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Abstract. Given a finite domain, grounding is the the process of creating a variable-
free first-order formula equivalent to a first-order sentence. The first-order sen-
tences can be used to describe a combinatorial search problem. Efficient ground-
ing algorithms would help in solving such problems effectively and make ad-
vanced solver technology (such as SAT) accessible to a wider variety of users.
One promising method for grounding is based on the relational algebra from the
field of Database research. We describe the extension of this method to ground
formulas of first-order logic extended with arithmetic and aggregate operators.
The method allows choice of particular CNF representations of complex con-
straints to be parameterized easily. We have implemented the methods we de-
scribe, and demonstrated that they can be effective in practice.

1 Introduction

An important direction of work in constraint-based methods is the development of
declarative languages for specifying or modelling combinatorial search problems. These
languages provide users with a notation in which to give a high-level specification of
a problem (see e.g. ESSENCE [1]). By reducing the need for specialized constraint
programming knowledge, these languages make the technology accessible to a wider
variety of users. In our group, a logic-based framework for specification/modelling lan-
guage was proposed [2]. We undertake a research program of both theoretical develop-
ment and demonstrating practical feasibility through system development.

Our tools are based on grounding, which is the task of taking a problem speci-
fication, together with an instance, and producing a variable-free first-order formula
representing the solutions to the instance1. Here, we consider grounding to proposi-
tional logic, with the aim of using SAT solvers as the problem solving engine. Note that
SAT is just one possibility. A similar process can be used for grounding from a high-
level language to e.g. cplex, various SMT and ground constraint solvers, e.g. MINION
[3], etc., which is a subject of future work. An important advantage in solving through
grounding is that the speed of ground solvers improves all the time, and we can always
use the best and the latest solver available.

Grounding a first-order formula over a given finite domain A may be done simply
by replacing ∀x φ(x) with ∧a∈Aφ(x)[x/ã], and ∃x φ(x) with ∨a∈Aφ(x)[x/ã] where
ã is a new constant symbol denoting domain element a. In practice, though, effective

1 By instance we always understand an instance of a search problem, e.g. a graph is an instance
of 3-colourability.
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grounding is not easy. Naive methods are too slow, and produce groundings that are too
large and contain many redundant clauses.

One advantage of using a language based on classical logic is that first-order logic
(FO) is equivalent to relational algebra, and therefore we could adapt database query
optimization techniques for grounding. Our group is developing grounding technology
based on a generalization of the relational algebra. Since correctness and completeness
are assured by algebraic properties, it is practical to employ a wider range of algo-
rithmic paradigms that is apparent with direct grounding methods. The basic method,
for function-free FO, is defined in [4, 5], and a prototype implementation is described
in [5]. A variety of extensions and refinements of the method are under development,
including adaptation of database query techniques to increase performance. It is impor-
tant to notice that we are solving a model expansion[5] problem which is very different
from query evaluation process. In model expansion context, there are formulas and sub-
formulas for which we do not know if they are true or false, while in query processing
context, every formula can be evaluated as either true or false.

While there are many advantages of choosing mathematical logic as a foundation
for a modelling language, there seem to be many obstacles for developing realistic mod-
elling languages with practical features which are not a part of classical logic, e.g. for
modelling languages which have arithmetic constructs and aggregate operations (such
as Count, Max, Sum, etc.). In [6], the framework [2] was extended with arithmetic and
aggregates. Here, we demonstrate the practicality of the approach by extending our
relational algebra based algorithms to deal with arithmetic and aggregates.

An important element in the practice of SAT solving is the choice, when designing
reductions, of “good” encodings into propositional logic of complex constraints. We
describe our method for grounding of formulas containing aggregate operations in terms
of “gadgets” which determine the actual encoding. The choice of the particular gadget
can be under user control, or even made automatically at run time based on formula and
instance properties. To illustrate, we describe three gadgets for the count operator.

Even within one specification, different occurrences of the same aggregate may be
grounded differently, and this may vary from instance to instance. With well designed
(possibly by machine learning methods) heuristics for such choices, we may be able to
produce groundings that are more effective in practice than those a human could design
by hand, except through an exceedingly labour-intensive process.

Before proceeding, let us remark that the point of this work does not hinge on
whether the best way to handle certain aggregates is by reduction to SAT or natively.
Whenever high-level specifications are used together with high-performance solvers,
there will be constraints in specifications that are not handled natively by the solvers.
This work is part of a research program to develop effective techniques for this purpose.

Our main contributions are:

1. We presented an algorithm which can be used to ground specifications having dif-
ferent kinds of terms, e.g., aggregates, expansion/instance functions, arithmetics.

2. We enriched our language with aggregates, designed and developed an engine
which can convert the these constructs to CNF. To do so, we have used some oracles
which we call them gadgets.
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3. We defined the notion of answer to terms and modify the previous grounding algo-
rithm to be able to work with this new concept.

2 Background

We formalize combinatorial search problems in terms of the logical problem of model
expansion (MX), defined here for an arbitrary logic L.

Definition 1 (MX). Given an L-sentence φ, over the union of disjoint vocabularies σ
and ε, and a finite structure A for vocabulary σ, find a structure B that is an expansion
of A to σ ∪ ε such that B |= φ.

In this paper, φ is a problem specification formula, and is fixed for each search
problem. A always denotes a finite σ-structure, called the instance structure, σ is the
instance vocabulary, and ε the expansion vocabulary.

