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Summary

This thesis presents results in two branches of cryptography.
In the first part we construct two general multiparty computation protocols that can evaluate

any arithmetic circuit over a finite field. Both are built in the preprocessing model and achieve
active security in the setting of a dishonest majority, in which all players but one are controlled
by the adversary. In Chapter 5 we present both the preprocessing and the online phase of
[DKL+13], while in Chapter 2 we describe only the preprocessing phase of [DPSZ12] since
the combination of this preprocessing phase with the online phase of [DKL+13] yields a more
efficient protocol than that originally proposed in [DPSZ12]. Our preprocessing phases make
use of a somewhat homomorphic encryption scheme, and significantly improve on the previous
state of the art, both asymptotically and in practice. The online phase we present relies on
information-theoretic message authentication codes, requires only a linear amount of data from
the preprocessing, and improves on the number of field multiplications needed to perform one
secure multiplication (linear, instead of quadratic as in earlier work). The preprocessing phase
in Chapter 5 comes in an actively secure flavour and in a covertly secure one, both of which
compare favourably to previous work in terms of efficiency and provable security. Moreover,
the covertly secure solution includes a key generation protocol that allows players to obtain a
public key and shares of a corresponding secret key. In previous work this task was assumed to
be performed by an ideal functionality.

In the second part we shift our focus to a task that is related to multiparty computation in
an indirect way: we propose a zero-knowledge protocol that allows a prover to show a verifier
that he holds a tuple of three values in a finite field, in which the third one is the product of
the first two. We extend this protocol in two ways: first we consider the case where the values
are integers, and then we consider tuples of values that satisfy more general algebraic relations.
Our basic scheme achieves optimal amortized communication complexity, while the construction
over the integers improves the state of the art both in terms of communication complexity and
in the security requirements (it requires factoring instead of the strong RSA assumption).
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Resumé

Denne afhandling præsenterer resultater i to omr̊ader i kryptografi.
I den første del konstrueres to generelle multiparty computation protokoller som kan evaluere

ethvert aritmetisk kredsløb over et endeligt legeme. Begge protokoller er i præprocesseringsmod-
ellen og opn̊ar sikkerhed mod en uærlig majoritet, hvor alle spillere undtagen n er under kontrol
af en modstander. I kapitel 5 præsenterer vi b̊ade præprocessering og on-line fasen af [DKL+13]
mens kapitel 2 kun præsenterer præprocesseringsfasen af [DPSZ12], eftersom kombinationen
af denne med online fasen fra [DKL+13] giver en mere effektiv protokol end den der først
var beskrevet i [DPSZ12]. Præprocesseringen anvender et somewhat homomorphic kryptosys-
tem der giver væsentlige forbedringer over tidligere resultater, b̊ade asymptotisk og i praksis.
On-line fasen anvender informationsteoretiske autentificeringskoder, kræver kun arbejde der er
lineært i antal spillere (i stedet for kvadratisk som i tidligere resultater). Præprocesseringen
fra kapitel 5 findes i en en version med aktiv sikkerhed og en version med covert sikkerhed,
begger versioner forbedrer tidligere resultater mht. effektivitet og bevislig sikkerhed. Versionen
med covert sikkerhed indeholder ogs̊a en protokol for nøglegenerering, der producerer en fælles
offentlig nøgle og en del til hver spiller af den hemmelige nøgle. I tidligere arbejde var det
antaget at denne opgave blev løst af en ideel funktionalitet.

I den anden del flyttes fokus til et primitiv der er relateret indirekte til til multiparty com-
putation: vi foresl̊ar en zero-knowledge protokol der tillader en prover at overbevise en verifier
om at han har committet til tre værdier i et endeligt legeme, hvor den tredje værdi er produk-
tet af de to første. Vi udvider denne protokol p̊a to m̊ader. Vi betragter først tilfældet hvor
værdierne er heltal, og dernæst tilfældet hvor værdierne opfylder mere generelle algebraiske re-
lationer. Protokollen opn̊ar optimal amortiseret kommunikations kompleksitet mens protokollen
for heltalsværdier forbedrer state of the art b̊ade mht.kompleksitet og sikkerhedsantagelser (vi
antager faktorisering er svært, i stedet for den stærke RSA antagelse).
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Introduction

0.1. Prologue

New York City, 1913. The Brooklyn Rapid Transit Company (BRT) is a flourishing trans-
portation company having control of virtually every rapid transit and streetcar operation in
the areas of Brooklyn, Queens, and Long Island. In Manhattan the main transportation com-
pany is the Interborough Rapid Transit Company (IRT), whose extensive network serves every
commuter, from South Ferry to Harlem.

Each of these companies has an incentive to spread their business into the neighbour’s area
of operation, and the City has an incentive to let both companies serve its residents, since
competition improves service and lowers cost for the end users. What are, however, the chances
that BRT can provide successful competition to IRT in Manhattan?

One century later, we know what happened: both companies and the City signed the “Dual
Contracts”, which allowed BRT to operate in Manhattan and IRT to expand to Queens. It
was a successful move at first, but eventually led BRT to bankruptcy in 1919, as it struggled
to match IRT’s turnover amidst the turmoil of World War I. IRT continued its business until
1940, when it was acquired by the NYC Board of Transportation.

Thus, despite the City’s efforts a monopoly situation was realised. Couldn’t it have been
prevented? Perhaps not at the time; however, before the agreement was made, the two com-
panies could have benefited from a little insider information on each other – and with modern
tools, such as those described herein, they could have exchanged it securely in a way serving
the interest of both.

0.2. The Problem of Secure Function Evaluation

We just described a scenario where two entities want to know which one has the highest
turnover, without revealing their revenue to the other. This problem is known in the crypto-
graphic community as the “millionaires’ problem”, introduced by Yao in [Yao82]. In math-
ematical terms, it can be rephrased as follows: two parties P1 and P2 hold private values x1

and x2 respectively (xi represents Pi’s revenue) and they want to compute j ∈ {1, 2} such that
xj = max{x1, x2}. Moreover, j has to be computed and revealed in such a way that (xi, j) is
the only information that Pi may gain from the procedure.

In general, one can think of a scenario where many players want to compute securely a
function that depends on their private inputs. More specifically, let n be a positive integer,
and let K be a set (usually K is a finite field, or ring or Abelian group). Let P1, . . . , Pn
denote the players and let f : Kn → Kn be the function to be computed. We think of f as a
function mapping the private inputs of all players to their respective outputs as follows: if Pi
has private input xi ∈ K, then Pi obtains yi, where (y1, . . . , yn) = f(x1, . . . , xn); moreover, yi
is correctly computed and (xi, yi) is the only information available to Pi. Protocols achieving
these properties are the main topic of this thesis.
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0.3. Applications

The mathematical description we gave above is not only an abstraction of the millionaires’
problem, but it also neatly characterises many other problems of pertinence in our modern
society. Some common examples are provided below:

Set Intersection: Alice’s investigation agency wants to check whether any suspects from
a secret list appear in the list of passengers in a flight operated by Bob’s company. Alice
does not want to disclose the list of suspects to Bob, who does not want to reveal the
list of passengers to Alice.

Keyword Search: Alice needs some medical data from Bob’s database to understand
the statistics of a certain disease without telling Bob what kind of data she wants.
Bob, on the other hand, cannot give Alice his database of confidential data about his
patients.

Auctions: Alice wants to maximise the profits of her sugar-producing company when
buying sugar-beets from the farmers. Each farmer wants to sell certain quantities
of beets at a certain price, to maximise their own profits, but without revealing the
pricing strategy to Alice, nor to any other farmer.1

Social Activities: Alice and Bob want to find out whether both of them like each other,
but also avoid the disclosure of unrequited love, for fear of ruining their friendship.

Benchmarking: Alice runs a company and wants to know the performance of her com-
pany compared to other competitors according to some metric (e.g.: Alice wants to
know whether her company’s revenue is below or above the average in a set of com-
panies competing in the same market). Neither Alice nor her competitors want to
disclose their data to others.2

Voting: Alice, Bob, Charlie, and their class mates want to find out who to elect as class
president. They only want to reveal who among them gets the most votes (e.g. without
disclosing the number of votes per candidate).

