., Kaminsky, M., and Xiao, F. Sybillimit: A near-

optimal social network defense against sybil attacks. In Security and Privacy,

2008. SP 2008. IEEE Symposium on (2008), IEEE, pp. 3–17.

[118] Yu, H., Kaminsky, M., Gibbons, P. B., and Flaxman, A. Sybilguard:

defending against sybil attacks via social networks. In ACM SIGCOMM Com-

puter Communication Review (2006), vol. 36, ACM, pp. 267–278.

[119] Yue, C., and Wang, H. Bogusbiter: A transparent protection against

phishing attacks. ACM Transactions on Internet Technology (TOIT) 10, 2

(2010), 6.

119

	Introduction
	Background and Related Work
	Federated Identity Authentication
	Privacy Concerns with Federated Identity
	Motivating Use-Cases for Crypto-Book

	Related Work

	Definitions
	Architecture Overview
	Credential Producers
	Credential Consumers
	Workflow
	Threat Model

	Credential Producers
	Threshold Server Model
	Credential Generation
	Key Generation
	Blind Signature Generation

	Credential Assignment Mechanism
	Alternative Identity Providers
	Trust levels
	Combined Identities
	Credential Collection
	Compromised Credential Producer Servers

	Credential Consumers
	OAuth Provider Credential Consumer
	Application-Embedded Consumer
	LRS Anonymous Authentication

	At-Large Credentials
	Background: Blind Signatures
	Building Block: Blind Signatures
	Producing At-Large Credentials
	Consuming At-Large Credentials
	Credential Attributes
	Rate-Limits via Attributes
	Security/Privacy Properties
	Discussions

	Group Credentials
	Background: Ring Signatures
	Building Block: Ring Signatures
	Producing Group Credentials
	Consuming Group Credentials
	Security/Privacy Properties
	Discussions
	Neff-Based Group Credential Scheme

	Privacy Preservation
	Anonymous Key Distribution
	Anonymity Set
	Ring signatures
	Blind signatures

	Security Analysis
	Security Properties
	Attackers
	Application attacker
	Identity provider attacker
	Credential producer attacker
	Credential consumer attacker
	User attacker

	Attacks and Defenses
	Single party attacks
	Collusion attacks
	Miscellaneous attacks

	Implementation
	Credential Assignment Mechanism
	Credential Schemes Implemented
	DSA-Based Scheme
	RSA-Based Scheme
	Boneh-Franklin Identity-Based Encryption Scheme
	Blind and Partially Blind Signature Schemes

	Applications
	CB-Wiki
	CB-Dissent
	CB-Drop

	Evaluation
	Experimental Setup
	Producing Credentials
	Facebook Application Authorization
	At-Large Credentials
	Group Credentials
	Neff-Based Group Credentials

	Consuming Credentials
	At-Large Credentials
	Group Credentials

	CB-Dissent Authentication
	Code modification

	Future Directions
	Conclusions

