
Grounding Formulas with Complex Terms

Amir Aavani, Xiongnan (Newman) Wu, Eugenia Ternovska, David Mitchell

Simon Fraser University
{aaa78,xwa33,ter,mitchell}@sfu.ca

Abstract. Given a finite domain, grounding is the the process of creating a variable-
free first-order formula equivalent to a first-order sentence. As the first-order sen-
tences can be used to describe a combinatorial search problem, efficient grounding
algorithms would help in solving such problems effectively and makes advanced
solver technology (such as SAT) accessible to a wider variety of users. One promising
method for grounding is based on the relational algebra from the field of Database
research. In this paper, we describe the extension of this method to ground formulas
of first-order logic extended with arithmetic, expansion functions and aggregate
operators. Our method allows choice of particular CNF representations for complex
constraints, easily.

1 Introduction

An important direction of work in constraint-based methods is the development of declara-
tive languages for specifying or modelling combinatorial search problems. These languages
provide users with a notation in which to give a high-level specification of a problem
(see e.g., ESSENCE [1]). By reducing the need for specialized constraint programming
knowledge, these languages make the technology accessible to a wider variety of users.
In our group, a logic-based framework for specification/modelling language was proposed
[2]. We undertake a research program of both theoretical development and demonstrating
practical feasibility through system development.

Our tools are based on grounding, which is the task of taking a problem specification,
together with an instance, and producing a variable-free first-order formula representing
the solutions to the instance1. Here, we consider grounding to propositional logic, with
the aim of using propositional satisfiability (SAT) solvers as the problem solving engine.
Note that SAT is just one possibility. A similar process can be used for grounding from
a high-level language to e.g., CPLEX, various Satisfiability Modulo Theory (SMT) and
ground constraint solvers, e.g., MINION [3], etc. An important advantage in solving
through grounding is that the speed of ground solvers improves all the time, and we can
always use the best and the latest solver available.

Grounding a first-order formula over a given finite domain A may be done simply by
replacing ∀x φ(x) with ∧a∈Aφ(x)[x/ã], and ∃x φ(x) with ∨a∈Aφ(x)[x/ã] where ã is
a new constant symbol denoting domain element a and φ(x)[x/ã] denotes substituting
ã for every occurrence of x in φ. In practice, though, effective grounding is not easy.
Naive methods are too slow, and produce groundings that are too large and contain many
redundant clauses.

Patterson et. al. defined a basic grounding method for function-free first-order logic (FO)
in [4, 5], and a prototype implementation is described in [5]. Expressing most of interesting

1 By instance we always understand an instance of a search problem, e.g., a graph is an instance
of 3-colourability.

2

real-world problems, e.g., Traveling Salesman problem or Knapsack problem, with function-
free FO formula without having access to arithmetical operators is not an easy task. So, en-
riching the syntax with functions and arithmetical operators is a necessity. We describe how
we have extended the existing grounding algorithm such that it can handle these constructs.

It is important to notice that the model expansion problem [5] is very different from query
evaluation process. In model expansion context, there are formulas and sub-formulas which
cannot be evaluated, while in query processing context, every formula can be evaluated as
either true or false. First-order model expansion, when we are talking about finite domain,
allows one to describe NP-complete problems while the query processing problem for FO,
in finite domain context, is polynomial time. In this paper, we are interested in solving
model expansion problem.

An important element in the practice of SAT solving is the choice, when designing re-
ductions, of “good” encodings into propositional logic of complex constraints. We describe
our method for grounding of formulas containing aggregate operations in terms of “gadgets”
which determine the actual encoding. The choice of the particular gadget can be under user
control, or even made automatically at run-time based on formula and instance properties.

Even within one specification, different occurrences of the same aggregate may be
grounded differently, and this may vary from instance to instance. With well designed
(possibly by machine learning methods) heuristics for such choices, we may be able to
produce groundings that are more effective in practice than those a human could design
by hand, except through an exceedingly labour-intensive process.
Our main contributions are:
1. We present an algorithm which can be used to ground specifications having different

kinds of terms, e.g., aggregates, expansion/instance functions, arithmetic.
2. We enrich our language with aggregates, functions and arithmetical expression and

design and develop an engine which can convert these constructs to pure SAT in-
stances as well as to instances of SAT solvers which are able to handle more complex
constraints such as cardinality constraints or Pseudo-Boolean constraints.

3. We define the notion of answer to terms and modify the previous grounding algorithm
to be able to work with this new concept.

2 Background

We formalize combinatorial search problems in terms of the logical problem of model
expansion (MX), defined here for an arbitrary logic L.

Definition 1 (MX). Given an L-sentence φ, over the union of disjoint vocabularies σ
and ε, and a finite structure A for vocabulary σ, find a structure B that is an expansion of
A to σ ∪ ε such that B |= φ.

In this paper, φ is a problem specification formula.A always denotes a finite σ-structure,
called the instance structure, σ is the instance vocabulary, and ε the expansion vocabulary,
and L is FO logic extended with arithmetic and aggregate operators.