0.4. The Ideal World

The above mathematical problem, and all the examples provided so far, can be solved if
players have access to a common trusted party T as follows: Each player Pi sends his private
input xi to T , who then computes (y1, . . . , yn) = f(x1, . . . , xn) and sends yi back to Pi (see
Figure 0.1). This solution is called the “ideal world”, since it guarantees the required properties
in all circumstances.

In principle, it would be possible to drop the requirement that the party computing the
function is trustworthy: with the advent of fully homomorphic encryption (FHE) by Gentry
[Gen09], any party can compute functions on the input by manupulating the encrypted forms
directly, without gaining information on the unencrypted input values. More precisely, a fully
homomorphic encryption scheme is an encryption scheme (KeyGen,Enc,Dec)3 equipped with
an extra algorithm Eval that allows the computation of any function f on encrypted data such
that the resulting ciphertext decrypts to the evaluation of the function on the corresponding
plaintexts: if (pk, sk) ← KeyGen(1sec) is a pair consisting of a public key and its associated
secret key, then

Decsk(Evalf (Encpk(m1), . . . ,Encpk(mn))) = f(m1, . . . ,mn). (0.1)

Using an FHE scheme, if Pi needs fi(x1, . . . , xn), where xj is Pj ’s private input, then each player
Pj can generate cj ← Encpki(xj), i.e. an encryption under Pi’s public key pki, and send it to a

1Since 2008, a multiparty computation protocol has been used every year in Denmark to find the clearance
price of the sugar-beets market [BCD+09].

2Notice that this scenario includes the one mentioned in the Prologue.
3We assume the reader is familiar with the concept of public key encryption schemes, and refer the curious

reader to [Gol04], Chapter 5, and [KL07], Chapter 10 for details.
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Figure 0.1. In the ideal world, the trusted party receives the inputs, computes
the function, and returns the corresponding outputs.

designated player P 6= Pi who gathers all encryptions and computes c∗ ← Evalf (c1, . . . , cn) and
sends c∗ to Pi, who can then decrypt it to fi(x1, . . . , xn).

Even if this approach is theoretically possible, there are some drawbacks, in that this solution
is not (currently) practical and does not cover all the possible scenarios. Therefore, we prefer to
take a more feasible and classical approach; we also use some ideas from the FHE scenario, but
in a less pervasive fashion: we make use of somewhat homomorphic encryption (SHE) schemes,
which resemble FHE schemes, but allow a restricted class of functions to be computed (more
efficiently) on encrypted data – further details shall be presented later.

0.5. The Real World

In a setting where trust is not always an option, or or may only guaranteed at prohibitive
cost, one must find a solution to the problem of secure function evaluation without the need for
a trusted party.

One possibility is to let the players communicate via a multiparty computation (MPC)
protocol, which is designed to prevent players from exploiting its specifications in order to
sabotage security (e.g. by learning more information than they are supposed to, or by making
the protocol output incorrect values).

In order to model the players’ (mis)behaviour, we introduce an external entity, called “ad-
versary”, who has control of a set of players, called “corrupt players” (see Figure 0.3). The
players who are not under the control of the adversary are called “honest players”. The adver-
sary communicates with a player – and with any agent (i.e. an interactive Turing machine), as
we will see – using two special ports:

• the “leakage port”, which is an output port that allows the adversary to obtain infor-
mation and
• the “influence port”, which is an input port that allows the adversary to give commands

to the player.

Influence

��
Input //

P

Leakage

OO

Output
oo

Figure 0.2. An agent P and its ports: usually we depict regular input and
output port on the side of an agent, and leakage and influence ports on top.
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The simplest type of adversary is called “passive adversary”, and it acts as follows: it uses
a player’s influence port to corrupt the player and from that point on all the player’s memory
and communications are also sent to the adversary via the leakage port. This adversary has the
ability to read the memory and to listen to the input and output ports of the corrupt players in
order to gain information on the honest players’ data. A passive adversary models a coalition
of players who follow the protocol and want to share their data in order to gain information on
some other players. This is not the only way a protocol can be attacked: more secure protocols
take into account a more sophisticated adversary called “active adversary”. An active adversary
has the same properties as a passive one, but it can also use the influence port of a player to
make that player deviate from the protocol. We say furthermore that the adversary is “static”
if the set of corrupt players is determined before the execution of the protocol, while we say
that it is “adaptive” otherwise.

During the development of multiparty computation, researchers concentrated at first on
designing protocols in the presence of passive adversaries (Yao’s garbling technique) and later
focused on the case of active adversaries [GMW87, CCD88, BOGW88].

P1

((
P2

hh

qq

||

P3

��
Pn

TT

[[

Figure 0.3. In the real world players communicate between each other following
a protocol (solid lines), and, depending on the corruption model, it may be
possible for them to misuse the protocol in order to try to get more information
than they are supposed to (dashed lines). In this example P1 and P3 are under
the control of an adversary (dotted ellipse).

0.6. Security

So far we described what can happen in a protocol, but we never mentioned a method to
determine whether a protocol is secure. We assume the reader is familiar with the concept of
Universally Composable (UC) Security [Can01], and delineate its essential properties here.

First, one has not only to fix a goal for the protocol, but also to design a solution in the ideal
world that achieves the goal, i.e. a series of actions performed by the players and the trusted
party, where players may only communicate with the trusted party (not between themselves).
This solution in the ideal world is the “ideal functionality” that is used as a model for the real
protocol. Ideal functionalities are thought of as agents and therefore have leakage and influence
ports as well, and their specifications allow limited action from the adversary (e.g. the ideal
functionality that models a secure channel between two players leaks the length of each message
that either player sends; see Figure 0.4).

Second, one builds a protocol in the real world, where players have access to some resource
(i.e. basic functionality assumed to exist, e.g. an authenticated channel), and checks that the
protocol acts exactly as does to the corresponding ideal functionality. For this check to be
performed, we need to introduce two more agents: the “environment” and the “simulator”.

4
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Figure 0.4. The ideal functionality modelling a secure channel between two
players: upon receiving a message m from one of the two players, it leaks (only)
the length |m| and forwards the message to the other player.

We think of the simulator as an agent which compiles the leakage and influence ports of the
ideal functionality into the leakage and influence ports of players and resources that appear
in the protocol, and of the environment as an agent that tests whether the protocol indeed
mimics the actions that the functionality admits. More in detail, the environment has to try
to distinguish between runs of the protocol (i.e.: the real world), and runs of the simulator
attached to the ideal functionality (i.e.: the ideal world). Formally, we state the security notion
as follows: Let Π be a protocol using resource R, let F be an ideal functionality, let Z be a class
of environments (e.g.: computationally bounded agents) and let S be a class of simulators. We
say that Π securely implements F against environments in the class Z with simulator in S, if
for all environments Z ∈ Z there exists a simulator S ∈ S such that

Π �R ≡Z F � S,

where � denotes attachment of agents via ports with the same name, and ≡Z means that the
environment Z cannot distinguish between two distributions on either side of the equivalence
sign (see Figure 0.5).

The two notions of classes of environments and simulators exist in order to specify the type of
security one is trying to achieve: usually simulators are picked from a class of computationally
bounded agents [Can01], while environments may or may not be (in the former case only
computational security is guaranteed [GMW87, CLOS02], whereas in the latter, the stronger
notion of statistical security is achieved [BOGW88, CCD88]).

Infl1
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OO

Out1
oo

//
Roo

LeakR

OO

//
P2oo

Leak2

OO

Out2//

In2
oo

S

In1 //
F

Out1
oo

Out2//

In2
oo

Leak1 OO
��
Infl1 LeakR OO

��
InflR Leak2 OO

��
Infl2

��
OO

Figure 0.5. A protocol Π between P1 and P2 using resource R on the left;
A simulator S accessing the ideal functionality F on the right. If Π securely
implements F , there exist a simulator S such that, for all environments, Π � R
looks indistinguishable from F � S.

0.7. Composability

Protocols satisfying the security notion introduced above are called “Universally Compos-
able”. The term comes from a property that it guarantees: specifically, if a protocol ΠG uses
a resource F to securely implement the functionality G and the resource F is securely imple-
mented by another protocol ΠF with resource R, then the composite protocol ΠF �ΠG securely
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implements G with access to R. In mathematical terms, if for all environments Z ∈ Z there
exist simulators S, T ∈ S such that {

G � T ≡Z ΠG � F
F � S ≡Z ΠF �R,

then the simulator S � T 4 is such that

G � T � S ≡Z ΠG �ΠF �R.