Example 1. The following formula φ of first order logic constitutes a specification for
Graph 3-Colouring:

∀x [
(
R(x) ∨B(x) ∨G(x)

)
] ∧

∀x ¬[(R(x) ∧B(x)) ∨ (R(x) ∧G(x)) ∨ (B(x) ∧G(x))] ∧
∀x∀y [(E(x, y) ∨ E(y, x)) ⊃ (¬(R(x) ∧R(y)) ∧ ¬(B(x) ∧B(y)) ∧ ¬(G(x) ∧G(y)))]

An instance is a structure for vocabulary σ = {E}, i.e., a graph A = G = (V ;E). The
task is to find an expansion B of A that satisfies φ:

A︷ ︸︸ ︷
(V ;EA, RB, BB, GB)︸ ︷︷ ︸

B

|= φ.

Interpretations of the expansion vocabulary ε = {R,B,G}, for structures B that satisfy
φ, are proper 3-colourings of G.

The grounding task is to produce a ground formula ψ = Gnd(φ,A), such that mod-
els of ψ correspond to solutions for instance A. Formally, to ground we bring domain
elements into the syntax by expanding the vocabulary with a new constant symbol for
each element of the domain. For domainA, the domain of structureA, we denote the set
of such constants by Ã. In practice, the ground formula should contain no occurrences
of the instance vocabulary, in which case we call it reduced.

Definition 2 (Reduced Grounding for MX). Formula ψ is a reduced grounding of
formula φ over σ-structure A = (A;σA) if
1) ψ is a ground formula over ε ∪ Ã, and
2) for every expansion structure B = (A;σA, εB) over σ ∪ ε, B |= φ iff (B, ÃB) |= ψ,

where ÃB is the standard interpretation of the new constants Ã.

Proposition 1. Let ψ be a reduced grounding of φ over σ-structure A. Then A can be
expanded to a model of φ iff ψ is satisfiable.
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Producing a reduced grounding with respect to a given structure A can be done
by an algorithm that, for each fixed FO formula, runs in time polynomial in the size
of A. Such a grounding algorithm implements a polytime reduction to SAT for each
NP search problem. Simple grounding algorithms, however, do not reliably produce
groundings for large instances of interesting problems fast enough in practice.

Grounding for MX is a generalization of query answering. Given a structure (database)
A, a boolean query is a formula φ over the vocabulary of A, and query answering is
equivalent to evaluating whether φ is true, i.e., A |= φ. For model expansion, φ has
some additional vocabulary beyond that of A, and producing a reduced grounding in-
volves evaluating out the instance vocabulary, and producing a ground formula repre-
senting the possible expansions of A for which φ is true.

The grounding algorithms in this paper construct a grounding by a bottom-up pro-
cess that parallels database query evaluation, based on an extension of the relational
algebra. For each sub-formula φ(x̄) with free variables x̄, we call the set of reduced
groundings for φ under all possible ground instantiations of x̄ an answer to φ(x̄). We
represent answers with tables on which an extended algebra operates.

An X-relation is a k-ary relation associated with a k-tuple of variables X, represent-
ing a set of instantiations of the variables of X. It is a central notion in databases. In
extended X-relations, introduced in [7], each tuple γ is associated with a formula ψ.
For convenience, we use > and ⊥ as propositional formulas which are always true and,
respectively, false.

Definition 3 (extended X-relation; function δR). Let A be a domain, and X a tuple
of variables with |X| = k. An extended X-relationR over A is a set of pairs (γ, ψ) s.t.
1) γ : X → A, and
2) ψ is a formula, and
3) if (γ, ψ) ∈ R and (γ, ψ′) ∈ R then ψ = ψ′.
The function δR represented by R is a mapping from k-tuples γ of elements of the
domain A to formulas, defined by:

δR(γ) =

{
ψ if (γ, ψ) ∈ R,
⊥ if there is no pair (γ, ψ) ∈ R.

For brevity, we sometimes write γ ∈ R to mean that there existsψ such that (γ, ψ) ∈ R.
We also sometimes call extended X-relations simply tables. To refer to X-relations for
some concrete set X of variables, rather than in general, we write X-relation.

Definition 4 (answer to φ wrt A). Let φ be a formula in σ ∪ ε with free variables X ,
A a σ-structure with domain A, andR an extended X-relation over A. We sayR is an
answer to φ wrtA if for any γ : X → A, we have that δR(γ) is a reduced grounding of
φ[γ] overA. Here, φ[γ] denotes the result of instantiating free variables in φ according
to γ.

Since a sentence has no free variables, the answer to a sentence φ is a zero-ary
extended X-relation, containing a single pair (〈〉, ψ), associating the empty tuple with
formula ψ, which is a reduced grounding of φ.
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Example 2. Let σ = {P} and ε = {E}, and let A be a σ-structure with PA =
{(1, 2, 3), (3, 4, 5)}. The following extended relationR is an answer to φ1 ≡ P (x, y, z)∧
E(x, y) ∧ E(y, z):

x y z ψ

1 2 3 E(1, 2) ∧ E(2, 3)

3 4 5 E(3, 4) ∧ E(4, 5)

Observe that δR(1, 2, 3) = E(1, 2) ∧ E(2, 3) is a reduced grounding of φ1[(1, 2, 3)] =
P (1, 2, 3)∧E(1, 2)∧E(2, 3), and δR(1, 1, 1) = ⊥ is a reduced grounding of φ1[(1, 1, 1)].
The following extended relation is an answer to φ2 ≡ ∃zφ1:

x y ψ

1 2 E(1, 2) ∧ E(2, 3)

3 4 E(3, 4) ∧ E(4, 5)

Here, E(1, 2) ∧ E(2, 3) is a reduced grounding of φ2[(1, 2)]. Finally, the following
represents an answer to φ3 ≡ ∃x∃yφ2, where the single formula is a reduced grounding
of φ3.