Example 1. Consider the following variation of the knapsack problem:
We are given a set of items (loads), L = {l1, · · · , ln}, and weight of each item is

specified by an instance function W which maps items to integers (wi = W (li)). We
want to check if there is a way to put these n items into m knapsacks, K = {k1, · · · , km}
while satisfying the following constraints:

Certain items should be placed into certain knapsacks. These pairs are specified using
the instance predicate “P”. h of these m knapsacks have high capacity, each of them can
carry a total load of HCap, while the capacity of the rest of the knapsacks is LCap. We

3

also do not want to put two items whose weights are very different in the same bag, i.e.,
the difference between the weights of the items in the same bag should be less than Wl.
Each of HCap, LCap and Wl is an instance function with arity zero, i.e. a given constant.

The following formula φ in the first order logic is a specification for this problem:

{A1 : ∀l∃k : Q(l, k)}∧
{A2 : ∀l∀k1∀k2 : (Q(l, k1) ∧Q(l, k2)) ⊃ k1 = k2}∧
{A3 : ∀l, k : P (l, k) ⊃ Q(l, k)}∧
{A4 : ∀k :

∑
l:Q(l,k)W (l) ≤ HCap}∧

{A5 : COUNTk{
∑
l:Q(l,k)W (l) ≥ LCap} ≤ h}∧

{A6 : ∀k, l1, l2 : (Q(l1, k) ∧Q(l2, k)) ⊃ (W (l1)−W (l2) ≤Wl)}

An instance is a structure for vocabulary σ = {P,W,Wl, HCap, LCap}, i.e., a list of pairs,
a function which maps items to integers and three constant integers. The task is to find
an expansion B of A that satisfies φ: A︷ ︸︸ ︷

(L ∪K;PA,WA,WAl , H
A
Cap, L

A
Cap, Q

B︸ ︷︷ ︸
B

) |= φ.

Interpretations of the expansion vocabulary ε = {Q}, for structures B that satisfy φ, is
a mapping from items to knapsacks that satisfies the problem properties.

The grounding task is to produce a ground formula ψ = Gnd(φ,A), such that models
of ψ correspond to solutions for instanceA. Formally, to ground we bring domain elements
into the syntax by expanding the vocabulary with a new constant symbol for each element
of the domain. For domain A, the domain of structure A, we denote the set of such
constants by Ã. In practice, the ground formula should contain no occurrences of the
instance vocabulary, in which case we call it reduced.

Definition 2 (Reduced Grounding for MX). Formula ψ is a reduced grounding of
formula φ over σ-structure A = (A;σA) if
1 ψ is a ground formula over ε ∪ Ã, and
2 for every expansion structure B = (A;σA, εB) over σ ∪ ε, B |= φ iff (B, ÃB) |= ψ,

where ÃB is the standard interpretation of the new constants Ã.

Proposition 1. Let ψ be a reduced grounding of φ over σ-structure A. Then A can be
expanded to a model of φ iff ψ is satisfiable.

A reduced grounding with respect to a given structureA can be obtained by an algorithm
that, for each fixed FO formula, runs in time polynomial in the size ofA. Such a grounding
algorithm implements a polytime reduction to SAT for each NP search problem. Simple
grounding algorithms, however, do not reliably produce groundings for large instances
of interesting problems fast enough in practice.

Grounding for MX is a generalization of query answering. Given a structure (database)
A, a Boolean query is a formula φ over the vocabulary of A, and query answering is
equivalent to evaluating whether φ is true, i.e., A |= φ. For model expansion, φ has some
additional vocabulary beyond that of A, and producing a reduced grounding involves
evaluating out the instance vocabulary, and producing a ground formula representing the
possible expansions of A for which φ is true.

The grounding algorithms in this paper construct a grounding by a bottom-up process
that parallels database query evaluation, based on an extension of the relational algebra.

4

For each sub-formula φ(x̄) with free variables x̄, we call the set of reduced groundings for
φ under all possible ground instantiations of x̄ an answer to φ(x̄). We represent answers
with tables on which an extended algebra operates.

An X-relation is a k-ary relation associated with a k-tuple of variables X, representing
a set of instantiations of the variables of X. It is a central notion in databases. In extended
X-relations, introduced in [4], each tuple γ is associated with a formula ψ. For convenience,
we use > and ⊥ as propositional formulas which are always true and, false, respectively.

Definition 3 (extended X-relation; function δR). Let A be a domain, and X a tuple
of variables with |X| = k. An extended X-relationR over A is a set of pairs (γ, ψ) s.t.
1 γ : X → A, and
2 ψ is a formula, and
3 if (γ, ψ) ∈ R and (γ, ψ′) ∈ R then ψ = ψ′.
The function δR represented byR is a mapping from k-tuples γ of elements of the domain
A to formulas, defined by:

δR(γ) =

{
ψ if (γ, ψ) ∈ R,
⊥ if there is no pair (γ, ψ) ∈ R.

For brevity, we sometimes write γ ∈ R to mean that there exists ψ such that (γ, ψ) ∈ R.
We also sometimes call extended X-relations simply tables. To refer to X-relations for
some concrete set X of variables, rather than in general, we write X-relation.