0.8. The SPDZ Protocols

The first part of this thesis is devoted to the construction of a general MPC protocol,
i.e. a protocol that allows players to compute any arithmetic circuit f over a finite field. We
concentrate on the setting of active security and “dishonest majority”, in which all players but
one are controlled by the adversary. In this scenario one has to make use of encryption schemes,
and therefore design protocols that are only computationally secure, since there cannot exist
statistically secure protocols when the number of corrupt players exceeds (n− 1)/2 (in the case
of passive corruption [CCD88, BOGW88]), or (n − 1)/3 (in the case of active corruption
[LSP82]).

Herein we extend a long line of work started with the definition of two party computation
by Yao [Yao82] and multiparty computation by Goldreich, Micali and Wigderson [GMW87]
5, which led to the seminal work of Canetti et al. [CLOS02] – formally, the first UC secure
MPC protocol – and gave rise to a variety of recent paradigms, such as the “MPC in the head”
[IKOS07, IPS08], and the preprocessing model [DO10, BDOZ11, NNOB12].

Our MPC protocols are in the preprocessing model, which is an approach that divides the
players’ computation into two phases, described as follows:

The Preprocessing: In this part of the protocol players generate correlated random-
ness, which is essentially independent of the function f to be computed (it only depends
on a lower bound given by the number of multiplication gates in the circuit represent-
ing f). Here (and only here!) the players make use of a public key encryption scheme,
which implies that the protocol is only computationally secure. The use of an encryp-
tion scheme also has an impact on the speed of this phase; on the other hand, the
runtime of the preprocessing is only of second importance, given that this stage may
be executed at any time before the actual computation of the function.

The Online Phase: This part is free from public key operations and carries out the
actual computation of the function f in a statistically secure fashion. The absence of
public key operations makes this stage extremely fast to compute.

This thesis shall treat two protocols we designed: the SPDZ [DPSZ12] and the SPDZ2
[DKL+13]: the more recent one can be thought of as a heavily optimised, tuned-up, and
refined version of the first. In the online phase of both of our protocols the arithmetic circuit
f is processed gate by gate, and in order to maintain privacy, the computation of each gate is
performed on “additively secret shared” values, i.e. for a secret input x player Pi has a uniform
value xi with the constraint x1 + · · · + xn = x. Moreover, to preserve correctness, for a secret
value x, Pi has a share γ(x)i of an additively secret shared message authentication code (MAC)
α · x =: γ(x) = γ(x)1 + · · ·+ γ(x)n of x, where α is a secret key unknown to any proper subset
of players. We defer to later sections the details of how α is distributed and the approach used
in order to check MACs later, since the approaches differ between SPDZ and SPDZ2.

4In order for the reader to understand the reasons why the class of computationally bounded simulators
contains the composition of two simulators, we refer to [CDN12], Chapter 2 and 4.

5the first information theoretically secure solutions were introduced independently by Ben-Or, Goldwasser,
Wigderson [BOGW88], and Chaum, Crépeau, Damg̊ard [CCD88]
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Throughout the thesis, we refer to the above method of distributing values as “angle repre-
sentation”; more precisely, the angle representation of x is defined as

〈x〉 := (x1, . . . , xn, γ(x)1, . . . , γ(x)n), 6

where Pi has (xi, γ(x)i),

x1 + · · ·+ xn = x and γ(x)1 + · · ·+ γ(x)n = γ(x).

The choice of additive secret sharings is not only natural in the case of dishonest majority
(since all the players must coordinate in order to reconstruct a value shared additively) but also
convenient for computational purposes: in fact, since additive secret sharings are linear, the
processing of an addition gate can be performed locally by adding the respective shares:

〈x〉+ 〈y〉 := (x1 + y1, . . . , xn + yn, γ(x)1 + γ(y)1, . . . , γ(x)n + γ(y)n) = 〈x+ y〉.
This both simplifies the protocol for secure computation of a circuit, and yields better perfor-
mance when implemented. To process a multiplication gate, on the other hand, we borrow a
technique introduced by Beaver [Bea91] in the context of circuit randomisation; to compute
〈x·y〉 given 〈x〉 and 〈y〉, if players have 〈a〉, 〈b〉, 〈a·b〉 for uniform a, b ∈ K, they run the following
protocol:

• Reconstruct ε← 〈x− a〉 and δ ← 〈y − b〉.
• Compute 〈z〉 ← 〈a · b〉+ δ · 〈a〉+ ε · 〈b〉+ δ · ε.

We give a formal discussion of the security of this protocol in Section 5.6, and here we point
out only that in a correct run of the protocol, 〈z〉 is indeed an angle representation of x · y:

z = a · b+ δ · a+ ε · b+ δ · ε
= a · b+ (y − b) · a+ (x− a) · b+ (y − b) · (x− a)

= a · b+ y · a− a · b+ x · b− a · b+ x · y − x · b− y · a+ a · b
= x · y.

The above sums up the main idea of the online phases for both SPDZ and SPDZ2; in this thesis
we present the details of the SPDZ2 online phase only, since it gives several advantages to and
generalises the one in SPDZ. The reader will find all the details of the protocols, functionalities
and security proofs in Section 5.6.

The approach described above for the online phase requires the players to be able to obtain
a “multiplicative triple” (〈a〉, 〈b〉, 〈a · b〉) for uniform a, b ∈ K for each multiplication gate that
has to be processed. Producing this material is the main goal of the preprocessing phase. The
two protocols share some ideas in their preprocessing phase, too: most importantly, the use
of a somewhat homomorphic encryption (SHE) scheme that allows the evaluation of quadratic
polynomials on encrypted data. Formally, an SHE scheme is an FHE scheme where Equation
0.1 holds only for f in a certain class of functions: as mentioned above, we are interested on
is the class of polynomials of degree 2, i.e. circuits of multiplicative depth 1. This relaxation
gives us not only more freedom in the design of SHE schemes, but also better performance
compared to FHE schemes, which is a crucial factor in our approach. We describe the details
of preprocessing and the SHE scheme for SPDZ in Sections 2.1 (abstract properties for SHE
scheme), 2.3 (preprocessing phase), and 2.5 (concrete instantiation of SHE scheme), and those
for the SPDZ2 in Sections 5.1 (concrete instantiation of the SHE scheme), 5.2 (key generation),
and 5.5 (preprocessing phase).

0.9. Contribution

Both our MPC protocols carry important theoretical innovations (see Sections 1.1 and 4.1
for more details):

6A reader familiar with [DPSZ12] will notice that the above definition does not include the public constant
δ used to add and multiply by public scalars; we refer to Section 4.4 for details.
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Optimal Online Phase: the online phase of SPDZ (and SPDZ2) requires a linear (in
the number of players) amount of data per secret value, as opposed to quadratic, which
was the case for the previous state of the art [BDOZ11] and earlier constructions
[CLOS02].

A Rational Use of Homomorphic Encryption: Both SPDZ and SPDZ2 make use
of a somewhat homomorphic encryption scheme in the preprocessing phase (Sections
2.1, 2.3, 2.5, and Sections 5.1, 5.2, 5.5); this was a novel introduction, since previous
constructions were based on more general schemes, like semi-homomorphic schemes
in [BDOZ11]. Even if our construction seems specialised relative to previous re-
sults (since fewer encryption schemes fit in the category of somewhat homomorphic
schemes), the particular properties of these schemes enable extensive simplification
of the structure of the preprocessing phase (more precisely, there is no need for an
expensive zero-knowledge proof of correct multiplication).

SIMD Optimised Preprocessing: The concrete encryption scheme we introduced,
based on [BV11], is designed to take advantage of SIMD operations, which allows
a gain in performance (in terms of public key operations) proportional to the batch
size.

Recyclable Preprocessed Data: The online protocol of SPDZ2 incorporates an in-
novative method to check the validity of the computation, which does not affect the
security of the unused preprocessed data: this allows players to compute reactive func-
tionalities using a single run of the preprocessing phase, instead of having to perform
further runs of the preprocessing phase each time a value is outputted.

