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Abstract. Model expansion task is the task representing the essence of search
problems where we are given an instance of a problem and are searching for
a solution satisfying certain properties. Such tasks are common in AI planning,
scheduling, logistics, supply chain management, etc., and are inherently modu-
lar. Recently, the model expansion framework was extended to deal with multiple
modules to represent e.g. the task of constructing a logistics service provider
relying on local service providers. In the current paper, we study existing sys-
tems that operate in a modular way in order to obtain general principles of solv-
ing modular model expansion tasks. We introduce a general algorithm to solve
model expansion tasks for modular systems. We demonstrate, through several
case studies, that our algorithm closely corresponds to what is done in practice
in different areas such as Satisfiability Modulo Theories (SMT), Integer Linear
Programming (ILP), Answer Set Programming (ASP). We make our framework
language-independent through a model-theoretic development.

1 Introduction

In [1], the authors formalize search problems as the logical task of model expansion
(MX), the task of expanding a given (mathematical) structure with new relations. They
started a research program of finding common underlying principles of various ap-
proaches to specifying and solving search problems, finding appropriate mathemati-
cal abstractions, and investigating complexity-theoretic and expressiveness issues. The
next step in the development of the MX-based framework is adding modularity con-
cepts. The following example clarifies our goals.
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Fig. 1. Modular representation of a factory



Example 1 (Factory). Figure 1 shows a modular representation of a factory. This fac-
tory consists of an office and a workshop1. The office takes a list of goods needed by
consumers and the workshop takes a list of raw materials. These two entities, i.e., the
office and the workshop, can communicate with each other in order to plan the pro-
duction of customers’ orders according to both their internal constraints (such as their
maximum throughput) and their external constraints (such as the cost of raw materials).

We would like to find a method for finding solutions to modular tasks such as produc-
tion plan generation in the example. Modularity is incorporated through representing
each part in the most suitable language. For example, the office is more easily specified
in extended first-order logic, while the complex operation of the workshop module is
perhaps most easily specified using ASP (answer set programming) in order to handle
exceptions. In this paper, we take initial steps towards solving the underlying computa-
tionally complex task.

In a recent work [2], a subset of the authors extended the MX framework to repre-
sent a modular system. Under a model-theoretic view, an MX module can be viewed as
a set (or class) of structures satisfying some axioms. An abstract algebra on MX mod-
ules was developed, and it allows one to combine modules on abstract model-theoretic
level, independently from what languages are used for describing them. Perhaps the
most important operation in the algebra is the loop (or feedback) operation, since it-
eration underlies many solving methods. The authors show that the power of the loop
operator is such that the combined modular system can capture all of the complexity
class NP even when each module is deterministic and polytime. Moreover, in general,
adding loops gives a jump in the polynomial time hierarchy, one step from the highest
complexity of the components.

To develop the framework further, we need a method for “solving” modular MX
systems. By solving we mean finding structures which are in the modular system, where
the system is viewed as a function of individual modules. We take our inspiration in how
“combined” solvers are constructed in the general field of declarative problem solving.
The field consists of many areas such as Integer Linear Programming (ILP), Answer
Set Programming (ASP), Satisfiability Modulo Theories (SMT), Satisfiability (SAT),
and Constraint Programming (CP), and each of these areas has developed multitudes of
solvers, including powerful “combined” solvers such as SMT solvers. Moreover, SMT-
like techniques are needed in the ASP community [3]. Our main challenge is to come up
with an appropriate mathematical abstraction of “combined” solving. In [4], we propose
an algorithm, which takes a modular system as input, and generate its solutions. In this
paper, we perform several case studies of existing systems in our proposed framework.
Our analysis is done from a model-theoretic perspective with the goal of making the
approach language-independent.

Our contributions are as follows.
We show that, in the context of the model expansion task, our algorithm generalizes

the work of solvers from different communities in a unifying and abstract way. In par-
ticular, we show that DPLL(T ) framework [5], branch-and-cut based ILP solver [6] and
state-of-the-art combination of ASP and CP [7] are all specializations of our algorithm.

1 A more realistic example contains many more modules.



1. For each problem described in these frameworks, we design a compound modular
system such that the set of structures in the modular system correspond to the set
of solutions to the original problem.

2. We show how our algorithm can benefit from the techniques used in practical solver
constructions to solve the modular system efficiently.

3. We show the feasibility of our algorithm for solving arbitrary modular systems by
arguing that our algorithm on the constructed modular system models the solving
procedure of the corresponding system.

2 Background

2.1 Model Expansion

In [1], the authors formalize combinatorial search problems as the task of model ex-
pansion (MX), the logical task of expanding a given (mathematical) structure with new
relations. Formally, the user axiomatizes the problem in some logic L. This axiomati-
zation relates an instance of the problem (a finite structure, i.e., a universe together with
some relations and functions), and its solutions (certain expansions of that structure
with new relations or functions). Logic L corresponds to a specification/modelling lan-
guage. It could be an extension of first-order logic such as FO(ID), or an ASP language,
or a modelling language from the CP community such as ESSENCE [8].

Recall that a vocabulary is a set of non-logical (predicate and function) symbols. An
interpretation for a vocabulary is provided by a structure, which consists of a set, called
the domain or universe and denoted by dom(.), together with a collection of relations
and (total) functions over the universe. A structure can be viewed as an assignment to
the elements of the vocabulary. An expansion of a structure A is a structure B with the
same universe, and which has all the relations and functions ofA, plus some additional
relations or functions.