ψ

[E(1, 2) ∧ E(2, 3)] ∨ [E(3, 4) ∧ E(4, 5)]

The relational algebra has operations corresponding to each connective and quanti-
fier in FO, as follows: complement (negation); join (conjunction); union (disjunction),
projection (existential quantification); division or quotient (universal quantification).
Following [7, 5], we generalize each to extended X-relations as follows.

Definition 5 (Extended Relational Algebra). LetR be an extended X-relation and S
an extended Y -relation, both over domain A.
1. ¬R is the extended X-relation ¬R = {(γ, ψ) | γ : X → A, δR(γ) 6= >, and ψ =
¬δR(γ)}

2. R on S is the extended X ∪Y -relationR on S = {(γ, ψ) | γ : X ∪Y → A, γ|X ∈
R, γ|Y ∈ S, and ψ = δR(γ|X) ∧ δS(γ|Y )};

3. R ∪ S is the extended X ∪ Y -relation R ∪ S = {(γ, ψ) | γ|X ∈ R or γ|Y ∈
S, and ψ = δR(γ|X) ∨ δS(γ|Y )}.

4. For Z ⊆ X , the Z-projection of R, denoted by πZ(R), is the extended Z-relation
{(γ′, ψ) | γ′ = γ|Z for some γ ∈ R and ψ =

∨
{γ∈R|γ′=γ|Z} δR(γ)}.

5. For Z ⊆ X , the Z-quotient of R, denoted by dZ(R), is the extended Z-relation
{(γ′, ψ) | ∀γ(γ : X → A∧γ|Z = γ′ ⇒ γ ∈ R), and ψ =

∧
{γ∈R|γ′=γ|Z} δR(γ)}.

To ground using this algebra, we apply the algebra inductively on the structure of
the formula, just as the standard relational algebra may be applied for query evaluation.
We define the answer to atomic formula P (x̄) as follows. If P is an instance predicate,
the answer to P is the set of tuples (ā,>), for ā ∈ PA. If P is an expansion predicate,
the answer is the set of all pairs (ā, P (ā)), where ā is a tuple of elements from the
domain A. Correctness of the method then follows, by induction on the structure of the
formula, from the following proposition.
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Proposition 2. Suppose thatR is an answer to φ1 and S is an answer to φ2, both with
respect to (wrt) structure A. Then
1. ¬R is an answer to ¬φ1 wrt A;
2. R on S is an answer to φ1 ∧ φ2 wrt A;
3. R∪ S is an answer to φ1 ∨ φ2 wrt A;
4. If Y is the set of free variables of ∃z̄φ1, then πY (R) is an answer to ∃z̄φ1 wrt A.
5. If Y is the set of free variables of ∀z̄φ1, then dY (R) is an answer to ∀z̄φ1 wrt A.

The straightforward proof for cases 1, 2 and 4 is given in [7]; the other cases follow
easily.

The answer to an atomic formula P (x̄), where P is from the expansion vocabu-
lary, is formally a universal table, but in practice we may represent this table implicitly
and avoid explicitly enumerating the tuples. As operations are applied, some subset of
columns remain universal, while others do not. Again, those columns which are univer-
sal may be represented implicitly. This could be treated as an implementation detail, but
the use of such implicit representations dramatically affects the cost of operations, and
so it is useful to further generalize our extended X-relations. Following [5], we call the
variables which are implicitly universal “hidden” variables, as they are not represented
explicitly in the tuples, and the other variables “explicit” variables.

Definition 6 (Extended Hidden X-Relation RY ; δRY
). Let X,Y be tuples of vari-

ables, with Y ⊆ X (when viewed as sets), and |X| = k. An extended hiddenX-relation
RY is a set of tuples (γ, ψ) s.t.
1) γ : X\Y → A, and
2) ψ is a formula, and
3) if (γ, ψ) ∈ RY and (γ, ψ′) ∈ RY , then ψ = ψ′.
The function δRY

represented by RY is a mapping from k-tuples γ′ of elements of the
domain A to formulas, defined by

δRY
(γ′) =

{
ψ if (γ′ |X\Y , ψ) ∈ R,
⊥ if there is no pair (γ′ |X\Y , ψ) ∈ R.

So, an extended hidden X-relation RY is a compact representation of an extended
X-relation by an extended X\Y -relation, which may be used whenever the columns
for variables of Y are universal. If X = Y , we have a compact representation of a
universal relation; if Y = ∅, we have a normal extended X-relation.

All the operations of the algebra generalize easily. The hidden variables technique
does not alter the semantics of the operations. Henceforth, the term table may denote
either an extended X-relation or a hidden extended X-relation.

2.1 FO MX with Arithmetic

In this paper, we are concerned with specifications written in FO extended with arith-
metic and aggregate operators. Informally, we assume that the domain of any instance
structure is N, and that arithmetic operators have their standard meanings. Details of
aggregate operators need to be specified, but these also behave according to our normal
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intuitions. Quantified variables and the range of instance functions must be restricted to
finite subsets of the integers, and possible interpretations of expansion predicates and
expansion functions must be restricted to a finite domain of N, as well. This can be done
by employing a multi-sorted logic in which all sorts are required to be finite subsets of
N, or by requiring specification formulas to be written in a certain “guarded” form.

In [6], these intuitions are formalized using the concepts of embedded structures
and double-guarded logics. There, it is shown that MX specifications in FO extended
with arithmetic and aggregates, as used in the present paper, can express exactly the
problems in NP restricted to “small cost” structures, in which numbers are restricted
to not be extremely large. Exact details are unimportant for this paper. In the rest of
this paper, we assume that all variables are ranging over the finite domain2 T ⊂ N and
φ(t1(x̄), · · · , tk(x̄)) is a short-hand for

∃y1, · · · , yk : y1 = t1(x̄) ∧ · · · yk = tk(x̄) ∧ φ(y1, · · · , yk)

Under these assumptions, we do not need to worry about the interpretation of predicates
and functions outside T .