Covert Security: In SPDZ2 we fully specify a protocol that is secure against covert
adversaries, whose purpose is mainly practical, and its performance is around 10 times
better than the actively secure implementation (see Section 6.2 for details).

Active Security – Revisited: In SPDZ2 we also propose an approach to achieve ac-
tive security in the offline phase, based on a technique similar to the one introduced
in [NNOB12], rather than on the one presented in SPDZ and [BDOZ11], (which
are based on zero-knowledge proofs of knowledge). The alternative method allows
better parameters for the cryptosystem while maintaining similar security guarantees
compared to SPDZ.

Moreover, our work improves the practical performance of MPC protocols by a significant
factor. Since the online approach of [BDOZ11], SPDZ, and SPDZ2 is such that additions are
performed locally, their performance depends almost exclusively on the hardware that the play-
ers use; multiplications constitute the bottleneck, as they are interactive and may be influenced
by network delays. Therefore, we measure performance by the speed achieved by our protocols
in terms of multiplications, in a single scenario of three players connected via a LAN, who are
performing operations over a 64-bit prime field. In order to give the reader a better idea of the
pace at which MPC is evolving, we fit the performance figures retrieved in [BDOZ11] SPDZ
and SPDZ2 in a bar diagram that represents the evolution of CPUs and coprocessors in the
second half of the 20th century. It turns out that SPDZ exceeds the performance (in computing
multiplications) of [BDOZ11] by a measure of around 10 years of computer history, and SPDZ2
by around 20 years (see Figure 0.6).

Our experimental results show significant performance gains also in the preprocessing phase
(see Figure 0.7):

0.10. Extra

Even though multiparty computation is the main topic in this thesis, we consider it pertinent
to introduce the reader to another result achieved in the course of our studies, which is related to
multiparty computation in an indirect way. We present a zero-knowledge protocol that allows
a prover P to show a verifier V that P knows three values x, y, z ∈ K (where K is a finite
field or Z) such that z = x · y. We construct a basic protocol that achieves optimal amortised
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∗ maths coprocessors, whose quoted performance numbers are evaluated as an
average (over the various models) of the nominal performance of 64-bit FMUL,
cited in the respective production sheets.
† data extrapolated from the peak MIPS count of the processors, adjusted to

match 64-bit operations in the best possible scenario.
‡ performance obtained from the data sheet of the processor, adjusted as †.
♥ numbers from our implementation of SPDZ2, see [DKL+13] and Section 6.2.
♦ numbers from our implementation of SPDZ, see [DPSZ12] and Section 1.1.
4 numbers obtained in [BDOZ11].

Figure 0.6. Online phase performance comparison, measured in 64-bit multi-
plications per second: blue bars denote the data of CPUs or coprocessors and
are vertically spread according to their year of introduction in the market. Red
bars denote data of MPC protocols and are placed on the histogram according to
the comparative performance to non-distributed solutions. MPC data represents
the scenario of 3 players, connected via a LAN.

2 Players 3 Players
[BDOZ11]† 2.0 N/A
[BDOZ11]‡ 4.0 N/A

SPDZ 0.008 0.013
SPDZ2 0.003 0.004

Notes:

† data obtained from the best preliminary estimate given in [BDOZ11].
‡ data obtained from the worst preliminary estimate given in [BDOZ11].

Figure 0.7. Preprocessing phase: time spent (in seconds) per triple generated.

communication complexity in the field scenario, and extend it to the integers, where we improve
the previous state of the art both in terms of communication complexity, and in the security
requirements (our construction over the integers is based on factoring, while previous results
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were based on the strong RSA assumption). Moreover, we construct a more general scheme
that builds upon the basic technique to prove algebraic relations, rather than multiplicative
relations, over finite fields. We give a full introduction to this result in a dedicated section in
the second part of the thesis (see Section 7.1).

0.11. Notation

We conclude the introduction by covering some basic notation which is used throughout
this thesis. For a vector x = (x1, . . . , xn) ∈ Rn we denote by ‖x‖∞ := max1≤i≤n |xi|, ‖x‖1 :=∑

1≤i≤n |xi| and ‖x‖2 :=
√∑

|xi|2.

Let ε(κ) denote an unspecified negligible function of κ.
If S is a set, x ← S denotes assignment to the variable x with respect to a uniform distri-

bution on S; x← s for a value s is used as shorthand for x← {s}.
If A is an algorithm, x← A denotes assignment to x with respect to the distribution of the

output of A (over the random coins of A).
The notation x := y means “x is defined to be y”.
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CHAPTER 1

SPDZ – Overview

1.1. Introduction to SPDZ

In this section we give an overview of the innovations brought by the SPDZ protocol
[DPSZ12]. For completeness we give the full description of achievements of the original proto-
col, but in this thesis we describe the details of the preprocessing phase only, since the online
phase can be replaced by the more efficient online phase of SPDZ2 (described in Section 5.6)
to yield a more efficient protocol.

1.1.1. Optimal Online Phase. The following italics text concerns all those results of
[DPSZ12] not detailed in this thesis.

We propose an MPC protocol in the preprocessing model that computes securely an arithmetic
circuit C over any finite field Fpk . The protocol is statistically UC-secure against active and
adaptive corruption of up to n−1 of the n players, and we assume synchronous communication
and secure point-to-point channels. Measured in elementary operations in Fpk the total amount

of work done is O(n · |C| + n3) where |C| is the size of C. All earlier work in this model had
complexity Ω(n2 · |C|). A similar improvement is attained for communication complexity and
for the storage requirements of the preprocessing. Hence, the work done by each player in the
online phase is essentially independent of n. Moreover, it is only a small constant factor larger
than what one would need to compute the circuit in the clear. This is the first protocol in the
preprocessing model with these properties1.

We prove a lower bound implying that w.r.t. the amount of data required from the prepro-
cessing, our protocol is optimal up to a constant factor. We also obtain a similar lower bound on
the number of bit operations required, and hence the computational work done in our protocol
is optimal up to poly-logarithmic factors.

We concern ourselves primarily with the case of large fields, i.e. where the desired error
probability is (1/pk)c, for a small constant c. Note that many applications of MPC need integer
arithmetic, modular reductions, conversion to binary, etc., which we can emulate by computing
in Fp with p large enough to avoid overflow. This naturally leads to computing with large fields.
Our protocol works for all fields, but like earlier work in this model, it is less efficient for small
fields by a factor of essentially d sec

log pk
e for error probability 2−Θ(sec). See Section 3.3 for details.

Our result requires innovative ideas beyond those of [DPSZ12], the previous state of the
art, which was based on additive secret sharing, where each share of a secret is authenticated
using an information theoretic Message Authentication Code (MAC). Since each player needs to
have his own key, each of the n shares need to be authenticated with n MACs, so this approach
is inherently quadratic in n. Our idea is to authenticate the secret value itself instead of the
shares, using a single global key. This seems to lead to a “chicken and egg” problem since to
check a MAC requires possession of the key, but knowledge of the key yields the ability to forge
MACs. Our solution to this involves secret sharing the key as well, and we optimise by means
of various tricks to reduce the amortised cost of checking a set of MACs.

1With dishonest majority, successful termination cannot be guaranteed, so our protocols simply abort if
cheating is detected. We do not, however, identify who cheated; indeed the standard definition of secure function
evaluation does not require this. Identification of cheaters is possible but we do not know how to do this while
maintaining complexity linear in n.
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1.1.2. Efficient Use of FHE for MPC. As a conceptual contribution we propose what
we believe is “the right” way to use FHE/SHE for computationally efficient MPC, namely, to
use it for implementing a preprocessing phase. The observation is that since such preprocessing
is typically based on the classic circuit randomisation technique of Beaver [Bea91], it can be
done by evaluating in parallel many small circuits of small multiplicative depth (in fact, depth
1 in our case). Thus, SHE suffices; we do not need bootstrapping, and we can use the SHE
SIMD approach of [SV11] to handle many values in parallel in a single ciphertext.