The task of model expansion for an arbitrary logic L (abbreviated L-MX), is:

Model Expansion for logic L
Given: 1. An L-formula φ with vocabulary σ ∪ ε

2. A structure A for σ
Find: an expansion of A, to σ ∪ ε, that satisfies φ.

Thus, we expand the structure A with relations and functions to interpret ε, ob-
taining a model B of φ. We call σ, the vocabulary of A, the instance vocabulary, and
ε := vocab(φ) \ σ the expansion vocabulary2.

Example 2. The following formula φ of first order logic constitutes an MX specification
for Graph 3-colouring:

1{R(x), B(x), G(x)}1← V (x).
⊥ ← R(x), R(y), E(x, y).
⊥ ← B(x), B(y), E(x, y).
⊥ ← G(x), G(y), E(x, y).

2 By “:=” we mean “is by definition” or “denotes”.



An instance is a structure for vocabulary σ = {E}, i.e., a graph A = G = (V ;E).
The task is to find an interpretation for the symbols of the expansion vocabulary ε =
{R,B,G} such that the expansion of A with these is a model of φ:

A︷ ︸︸ ︷
(V ;EA, RB, BB, GB)︸ ︷︷ ︸

B

|= φ.

The interpretations of ε, for structures B that satisfy φ, are exactly the proper 3-
colourings of G.

Example 3 (Factory as Model Expansion). In Figure 1, both the office box and the
workshop box can be viewed as model expansion tasks. For example, the box labeled
with “Workshop” can be abstractly viewed as an MX task with instance vocabulary
σ = {RawMaterials} and expansion vocabulary ε = {R}.

Moreover, in Figure 1, the bigger box with dashed borders can also be viewed as
an MX task with instance vocabulary σ′ = {Orders,RawMaterials} and expansion
vocabulary ε′ = {Plan}. This task is a compound MX task whose result depends on
the internal work of the office and the workshop.

Given a specification, we can talk about a set of σ ∪ ε-structures which satisfy the
specification. Alternatively, we can simply talk about a given set of σ ∪ ε-structures as
an MX-task, without mentioning a particular specification the structures satisfy. This
abstract view makes our study of modularity language-independent.

2.2 Modular Systems

This section reviews the concept of a modular system defined in [2] based on the initial
development in [9]. As in [2], each modular system abstractly represents an MX task,
i.e., a set (or class) of structures over some instance and expansion vocabulary. A mod-
ular system is formally described as a set of primitive modules (individual MX tasks)
combined using the operations of:
1. Projection (πτ (M)) which restricts the vocabulary of a module,
2. Composition (M1 BM2) which connects outputs of M1 to inputs of M2,
3. Union (M1 ∪M2),
4. Feedback (M [R = S]) which connects output S of M to its inputs R and,
5. Intersection (M1 ∩M2).

Formal definitions of these operations are not essential for understanding this paper,
thus, we refer the reader to [2] for details. We illustrate these operations by giving the
following algebraic specification for the modular system in Example 1.

Factory := π{Goods,RawMaterials,Plan}(Office B Factory)[R′ = R]). (1)

Considering Figure 1, symbol “Factory” refers to the whole modular system denoted
by the box with dotted borders. The only important vocabulary symbols outside this box
are “Goods”, “RawMaterials” and “Plan”. All other symbols are projected out. There is



also a feedback from R to R′. In this paper, we only consider modular systems which
do not use the union operator.

A description of a modular system (1) looks like a formula in some logic. One can
define a satisfaction relation for that logic, however it is not needed here. Still, since
each modular system is a set of structures, we call the structures in a modular system
models of that system. We are looking for models of a modular systemM which expand
a given instance structure A. We call them solutions of M for A.

3 Computing Models of Modular Systems

In this section, we briefly describe an algorithm for solving modular systems [4]. This
algorithm takes a modular systemM and a structureA and finds an expansion B ofA in
M . The algorithm uses an external solver as well as some oracles to “assist” the solver
in finding a model (if one exists). The oracles correspond to the primitive modules of
a modular system. In this section, we restate some of the properties that the solver
and the so-called oracles have to satisfy in order for the algorithm to work correctly
and efficiently. The algorithm works by interacting with the solver and the oracles at
the same time. It repeatedly queries a solver S while adding “reasons” and “advices”
from oracles to guide the solver. It does so until it either finds a model that satisfies the
modular system or concludes that none exists. To model this procedure, a definition of
a partial structure is needed.

3.1 Partial Structures

Recall that a structure is a domain together with an interpretation of a vocabulary. A
partial structure, however, may contain unknown values. Partial structures deal with
gradual accumulation of knowledge.

Definition 1 (Partial Structure). We say B is a τp-partial structure over vocabulary τ
if:
1. τp ⊆ τ ,
2. B gives a total interpretation to symbols in τ\τp and,
3. for each n-ary symbol R in τp, B interprets R using two sets R+ and R− such that
R+ ∩R− = ∅, and R+ ∪R− 6= (dom(B))n.
We say that τp is the partial vocabulary of B. If τp = ∅, then we say B is total. For

two partial structures B and B′ over the same vocabulary and domain, we say that B′
extends B if all unknowns in B′ are also unknowns in B, i.e., B′ has at least as much
information as B.

Example 4. Consider a structure B with domain {0, 1, 2} for vocabulary {I,R}, where
I and R are unary relations, and IB = {〈0〉, 〈1〉}, 〈0〉 ∈ RB, and 〈1〉 6∈ RB, but it
is unknown whether 〈2〉 ∈ RB or 〈2〉 6∈ RB. Then B is a {R}-partial structure over
vocabulary {I,R} where R+B = {〈0〉} and R−B = {〈1〉}.