Syntax and Semantics of Aggregate Operators In this section, we may use evaluation
for formulas with expansion predicates. What we mean by evaluating a formula, which
has expansion predicates, as true is that there is a solution for the whole specification
which satisfies the given formula, too. Also, for sake of representation, we may use
φ[ā, z̄2] as a short-hand for φ(z̄1, z̄2)[z̄1/ā]. We defined the following aggregates terms
in this paper:

– Countx̄{φ(x̄, ȳ)}, for any instantiation b̄ for ȳ, denotes the number of tuples ā for
which φ[ā, b̄] is true;

– Maxx̄{t(x̄, ȳ) : φ(x̄, ȳ); dM}, for any instantiation b̄ for ȳ, denotes the maximum
value obtained by t[ā, b̄] over all instantiations ā for x̄ for which φ[ā, b̄] is true,
or d if there are none. In fact, dM is the default value of Max aggregate which is
returned whenever all conditions are evaluated as false. We have implemented a
more general form of Max aggregate in which the default value can be a general
term, but for sake of explanation, we present a special case where the default value
is a constant.

– Minx̄{t(x̄, ȳ) : φ(x̄, ȳ); dm} is defined dually to Max.
– Sumx̄{t(x̄, ȳ) : φ(x̄, ȳ)}, for any instantiation b̄ of ȳ, denotes 0 plus the sum of all

values t[ā, b̄] across all instantiations ā for x̄ for which φ[ā, b̄] is true.
We tried to define the semantics for aggregates very similar to what we have in SQL,

but SQL has a special value, NULL, which cannot be modelled in propositional logic.
The default value in Min and Max aggregates is used to make all terms/functions total.

Throughout the paper, we use σ, ε and ν, to denote instance, expansion vocabularies,
and the vocabulary of the “background structure” of the natural numbers, respectively.
Here, we assume the background structure consists of {=, < +,−,×, Count,Max,Min, Sum}
and a constant symbol for each natural number.

2 A more general version, where each variable may have its own domain, is implemented, but is
more complex to explain.
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3 Evaluating Out Arithmetic and Instance Functions

The relational algebra-based grounding algorithm, described in Section 2, is designed
for the relational (function-free) case. Below, we extend it to the case where arguments
to atomic formulas may be complex terms. In this section, we present a simple method
for the special case where functions do not contain expansion predicates, so can be
evaluated purely in terms of the instance structure.

Recall that an answer to a sub-formula φ(X) of a specification is an extended X-
relation R. If |X| = k, then the tuples of R have arity k. Now, consider an atomic
formula whose arguments are terms containing instance functions and arithmetic oper-
ations, for example P (x + y). This formula is equivalent to the formula φ = ∃z(z =
x+y∧P (z)). Although we have not discussed handling of the sub-formula z = x+y, it
is apparent that the answer to φ, which has free variables {x, y}, is an extended {x, y}-
relation R.

One possibility for R is the set of all pairs (〈a, b〉, ψ) such that a + b is in the
interpretation of P . To modify the grounding algorithm of previous sub-section, we
revise the base cases of definition as follows.

Definition 7 (Base Cases for Atoms with Evaluated Terms). For an atomic formula
φ = P (t1, · · · , tn) with terms t1 . . . tn and free variablesX , use the following extended
X-relation (which is an answer to φ wrt A):
1. if P is an instance predicate, {(γ,>) | A |= P (t1, . . . tn)[γ]}
2. if P is t1(x̄)� t2(x̄), where � ∈ {=, <}, {(γ,>) | A |= t1 � t2[γ]}
3. if P is an expansion predicate, {(γ, P (a1, . . . an)) | A |= (t1 = a1, . . . tn =
an)[γ]}

Terms involving aggregate operators, provided the formula argument to that opera-
tor contains only instance predicates and functions with a given interpretation, can also
be evaluated out in this way. The base case from the definition above is implemented
and can be used in the absence of aggregates which contain expansion predicates.

4 Answers to Terms

Terms involving expansion functions or predicates, including aggregate terms involving
expansion predicates, can only be evaluated with respect to a particular interpretation
of those expansion predicates. Thus, they cannot be evaluated out during grounding as
in Section 3 and must be represented in the ground formula.

In this section, we further extend the base cases of our relational algebra based
grounding method to handle atomic formulas with terms that cannot be evaluated out.
The key idea is to introduce a notion of an answer to a term. The new base cases then
construct an answer to the atom from the answers to the terms which are its arguments.
The terms we allow here include arithmetic expressions, expansion functions, expan-
sion predicates, and aggregate operators involving these as well. As an example for
aggregates, in N-Queen problem, the condition Maxr{Countc{Q(r, c)} : >; 0} ≤ 1
expresses that there should be at most one queen in each row.
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It will be convenient to use the following representation of extended relations. Let
t be a term over σ ∪ ε ∪ ν with free variables X , and A a σ-structure. Let R be a
pair (αR, βR) such that αR is a finite subset of N, and βR is a function mapping each
element a ∈ αR to an extended X-relation βR(a).

Intuitively, αR is the set of all possible values that a given term t(X̄) may take,
βR(a) is table representing all instantiations of t under which it evaluates to a. We
sometimes use Ra as a shorthand to βR(a). We define βR(a) = ∅ for a 6∈ αR. Recall
that we defined δR(γ) to be a iff (γ, a) ∈ R. We may also use δR(γ, n) and δβR(n)(γ)
interchangeably.