Definition 4 (answer to φ wrt A). Let φ be a formula in σ ∪ ε with free variables X ,
A a σ-structure with domain A, andR an extended X-relation over A. We sayR is an
answer to φ wrt A if for any γ : X → A, δR(γ) is a reduced grounding of φ[γ] over A.
Here, φ[γ] denotes the result of instantiating free variables in φ according to γ.

Since a sentence has no free variables, the answer to a sentence φ is a zero-ary extended
X-relation, containing a single pair (〈〉, ψ), associating the empty tuple with formula ψ,
which is a reduced grounding of φ.

Example 2. Let σ = {P} and ε = {E}, and let A be a σ-structure with PA =
{(1, 2, 3), (3, 4, 5)}. Answers to φ1 ≡ P (x, y, z) ∧ E(x, y) ∧ E(y, z), φ2 ≡ ∃zφ1

and φ3 ≡ ∃x∃yφ2 are demonstrated in Table 1.
Observe that δR(1, 2, 3) = E(1, 2) ∧ E(2, 3) is a reduced grounding of φ1[(1, 2, 3)] =
P (1, 2, 3)∧E(1, 2)∧E(2, 3), and δR(1, 1, 1) = ⊥ is a reduced grounding of φ1[(1, 1, 1)].
E(1, 2) ∧ E(2, 3) is a reduced grounding of φ2[(1, 2)]. Notice that, as φ3 does not have
any free variables, its corresponding answer has just a single row.

The relational algebra has operations corresponding to each connective and quantifier in
FO, as follows: complement (negation); join (conjunction); union (disjunction), projection
(existential quantification); division or quotient (universal quantification). Following [4,
5], we generalize each to extended X-relations as follows.

Definition 5 (Extended Relational Algebra). LetR be an extended X-relation and S
an extended Y -relation, both over domain A.
x y z ψ
1 2 3 E(1, 2) ∧ E(2, 3)
3 4 5 E(3, 4) ∧ E(4, 5)

x y ψ
1 2 E(1, 2) ∧ E(2, 3)
3 4 E(3, 4) ∧ E(4, 5)

ψ
[E(1, 2) ∧ E(2, 3)] ∨ [E(3, 4) ∧ E(4, 5)]

Table 1. Answers to φ1, φ2 and φ3

5

1. ¬R is the extended X-relation ¬R = {(γ, ψ) | γ : X → A, δR(γ) 6= >, and ψ =
¬δR(γ)}

2. R on S is the extended X ∪ Y -relationR on S = {(γ, ψ) | γ : X ∪ Y → A, γ|X ∈
R, γ|Y ∈ S, and ψ = δR(γ|X) ∧ δS(γ|Y)};

3. R ∪ S is the extended X ∪ Y -relation R ∪ S = {(γ, ψ) | γ|X ∈ R or γ|Y ∈
S, and ψ = δR(γ|X) ∨ δS(γ|Y)}.

4. For Z ⊆ X , the Z-projection of R, denoted by πZ(R), is the extended Z-relation
{(γ′, ψ) | γ′ = γ|Z for some γ ∈ R and ψ =

∨
{γ∈R|γ′=γ|Z} δR(γ)}.

5. For Z ⊆ X , the Z-quotient of R, denoted by dZ(R), is the extended Z-relation
{(γ′, ψ) | ∀γ(γ : X → A∧γ|Z = γ′ ⇒ γ ∈ R), and ψ =

∧
{γ∈R|γ′=γ|Z} δR(γ)}.

To ground using this algebra, we apply the algebra inductively on the structure of the
formula, just as the standard relational algebra may be applied for query evaluation. We
define the answer to atomic formula P (x̄) as follows. If P is an instance predicate, the
answer to P is the set of tuples (ā,>), for ā ∈ PA. If P is an expansion predicate, the
answer is the set of all pairs (ā, P (ā)), where ā is a tuple of elements from the domain
A. Correctness of the method then follows, by induction on the structure of the formula,
from the following proposition.

Proposition 2. Suppose thatR is an answer to φ1 and S is an answer to φ2, both with
respect to (wrt) structure A. Then
1. ¬R is an answer to ¬φ1 wrt A;
2. R on S is an answer to φ1 ∧ φ2 wrt A;
3. R∪ S is an answer to φ1 ∨ φ2 wrt A;
4. If Y is the set of free variables of ∃z̄φ1, then πY (R) is an answer to ∃z̄φ1 wrt A.
5. If Y is the set of free variables of ∀z̄φ1, then dY (R) is an answer to ∀z̄φ1 wrt A.

The proof for cases 1, 2 and 4 is given in [4]; the other cases follow easily.
The answer to an atomic formula P (x̄), where P is from the expansion vocabulary, is

formally a universal table, in practice we may represent this table implicitly and avoid
explicitly enumerating the tuples. As operations are applied, some subset of columns
remain universal, while others do not. Again, those columns which are universal may
be represented implicitly. This could be treated as an implementation detail, but the use
of such implicit representations dramatically affects the cost of operations, and so it is
useful to further generalize our extended X-relations. We call the variables which are
implicitly universal “hidden” variables, as they are not represented explicitly in the tuples,
and the other variables “explicit” variables. We are not going to define this concept here,
but interested readers are encouraged to refer to [5].
This basic grounding approach can ground just the axioms A1, A2, A3 in example 1.

