Building Privacy-Preserving Cryptographic Credentials from Federated Online Identities

John Maheswaran

PhD Dissertation Defense, 6/24/2015 Department of Computer Science Yale University

Committee:

Bryan Ford (adviser)

Joan Feigenbaum Ramakrishna Gummadi Anil Somayaji (Carleton University)

Roadmap

- 1. Background
- 2. Work Overview
- 3. System Architecture
- 4. Credential Producers and Consumers
 - At -Large Credentials
 - Group Credentials
- 5. Evaluation
- 6. Conclusions

Roadmap

1. Background

- 2. Work Overview
- 3. System Architecture
- 4. Credential Producers and Consumers
 - At -Large Credentials
 - Group Credentials
- 5. Evaluation
- 6. Conclusions

- Popular for managing online identities
- Examples: Facebook and PayPal
- Authentication protocols such as OpenID/OAuth
- Privacy cost: ID provider and applications can track users across all sites

Federated Authentication Privacy Concerns

- ID providers learns every application user logs into
- ID providers learns login time to every application for a user
- ID provider can impersonate user on applications
- Applications learn the user's true identity
- Applications learn user profile details e.g. friends lists, location

Federated Authentication Privacy Concerns

- Applications can edit user profile on ID provider e.g. post to timeline, edit personal info
- Applications can link user behavior across sites
- User data can be tracked and sold to advertisers
- Compromised federated ID account can log in as that user to all applications

Motivating Use Case: Wikipedia Anonymous Editing

- Privacy preserving login to Wikipedia
- In favor of anonymous editing
- Anonymous editing often abused vandalism/spam
- Anonymous yet abuse resistant editing
- Allow users to edit pages without revealing their identities
- Allow admins to sanction site abusers

Motivating Use Case: Group Authenticated SecureDrop

- Verifiable whistleblowing without compromising privacy
- Allow a journalist to authenticate leaked documents without compromising source anonymity
- A whistleblower authenticates as a member of a group and signs document
- Journalist knows that the document came from a director at Evil Corp. Inc. but does not know which one

Related Work

- PseudoID Dey and Weis. [HotPets '10]
 - privacy protected federated login
 - does not handle key assignment or Sybil resistance
- Location privacy via private proximity testing Narayanan et al. [NDSS '11]
 - Proposed using social network as a PKI
- Opaak Maganis et al. [MobiSys '12]
 - provides Sybil resistance by relying on a cellphone as scare resource.
- SudoWeb Kontaxis et al. [Information Security 2011]
 - looked at limiting the amount of Facebook information disclosed to third party sites
 - did not consider anonymous online IDs

Roadmap

1. Background

2. Work Overview

- 3. System Architecture
- 4. Credential Producers and Consumers
 - At -Large Credentials
 - Group Credentials
- 5. Evaluation
- 6. Conclusions

Work Overview

- Poster] Crypto-Book: Privacy Preserving Online Identities; John Maheswaran, David Isaac Wolinsky, Bryan Ford; SOSP '13 Poster Session (Symposium on Operating Systems Principles); and Diversity '13 Poster Session (Workshop on Diversity in Systems Research)
- Extended abstract/WIP] Crypto-Book: Privacy Preserving Online Identities; John Maheswaran, David Isaac Wolinsky, Bryan Ford; SOSP '13 Works In Progress (WIP) Session (Symposium on Operating Systems Principles)
- [Paper] Crypto-Book: An Architecture for Privacy Preserving
 Online Identities; John Maheswaran, David Isaac Wolinsky, Bryan Ford;
 HotNets '13 (Hot Topics in Networks '13)

Work Overview

- [arXiv tech report] Crypto-Book: Bootstrapping Privacy
 Preserving Online Identities from Social Networks; John
 Maheswaran, Daniel Jackowitz, David Isaac Wolinsky, Lining Wang, Bryan Ford arXiv preprint arXiv:1406.4053, June 2014
- [Paper (under submission)] Building Privacy-Preserving
 Cryptographic Credentials from Federated Online
 Identities; John Maheswaran, Daniel Jackowitz, Ennan Zhai, David Isaac Wolinsky, Bryan Ford; CoNEXT '15 (ACM Conference on emerging Networking Experiments and Technologies)