To capitalise on this idea, we apply the SIMD approach to the cryptosystem from [BV11]
(see also [GHS12a], which employs a similar technique). To optimise performance, we need to
do a non-trivial analysis of the parameter values we can use, and we prove some results on norms
of embeddings of a cyclotomic field for this purpose. We also design a distributed decryption
procedure for our cryptosystem, which is only robust against passive attacks. Nevertheless, this
is sufficient for the overall protocol to be actively secure. Intuitively, this is the case because the
only damage the adversary can do is to add a known error term to the decryption result obtained.
The effect in the online protocol is that certain shares of secret values may be incorrect, but
such anomalies will be caught when checking the MACs. Finally, we adapt a zero-knowledge
proof of plaintext knowledge from [BDOZ11] for our purpose and in particular we improve the
analysis of the soundness guarantees it offers. This influences the choice of parameters for the
cryptosystem and improves overall performance.

1.1.3. An Efficient Preprocessing Protocol. As a result of the above, we obtain a
constant-round preprocessing protocol that is, UC-secure against active and static corruption
of n − 1 players assuming the underlying cryptosystem is semantically secure, which follows
from the Polynomial Learning with Errors (PLWE) assumption. UC-security for dishonest
majority cannot be obtained without a set-up assumption. We assume that a key pair for our
cryptosystem has been generated and the secret key has been shared among the players.

Whereas previous work in the preprocessing/online model [BDOZ11, DO10] use Ω(n2)
public-key operations per secure multiplication, we only need O(n2/s) operations, where s is a
number that grows with the security parameter of the SHE scheme (we have s ≈ 12000 in our
concrete instantiation for computing in Fp where p ≈ 264). We stress that our adapted scheme
is exactly as efficient as the basic version of [BV11] that does not allow this optimisation, so
the improvement is indeed “genuine”.

Relative to the case where FHE is used throughout the protocol, our combined preprocessing
and online phase is incomparable from a theoretical point of view, but much more practical: we
need more communication and rounds, but the computational overhead is much smaller – we
need O(n2/s · |C|) public key operations compared to O(n · |C|) for the FHE approach, where
for realistic values of n and s, we have n2/s� n. Furthermore, we only need a low depth SHE
which is much more efficient than FHE. And finally, we can push all the work using SHE into
a (function independent) preprocessing phase.

1.1.4. Performance in Practice. Both the preprocessing and online phase have been
implemented and tested for 3 players on up-to-date machines connected on a LAN. The prepro-
cessing takes about 13 ms amortised time to prepare one multiplication in Fp for a 64-bit p, with
security level corresponding roughly to 1024 bit RSA and an error probability of 2−40 for the
zero-knowledge proofs (the error probability can be lowered to 2−80 by repeating the ZK proofs
which will at most double the time). This is 2-3 orders of magnitude faster than preliminary
estimates for the most efficient instantiation of [BDOZ11]. The online phase executes a secure
64-bit multiplication in 0.05 ms amortised time. These rough orders of magnitude, and the
ability to deal with a non-trivial number of players, are obtained in a recent implementation of
the protocols, described in [DKL+12].

1.1.5. Concurrent Related Work. In recent independent work [MSas11, AJLA+12,
GHS12a], Meyers at al., Asharov et al. and Gentry et al. also use an FHE scheme for mul-
tiparty computation. They follow the pure FHE approach mentioned above, using a threshold
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decryption protocol tailored to the specific FHE scheme they use. They focus primarily on
round complexity, whereas our purpose is on minimising the computational overhead. We note
that in [GHS12a], Gentry et al. obtain small overhead by showing a way to use the FHE
SIMD approach for computing any circuit homomorphically. However, this requires full FHE
with bootstrapping (to work on arbitrary circuits) and does not (currently) lead to a practical
protocol.

In [NNOB12], Nielsen et al. consider secure computing for Boolean Circuits. Their online
phase is similar to that of [BDOZ11], while the preprocessing is a very efficient construction
based on Oblivious Transfer (OT). This result is complementary to ours in the sense that we
target computations over large fields which are good for some applications whereas for other
cases, Boolean Circuits are the most compact way to express the desired computation. It would
be possible to use the preprocessing from [NNOB12] to set up data for our online phase, but
current benchmarks indicate that our approach is faster for large fields, say of size 64 bits or
more.
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CHAPTER 2

SPDZ – Preprocessing

2.1. The Abstract Somewhat Homomorphic Encryption Scheme

In this section we specify the abstract properties needed for our cryptosystem. A concrete
instantiation is presented in Section 2.5.

We first define the plaintext space M , given by a direct product (Fpk)s of finite fields of
characteristic p. Component-wise addition and multiplication of elements in M are denoted by
+ and ·. We assume there is an injective encoding function encode which takes elements in (Fpk)s

to elements in a ring R, equal to ZN (as a Z-module) for some integer N . We also assume a
decode function which takes arbitrary elements in ZN and returns elements in (Fpk)s. We require
that for all m ∈M that decode(encode(m)) = m, that the decode operation is compatible with
the characteristic of the field, i.e. for any x ∈ ZN we have decode(x) = decode(x (mod p)),
and finally, that the encoding function produces “short” vectors: more precisely, that for all
m ∈ (Fpk)s ‖encode(m)‖∞ ≤ τ where τ = p/2.

The two operations in R are denoted by + and ·. The addition operation in R is assumed to
be component-wise addition, whereas we make no assumption on multiplication. All we require
is that the following properties hold, for all elements m1,m2 ∈M :

decode(encode(m1) + encode(m2)) = m1 + m2,

decode(encode(m1) · encode(m2)) = m1 ·m2.

From now on, when we discuss the plaintext space M we assume it comes implicitly with the
encode and decode functions for some integer N . If an element in M has the same component
in each of the s coordinates, then we call it a “diagonal” element. For x ∈ Fpk we let Diag(x)
denote the element (x, x, . . . , x) ∈ (Fpk)s.

Our cryptosystem consists of a tuple (ParamGen,KeyGen,KeyGen∗,Enc,Dec) of algorithms,
defined below, and parametrised by a security parameter κ.
ParamGen(1κ,M): This parameter generation algorithm outputs an integer N (as above), def-

initions of the encode and decode functions, and a description of a randomised algorithm Ddρ,

which outputs vectors in Zd. We assume that Ddρ outputs r with ‖r‖∞ ≤ ρ, except with negligi-

ble probability. The algorithm Ddρ is used by the encryption algorithm to select the randomness
needed during encryption. The algorithm ParamGen also outputs an additive Abelian group
G, also provided with a (not necessarily closed) multiplicative operator, which is commutative
and distributes over the addition in G. The group G is the group in which the ciphertexts are
assumed to lie. We write � and � for the operations on G, and extend these in the natural
way to vectors and matrices of elements of G. Finally, ParamGen outputs a set C of allowable
arithmetic SIMD circuits over (Fpk)s, these are the set of functions which our scheme is able
to evaluate ciphertexts over. We can think of C as a subset of Fpk [X1, X2, . . . , Xn], where we
evaluate a function f ∈ Fpk [X1, X2, . . . , Xn] a total of s times in parallel on inputs from (Fpk)n.
We assume that all other algorithms take as implicit input the output P ← (1κ, N, encode,
decode,Ddρ, G,C) of ParamGen.
KeyGen(): This algorithm outputs a public key pk and a secret key sk.

Encpk(x, r): On input of x ∈ ZN , r ∈ Zd, this deterministic algorithm outputs a ciphertext c ∈ G.

When applying this algorithm one would obtain x from the application of the encode function,
and r by calling Ddρ. This is what we mean when we write Encpk(m), where m ∈M . However,
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it is convenient for us to define Enc on the intermediate state, x = encode(m). To ease notation
we write Encpk(x) if the value of the randomness r is not important for our discussion. To
make our zero-knowledge proofs below work, we require that addition of V “clean” ciphertexts
(for “small” values of V ), of plaintext xi in ZN , using randomness ri, results in a ciphertext
which could be obtained by adding the plaintexts and randomness, as integer vectors, and then
applying Encpk(x, r), i.e.

Encpk(x1 + · · ·+ xV , r1 + · · ·+ rV ) = Encpk(x1, r1) � · · ·� Encpk(xV , rV ).

Decsk(c): On input the secret key and a ciphertext c it returns either an element m ∈ M , or
the symbol ⊥.