If a partial structure B has enough information to satisfy or falsify a formula φ, then
we say B |= φ, or B |= ¬φ, respectively. Note that for partial structures, B |= ¬φ and



B 6|= φ may be different. We call a ε-partial structure B over σ ∪ ε the empty expansion
of σ-structure A, if B agrees with A over σ but R+ = R− = ∅ for all R ∈ ε.

In the following, by structure we always mean a total structure, unless otherwise
specified. We may talk about “bad” partial structures which, informally, are the ones
that cannot be extended to a structure in M . Also, when we talk about a τp-partial
structure, in the MX context, τp is always a subset of ε.

Total structures are partial structures with no unknown values. Thus, in the algorith-
mic sense, total structures need no further guessing and should only be checked against
the modular system. A good algorithm rejects “bad” partial structures sooner, i.e., the
sooner a “bad” partial structure is detected, the faster the algorithm is.

Up to now, we defined partial and total structures and talked about modules rejecting
“bad” partial structures. However, modules are sets of structures (in contrast with sets
of partial structures). Thus, acceptance of a partial structure has to be defined properly.
Towards this goal, we first formalize the informal concept of “good” partial structures.
The actual acceptance procedure for partial structures is defined later in the section.

Definition 2 (Good Partial Structures). For a set of structures S and partial structure
B, we say B is a good partial structure wrt S if there is B′ ∈ S which extends B.

3.2 Requirements on the Modules

As expressed in the introduction, there is practical urge to solve complex computational
tasks in a modular way so that full access to a complete axiomatization of the module
is not assumed, i.e., the module is treated as a black box and accessed via controlled
methods. However, clearly, as the solver does not have any information about the inter-
nals of the modules, it needs to be assisted by the modules themselves. Therefore, the
next question could be: “what assistance does the solver need from modules so that its
correctness is always guaranteed?” Intuitively, modules should be able to tell whether
the solver is on the “right” direction or not, i.e., whether the current partial structure is
bad, and if so, tell the solver to stop developing this direction further. We accomplish
this goal by letting a module accept or reject a partial structure produced by the solver
and, in the case of rejection, provide a “reason” to prevent the solver from producing
the same model later on. Furthermore, a module may “know” some extra information
that a solver does not. Due to this fact, modules may give the solver some hints to accel-
erate the computation in the current direction. Our algorithm models such hints using
“advices” to the solver.

The algorithm that we describe in this section (Algorithm 1), uses CCAV oracles
which stand for: (1) complete and constructive, (2) advising and (3) verifying. In this
paper, instead of formally defining these concepts, we give examples of how these con-
cepts can be realized in practice. The formal definitions of these concepts can be found
in [4]. Before giving these examples, we should point out one difference to the readers
who are not accustomed to the logical approach to complexity: In theoretical com-
puter science, a problem is a subset of {0, 1}∗. However, in descriptive complexity (the
logical approach to complexity), the equivalent definition of a problem being a set of
structures is adopted.



Example 5 (Certificates: Graph 3-coloring). Consider Example 2 of graph 3-coloring.
There, σ = {E} and ε = {R,G,B}. The problem P is the set of graphs G = (V G ;EG)
which are 3-colorable. A certificate set C for problem P of graph 3-coloring is, as one
might expect, the same as 3-coloring certificates in complexity theory, i.e., a partitioning
of vertices into three setsR,G andB such that each partition is an independent set (i.e.,
there is no edge connecting two vertex of the same partition together). The certificate
set C, as expected, should be so that A ∈ P (i.e., A is 3-colorable) iff C has at least
one 3-coloring for A (i.e., there is at least one expansion B of A in C which interprets
R, G and B correctly).

In general, certificate sets are similar to certificates in complexity theory. While it
might be hard to recognize if a structureA belongs to a set of structures (i.e., a problem
such as graph 3-coloring); it is generally easier to recognize if an expansion B of A
is a good certificate for A. That is, axiomatizing a certificate set is generally easier
than axiomatizing the problem itself. The concept of a certificate set is used to define a
verifying oracle:

Example 6 (Verifying Oracles: Graph 3-coloring). Consider a primitive module M
which solves the 3-coloring problem P as in Example 5. Also, let C be a certificate
set for P as in Example 5. Let O be an oracle such that, given a partial/total coloring B
of a graph G, (1) if B is total, O accepts B iff B ∈ C, and (2) if B is partial and there is
B′ ∈ C extending B, then O accepts B, and (3) otherwise (i.e., if B is partial and there
is no B′ ∈ C extending B), O can either reject or accept B. We call this procedure the
Valid Acceptance Procedure, and the oracle a verying oracle.

Generally speaking, a verifying oracle is an oracle which never rejects a good partial
structure. The intuition is that if an oracle rejects a partial structure, the algorithm can
assume that it is futile to continue extending this partial interpretation. Not surprisingly,
the concept of a verifying oracle is similar to the familiar concept of a verification
procedure in complexity theory. As above, a verifying oracle is precise only about total
interpretations. However, in order to be efficient, we need the oracle to tell us something
about partial interpretations as well:

Example 7 (Reasons and Advices). Consider primitive module M and verifying oracle
O as in Example 6. Also, consider a graph G = (V G ;EG) with V G = {a, b, c, d} and
EG = {(a, b), (b, a), (a, c), (c, a), (a, d), (d, a), (c, d), (d, c)} and a partial 3-coloring
B = (V G ;EG , RB, BB, GB) of G which assigns color red to vertices a and b, color
green to vertex c and no color (yet) to vertex d. We describe three different scenarios
that O can follow with respect to B and the consequences of each scenario. Obviously,
B is a bad partial 3-coloring and no matter what color we assign to d, we will obtain
an invalid 3-coloring of G. Therefore, one scenario for oracle O is to reject this partial
coloring. Here, O can return a reason φ := ¬(R(a) ∧ R(b)) which is falsified by B
(B |= ¬φ) but satisfied by all valid 3-colorings of G. One can think of φ as the reason
why B is not a good partial structure. In this scenario, the algorithm will immediately
understand that extending B is futile because it can never satisfy φ.