Press coverage

- The workshop on diversity in systems research 2013; Christopher Stewart and Vishakha Gupta; **ACM SIGOPS Operating Systems Review** 48.1 (2014): 103-106.
- The federation of our digital identities; Is Nerd Science blog; http://isnerd.co/2014/07/05/federated-identity-privacy-namecoin/
- CryptoBook; Layer 9 Computer networking and systems research blog; http://www.layer9.org/2013/11/hotnets-13-cryptobook.html

Online resources

- Open source code is available on GitHub:
 - github.com/jyale/cobra
- Project websites:
 - www.crypto-book.com
 - www.cryptobook.ninja

Roadmap

- 1. Background
- 2. Work Overview

3. System Architecture

- 4. Credential Producers and Consumers
 - At -Large Credentials
 - Group Credentials
- 5. Evaluation
- 6. Conclusions

System Components

Federated ID Provider

System Components

Verify a client's ID with federated ID provider, then issue client with privacy preserving credentials

Federated ID Provider

Verify a clients **privacy preserving credentials**and authenticate client to
applications

Security Properties

- Anonymity No single party can unmask a pseudonym to a federated ID
- Unlinkability It is not possible to tell if two pseudonyms are controlled by the same person
- Accountability (abuse resistance) A user can be punished if they misbehave (e.g. spam/troll)
- **Unforgeability** (no impersonation) No one can act as the user and authenticate as them

Threat Model: Threats

- Clients post low quality content/spam
- Federated ID providers and applications
 - de-anonymize client
 - learn what applications client accesses
- Multiple applications link client's identity across sites

Threat Model: **Assumptions**

- At most (t-1) of n credential producers are dishonest
 Others are honest-but-curious.
- Do not consider network level attacks
 Clients can connect to system components via anonymous networks (e.g. Tor)
- Anonymous network communication/cryptographic primitive compromise are outside of scope

Client

- Person browsing the web
- Interacts with other system components via browser
- Interacts with all other components in system
- Goal is to login to and use a web application

Application

Application

- A web site that someone wants to use
- Client authenticates to log in to their account on that website
- Many applications now support federated authentication (e.g. Log in with Facebook/Log in with LinkedIn etc)
- Examples:

Application

Federated Identity Provider

Federated ID Provider

- Authenticates users for applications
- Often a social network or other identity provider
- Financial ID providers (e.g. PayPal) require real world verification - Higher barrier to entry
- Authorize access/modification of profile data
- Examples:

Federated Authentication Interaction

High level

System Architecture

Federated ID Authentication

V U V

Detailed view

Application

to authorize app

Application

8. Verify username and password. Prompt user to authorize app

10. OAuth token via redirect as URL parameter: example.com/page.php&access token=AFB34

Client

12. Verify OAuth token

Federated ID Provider

15. User ID

Application

Federated ID Provider

15. User ID

16. Look up user ID in database, retrieve user data 67

16. Look up user ID in database, retrieve user data 68

System Architecture

Roadmap

- 1. Background
- 2. Work Overview
- 3. System Architecture

4. Credential Producers and Consumers

- At -Large Credentials
- Group Credentials
- 5. Evaluation
- 6. Conclusions

Definition: Privacy Preserving Credential

- A client uses a privacy preserving credential to prove they own a pseudonym, without revealing their true identity
- Using privacy preserving cryptographic techniques

Credential Producers

- Several credential producer servers collectively act to assign credentials to clients
- (t,n) threshold model t of n servers can collectively assign a credential to a client
- Acts as an "application" in OAuth protocol to authenticate client with federated ID provider

Obtaining OAuth tokens

Client now has one
OAuth token per app.
Each app corresponds
to one credential
producer server.

Multiple ID provider use case: This process is performed for each federated ID provider. The user only has to enter their username and password once per federated ID provider. The other steps are automated by a Chrome extension.