We are now able to define various properties of the above abstract scheme that we require.
WE begin with some notation: for a function f ∈ C let n(f) denote the number of variables

in f , and let f̂ denote the function on G induced by f . That is, given f , replace every +
operation with a �, every · operation is replaced with a � and every constant c is replaced by
Encpk(encode(c),0). Also, given a set of n(f) vectors x1, . . . ,xn(f), we define f(x1, . . . ,xn(f))
in the natural way by applying f in parallel on each coordinate.
Correctness: Intuitively correctness means that if one decrypts the result of a function f ∈ C
applied to n(f) encrypted vectors of variables, then this should return the same value as applying
the function to the n(f) plaintexts. However, to apply the scheme in our protocol, we need to be
somewhat more liberal, namely, the decryption result should be correct, even if the ciphertexts
we start from were not necessarily generated by the normal encryption algorithm. They only
need to “contain” encodings and randomness that are not too large, such that the encodings
decode to legal values. Formally, the scheme is said to be (Bplain, Brand, C)-correct if

Pr
[
P ← ParamGen(1κ,M), (pk, sk)← KeyGen(), for any f ∈ C,

any xi, ri, with ‖xi‖∞ ≤ Bplain, ‖ri‖∞ ≤ Brand, decode(xi) ∈ (Fpk)s,

i = 1, . . . , n(f), and ci ← Encpk(xi, ri), c← f̂(c1, . . . , cn(f)) :

Decsk(c) 6= f(decode(x1), . . . , decode(xn(f)))
]
< ε(κ).

We say that a ciphertext is (Bplain, Brand, C)-admissible if it can be obtained as the ciphertext
c in the above experiment, i.e. by applying a function from C to ciphertexts generated from
(legal) encodings and randomness that are bounded by Bplain and Brand.

KeyGen∗(): This is a randomised algorithm that outputs a meaningless public key p̃k. We require

that an encryption of any message Enc
p̃k

(x) is statistically indistinguishable from an encryption

of 0. Furthermore, if we set (pk, sk) ← KeyGen() and p̃k ← KeyGen∗(), then pk and p̃k are
computationally indistinguishable. This implies the scheme is IND-CPA secure in the usual
sense.
Distributed Decryption: We assume that a common public key has been set up where the secret
key has been secret-shared among the players in such a way that they must collaborate to decrypt
a ciphertext. We assume throughout that only (Bplain, Brand, C)-admissible ciphertexts are to
be decrypted, and this constraint is guaranteed by our main protocol.

We note that some set-up assumption is always required to show UC security, which is our
present goal. Concretely, we assume that a functionality FKeyGen is available, as specified in
Figure 2.1. It basically generates a key pair and secret-shares the secret key among the players
using a secret-sharing scheme that is assumed to be given as part of the specification of the
cryptosystem. Since we want to allow corruption of all but one player, the maximal unqualified
sets must be all sets of n− 1 players.

We note that it is possible to make a weaker set-up assumption, such as a common reference
string (CRS), and using a general UC secure multiparty computation protocol for the CRS model
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Functionality FKeyGen

(1) When receiving “start” from all honest players, run P ← ParamGen(1κ,M), and then,
using the parameters generated, run (pk, sk) ← KeyGen() (recall P , and hence 1κ, is an
implicit input to all functions we specify). Send pk to the adversary.

(2) We assume a secret sharing scheme is given with which sk can be secret-shared. Receive
from the adversary a set of shares sj for each corrupted player Pj .

(3) Construct a complete set of shares (s1, . . . , sn) consistent with the adversary’s choices and
sk. Note that this is always possible since the corrupted players form an unqualified set.
Send pk to all players and si to each honest Pi.

Figure 2.1. The Ideal Functionality for Distributed Key Generation

to implement FKeyGen. While this may not be very efficient, this protocol needs to be run only
once in the life-time of the system.

We also want our cryptosystem to implement the functionality FKeyGenDec specified in
Figure 2.2, which essentially specifies that players can cooperate to decrypt a (Bplain, Brand, C)-
admissible ciphertext, but the protocol is only secure against a passive attack: the adversary
gets the correct decryption result, but can decide which result the honest players should learn.

Functionality FKeyGenDec

(1) When receiving “start” from all honest players, run ParamGen(1κ,M), and then, using
the parameters generated, run (pk, sk) ← KeyGen(). Send pk to the adversary and to all
players, and store sk.

(2) Hereafter on receiving “decrypt c” for (Bplain, Brand, C)-admissible c from all honest play-
ers, send c and m← Decsk(c) to the adversary. On receiving m′ from the adversary, send
“Result m′” to all players, Both m and m′ may be a special symbol ⊥ indicating that
decryption failed.

(3) On receiving “decrypt c to Pj” for admissible c, if Pj is corrupt, send c,m ← Decsk(c) to
the adversary. If Pj is honest, send c to the adversary. On receiving δ from the adversary,
if δ 6∈M , send ⊥ to Pj , if δ ∈M , send Decsk(c) + δ to Pj .

Figure 2.2. The Ideal Functionality for Distributed Key Generation and Decryption

We are now finally ready to define the basic set of properties that the underlying cryptosys-
tem should satisfy, in order to be used in our protocol. Here we use an “information theoretic”
security parameter sec that controls the errors in our ZK proofs below.

Definition 2.1 (Admissible Cryptosystem). We say that a cryptosystem is admissible if
the following two properties hold:

Correctness: If C is a set of formulas containing circuits of multiplicative depth one,
that is, of form

(x1 + · · ·+ xn) · (y1 + · · ·+ yn) + z1 + · · ·+ zn,

as well as all “smaller” formulas , i.e. with a smaller number of additions and possibly
no multiplication, then the cryptosystem is (Bplain, Brand, C)-correct, where

Bplain = N · τ · sec2 · 2(1/2+ν)sec, Brand = d · ρ · sec2 · 2(1/2+ν)sec;

and where ν > 0 can be an arbitrary constant.
Distributed Decryption: There exists a secret sharing scheme as required in FKeyGen

and a protocol ΠDDec with the property that when composed with FKeyGen it securely
implements the functionality FKeyGenDec.

The set C is defined to contain all computations on ciphertext that we need in our main
protocol. We assume that Bplain, Brand are defined as here in terms of τ, ρ and sec. This is
because these are the bounds we can force corrupt players to respect via our zero-knowledge
protocol, as shall be seen.
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2.2. Zero-Knowledge Proof of Plaintext Knowledge

This section presents a zero-knowledge protocol that takes as input sec ciphertexts c1, . . . , csec
generated by one of the players in our protocol, who acts as the prover. If the prover is honest
then ci = Encpk(xi, ri), where xi has been obtained from the encode function, i.e. ‖xi‖∞ ≤ τ ,

and ri has been generated from Ddρ (so we may assume that ‖ri‖∞ ≤ ρ). Our protocol is a
zero-knowledge proof of plaintext knowledge (ZKPoPK) for the following relation:

RPoPK =
{

(x,w) |x = (pk, c), w = ((x1, r1), . . . , (xsec, rsec)) :

c = (c1, . . . , csec), ci ← Encpk(xi, ri),

‖xi‖∞ ≤ Bplain, decode(xi) ∈ (Fpk)s, ‖ri‖∞ ≤ Brand
}
.

The zero-knowledge and completeness properties hold only if the ciphertexts ci satisfy ‖xi‖∞ ≤ τ
and ‖ri‖∞ ≤ ρ.

In our preprocessing protocol players are required to give such a ZKPoPK for all ciphertexts
they provide. By admissibility of the cryptosystem, every ciphertext occurring in the protocol
is (Bplain, Brand, C)-admissible and can therefore be decrypted correctly. The ZKPoPK can also
be called with a flag diag which modifies the proof so that it additionally proves that decode(xi)
is a diagonal element.

The protocol is not meant to implement an ideal functionality, but we can still use it and
prove UC security for the main protocol, since we always generate the challenge e by calling
the FRand ideal functionality given in Figure 2.3.

Functionality FRand

Random Sample: When receiving “rand” from all parties, it samples a uniform r ← {0, 1}u
and outputs r to all parties.

Random modulo p: When receiving “rand, p” from all parties, it samples a uniform value
e← Fpk and outputs e to all parties.