However, O is not required to recognize B as a bad partial structure right away.
Therefore, another scenario for O is to accept B but still help the solver by giving the



advice ψ := (R(a)∧G(c)) ⊃ B(d). Formula ψ is such that it is satisfied by all valid 3-
colorings of G but B neither satisfies nor falsifies ψ. Therefore, the algorithm can infer
that instead of checking all 3 different color assignments to vertex d, it only needs to
check one case when d is colored blue. The worst scenario, however, is when O accepts
B and does not give any advice. In this case, the algorithm has to check all colors for d
before finding that B is a bad partial structure.

Oracle O from Example 7 differs from the usual oracles in the sense that it does
not only give yes/no answers, but also provides a reason for its “no” answers. Oracles
such as O are called complete and constructive. Also, O is advising because it guide
the search by revealing some facts about valid 3-colorings of G. In what follows, CCAV
stands for complete, constructive, advising and verifying.

3.3 Requirements on the Solver

In this section, we discuss properties that a solver has to satisfy. Although the solver
can be realized by many practical systems, for them to work in an orderly fashion and
for algorithm to converge to a solution fast, it has to satisfy certain properties. First, the
solver has to be online since the oracles keep adding reasons and advices to it. Further-
more, to guarantee termination, the solver has to guarantee progress, which means it
either reports a proper extension of the previous partial structure or, if not, the solver
is guaranteed to never return any extension of that previous partial structure later on.
Moreover, the solver has to be sound (it returns partial structures that at least do not
falsify any of the constraints), and complete (it reports unsatisfiability only when un-
satisfiability is detected and not when, for example, some heuristic has failed to find an
answer or some time limit is reached). Such a solver is called a Complete Online Solver.
A formal definition can be found in [4].

3.4 Lazy Model Expansion Algorithm

In this section, we present an iterative algorithm to solve model expansion tasks for
modular systems. Algorithm 1 takes an instance structure and a modular system (and
its CCAV oracles) and integrates them with a complete online solver to solve a model
expansion task in an iterative fashion. The algorithm works by accumulating reasons
and advices from oracles and gradually converging to a solution to the problem.

4 Case Studies: Existing Frameworks

In this section, we describe algorithms from three different areas and show that they can
be effectively modelled by our proposed algorithm in the context of model expansion.
We show that our algorithm acts similar to the state-of-the-art algorithms when the right
components are provided.

Notation 1 We sometimes use a τ -structure B (which gives an interpretation to vocab-
ulary τ ) as the set of atoms of τ which are assigned by B to be true. For example, when



Data: Modular System M with each module Mi associated with a CCAV oracle Oi, input
structure A and complete online solver S

Result: Structure B that expands A and is in M
begin

Let τ ⊆ vocab(M) be such that τ does not appear on the right hand of any feedback;
Let ρ : vocab(M)→ τ be s.t. for all B ∈M and E ∈ vocab(M): EB = [ρ(E)]B;
/* such ρ can be found using feedback information */
Initialize the solver S using the empty expansion of A to τ ;
while TRUE do

Let R be the state of S ;
if R = 〈UNSAT 〉 then return Unsatisfiable ;
else if R = 〈SAT,B〉 then

Let B′ be a structure such that EB′
= [ρ(E)]B;

Add the set of advices from oracles wrt B′ to S ;
if M does not accept B′ then

Find a module Mi in M such that Mi does not accept B′|vocab(Mi) ;
Add the reason given by oracle Oi to S ;

else if B′ is total then return B′ ;

end
Algorithm 1: Lazy Model Expansion Algorithm

τ = {R,S} and RB = {(1, 2)} and SB = {(1, 1), (2, 2)}, then we may use B to
represent the following set of atoms:

B = {R(1, 2), S(1, 1), S(2, 2)}.

We may also use a partial interpretation as a set of true atoms in a similar fashion.
Sometimes, we also use B to represent a formula, i.e., conjunction of the atoms in above
set. Complement of a set is defined as usual, e.g., RBc = dom(B)2 \RB. Negation of a
set S of literals is also defined such that l ∈ S if and only if ¬l ∈ ¬S.

4.1 Modelling DPLL(T )

DPLL(T ) [5] system is an abstract framework to model the lazy SMT approach. It
is based on a general DPLL(X) engine, where X can be instantiated with a theory T
solver. DPLL(T ) engine extends the Decide, UnitPropagate, Backjump, Fail and Restart
actions of the classic DPLL framework with three new actions: (1) TheoryPropagate
gives literals that are T -consequences of current partial assignment, (2) T -Learn learns
T -consistent clauses, and (3) T -Forget forgets some previous lemmas of theory solver.

To participate in DPLL(T ) solving architecture, a theory solver provides three op-
erations: (1) taking literals that have been set true, (2) checking if setting these literals
true is T -consistent and, if not, providing a subset of them that causes inconsistency, (3)
identifying some currently undefined literals that are T -consequences of current partial
assignment and providing a justification for each. More details can be found in [5].