Definition 8 (Answer to term t wrt A). We say that R = (αR, βR) is an answer to
term t wrt A if, for every a ∈ αR, the extended X-relation βR(a) is an answer to the
formula (t = a) wrtA, and for every a 6∈ αR, the formula (t = a) is not satisfiable wrt
A.

Example 3. Let ψ(x, y) = P (x + f(y)) where domain of both x and y are {0, .., 2},
σ = {P, f}. Let A be a σ-structure with PA = {1} and fA = {(0 7→ 1), (1 7→
0), (2 7→ 1)}. Let t1 = x, t2 = y, t3 = f(t2) and t4 = t1 + t3 be the terms in ψ, and
R1, R2, R3 and R4 be answers to these terms, respectively. Then, it is easy to verify
that αR1

= αR2
= {0..2}, αR3

= {0..1} and αR4
= {0..3}. The relations βRi

can be
computed using Proposition 3, as demonstrated in example 4.

We now give properties that are sufficient for particular extended X-relations to con-
stitute answers to particular terms. For a tuple X of variables of arity k, define dom(X)
to be the set of all k-tuples of domain elements, i.e., dom(X) = Ak.

Proposition 3 (Answers to Terms). Let R be the pair (αR, βR), and t a term over
σ ∪ ε ∪ ν. Assume that t1, . . . tm are terms, andR1, . . .Rm (respectively) are answers
to those terms wrt A. ThenR is an answer to t wrt A if:
(1) t is a simple term (i.e., involves only variables, instance functions, and arithmetic

operators) and αR = {n ∈ N | ∃ a ∈ dom(X) : (t[a] = n)} and for all n ∈ αR,
βR(n) is an answer to t = n computed as described in Definition (7).

(2) t is a complex term in form of t1 + t2 and αR = {x+ y | x ∈ αR1
and y ∈ αR2

}

βR(n) = ∪(j∈αR1
, k∈αR2

, n=j+k)βR1
(j) ./ βR2

(k)

(3) t is a complex term in form of t1 − t2 — similar to case (2);
(4) t is a complex term in form of t1 × t2 — similar to case (2);
(5) t is a complex term in form of f(t1, · · · , tm), where f is an instance function, and

αR = {y| for some x1 ∈ αR1
, . . . , xm ∈ αRm

, f(x1, . . . , xm) = y},

βR(n) = ∪a1∈αR1
,...am∈αRm , s.t.f(a1,...am)=nβR1

(a1) ./ · · · ./ βRm
(am)

(6) t is a complex term in form of f(t1, · · · , tm), where f is an expansion function, and
αR is equal to range of (f ),

βR(n) = ∪a1∈αR1
,...am∈αRm

βR1
(a1) ./ · · · ./ βRm

(am) ./ T (a1, · · · , am)

Where T (a1, · · · , am) is an answer to ∃x1, · · · , xm : (x1 = a1) ∧ · · · ∧ (xm =
am) ∧ f(x1, · · · , xm) = n.
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(7) t is Countx̄{φ(x̄, ȳ)} and αR = {n | 0 ≤ n ≤ |dom(x̄)|} , βR(n) is an answer to∨
S⊆dom(x̄), |S|=n

( ∧
ā∈S

φ(x̄, ȳ)[x̄/ā] ∧
∧

ā∈dom(x̄)\S

¬φ(x̄, ȳ)[x̄/ā]
)

Intuitively, the above formula asserts that there should be exactly n different instan-
tiations for x̄ such that φ(x̄, ȳ) is evaluated as true.

(8) t is Maxx̄{t1(x̄, ȳ) : φ(x̄, ȳ); dM )} and αR = αR1
∪ {dM} , βR(n) for every

n ∈ αR is an answer to((
∃x̄ t1(x̄, ȳ) = n∧φ(x̄, ȳ)

)
∧∀x̄(φ(x̄, ȳ)⇒ t1(x̄, ȳ) ≤ n)

)
∨
(
n = dM∧∀x̄¬φ(x̄, ȳ)

)
Intuitively, the value of Max aggregate, for a fixed instantiation of ȳ, is n iff either
there is at least one instantiation for x̄ such that φ(x̄, ȳ) is evaluated as true and
among those x̄, the maximum value of t1(x̄, ȳ) is equal to n or there is no x̄ such
that φ(x̄, ȳ) is evaluated as true and the aggregate’s default value, dM , is equal to
n.

(9) t is Minx̄{t1(x̄, ȳ) : φ(x̄, ȳ); dm)}— similar to case (8)
(10) t is Sumx̄{t1(x̄, ȳ) : φ(x̄, ȳ)} and αR = {

∑
x∈T x| T ⊆ αR1} and βR(n) for

every n ∈ αR is an answer to:∨
T⊆dom(x̄),
m| T→αR,∑
ā∈T m(ā)=n

( ∧
ā∈T

(
t1(ā, ȳ) = m(ā)∧φ(x̄, ȳ)[x̄/ā]

)
∧

∧
ā∈dom(x̄)\T

¬φ(x̄, ȳ)[x̄/ā]
)

Remark 1. Although properties of answers for aggregate terms given in Proposition (3)
can be seen as constructions too, they do not demonstrate the actual constructions. We
presented them to define the properties of the relation corresponding to βR(.), the actual
constructions are described in section 5.

Example 4. (Continue From Example 3) βR1
and βR2

correspond to the answer to
variables x and y. So, each of them should have one free variable. As these two rela-
tions are very similar, we only demonstrate βR1 . Having an answer to t2, an answer
to t3, (αR3 , βR3), can be computed. By proposition 3, we have βR4(1) = βR1(0) ./
βR3

(1)∪βR1
(1) ./ βR3

(0). In other word, the answer to t4 is 1 if either t1 = 0∧t3 = 1
or t1 = 1 ∧ t3 = 0.