Figure 2.3. The ideal functionality for coin-flipping.

Hence the honest-verifier ZK property implies straight-line simulation1. As for knowledge
extraction, the UC simulator for the security proof knows the secret key for the cryptosystem
and can therefore extract a dishonest prover’s witness simply by decrypting. In the reduction
to show that the simulator works, we do not know the secret key, but here we are allowed to do
extraction by rewinding.

We give two versions of the protocol: the first one is a standard 3-move protocol, while the
second one uses an “abort” technique to optimise the parameter values. The latter one makes
use of the Fiat-Shamir heuristic, and may be the best option for a practical implementation.

2.2.1. Interactive Zero-Knowledge Proof. For the protocol, set τ = p/2, so that
‖encode(m)‖∞ ≤ τ = p/2. This means that each entry in encode(m) corresponds to a uniquely
determined residue mod p and conversely each such residue is uniquely determined by m. Note
that if there exists an m ∈ (Fpk)s such that x mod p = encode(m) then decode(x) = m. There-
fore, the verifier explicitly checks whether the encodings the prover sends him decode to legal
values, so that the ciphertexts in question also decode to legal values.

Let R denote the matrix in Zsec×d whose ith row is ri. Our protocol makes use of a matrix
Me defined as follows. Let V := 2 · sec − 1. For e ∈ {0, 1}sec we define Me ∈ ZV×sec to be the
matrix whose (i, k)-th entry is given by ei−k+1, for 1 ≤ i− k + 1 ≤ sec and 0 otherwise.

Theorem 2.2. The protocol ΠZKPoPK (Figure 2.4) is an honest-verifier zero-knowledge
proof of knowledge for the relation RPoPK .

1FRand can be implemented by standard methods, and the complexity of this is not significant for the main
protocol since we may use the same challenge for many instances of the proof, and each proof handles sec
ciphertexts.
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Protocol ΠZKPoPK

• For i = 1, . . . , V , the prover sets yi ← ZN and si ← Zd, such that ‖yi‖∞ ≤ N ·τ ·sec2·2νsec−1
and ‖si‖∞ ≤ d · ρ · sec2 · 2νsec−1. For yi, this is done as follows: choose a random message
mi ∈ (Fpk)s and set yi = encode(mi)+ui, where each entry in ui is a multiple of p, chosen

uniformly at random, subject to ‖yi‖∞ ≤ N · τ · sec2 · 2νsec−1. If diag is set to true, then
the mi are chosen to be diagonal elements.

• The prover computes ai ← Encpk(yi, si), for i = 1, . . . , V , and defines S ∈ ZV×d to be the
matrix whose ith row is si and sets y← (y1, . . . ,yV ), a← (a1, . . . , aV ).

• The prover sends a to the verifier.
• The verifier selects e ∈ {0, 1}sec and sends it to the prover.
• The prover sets z← (z1, . . . , zV ), such that zT = yT +Me · xT, and T = S +Me ·R. The

prover sends (z, T ) to the verifier.
• The verifier computes di ← Encpk(zi, ti), for i = 1, . . . , V , where ti is the ith row of T and

sets d← (d1, . . . , dV ).
• The verifier checks that decode(zi) ∈ Fspk and whether the following three conditions hold;

he rejects if not

dT = aT �
(
Me � cT

)
, ‖zi‖∞ ≤ N · τ · sec2 · 2νsec−1, ‖ti‖∞ ≤ d · ρ · sec2 · 2νsec−1.

• If diag is set to true the verifier also checks whether decode(zi) is a diagonal element, and
rejects if it is not.

Figure 2.4. The ZKPoPK Protocol, interactive version.

Proof. For completeness: assume the prover is honest. For i = 1, . . . , V the verifier checks if
Encpk(zi, ti) equals ai�Me,i · cT, since Me,i is a scalar matrix we write multiplication with · as
opposed to �. The check passes because of the following relation:

ai �
(
Me,i · cT

)
= Encpk(yi, si) �

sec
k=1 (Me,i,k · ck)

= Encpk(yi, si) �
sec
k=1 (Me,i,k · Encpk(xk, rk))

= Encpk

(
yi +

sec∑
k=1

Me,i,k · xk, si +
sec∑
k=1

Me,i,k · rk

)
= Encpk

(
yi +Me,i · xT, si +Me,i · rT

)
= Encpk(zi, ti).

Moreover, given that zi = yi +Me,i · xT and that all ciphertexts in c are (τ, ρ)-ciphertexts, we

get that each single coordinate in Me,i · xT is numerically at most sec · τ . Each coordinate of
yi was chosen from an interval that is a factor N · sec · 2νsec−1 larger. By a union bound over
the N · sec coordinates involved, each coordinate in zi fails to be in the required range with
probability exponentially small in sec. A similar argument shows that the check ‖ti‖∞ also
fails with negligible probability. Finally, each yi was constructed to be congruent mod p to the
encoding of a value in Fs

pk
. Since this is also the case for the xi’s if the prover is honest, the

same is true for the zi’s, and they therefore decode to values in Fs
pk

. If diag is set to true, all

xi,yi contain diagonal plaintexts, and then zi contains diagonal values as well.
For soundness: we consider a prover making a verifier accept both (x,a, e, (z, T )) and

(x,a, e′, (z′, T ′)) with e 6= e′. Since both checks dT = aT � (Me · cT) and d′T = aT � (Me′ · cT)
passed, one can subtract the two equalities and obtain

(Me −Me′) � cT =
(
d � d′

)T
(2.1)

In order to find x and R such that ck = Encpk(xk, rk) for k = 1, . . . , sec, we first solve (2.1) as
a linear system in c. Let j be the highest index such that ej 6= e′j . The sec × sec submatrix
of Me −Me′ , consisting of the rows of Me −Me′ between j and j + sec − 1 both included,
is upper triangular with entries in {−1, 0, 1} and its diagonal consists of the non-zero value
ej − e′j (so it is possible to find a solution for c). Since the verifier has values zi, ti, z

′
i, t
′
i
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such that di = Encpk(zi, ti) and d′i = Encpk(z
′
i, t
′
i), and given that ci = Encpk(xi, ri), it is

possible to directly solve the linear system in x and R (since the cryptosystem is additively
homomorphic), from the bottom equation to the one “in the middle” with index sec/2. Since
‖zi‖∞, ‖z′i‖∞ ≤ N · τ · sec2 · 2νsec−1 and ‖ti‖∞, ‖t′i‖∞ ≤ d · ρ · sec2 · 2νsec−1, we conclude that
csec−i is a (s · τ · sec2 · 2νsec+i, d · ρ · sec2 · 2νsec+i)-ciphertext (by induction on i). To solve for
c1, . . . csec/2, we consider the lowest index j such that ej 6= e′j , construct an lower triangular
matrix in a similar way as above, and solve from the first equation downwards. We conclude
that c contains (N · τ · sec2 · 2(1/2+ν)sec, d · ρ · sec2 · 2(1/2+ν)sec)-ciphertexts.

We note that since the verifier accepted, each zi has small norm and decodes to a value in
(Fpk)s. Since we can write xi as a linear combination of the zi, it follows from correctness of
the cryptosystem that the xi also decode to values in (Fpk)s. Finally, if diag was set to true,
the verifier only accepts if all zi decode to diagonal values. Again, since we can write xi as a
linear combination of the zi, the xi also decode to diagonal values.

For Zero-Knowledge: we give an honest-verifier simulator for the protocol that outputs
accepting conversations. In order to simulate one repetition, the simulator samples e ∈ {0, 1}sec
uniformly and z, T uniformly with the constraint that d contains random ciphertexts satisfying
the verifier’s check, i.e. zi, ti are uniform, subject to ‖zi‖∞ ≤ N · τ · sec2 · 2νsec−1, ‖ti‖∞ ≤
d · ρ · sec2 · 2νsec−1, where moreover zi is generated as encode(mi) + ui where mi is a random
plaintext (diagonal if diag is set to true) and ui contains multiples of p that are uniformly
random, subject to ‖zi‖∞ ≤ N · τ · sec2 ·2νsec−1. Finally, a is computed as aT ← dT� (Me ·cT).
In the real conversation, the prover’s choice of values in zi and ti are statistically close to
the distribution used by the simulator. This is because the prover uses the same method to
generate these values, except that he adds in some vectors of exponentially smaller norm which
leads to a statistically close distribution. Since e has the correct distribution and a follows
deterministically from the last two messages, the simulation is statistically indistinguishable.