The modular system representing the DPLL(T ) system on the input formula φ ∧ ψ
is shown in figure 2, where σ = I , ε = E, and E+ ∪ E− ∪ E+

1 ∪ E
−
1 ∪ E

+
2 ∪ E

−
2



Fig. 2. Modular Sys-
tem Representing the
DPLL(T ) System on
Input Formula φ ∧ ψ

MTψ

MPΦ

TOTAL

1E

1E

E E

2E

2E

I

E

is the internal vocabulary of the module. Also, there are feedbacks from E+
1 to E+

2

and from E−1 to E−2 . The set of symbols in E+ and E− (same for E+
1 and E−1 , E+

2

andE−2 ) semantically represents a partial interpretation of the symbols in the expansion
vocabulary, i.e.,E+ (resp.E−) represents the positive (resp. negative) part of the partial
interpretation.

There are three MX modules in DPLL(T )φ∧ψ . The modules MPφ and MTψ work
on different parts of the specification. The formula φ in MPφ is CNF representation of
the problem specification with all non-propositional literals replaced by propositional
ones, and the formula ψ in MTψ is the formula

∧
i di ⇔ li where li and di are, re-

spectively, an atomic formula in theory T and its associated propositional literal used
in MPφ . The module MPφ is the set of structures B such that:

(E+
1

B
, E−1

B
) =


(D,D) if R+ ∩R− 6= ∅
(R+, R+c) if R+ ∩R− = ∅, IB ∪ ¬IBc ∪R+ ∪ ¬R− |= φ

(R+, R−) if R+ ∩R− = ∅, IB ∪ ¬IBc ∪R+ ∪ ¬R− 6|= φ
,

where D = [dom(B)]n, n is the arity of E+, and (R+, R−) is the result of Unit
Propagation on φ under IB ∪ ¬IBc ∪ E+B ∪ ¬E−B.

Similarly, the module MTψ is defined as the set of structures B such that:

(E+B, E−
B
) =


(D,D) if R+ ∩R− 6= ∅
(D,D) if R+ ∩R− = ∅, IB ∪ ¬IBc ∪R+ ∪ ¬R−|=T¬ψ
(R+, R+c) if R+ ∩R− = ∅, IB ∪ ¬IBc ∪R+ ∪ ¬R−|=Tψ
(R+, R−) if R+ ∩R− = ∅,T-satisfiability unknown

,

where D is as before and (R+, R−) is the result of Theory Propagation on ψ under
IB ∪ ¬IBc ∪ E+

2

B ∪ ¬E−2
B

, and R|=Tψ denotes that ψ is T -satisfiable under the set
of facts R. Note that the satisfiability test is not necessarily complete. It can be done in
different degrees depending on the complexity of different theories.

The module TOTAL is the set of structures B such that E+
1

B ∩E−1
B
= ∅, E+

1

B ∪
E−1
B
= D, and E+

1

B
= EB.



We define the modular system DPLL(T )φ∧ψ as:

DPLL(T )φ∧ψ := π{I,E}(((MTψ BMPφ)[E
+
1 = E+

2 ][E−1 = E−2 ])BTOTAL). (2)

To show that the combined module DPLL(T )φ∧ψ is correct, consider any model
of the modular system. Note that for both modules MPφ and MTψ , the outputs always
contain all the information that the inputs have, i.e., for any structure B in the module
MPφ , we have E+

1

B ⊇ E+B and E−1
B ⊇ E−

B, and for any structure B in MTψ ,

we have E+B ⊇ E+
2

B
and E−B ⊇ E−2

B
. Furthermore, from the semantics of the

feedback operator, we know that E+
1

B
= E+

2

B
and E−1

B
= E−2

B
. Thus, we have

E+B = E+
1

B
= E+

2

B
and E−B = E−1

B
= E−2

B
. Moreover, from the definition of

module TOTAL, we know that (E+
1

B
, E−1

B
) represents a total interpretation of the

symbols in E and EB = E+
1

B
. Finally, from the definitions of MPφ and MTψ on

encodings of total interpretations, we can conclude that B |= φ and B|=Tψ. On the
other hand, it is easy to see that for any structure B such that B |= φ and B|=Tψ, B is
in DPLL(T )φ∧ψ .

So, there is a one-to-one correspondence between models ofDPLL(T )φ∧ψ and the
propositional part of the solutions to the DPLL(T ) system on input formula φ ∧ ψ. To
find a solution, one can compute a model of this modular system.

To solveDPLL(T )φ∧ψ , we introduce a solver S to be any DPLL-based online SAT
solver, so that it performs the basic actions of Decide, UnitPropagate, Fail, Restart, and
also Backjump when the backjumping clause is added to the solver. The three modules
TOTAL, MTψ and MPφ are attached with oracles OTOTAL, OT and OP respectively.
They accept a partial structure B iff their respective module constraints are not falsified
by B. As the constructions of modules OT and OP are similar to each other, we only
give constructions for the solver S, oracle OTOTAL, and oracle OT :

Solver S is a DPLL-based online SAT solver (clearly complete and online).
Oracle OTOTAL accepts a partial structure B iff E+

1

B ∩E−1
B
= ∅, E+

1

B ∪E−1
B
=

D, andEB = E+B. If B is rejected,OTOTAL returns
∧
ω∈Ω′ ω as the reason, whereΩ′

is any non-empty subset of the set Ω = {E+
1 (d) ⇔ ¬E−1 (d) | d ∈ D,B 6|= E+

1 (d) ⇔
¬E−1 (d)}∪ {E(d)⇔ E+

1 (d) | d ∈ D,B 6|= E(d)⇔ E+
1 (d)}. OTOTAL returns the set

Ω as the set of advices when B is the empty expansion of the instance structure, and the
empty set otherwise.3 Clearly, OTOTAL is a CCAV oracle.