2.1 FO MX with Arithmetic

In this paper, we are concerned with specifications written in FO extended with functions,
arithmetic and aggregate operators. Informally, we assume that the domain of any instance
structure is a subset of N (set of natural numbers), and that arithmetic operators have their
standard meanings. Details of aggregate operators need to be specified, but these also behave
according to our normal intuitions. Quantified variables and the range of instance functions
must be restricted to finite subsets of the integers, and possible interpretations of expansion
predicates and expansion functions must be restricted to a finite domain of N, as well. This
can be done by employing a multi-sorted logic in which all sorts are required to be finite sub-
sets of N, or by requiring specification formulas to be written in a certain “guarded” form.

6

In the rest of this paper, we assume that all variables are ranging over the finite domain2

T ⊂ N and φ(t1(x̄), · · · , tk(x̄)) is a short-hand for ∃y1, · · · , yk : y1 = t1(x̄)∧ · · · yk =
tk(x̄) ∧ φ(y1, · · · , yk). Under these assumptions, we do not need to worry about the
interpretation of predicates and functions outside T .

Syntax and Semantics of Aggregate Operators We may use evaluation for formulas
with expansion predicates. By evaluating a formula, which has expansion predicates, as
true we mean that there is a solution for the whole specification which satisfies the given
formula, too. Also, for sake of representation, we may use φ[ā, z̄2] as a short-hand for
φ(z̄1, z̄2)[z̄1/ā], which denotes substituting ā for every occurrence of z̄1 in φ. Although
our system supports grounding specification having Max, Min, Sum and Count aggregates,
but for the sake of space, we just focus on Sum and Count aggregate in this paper:

– t(ȳ) = Maxx̄{t(x̄, ȳ) : φ(x̄, ȳ); dM (ȳ)}, for any instantiation b̄ for ȳ, denotes the
maximum value obtained by t[ā, b̄] over all instantiations ā for x̄ for which φ[ā, b̄]
is true, or dM if there is none. dM is the default value of Max aggregate which is
returned whenever all conditions are evaluated as false.

– t(ȳ) = Minx̄{t(x̄, ȳ) : φ(x̄, ȳ); dm(ȳ)} is defined dually to Max.
– t(ȳ) = Sumx̄{t(x̄, ȳ) : φ(x̄, ȳ)}, for any instantiation b̄ of ȳ, denotes 0 plus the sum

of all values t[ā, b̄] for all instantiations ā for x̄ for which φ[ā, b̄] is true.
– t(ȳ) = Countx̄{φ(x̄, ȳ)}, for any instantiation b̄ for ȳ, denotes the number of tuples
ā for which φ[ā, b̄] is true. As we have Countx̄{φ(x̄, ȳ)} = Sumx̄{1, φ(x̄, ȳ)}, in
the rest of this paper, we assume that all terms having Count aggregate are replaced
with the appropriate terms in which Count is replaced with Sum aggregate and so we
do not discuss the count aggregate, anymore.

3 Evaluating Out Arithmetic and Instance Functions

The relational algebra-based grounding algorithm, described in Section 2, is designed for
the relational (function-free) case. Below, we extend it to the case where arguments to
atomic formulas may be complex terms. In this section, we present a simple method for
special cases where terms do not contain expansion predicates/functions, and so they can
be evaluated purely on the instance structure.

Recall that an answer to a sub-formula φ(X) of a specification is an extended X-relation
R. If |X| = k, then the tuples of R have arity k. Now, consider an atomic formula
whose arguments are terms containing instance functions and arithmetic operations, e.g.,
φ = P (x+ y). As it is discussed previously, φ⇔ ∃z(z = x+ y ∧ P (z)). Although we
have not discussed handling of the sub-formula z = x+ y, it is apparent that the answer
to φ, with free variables {x, y}, is an extended {x, y}-relation R.

The extended relation R can be defined as the set of all tuples (〈a, b〉, ψ) such that a+ b
is in the interpretation of P . To modify the grounding algorithm of previous sub-section,
we revise the base cases of definition as follows:

Definition 6 (Base Cases for Atoms with Evaluable Terms). For an atomic formula
φ = P (t1, · · · , tn) with terms t1 . . . tn and free variables X , use the following extended
X-relation (which is an answer to φ wrt A):
1. P is an instance predicate: {(γ,>) | A |= P (t1, . . . tn)[γ]}
2. P is t1(x̄)� t2(x̄), where � ∈ {=, <}: {(γ,>) | A |= t1 � t2[γ]}
3. P is an expansion predicate: {(γ, P (a1, . . . an)) | A |= (t1 =a1, . . . tn = an)[γ]}

2 A more general version, where each variable may have its own domain, is implemented, but
is more complex to explain.

7

Terms involving aggregate operators, provided the formula argument to that operator
contains only instance predicates and functions with a given interpretation, can also be
evaluated out in this way. In example 1, this extension enables us to ground A6.