4.1 Base Case for Unevaluated Terms

To extend our grounding algorithm to handle terms which cannot be evaluated out as in
Section 3, we add the following base cases to the algorithm.

Definition 9 (Base Case for Atoms with Unevaluated Terms). Let t1, · · · , tm be
terms, and assume thatR1, . . .Rm (respectively) are answers to those terms wrt struc-
ture A. ThenR is an answer to P (t1, . . . tm) wrt A if
1. P (., .) is t1 = t2 andR = ∪(i∈αR1

∩αR2
)βR1

(i) ./ βR2
(i)

2. P (., .) is t1 ≤ t2 andR = ∪(i∈αR1
, j∈αR2

, i≤j)βR1(i) ./ βR2(j)
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(a)

x φ

0 True
1 False
2 False

(b)

x φ

0 False
1 True
2 False

(c)

x φ

0 False
1 False
2 True

(d)

y φ

0 False
1 True
2 False

(e)

y φ

0 True
1 False
2 True

(f)

x y φ

0 0 True
0 1 False
0 2 False
1 0 False
1 1 True
1 2 False

2
... False

Table 1. Tables for Example 4: a) Answer to x = 0,i.e, βR1(0), b) Answer to x = 1,i.e, βR1(1),
c) Answer to x = 2,i.e, βR1(2), d) Answer to f(y) = 0,i.e, βR3(0), e) Answer to f(y) = 1,i.e,
βR3(1), e) Answer to x+ f(y) = 1,i.e, βR4(1),

3. P is an instance predicate and

R = ∪(a1,··· ,am)∈PA, a1∈αR1
,...am∈αRm )βR1

(a1) ./ · · · ./ βRm
(am)

4. P is an expansion predicate andR is an answer to

∃x1 . . . xm (x1 = t1 ∧ · · · ∧ xm = tm ∧ P (x1, . . . , xm))

Example 5. (Continue From Example 3) Till now, we have computed an answer to t4,
(αR4

, βR4
). To compute an answer to ψ(x, y) = P (x+ f(y)), one needs to the union

of βR4(n) for n ∈ PA ∩ αR4 . In this simple example, PA ∩ αR4 = {1} and therefore
βR4(1) is the answer to ψ, too.

5 Constructing Answers to Aggregates

We could have an implementation which constructs answers to complex terms by taking
literally the conditions described in Proposition 3. However, we would expect this im-
plementation to result in a system with poor performance. In the grounding algorithm,
the function which generates ψ for tuple (γ, ψ) may produce any formula logically
equivalent to φ. We may think of the function as “gadgets”, in the sense this term is
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used in reductions to prove NP-completeness. Choice of these gadgets is important for
some constraints. For example, choosing CNF representations of aggregates is an active
area of study in the SAT community (e.g., see [8]). Our method allows these choices
to be made at run time, either by the user or automatically, without modification to the
main grounding machinery.

As it described in previous sections, to compute an answer to an aggregate one needs
to find a set αR ⊂ N and a function βR which maps every integer to a ground formula.
In section 4, we have showed what the set αR is for each term and also described the
properties of the output of βR function. Here, we are going to present some gadgets
which can be used as βR for Count, Min, Max and Sum aggregates.

5.1 Gadgets for Count

A gadget for Count aggregate, denoted by C(S, n), takes a set S = {f1, · · · , fk} of
formulas and a non-negative integer, n, and returns a formula f , such that in every
model satisfying f , exactly n of the formulas in S are evaluated as true.

We have implemented gadgets for count aggregate based on several representations
that seem useful in practice, and describe two of these here. In [9], we have described
six gadgets we have used to translate the Count aggregate into CNF.

BDD Gadget for Count One can use binary decision diagrams (BDD) to construct
CNF clauses for cardinality constraints. We adopt the algorithm described in [10]. Each
BDD node is an if-then-else gate. So, the constraint (x1, · · · , xk) = n can be described
using (k − n+ 1)× n such nodes.

We inductively calculate F cr ’s where F cr is a formula satisfying the properties of
output of C({x1 · · ·xr}, c). The base cases are:

F cr =

{
> if r and c are both zero
⊥ r = 0 and c > 0

The inductive case of F c+1
r+1 can be described as follows:

F c+1
r+1 = (F cr ∧ xr+1) ∨ (F c+1

r ∧ ¬xr+1)

And the other inductive case is F 0
r+1 = F 0

r ∧ ¬xr+1

Proposition 4. If a structure satisfiesFnk , it satisfies exactly n formulas out of {x1, · · · , xk}.
So, Fnk can be used as the output of C({x1, · · · , xk}, n).

Example 6. Let x1 = E1(1, 2), x2 = ¬E1(2, 3) and x3 = E2(1), an answer to
C({x1, · · · , x3}, 1) can be produced using this method:

F 1
3 = (x3 ∧ (¬x2 ∧ ¬x1)) ∨ (¬x3 ∧ ((x2 ∧ ¬x1) ∨ (¬x2 ∧ x1)))

F 1
3 = (E2(1)∧(E1(2, 3)∧¬E1(1, 2)))∨(¬E2(1)∧((¬E1(2, 3)∧¬E1(1, 2))∨(E1(2, 3)∧E1(1, 2))))
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Sorting Network Gadget for Count A sorting network is a circuit with k input wires
and k output wires consisting of a set of comparators with two input wires and two
output wires. Each output of a comparator is used as an input to another comparator
except those used as output wires of the sorting network itself.

If the input to a sorting network contains Z zeros and O ones, the first O outputs
of the sorting network are guaranteed to contain one and the rest output wires contain
zeros. Therefore, it can be concluded that there are exactly i ones in the input iff the
value of i-th output wire is one while the i+ 1-th output wire is zero.