Oracle OT accepts a partial structure B iff it does not falsify the constraints de-
scribed above for module MTψ on I , E+, E−, E+

2 , and E−2 . Let (R+, R−) denote the

result of the Theory Propagation on ψ under IB ∪ ¬IBc ∪E+
2

B ∪ ¬E−2
B

. Then, if B is
rejected,
1. If R+∩R− 6= ∅ or ψ is T -unsatisfiable under IB ∪¬IBc∪R+∪¬R−, OT returns

a reason ω of the form
∧
d∈D1

E+
2 (d)∧

∧
d∈D2

E−2 (d) ⊃
∧
d∈D3

(E+(d)∧E−(d))
with D1 ⊆ D,D2 ⊆ D, ∅ ( D3 ⊆ D,T |=

∨
d∈D1

¬l(d) ∨
∨
d∈D2

l(d),B |= ¬ω,
where l(d) denotes the atomic formula l in ψ whose associated propositional atom
is d. Note that from the advices and reasons from oracles, the solver can understand

3 This makes sure that Ω is returned only once at the beginning.



that right hand side of the implication is inconsistent, and thus the reason corre-
sponds to the set of T -inconsistent literals from the theory solver in the DPLL(T )
system.

2. Else if ψ is T -satisfiable under IB ∪ ¬IBc ∪ R+ ∪ ¬R−, OT returns a reason ω
of the form

∧
d∈D1

E+
2 (d) ∧

∧
d∈D2

E−2 (d) ⊃
∧
d∈R+ E+(d) ∧

∧
d∈R+c E−(d),

where D1 ⊆ D,D2 ⊆ D,B |= ¬ω.
3. Else, OT returns a reason similar to the second case except that it uses R− instead

of R+c.
By the definition of MTψ , we know that B falsifies the reason and all models of

MTψ satisfy the reason. Thus, OT is complete and constructive. OT may also return
some advices in the same form as any ω above such that B satisfies the left hand side
of the implication, but not the right hand side. Also, since the outputs of MTψ always
subsume the inputs, OT may also return the set {E+

2 (d) ⊃ E+(d) | d ∈ D,B |=
E+

2 (d),B 6|= E+(d)} ∪ {E−2 (d) ⊃ E−(d) | d ∈ D,B |= E−2 (d),B 6|= E−(d)} as
the set of advices.4 Clearly, all the structures in MTψ satisfy all sets of advices. Hence,
OT is an advising oracle. Finally, OT always makes the correct decision for a total
structure and rejects a partial structure only when it falsifies the constraints for MTψ .
OT never rejects any good partial structure B (although it may accept some bad non-
total structures). Therefore, OT is a verifying oracle.

Proposition 1. 1. Modular system DPLL(T )φ∧ψ is the set of structures B such that
B |= φ and B|=Tψ.

2. Solver S is complete and online.
3. OP , OT , and OTOTAL are CCAV oracles.
4. Algorithm 1 on modular system DPLL(T )φ∧ψ associated with oracles OP , OT ,
OTOTAL, and the solver S models the solving procedure of the DPLL(T ) system
on input formula φ ∧ ψ.

DPLL(T) architecture is known to be very efficient and many solvers are designed
to use it, including most SMT solvers [10]. The DPLL(Agg) module [11] is suitable
for all DPLL-based SAT, SMT and ASP solvers to check satisfiability of aggregate
expressions in DPLL(T ) context. All these systems are representable in our modular
framework.

4.2 Modelling ILP Solvers

Integer Linear Programming solvers solve optimization problems. In this paper, we
model ILP solvers which use general branch-and-cut method to solve search problems
instead, i.e., when target function is constant. We show that Algorithm 1 models such
ILP solvers. ILP solvers with other methods and Mixed Integer Linear Programming
solvers use similar architectures and, thus, can be modelled similarly.

The search version of general branch-and-cut algorithm [6] is as follows:
1. Initialization: S = {ILP0} with ILP0 the initial problem.
2. Termination: If S = ∅, return UNSAT.

4 Again OT only returns this set when B is the empty expansion of the instance structure.



3. Problem Select: Select and remove problem ILPi from S.
4. Relaxation: Solve LP relaxation of ILPi (as a search problem). If infeasible, go to

step 2. Otherwise, if solution XiR of LP relaxation is integral, return solution XiR.
5. Add Cutting Planes: Add a cutting plane violating XiR to relaxation and go to 4.
6. Partitioning: Find partition {Cij}j=kj=1 of constraint setCi of problem ILPi. Create k

subproblems ILPij for j = 1, · · · , k, by restricting the feasible region of subprob-
lem ILP ij to Cij . Add those k problems to S and go to step 2. Often, in practice,
finding a partition is simplified by picking a variable xi with non-integral value vi
in XiR and returning partition {Ci ∪ {xi ≤ bvic}, Ci ∪ {xi ≥ dvie}}.