Obtaining credentials

3. Each app verifies corresponding token

3. Each app verifies corresponding token

7. Client combines credential shares to obtain overall credential.

Credential Consumers

Authenticating with and using privacy preserving credentials

Credential Consumers

Credential Consumers

- Map credentials to pseudonyms
- Pseudonyms produced are not linkable back to federated IDs
- OAuth provider consumers: Expose pseudonym IDs to applications via OAuth.
 - Easily integrate with applications already using federated authentication
- Application-embedded consumer directly in application

0.(b). Client signs challenge using credentials **Credential Producers** (signing performed by browser extension) Client **Credential Consumer**

1. Browser extension fills in hidden form with signature

 Browser extension fills in hidden form with signature

Credential Producers

Credential Producers

Credential Producers

Credential Producers

5. Consumer verifies client credentials

Credential Producers

Client

6.(a). If credential Verifies successfully, issue OAuth token.
6.(b). Otherwise issue login error message

Credential Consumer

Client

Credential Producers

Client has now successfully authenticated to the application

Roadmap

- 1. Background
- 2. Work Overview
- 3. System Architecture
- 4. Credential Producers and Consumers
 - At -Large Credentials
 - Group Credentials
- 5. Evaluation
- 6. Conclusions

Can use for privacy preserving Wikipedia login

- Represents that the user has been verified as the owner of some federated identity.
- Anonymity set is implicitly the users who have collected a credential
- Accountability through rate limiting: producers restrict number of credentials a federated ID gets within a period of time
- Can include credential attributes, such as "age over 18" or "identity active for at least one year"

Technical Building Block: Blind Signatures

- 1. Request a signature on a blinded message
- 2. Signer cannot learn message content
- 3. Third party can verify unblinded signature

$$m -> m' -> m',s' -> m,s$$

Technical Building Block: Blind Signatures

- Client is the requester
- Each credential producer is a signer
- Credential consumers are verifiers

Credential Producers

 Producers publish initialization info

Credential Consumers

Credential Producers

 Producers publish initialization info

2. Client blinds message using published info

Credential Consumers

Credential Consumers

(m',s') -> (m,s)

public key.

Roadmap

- 1. Background
- 2. Work Overview
- 3. System Architecture
- 4. Credential Producers and Consumers
 - At -Large Credentials
 - Group Credentials
- 5. Evaluation
- 6. Conclusions

Provides k-anonymous authentication

Verifiable whistleblowing/private chat room use cases

- Allows a client to authenticate explicitly as some member of a larger, well defined set of users (e.g. a Facebook group)
- The group credential scheme provides k-anonymity, the client is anonymous among a set of k people
- Based on linkable ring signatures

Technical Building Block: Linkable Ring Signatures

- Created by member of a group of users
- Third party can verify:
 - Some member of the group created signature
 - Whether two signatures were created by same signer
- Third party cannot discover
 - Which specific user created the signature

Technical Building Block: Linkable Ring Signatures

- LRS has linkage tag
 - If a client generates two LRSs, will have the same linkage tag
 - Means LRSs can be linked across time
- Linkage tag provides accountability
 - privacy preserving mapping between fed IDs and pseudonyms

Group Setup

- The client collects their private key shares from at least t of n credential producers
- Client combines shares to give private key, saved in browser extension
- Client collects public keys from credential producers (no authentication)
- Credential consumers issue challenge to client, which client signs with LRS and is the authenticated to application

Chat Room Application

Chat Room Application

Chat Room Application

5. Client signs challenge using private key and public key list to give a linkable ring signature (LRS)

Group Credential Scheme: Chat Room

Roadmap

- 1. Background
- 2. Work Overview
- 3. System Architecture
- 4. Credential Producers and Consumers
 - At -Large Credentials
 - Group Credentials

5. Evaluation

6. Conclusions

Evaluation

Evaluation: Experimental Setup

- Clients: consumer laptops
 - 2.4GHz Intel Core i5 processors
 - 8GB of RAM.
- Credential producers: PlanetLab nodes
 - 2.4GHz Intel Xeon processor
 - 4GB of RAM
- Credential consumers: commercial shared hosting
 - 2.4GHz Intel Xeon processors
 - 16GB of RAM

Evaluation: Producing Credentials, App Auth.