4 Answers to Terms
Terms involving expansion functions or predicates, including aggregate terms involving
expansion predicates, can only be evaluated with respect to a particular interpretation of
those expansion predicates/functions. Thus, they cannot be evaluated out during grounding
as in Section 3 and they somehow must be represented in the ground formula. We call a
term which cannot be evaluated based on the instance structure a complex term.

In this section, we further extend the base cases of our relational algebra based grounding
method to handle atomic formulas with complex terms. The key idea is to introduce the
notion of answer to a term. The new base cases then construct an answer to the atom
from the answers to the terms which are its arguments. The terms we allow here include
arithmetic expressions, instance functions, expansion function, and aggregate operators
involving these as well. The axioms, A4 and A5, in example 1, have these kinds of terms.

Let t be a term with free variables X , and A a σ-structure. LetR be a pair (αR, βR)
such that αR is a finite subset of N, and βR is a function mapping each element a ∈ αR
to an extended X-relation βR(a).

Intuitively, αR is the set of all possible values that a given term t(X̄) may take, βR(a) is
a table representing all instantiations ofX under which tmight evaluate to a. We sometimes
useRa as a shorthand to βR(a). We define βR(a) = ∅ for a 6∈ αR. Recall that we defined
δR(γ) to be ψ iff (γ, ψ) ∈ R. We may also use δR(γ, n) and δβR(n)(γ) interchangeably.

Definition 7 (Answer to term t wrt A). We say that R = (αR, βR) is an answer to
term t wrt A if, for every a ∈ αR, the extended X-relation βR(a) is an answer to the
formula (t = a) wrt A, and for every a 6∈ αR, the formula (t = a) is not satisfiable wrt
A. Note that with this definition, αR can be either the range of t or a superset of it.

Example 3. (Continue of Example 1) Let ψ(l1, l2) = W (l1)−W (l2) ≤Wl where the
domains of both l1 and l2 are L = {0, 1, 2}. Let A be a σ-structure with WA = {(0 7→
7), (1 7→ 3), (2 7→ 5)} and WA

l = 2. Let t = Wl, ti = li, t′i = W (li) (i ∈ {1, 2}),
t′′ = t′1− t′2 be the terms in ψ, andR,Ri,R′i (i ∈ {1, 2}),R′′ be answers to these terms,
respectively. Then, αR = {2}, αRi = {0, 1, 2}, αR′

i
= {3, 5, 7} and αR′′ = {0..4}.

We now give properties that are sufficient for particular extended X-relations to constitute
answers to particular terms. For a tuple X of variables of arity k, define DX to be the set
of all k-tuples of domain elements, i.e., DX = Ak.

Proposition 3 (Answers to Terms). LetR be the pair (αR, βR), and t a term . Assume
that t1, . . . tm are terms, andR1, . . .Rm (respectively) are answers to those terms wrt A.
Also, let S be an answer for φ. Then,R is an answer to t wrt A if:
(1) t is a simple term (i.e., involves only variables, instance functions, and arithmetic

operators): αR = {n ∈ N | ∃ a ∈ DX : (t[a] = n)} and for all n ∈ αR, βR(n) is
an answer to t = n computed as described in Definition (6).

(2) t is a term in form of t1 + t2: αR = {x+ y | x ∈ αR1
and y ∈ αR2

}
βR(n) = ∪(j∈αR1

, k∈αR2
, n=j+k)βR1

(j) ./ βR2
(k)

(3) t is a term in form of t1{−,×}t2: similar to case (2);
(4) t is a term in form of f(t1, · · · , tm), where f is an instance function: αR =
{y| for some x1 ∈ αR1

, . . . , xm ∈ αRm
, f(x1, . . . , xm) = y},

βR(n) = ∪a1∈αR1
,...am∈αRm , s.t.f(a1,...am)=nβR1

(a1) ./ · · · ./ βRm
(am)

Intuitively, βR(n) is the combination of all possible ways that f can be evaluated as n.

8

(5) t is a term in form of f(t1, · · · , tm), where f is an expansion function. We introduce
an expansion predicate Ef (x̄, y) for each expansion function f(x̄) where type of y
is the same as range of f . Then αR is equal to range of f , and
βR(n) = ∪a1∈αR1

,...am∈αRm

βR1
(a1) ./ · · · ./ βRm

(am) ./ Ta1,··· ,am,n

Where Ta1,··· ,am,n is an answer to ∃ ∧i xi = ai ∧ y = n ∧ Ef (x1, · · · , xm, y).
βR(n) expresses that f(t1, · · · , tm) is equal to n under assignment γ iff ti[γ] = ai
and f(a1, · · · , am) = n.

(6) t is Sumx̄{t1(x̄, ȳ) : φ(x̄, ȳ)} : αR = {
∑
ā∈Dx̄

f(ā) : f : x̄ 7→ {0} ∪ αR1}. Let

δ′R1
(γ, n) =

{
δR1

(γ, n) if n 6= 0

δR1(γ, 0) ∨ ¬δS(γ) if n = 0

Then for each assignment b̄ : ȳ 7→ D(ȳ):

δR(b̄, n) =
∨

f :x̄ 7→αR
s.t.