A single comparator element with inputs f1 and f2 is defined to be f1 ∧ f2, for
smaller value, and f1 ∨ f2, for larger value.

Proposition 5. An implementation of counting gadget using BDD’s needsO(nk) clauses
andO(nk) literals. Such an implementation using bitonic sorting networks needsO(n log2 n)
clauses and O(n log2 n) literals.

5.2 Gadgets for Max and Min

A gadget for Max aggregate, denoted byM(T, dM , n), takes a set T = {(n1, f1), · · · , (nk, fk)}
of pairs of integer and formulas and an integer, n, and returns a formula f , such that in
every structure satisfying f , βR(n) is satisfied and vice versa. A gadget for Max can be
implemented using the following approach. A similar approach is also used for Min.

Let T = {(n1, f1), · · · , (nk, fk)} and dM be an integer. Without loss of generality,
we can assume that ni+1 > ni. Let Fr = fr ∧

∧
1≤i<r ¬fi. Then,

M(T, dM , n) =


Fi ∃i : (ni = n) ∧ (n 6= dM )

f
′

j ∧
∧

1≤i≤k ¬fi @i : (ni = n) ∧ (n = dM )

Fi ∨
∧

1≤i≤k ¬fi ∃i : (ni = n) ∧ (n = dM )

⊥ n 6∈ αR

Proposition 6. The implementation for the gadgetM(T, dM , n) given above describes
a correct gadget for Max. The CNF produced by this gadget contains, at most, k + 1
clauses and θ(k2) literals.

A correct gadget for Min can be obtained dually.

5.3 Gadgets for Sum

A gadget for Sum aggregate, denoted by S(T, n), takes a set T of pairs of integer and
formula and an integer, n, and returns a formula f , such that in every structure satisfying
f , βR(n) is satisfied and vice versa. A gadget for Sum can be implemented using the
following approach.

Let T = {(n1, f1), · · · , (nr, fk)}. Define S(T, n) to be Fnk where F sr ’s are induc-
tively constructed based on the following definitions:

F sr =

{
> if r and s are both zero
⊥ r = 0 and s 6= 0

F sr+1 = (F sr ∧ ¬fr+1) ∨ (F s−nr+1
r ∧ fr+1)
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Proposition 7. The implementation for the gadget S(T, s) given above describes a cor-
rect gadget for sum aggregate. The CNF generated using this gadget hasO(nk) clauses
and O(nk) literals.

6 Complexity of Grounding

For any fixed FO φ, grounding with respect to finite structure A can easily be done in
time polynomial in |A|. Either direct generation of all instantiations of variables or the
algorithm of Section 2 will suffice to do so. (It does not follow that producing a good
grounding quickly in practice is easy. Indeed, it is not.) Proving this for the relational
algebra based method is a simple structural induction involving the observation that the
relational algebra operations (including the versions adapted for extended X relations),
are polytime.

Answers to terms are also constructed inductively using operations of the relational
algebra. After verifying that the tables for aggregates can be constructed in polynomial
time, a similar induction can be used to extend the proof of polytime grounding for
relational algebra based grounding to the method described in this paper for formulas
with complex terms, for all terms that do not involve the Sum aggregate.

For the sum aggregate, there are cases where any answer constructed according to
our definition of an answer to a term must be of exponential size. To see this, consider
the following knapsack constraint

Sumo{w(o) : InKnapsack(o)} < k,

Which states a bound on the sum of the weights of the objects in the knapsack. As-
sume that InKnapsack is an expansion predicate. There are exponentially many possi-
ble choices for the contents of the knapsack (each object o may be in or out), and thus
exponentially many possible sums, each of which may be distinct. Since our answer
contains a tuple for each possible sum, the answer must be of exponential size. (Notice
that, although every relation overA is polysize, the answer to aggregate operations may
contain values which are not in A.)

It is worth mentioning that, although in the worst case a grounding algorithm based
on our current definition of an answer to a term can be exponential, the method we
implement is pseudo-polynomial (much like pseudo-polynomial algorithms used for
knapsack and subset sum), and many real world examples can be grounded quickly.

To obtain polysize groundings for a term in which Sum is applied to an expansion
predicate, we must encode numbers in binary. To do this within our grounding algo-
rithm, we must modify our definition of an answer to a term, as follows.

(Binary Answers to Terms). Let t(x) be a term and A an arithmetical structure.
We say R is a binary answer to t wrt A iff R is a collection of extended X-relations
R0, · · · ,Rn−1 where for any of these extended X-relations like Rk we have that Rk
is an answer to formula (

t(x) mod 2k+1
)
≥ 2k

Intuitively, a binary answer to a term is a set of n relations where the k-th relation
tells us under what conditions the k-th bit of the result of a term becomes one. With this
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approach, we can implement a relational algebra based grounder which is polytime for
terms that contain Sum, as well as all other operations mentioned in this paper. Details
are left for a future report.

7 Experimental Evaluation

In this section we report some empirical observations on the performance of an imple-
mentation of the methods we have described.

We will start by giving the specification of one of our examples and discussing how
our empirical results for this specific example can be interpreted.

Example 7. The first specification is as follows:

∀ x : Maxy(Countz(E(y, z));E(x, y);Minz(z; I(z))) = x

where E is an expansion predicate and I an instance predicate. For this example, three
different gadgets are used for count-aggregate. The BDD based method, the sorting
network method and a merged method which chooses either the output of BDD’s or
the output of sorting network gadgets. Table (2) shows the number of Tseiten variables
generated by our grounder, the number of clauses in the output CNF file, and running
time of grounder and SAT solver. The entries in Table (2) are for the case when domain
of all variables are from 1 to 100.