P

LPΦ

CΦ

F

SC3

F1 F2

SC2 B

SC1 Fig. 3. Modular System Repre-
senting an ILP Solver

We use the modular system shown in figure 3 to represent the ILP solver. The mod-
ule Cφ takes a set of variable assignments F1 and a set of cutting planes SC1 as inputs
and returns another set of cutting planes SC2. When all the assignments in F1 are in-
tegral, SC2 is equal to SC1, and if not, SC2 is the union of SC1 and a cutting plane
violated by F1 w.r.t. the set of linear constraints SC1 ∪ φ. The module P takes a set of
assignments F2 as input and outputs a set of range constraints B = {Bx | F2(x) 6∈ Z},
where Bx is non-deterministically chosen from the set {x ≤ bF2(x)c, x ≥ dF2(x)e}.
The module LPφ takes the set of cutting planes SC2 and the set of range constraints B
as inputs and outputs the set of cuttings planes SC3 and the set of assignments F in a
deterministic way such that SC3 is the union of SC2 andB, and F is a total assignment
satisfying SC2∪B∪φ. LPφ is undefined when SC2∪B∪φ is inconsistent. We define
the compound module ILPφ to be:

ILPφ := π{F}(((Cφ ∩ P )B LPφ)[SC3 = SC1][F = F1][F = F2]).

To show that the combined module ILPφ is correct, consider any model of the
modular system. By the definition of LPφ, we know that F satisfies φ. Furthermore,
the setB is empty in the model because F satisfies all the linear constraints inB, but F2

(which is equal to F by the semantics of feedback operator) falsifies those constraints.
Thus by the definition of the module P , we know that F2 (also F ) is integral. Thus F
is an integral solution to φ. On the other hand, for any integral solution S to φ, consider
a structure B such that FB = FB1 = FB2 = S, BB = ∅, and SCB1 = SCB2 = SCB3 =



⋃
x{x ≤ F (x), x ≥ F (x)}. Then clearly, B is in the module ILPφ, i.e., B is the model

of the module ILPφ.
So there is one-to-one correspondence between the solutions of the ILP problem

with input φ, and the models of the modular system ILPφ. We compute a model of
this modular system by associating modules with oracles (Oc, Op and Olp) and intro-
ducing a solver S that interacts with those oracles. Each oracle rejects a partial struc-
ture B if it contradicts corresponding module definition and in this case, the reason
for the rejection is provided. For example, when FB2 is non-integral, Op rejects B and
gives the reason bF2(x)

Bc < F2(x) < dF2(x)
Be ⊃ B(“F2(x) ≤ bF2(x)

Bc”) ∨
B(“F2(x) ≥ dF2(x)

Be”), for some non-integral variable x, and Oc rejects B with the
reason (

∧
l∈L SC1(l))∧ (

∧
x F1(x) = F1(x)

B) ⊃ SC2(c), where c is the cutting plane
that violates F1, and L is a subset of SC1 such that F1 is the intersection of some
constraints in L ∪ φ. Full details of the oracles are omitted due to the space consid-
eration. The solver S accepts full propositional language with atomic formulas being
either boolean variables or range constraints. In addition, S can assign numerical values
(for F ) according to the set of derived range constraints.

Proposition 2. 1. Modular system ILPφ is the set of structures representing the sets
of integral solutions of φ.

2. S is complete and online.
3. Oc, Op and Olp are CCAV oracles.
4. Algorithm 1 on modular system ILPφ, associated with oracles Oc, Op, Olp, and

the solver S models the branch-and-cut-based ILP solver on input formula φ.

There are many other solvers in the ILP community that use some ILP or MILP
solver as their low-level solver. It is not hard to observe that most of them also have
similar architectures that can be closely mapped to our algorithm.

4.3 Modelling Constraint Answer Set Solvers

The Answer Set Programming (ASP) community puts a lot of effort into optimizing
their solvers. One such effort addresses ASP programs with variables ranging over
huge domains (for which, ASP solvers alone perform poorly due to the huge mem-
ory needed). However, embedding Constraint Programming (CP) techniques into ASP
solving is proved useful because complete grounding can be avoided.

In [12], the authors extend the language of ASP and its reasoning method to avoid
grounding of variables with large domains by using constraint solving techniques. The
algorithm uses ASP and CP solvers as black boxes and non-deterministically extends
a partial solution to the ASP part and checks it with the CP solver. Paper [13] presents
another integration of answer set generation and constraint solving in which a traditional
DPLL-like backtracking algorithm is used to embed the CP solver into the ASP solving.

Recently, the authors of [7] developed an improved hybrid solver which supports
advanced backjumping and conflict-driven nogood learning (CDNL) techniques. They
show that their solver’s performance is comparable to state-of-the-art SMT solvers.
Paper [7] applies a partial grounding before running its algorithm, thus, it uses an al-
gorithm on propositional level. A brief description of this algorithm follows: Starting



from an empty set of assignments and nogoods, the algorithm gradually extends the
partial assignments by both unit propagation in ASP and constraint propagation in CP.
If a conflict occurs (during either unit propagation or constraint propagation), a nogood
containing the corresponding unique implication point (UIP) is learnt and the algorithm
backjumps to the decision level of the UIP. Otherwise, the algorithm decides on the
truth value of one of the currently unassigned atoms and continues to apply the propa-
gation. If the assignment becomes total, the CP oracle queries to check whether this is
indeed a solution for the corresponding constraint satisfaction problem (CSP). This step
is necessary because simply performing constraint propagation on the set of constraints,
i.e., arc-consistency checking, is not sufficient to decide the feasibility of constraints.