∑
ā∈Dx̄

f(ā)=n

∧
ā∈D(x̄)

δ′R1
(ā, b̄, f(ā))

For a fixed instantiation of ȳ (b̄), each instantiation of x̄ (ā), might or might not
contribute to the output value of the aggregate when ȳ is equal to b̄. ā contributes
to the output of aggregate if B |= φ(ā, b̄). δ′R1

(γ, α, f(ā)) describes the condition
under which t1(ā) contributes f(ā) to the output. So, for a given mapping from Dx̄

to αR1 , we need to conjunct the conditions obtained from δ′R1
to find the necessary

and sufficient condition for one of the cases where the output sum is exactly n. And
the outside disjunction, finds the complete condition.

Although what is described in (7) can be used directly to find an answer for the Sum
aggregates, in practice many of the entries in R will be eliminated during grounding
as they are joined with false formula or unioned with a true formula. So, to reduce the
grounding time, we use a place holder, SUM place holder, in the form SUM(R1,S, n, γ),
as the formula corresponding to δR(γ, n). The sum gadget is stored and propagated during
grounding as a formula. After the end of the grounding phase, the engine enters the CNF
generation phase in which a SAT instance is created from the obtained reduced grounding.
In the CNF generation phase, the ground formula is traversed and by using normal Tseitin
transformation [6] a corresponding CNF is generated3.

While the engine traverses the formula tree, produced in the grounding phase it might
encounter a SUM place holder. If this happens, the engine passes the SUM place holder
to the SUM gadget which in turn converts the SUM place holder to CNF. This design
has another benefit, too. If we decided to use a SAT solver which is capable of handling
Pseudo-Boolean constraints natively, the SUM gadget can easily be changed to generate the
Pseudo-Boolean constraints form the SUM place holder. One can find an implementation
for Sum gadget in appendix A.

Example 4. (Continue From Example 3) βRi corresponds to the answer to variables
li (i ∈ {1, 2}). So, R1(R2) should have one free variable, namely l1(l2). Having an
answer to ti, an answer to t′i, (αR′

i
, βR′

i
), can be computed. By proposition 3, we have

βR′′(2) = βR′
1
(7) ./ βR′

2
(5) ∪ βR′

1
(5) ./ βR′

2
(3). In other word, the answer to t′′ is 2

if either t′1 = 7 ∧ t′2 = 5 or t′1 = 5 ∧ t′2 = 3.

3 It is not the purpose of this paper to discuss the techniques we have used in this phase.

9

(a)
ψ

True

(b)
l1 ψ
0 True

(c)
l1 ψ
1 True

(d)
l1 ψ
2 True

(e)
l2 ψ
0 True

(f)
l1 l1 ψ
0 1 False
2 1 True

Table 2. Tables for Example 4: a) Answer to Wl = 2, i.e. βR(2), b) Answer to l1 = 0, i.e. βR1(0),
c) Answer to l1 = 1, i.e. βR1(1), e) Answer to W (l1) = 5, i.e. βR′

1
(5), f) Answer to W (l2) = 7,

i.e. βR′
2
(7), g) Answer to W (l1)−W (l2) = 2, i.e. βR′′(2),

4.1 Base Case for Complex Terms

To extend our grounding algorithm to handle terms which cannot be evaluated out, we
add the following base cases to the algorithm.

Definition 8 (Base Case for Atoms with Complex Terms). Let t1, · · · , tm be terms,
and assume that R1, . . .Rm (respectively) are answers to those terms wrt structure A.
ThenR is an answer to P (t1, . . . tm) wrt A if

1. P (...) is t1 = t2:R = ∪(i∈αR1
∩αR2

)βR1(i) ./ βR2(i)

2. P (...) is t1 ≤ t2:R = ∪(i∈αR1
, j∈αR2

, i≤j)βR1
(i) ./ βR2

(j)

3. P is an instance predicate:R = ∪(a1,··· ,am)∈PA, ai∈αRi
βR1

(a1) ./ · · · ./ βRm
(am)

4. P is an expansion predicate andR is an answer to
∃x1 . . . xm (x1 = t1 ∧ · · · ∧ xm = tm ∧ P (x1, . . . , xm))

Example 5. (Continue Example 3) Although, ψ does not have any complex term, to
demonstrate how the base cases can be handled, the process of computing an answer for
ψ is described here. We have computed an answer to t′′, t. To compute an answer to
ψ(l1, l2) = t′′(l1, l2) ≤ Wl, one needs to find the union of βR′′(n) ./ βR(m) for m ∈
αt = {2} and n ≤ 2 ∈ {0..2}. In this example, {(0, 2,>), (2, 1,>)} is an answer to ψ.

5 Experimental Evaluation

In this section we report an empirical observation on the performance of an implementation
of the methods we have described.

Thus far, we presented our approach to grounding aggregates and arithmetic. As a
motivating example, we show how haplotype inference problem[7] can be axiomatized
in our grounder. To argue that the CNF generated through our grounder is efficient, we
will use a well-known and optimized encoding for haplotype inference problem and show
that the same CNF will be obtained without much hardship.