Facebook App Authorization time

 Client performs this setup step only once, the first time they use the system

Evaluation: Producing At-large Credentials

Blind Signature Size (bandwidth)

Key Parameters	Signature Size (Bytes)	
(1024,160)	210	
(2048,224)	287	
(2048,256)	325	
(3072,256)	326	

 Network overhead between client and producer depends on the size (and hence strength) of the signature

Evaluation: Producing/Consuming At-large Credentials

Blind Signature Operations

 For a 2048-bit signing key, credential production takes approximately 50ms of computation time, verification takes less than 20ms,

Evaluation: Producing Group Credentials

 Key pair generation: The first time a key pair is requested it is collectively generated by the producers

Evaluation: Producing Group Credentials

 Key retrieval: requests to all producers are performed in parallel. Private keys include Facebook authentication

Evaluation: Consuming Credentials

End-to-end group credentials evaluation

Entity	Operation	Time (s)
Client	Produce LRS	0.257
Credential Consumer	Fetch Public Keys	1.011
	Verify LRS	0.035
Client-Consumer Network Latencies		0.304
Total User-Observable		1.607

- Group credential: ten Facebook identities for DeDiS group
- 1.2s overhead vs non-anonymous federated authentication

Evaluation: Consuming Credentials

For ring size ~100 (2048-bit keys), operations <1s

Evaluation: Consuming Credentials

LRS size (bandwidth)

For ring sizes ~100 (2048-bit keys), signatures <10KB.

Roadmap

- 1. Background
- 2. Work Overview
- 3. System Architecture
- 4. Credential Producers and Consumers
 - At -Large Credentials
 - Group Credentials
- 5. Evaluation
- 6. Conclusions

Conclusions and Future Directions

- Crypto-Book is a pluggable architecture for providing privacy preserving credentials based on federated identity providers.
- Experimental evaluations show acceptable overheads
- Privacy conscious applications can be developed on top of this platform
- Pluggable nature means other privacy preserving technologies can be integrated in future

Acknowledgements

- Thanks to my adviser, Bryan Ford and committee members, Joan Feigenbaum, Ramki Gummadi, Anil Somayaji
- Collaborators: Danny Jackowitz, Ennan Zhai, David Isaac
 Wolinsky and DeDiS research group members Ewa Syta, Weiyi
 Wu and Jose Faleiro
- Undergraduate adviser: The late Robin Milner (University of Cambridge, UK)
- PhD funding sources: Yale University, NSF grant CCF-0916389, DARPA SAFER grant N66001-11-C-4018
- Thanks to the everyone in the Yale Computer Science department and everyone else for attending

THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE.

Thanks!

[Subsequent slides are were removed from presentation and may be incomplete]

"Two Principles of Deadlines:

- 1. All deadlines converge on the same day— Deadline Day.
 - 2. Every day is Deadline Day."

-Bryan Ford

Federated Authentication Interaction

Credential Assignment Mechanism

Credential Assignment Mechanism

System Architecture

At-Large Credential Scheme

Federated Authentication Interaction


```
<div class=crypto-book-keys>
                                       <span id=keys hidden>
\{[1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1],
  9213287430534864247170807841004133488535319745307277803191744311286520505461868812082501306600071217826
  3950956531318832108863169340764698247031371414863771604935256105092762841438784379911723305782401082742
  784114092028495245616799321994540261243928892932981976632922660838831602796590451867184815260093541958"
  578949139091659940414652511861092589711233769404781397870572360577370872878482262", "6726925148683922018
  695734072893020848350114096039067806309069586530632091344153","7084860418167944325768861224469502719958
  4604527434851571570447609734974814812950578105468652079601379576129508143740162055174593251292640035189
  412377043792968586105897114844803627898", "7792229403107980413949628979167140904822615280131186664885057
  284191751823436757", "3944186335986275182699484226302952805957300837628552294469447392678039656842880110
  7326973012939482472251463610538516944480189377141023008020146750623600829226042791213018500290104605702
  3827696239545645734945092427424727234984380679444754976793321770809495223861459749976061116958570407455
  3733867837304112285355230235943090804573278978148216326683473307898231883830037205560411794849618839731
  0090248300751121032516231234370950810632742028347705745152823790799426290892242522810081276195466660988
  2462320632987416149542877170851992039087410674836905107275356467479440490181461396522309074287855783"17
```