The modular model of this solver is very similar to the one in Figure 2, except that
we have module ASPφ instead of SATφ and CPψ instead of ILPψ . The compound
module CASPφ∧ψ is defined as:

CASPφ∧ψ := π{I,E}(((CPψ BASPφ)[E
+
1 = E+

2 ][E−1 = E−2 ])B TOTAL).

As a CDNL-like technique is also used in SMT solvers, the above algorithm is
modelled similarly to Section 4.1. We define a solver S to be a CDNL-based ASP
solver. We also define modules ASPφ and CPψ to deal with the ASP part and the CP
part. They are both associated oracles similar to those described in Section 4.1. We do
not include the details here as they are similar to the ones in section 4.1.

Note that one can add reasons and advices to an ASP solver safely in the form of
conflict rules because stable model semantics is monotonic with respect to such rules.
Also, practical CP solvers do not provide reasons for rejecting partial structures. This
issue is dealt with in [7] by wrapping CP solvers with a conflict analysis mechanism to
compute nogoods based on the first UIP scheme.

5 Related Work

There are many papers on modularity in declarative programming, we only review the
most relevant ones. The authors of [9] proposed a multi-language framework for con-
straint modelling. That work was the initial inspiration of [2], but the authors extended
the ideas significantly by developing a model-theoretic framework and introducing a
feedback operator that adds a significant expressive power.

An early work on adding modularity to logic programs is [14]. The authors derive
a semantics for modular logic programs by viewing a logic program as a generalized
quantifier. The ideas are further generalized in [15] by considering the concept of mod-
ules in declarative programming and introducing modular equivalence in normal logic
programs under the stable model semantics. This line of work is continued in [16] to
define modularity for disjunctive logic programs. There are also other approaches to
adding modularity to ASP languages and ID-Logic as described in [17–19].

The works mentioned earlier focus on the theory of modularity in declarative lan-
guages. However, there are also papers that focus on the practice of modular declarative
programming and, in particular, solving. These generally fall into one of the two fol-
lowing categories. The first category consists of practical modelling languages which



incorporate other modelling languages. For example, X-ASP [20] and ASP-PROLOG
[21] extend Prolog with ASP, CP techniques are incorporated into ASP solving in [12],
[13], and [7]. Also, ESRA [22], ESSENCE [8] and Zinc [23] are CP languages extended
with features from other languages. However, these approaches give priority to the host
language while our modular setting gives equal weight to all modelling languages that
are involved. It is important to note that, even in the presence of this distinction, such
works have been very important in the development of this paper because they provide
guidelines on how a practical solver deals with efficiency issues. The second category
is related to multi-context systems. In [24], the authors introduce non-monotonic bridge
rules to the contextual reasoning and originated an interesting and active line of research
followed by many others for solving or explaining inconsistencies in non-monotonic
multi-context systems [25–28]. However, these papers do not consider the model ex-
pansion task. Moreover, the motivations of these works originate from distributed or
partial knowledge, e.g., when agents interact or when trust or privacy issues are impor-
tant. Despite these differences, the field of multi-context systems is very relevant to our
research. Investigating this connection is an important future research direction.

6 Conclusion

We took a language-independent view on iterative modular problem solving. Our algo-
rithm is designed to solve combinatorial search problems described as modular systems
in the context of model expansion. This model-theoretic approach allows us to abstract
away from particular languages of the modules. We performed several case studies
of our algorithm in relation to existing systems such as DPLL(T), ILP, ASP-CP. We
demonstrated that, in the context of the model expansion task, our algorithm general-
izes the work of these solvers. As a side effect of this analysis, we demonstrated how
Valid Acceptance Procedures from different communities could be used to implement
oracles for modules to achieve efficient solving. For example, the procedures of Well-
Founded Model computation and Arc-Consistency checking can be used to implement
oracles for the ASP and CP languages to construct an efficient combined solver, which
corresponds to the state-of-the-art combination of ASP and CP described in [7].

Our general approach for solving modular systems can be applied to systems such as
Business Process Planners in different areas and their variants including Logistics Ser-
vice Provider, Manufacturer Supply Chain Management, Mid-size Businesses Relying
on External Web Services and Cloud Computing. With the increasing use of service-
oriented architecture, such modular systems will become increasingly more applicable.
We believe we are taking important initial steps addressing the core aspect of this com-
plex multi-dimensional problem, namely the underlying computationally complex task.
As a future direction, we plan to develop a prototype implementation of our algorithms.
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3. Niemelä, I.: Integrating answer set programming and satisfiability modulo theories. In:
LPNMR. Volume 5753 of LNCS., Springer-Verlag (2009) 3–3

4. Tasharrofi, S., Wu, X.N., Ternovska, E.: Language-independent modular problem solving.
(2012) Under Review.

5. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving sat and sat modulo theories: From an ab-
stract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53 (November
2006) 937–977

6. Pardalos, P., Resende, M.: Handbook of applied optimization. Volume 126. Oxford Univer-
sity Press New York; (2002)

7. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Proc. of ICLP’09.
LNCS, Springer-Verlag (2009) 235–249

8. Frisch, A.M., Harvey, W., Jefferson, C., Martı́nez-Hernández, B., Miguel, I.: Essence: A
constraint language for specifying combinatorial problems. Constraints 13 (2008) 268–306

9. Järvisalo, M., Oikarinen, E., Janhunen, T., Niemelä, I.: A module-based framework for
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26. Bögl, M., Eiter, T., Fink, M., Schüller, P.: The mcs-ie system for explaining inconsistency
in multi-context systems. In Janhunen, T., Niemelä, I., eds.: Logics in Artificial Intelligence
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