In haplotype inference problem, we are given an integer r and a set, G, consisting of
n strings in {0, 1, 2}m, for a fixed m. We are asked if there exists a set of r strings, H ,
in {0, 1}m such that for every g ∈ G there are two strings in H which explain g. We
say two strings h1 and h2 explain an string g iff for every position 1 ≤ i ≤ m either
g[i] = h1[i] = h2[i] or g[i] = 2 and h1[i] 6= h2[i].

The following axiomatization is intentionally produced in a way to generate the same
CNF encoding as presented in [7] in the assumption that the gadget used for count is a
simplified adder circuit [7].
1. ∀i∀j (g(i, j) = 0 ⊃ ∃k ((¬h(k, j) ∨ ¬Sa(k, i)) ∧ (¬h(k, j) ∨ ¬Sb(k, i))))
2. ∀i∀j (g(i, j) = 1 ⊃ ∃k ((h(k, j) ∨ ¬Sa(k, i)) ∧ (h(k, j) ∨ ¬Sb(k, i))))
3. ∀i∀j (ga(i, j) 6= gb(i, j))

10

4. ∀i∀j
(
g(i, j) = 2 ⊃ ∃k

(
(h(k, j)∨¬ga(i, j)∨¬Sa(k, i))∧ (¬h(k, j)∨ga(i, j)∨

¬Sa(k, i))∧(h(k, j)∨¬gb(i, j)∨¬Sb(k, i))∧(¬h(k, j)∨gb(i, j)∨¬Sb(k, i))
))

5,6. ∀i (Countk(Sa(k, i)) = 1) ∧ ∀i (Countk(Sb(k, i)) = 1)
In the above axiomatization, g(i, j) is an instance function which gives the character at
position j of i-th string in G. The expansion predicate h(k, i) is true iff the i-th position
of the k-th string in H is one. The expansion predicate Sa(k, i) is true iff k-th string in
H is one of the explanations for i-th string in G. Sb has a similar meaning. ga(i, j) and
gb(i, j) are some peripheral variables which are used in axiom (4).

Table (3) shows the detailed information about running time of haplotype inference
instances produced by the ms program[7]. The axiomatization given above corresponds to
the row labeled with “Optimized Encoding”. The other row labeled with “Basic Encoding”
also comes from the same paper [7] but as noted there and shown here produces CNF’s
that take more time to solve.

Table 3. Haplotyping Problem Statistics

Grounding SAT Solving CNF Size
Basic Encoding 2.2 s 12.3 s 18.9 MB

Optimized Encoding 1.9 s 0.95 s 13.3 MB

Thus, using our system, Enfragmo, as grounder, we have been able to describe the
problem in a high level language and yet reproduce the same CNF files that have been
obtained through direct reductions. Thus, Enfragmo enables us to try different reductions
faster. Of course, once a good reduction is found, one can always use direct reductions to
achieve higher grounding speed although, as table (3) shows, Enfragmo also has a moderate
grounding time when compared to the solving time.

Another noteworthy point is that different gadgets show different performances under
different combinations of problems and instances. So, using different gadgets also enables
a knowledgeable user to choose the gadget that serves them best. The process of choosing
a gadget can also be automatized through some heuristics in the grounder.

6 Related Work
The ultimate goal of all systems like ours is to have a high-level syntax which ease the task
for problem description for both naive and expert users. To achieve this goal, these systems
should be extended to handle complex terms. As different systems use different grounding
approaches, each of them should have its very specific way of handling complex terms.

Essence, [8], is a declarative modelling language to specify search problems. In Essence,
we do not have expansion predicates. Users need to describe their problems by expansion
functions (which are variables, array of variables, matrix of variables and so on), instance
predicates and mathematical operators. Then, the problem description is transformed to a
Constraint Satisfying Problem, CSP, instance by an engine called Tailor. As there is no stan-
dard input format for CSP solvers, Tailor has to be developed separately for each CSP solver.
Unlike SAT solvers which are just capable of handling Boolean variables, CSP solvers can
work with instances in which the variables’ domains are arbitrary. In [8], a method called
Flattening has been described which resembles Tseitin transformation. Flattening process
describes a complex term by introducing some auxiliary variables and decomposing the
complex term into simpler terms. The flattening method is also used in Zinc system [9].

IDP, [10], is system for model expansion whose input is an extension of first-order logic
with inductive definitions. Essentially, the syntax of IDP is very similar to that our system

11

but their approach to ground a given specification is different. A ground formula is created
using a top-down procedure. The formula is written in Term Normal Form, TNF, in which
all arguments to predicates are variables and the complex terms can only appear in the
atomic formula in the form x{≤, <,=, >,≥}t(ȳ). And then, the atomic formulas which
have complex terms are rewritten as disjunction or conjunction of atomic formulas in form
x < t(ȳ) and x > t(ȳ) [11]. The ground solver used by IDP system is an extension of
regular SAT solvers which is capable of handling aggregates internally. This enables them
to translate specifications and instances into their ground solver input.

7 Conclusion
In model-based problem solving, users need to answer the questions in form of “What is the
problem?” or “How can the problem be described?”. In this approach, systems with a high-
level language helps users a lot and reduces the amount of expertise a user need to have, and
thus provides a way of solving computationally hard AI problems to a wider variety of users.