Table 2. Statistics of the First Specification

Gadget # of CNF Variables # of Clauses Gnd. Time SAT Solving Time
BDD 1.5M 5M 24s 3s

Sorting Networks 280K 1.3M 5s 0.6s
Merged 840K 2.9M 13s 1.5s

The results on the rest of examples are given in Table (3). As one might expect, the
merged version of counting has a performance in between the two others. This version
of counting gadget can then be seen as one which can be used as a default option when
users do not have in depth knowledge about their problem.

Examples 2, 3 and 4 in Table (3) have instance domain sizes of 100, 1000 and 100
respectively.

7.1 A Real World Example

As far, we presented our approach to grounding aggregates and arithmetic. As a mo-
tivating example, we show how haplotype inference problem[11] can be axiomatized
in our grounder. To argue that the CNF generated through our grounder is efficient, we
will use a well-known and optimized encoding for haplotype inference problem and
show that the same CNF will be obtained without much hardship.
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Table 3. Statistics on the Rest of Examples

Example # Gadget # of CNF Variables # of Clauses Gnd. Time SAT Time
2 BDD 520K 850K 3.3s 0.7s
2 Sorting Networks 180K 540K 2.1s 0.2s
2 Merged 210K 530K 2s 0.25s
3 BDD 5K 7K 0.8s 0.0s
3 Sorting Network 42K 120K 0.31s 1.1s
3 Merged 5K 7K 0.9s 0s
4 BDD 1.5M 2.5M 1.0s 8.2s
4 Sorting Network 290K 790K 3.1s 32.7s
4 Merged 840K 1.7M 6.9s 35.3s

In haplotype inference problem, we are given an integer r and a set, G, consisting
of n strings in {0, 1, 2}m, for a fixed m. We are asked if there exists a set of r strings,
H , in {0, 1}m such that for every g ∈ G there are two strings in H which explain g. We
say two strings h1 and h2 explain an string g iff for every position 1 ≤ i ≤ m either
g[i] = h1[i] = h2[i] or g[i] = 2 and h1[i] 6= h2[i].

The following axiomatization is intentionally produced in a way to generate the
same CNF encoding as presented in [11] in the assumption that the gadget used for
count is a simplified adder circuit [11].

1. ∀i∀j (g(i, j) = 0 ⊃ ∃k ((¬h(k, j) ∨ ¬Sa(k, i)) ∧ (¬h(k, j) ∨ ¬Sb(k, i))))
2. ∀i∀j (g(i, j) = 1 ⊃ ∃k ((h(k, j) ∨ ¬Sa(k, i)) ∧ (h(k, j) ∨ ¬Sb(k, i))))
3. ∀i∀j (ga(i, j) 6= gb(i, j))

4. ∀i∀j
(
g(i, j) = 2 ⊃ ∃k

(
(h(k, j)∨¬ga(i, j)∨¬Sa(k, i))∧ (¬h(k, j)∨ga(i, j)∨

¬Sa(k, i))∧(h(k, j)∨¬gb(i, j)∨¬Sb(k, i))∧(¬h(k, j)∨gb(i, j)∨¬Sb(k, i))
))

5. ∀i (Countk(Sa(k, i)) = 1)
6. ∀i (Countk(Sb(k, i)) = 1)

In the above axiomatization, g(i, j) is an instance function which gives the character at
position j of i-th string in G. The expansion predicate h(k, i) is true iff the i-th position
of the k-th string in H is one. The expansion predicate Sa(k, i) is true iff k-th string in
H is one of the explanations for i-th string in G. Sb has a similar meaning. ga(i, j) and
gb(i, j) are some peripheral variables which are used in axiom (4).

Table (4) shows the detailed information about running time of haplotype infer-
ence instances produced by the ms program[11]. The axiomatization given above cor-
responds to the row labelled with ”Optimized Encoding”. The other row labelled with
”Basic Encoding” also comes from the same paper [11] but as noted there and shown
here produces CNF’s that take more time to solve.

So, using Enfragmo as grounder, we have been able to describe the problem in
a high level language and yet reproduce the same CNF files that have been obtained
through direct reductions. Thus, Enfragmo enables us to try different reductions faster.
Of course, once a good reduction is found, one can always use direct reductions to



17

Table 4. Haplotyping Problem Statistics

Grounding SAT Solving CNF Size
Basic Encoding 2.2 s 12.3 s 18.9 MB

Optimized Encoding 1.9 s 0.95 s 13.3 MB

achieve higher grounding speed although, as table (4) shows, Enfragmo also has a mod-
erate grounding time when compared to the solving time.

Another noteworthy point is that different gadgets show different performances un-
der different combinations of problems and instances. So, using different gadgets also
enables a knowledgeable user to choose the gadget that serves them best. The process
of choosing a gadget can also be automatized through some heuristics in the grounder.

8 Conclusion

n model-based problem solving, users need to answer the questions in form of ”What
is the problem?” or ”How can the problem be described?”. In fact they do not need
to know how the problem can be solved. In this approach, the users only need to de-
scribe their problems in a high-level language. Then, the system takes the specification,
together with a problem instance, and produces the solution to the problem. This con-
siderably reduces the amount of expertise a user need to have, and makes advanced
solver technology accessible to a wider variety of users.

The untimate goal of having a high-level language is to enable naive users to encode
their problems. For this purpose, it is necessary to enrich the language with useful con-
structs such as aggregates. Although, adding these constructs to the syntax of language
does not increase the expressive power of the language, it makes the process of describ-
ing problems much easier. E.g. it is not easy to express the cardinality constraints in
pure first-order logic. We extended our grounder to be able to convert the new struc-
tures to CNF and further showed that our grounder can reproduce the same CNF files
from the high level language as the one obtained through direct reductions.
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