In this paper, we described how we extended our engine to handle complex terms.
Having access to aggregates and arithmetic operators eases the task of describing problems
for our system and, enables more users to work with our system for solving their theoretical
and real-world problems. We also extended our grounder in such a way that it is able to
convert the new construct to CNF and further showed that our grounder can reproduce the
same CNF files from the high level language as the one obtains through direct reductions.

Acknowledgements
The authors are grateful to the Natural Sciences and Engineering Research Council of
Canada (NSERC), MITACS and D-Wave Systems for their financial support. In addition,
the anonymous reviewers’ comments helped us in improving this paper and clarifying the
presentation.

References

1. Frisch, A.M., Grum, M., Jefferson, C., Hernandez, B.M., Miguel, I.: The design of ESSENCE:
a constraint language for specifying combinatorial problems. In: Proc. IJCAI’07. (2007)

2. Mitchell, D., Ternovska, E.: A framework for representing and solving NP search problems.
In: Proc. AAAI’05. (2005)

3. Gent, I., Jefferson, C., Miguel, I.: Minion: A fast, scalable, constraint solver. In: ECAI
2006: 17th European Conference on Artificial Intelligence, August 29-September 1, 2006,
Riva del Garda, Italy: including Prestigious Applications of Intelligent Systems (PAIS 2006):
proceedings, Ios Pr Inc (2006) 98

4. Patterson, M., Liu, Y., Ternovska, E., Gupta, A.: Grounding for model expansion in k-guarded
formulas with inductive definitions. In: Proc. IJCAI’07. (2007) 161–166

5. Mohebali, R.: A method for solving NP search based on model expansion and grounding.
Master’s thesis, Simon Fraser University (2006)

6. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in constructive
mathematics and mathematical logic 2(115-125) (1968) 10–13

7. Lynce, I., Marques-Silva, J.: Efficient haplotype inference with boolean satisfiability. In: AAAI,
AAAI Press (2006)

8. Rendl, A.: Effective compilation of constraint models. (2010)
9. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: Minizinc: Towards a

standard CP modelling language. Principles and Practice of Constraint Programming–CP 2007
(2007) 529–543

10. Wittocx, J., Mariën, M., De Pooter, S.: The idp system. Obtainable via www. cs. kuleuven.
be/dtai/krr/software. html (2008)

11. Wittocx, J.: Finite domain and symbolic inference methods for extensions of first-order logic.
AI Communications (2010) Accepted.

12

12. Ası́n, R., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E.: Cardinality Networks
and Their Applications. In: Proceedings of the 12th International Conference on Theory and
Applications of Satisfiability Testing, Springer-Verlag (2009)

13. Eén, N.: SAT Based Model Checking. PhD thesis (2005)

A SUM Gadget
We could have an implementation which constructs answers to complex terms by taking
literally the conditions described in Proposition 3. However, we would expect this imple-
mentation to result in a system with poor performance. In the grounding algorithm, the
function which generates ψ for tuple (γ, ψ) may produce any formula logically equivalent
to φ. We may think of the function as “gadgets”, in the sense this term is used in reductions
to prove NP-completeness. Choice of these gadgets is important for some constraints. For
example, choosing CNF representations of aggregates is an active area of study in the SAT
community (e.g., see [12]). Our method allows these choices to be made at run time, either
by the user or automatically.

As it described in previous sections, to compute an answer to an aggregate one needs
to find a set αR ⊂ N and a function βR which maps every integer to a ground formula.
In section 4, we have showed what the set αR is for each term and also described the
properties of the output of βR function. Here, we present one method to construct a SUM
gadget which can be used during the CNF Generation phase.

A gadget for Sum aggregate, denoted by S(R1,S, n), takes an answer to a term,R1,
and an answer to a formula S, and an integer and returns a CNF formula f .

Let’s assume the original Sum aggregate is t(ȳ) = Sumx̄{t1(x̄, ȳ) : φ(x̄, ȳ)}, where
R1 is an answer to t1 and S is an answer to φ. Let Ti = βR1(i) ./ S for all i ∈ αR1 . So,
ψ = δTi(γ) is the necessary and sufficient condition for t1(γ) to be equal to i.

Remember that the SUM gadget is called during the CNF generation and it returns
a Tseitin variable which is true iff t(...) = n. The gadget generates/retrieves a Tseitin
variable, vψ for ψ(γ) if ψ = δTi(γ) 6= ⊥ and stores the pair (i, vψ). After fetching all
these pairs, (n1, v1) · · · (nk, vk), SUM gadget starts generating a CNF for t(γ) = n. In
fact, our gadget can be any valid encoding for Pseudo-Boolean constraints such as Binary
Decision Diagrams (BDD) based encoding, Sorting network based encoding and etc, [13].
Here, we describe the BDD based encoding:

Let T = {(n1, f1), · · · , (nk, fk)}. Define the output of the gadget to be Fnk where
F sr ’s are inductively constructed based on the following definitions:

F sr+1 = (F sr ∧ ¬fr+1) ∨ (F s−nr+1
r ∧ fr+1)

F sr =

{
> if r and s are both zero
⊥ r = 0 and s 6= 0