�
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2.2.2. Zero-Knowledge Protocol – Fiat-Shamir Heuristic. We now give a protocol
that leads to smaller values of the parameters and hence also allows better parameters for the
underlying cryptosystem. This version, however, is better suited for use with the Fiat-Shamir
heuristic. The idea is to let the prover choose his randomness in a smaller interval, and abort if
the last message would reveal too much information. This is an idea from [Lyu09]. When using
the Fiat-Shamir heuristic, this is not a problem as the prover only needs to show a successful
attempt to the verifier. Let h be a suitable hash function that outputs sec-bit strings.

Protocol ΠZKPoPK – Fiat-Shamir heuristic

• For i = 1, . . . , V , the prover generates yi ← ZN and si ← Zd, such that ‖yi‖∞ ≤ 128 ·
N · τ · sec2 and ‖si‖∞ ≤ 128 · d · ρ · sec2. For yi, this is done as follows: choose a random
message mi ∈ (Fpk)s and set yi = encode(mi) + ui, where each entry in ui is a multiple of

p, chosen uniformly at random, subject to ‖yi‖∞ ≤ 128 ·N · τ · sec2. If diag is set to true
then the mi are additionally chosen to be diagonal elements.
• The prover computes ai ← Encpk(yi, si), for i = 1, . . . , V , and defines S ∈ ZV×d to be the

matrix whose ith row is si and sets y← (y1, . . . ,yV ), a← (a1, . . . , aV ).
• The prover sends a to the verifier.
• The prover computes e = h(a, c).
• The prover sets z← (z1, . . . , zV ), such that zT = yT +Me · xT, and T = S +Me ·R. Let

ti be the ith row of T . If for any i, it is the case that ‖zi‖∞ > 128 ·N · τ · sec2 − τ · sec or
‖ti‖∞ > 128 ·d ·ρ · sec2−ρ · sec, the prover aborts and the protocol is restarted. Otherwise
the prover sends (a, z, T ) to the verifier.

• The verifier computes e = h(a, c), di ← Encpk(zi, ti), for i = 1, . . . , V , where ti is the ith
row of T and sets d← (d1, . . . , dV ).

• The verifier checks decode(zi) ∈ Fspk and whether the following three conditions hold

dT = aT �
(
Me � cT

)
, ‖zi‖∞ ≤ 128 ·N · τ · sec2, ‖ti‖∞ ≤ 128 · d · ρ · sec2.

If diag is set to true the verifier also checks whether decode(zi) is a diagonal element, and rejects if
it is not.

Figure 2.5. The ZKPoPK Protocol, version for Fiat-Shamir heuristic.

We claim that the Fiat-Shamir based protocol is a proof of knowledge for the relation
in question in the random oracle model. In this case, however, we can guarantee that the
adversarially generated ciphertexts are (N · τ · sec2 · 2sec/2+8, d · ρ · sec2 · 2sec/2+8)-ciphertexts.
Proof. For completeness: assume the prover is honest. Note first that each yi was constructed
to be congruent mod p to the encoding of a value in (Fpk)s. Since this is also the case for the
xi’s if the prover is honest, the same is true for the zi’s, and they therefore always decode to a
value in (Fpk)s. If diag was set to true, all xi,yi contain diagonal plaintexts, and then the same
is true for the zi.

Next, for i = 1, . . . , V the verifier checks if Encpk(zi, ti) equals ai �Me,i · cT, since Me,i is a
scalar matrix we write multiplication with · as opposed to �. The check passes because of the
following relation:

ai �
(
Me,i · cT

)
= Encpk(yi, si) �

sec
k=1 (Me,i,k · ck)

= Encpk(yi, si) �
sec
k=1 (Me,i,k · Encpk(xk, rk))

= Encpk

(
yi +

sec∑
k=1

Me,i,k · xk, si +

sec∑
k=1

Me,i,k · rk

)
= Encpk

(
yi +Me,i · xT, si +Me,i · rT

)
= Encpk(zi, ti).

Moreover, given that zi = yi +Me,i · xT and that all ciphertexts in c are (τ, ρ)-ciphertexts, we

get that each single coordinate in Me,i · xT is numerically at most sec · τ . Each coordinate of
yi was chosen from an interval that is a factor 128 ·N · sec larger. Therefore each coordinate in
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zi fails to be in the required range with probability 1/(128 ·N · sec). Note that this probability
does not depend on the concrete values of the coordinates in Me,i · xT, only on the bound on
the numeric value.

By a union bound over the N coordinates of zi we get that ‖zi‖∞ ≤ 128·N ·τ ·sec2−τ ·sec fails
with probability at most 1/(128 · sec), and by a final union bound over the 2 sec−1 ciphertexts
that all checks on the zi’s are OK except with probability at most 1/64. A similar argument
shows that the check ‖ti‖∞ ≤ 128 · d · ρ · sec2 − ρ · sec fails also with probability at most 1/64.
The conclusion is that the prover aborts with probability at most 1/32, so we expect to only
have to repeat the protocol once to have success.

For soundness: by a standard argument, a prover who can efficiently produce a valid proof is
able to produce (x,a, e, (z, T )) and (x,a, e′, (z′, T ′)) with e 6= e′ that the verifier would accept.
Since both checks dT = aT � (Me · cT) and d′T = aT � (Me′ · cT) passed, one can subtract the
two equalities and obtain

(Me −Me′) � cT =
(
d � d′

)T
(2.2)

In order to find x and R such that ck = Encpk(xk, rk) for k = 1, . . . , sec, we first solve (2.2) as
a linear system in c. Let j be the highest index such that ej 6= e′j . The sec × sec submatrix
of Me −Me′ , consisting of the rows of Me −Me′ between j and j + sec − 1 both included,
is upper triangular with entries in {−1, 0, 1} and its diagonal consists of the non-zero value
ej − e′j (so it is possible to find a solution for c). Since the verifier has values zi, ti, z

′
i, t
′
i such

that di = Encpk(zi, ti) and d′i = Encpk(z
′
i, t
′
i), and given that ci = Encpk(xi, ri), it is possible to

directly solve the linear system in x and R (since the cryptosystem is additively homomorphic),
from the bottom equation to the one “in the middle” with index sec/2.
Since ‖zi‖∞, ‖z′i‖∞ ≤ 128 · N · τ · sec2 and ‖ti‖∞, ‖t′i‖∞ ≤ 128 · d · ρ · sec2, we conclude that
csec−i must be a (256 ·N · τ · 2i · sec2, 256 · d · ρ · 2i · sec2)-ciphertext (by induction on i). To solve
for c1, . . . csec/2, we consider the lowest index j such that ej 6= e′j , construct an lower triangular
matrix in a similar way as above, and solve from the first equation downwards. We conclude
that c contains (N · τ · sec2 · 2sec/2+8, d · ρ · sec2 · 2sec/2+8)-ciphertexts.

We note that since the verifier accepted, each zi has small norm and decodes to a value in
(Fpk)s. Since we can write xi as a linear combination of the zi, it follows from correctness of
the cryptosystem that the xi also decode to values (Fpk)s. Finally, if diag was set to true, the
verifier only accepts if all zi decode to diagonal values. Again, since we can write xi as a linear
combination of the zi, the xi also decode to diagonal values.

For Zero-Knowledge: we give an honest-verifier simulator for the protocol that outputs an
accepting conversation (that does not abort).

In order to simulate one repetition, the simulator samples e ∈ {0, 1}sec uniformly and z, T
uniformly with the constrain that d contains random (8 ·N ·τ · sec2−τ · sec, 8 ·d ·ρ · sec2−ρ · sec)-
ciphertexts. where moreover zi is generated as encode(mi) +ui where mi is a random plaintext
(a diagonal one if diag is set to true) and ui contains multiples of p that are uniformly random,
subject to ‖zi‖∞ ≤ 8N · τ · sec2− τ · sec. Finally, a is computed as aT ← dT� (Me · cT). Define
the random oracle to output e on input a, c, output (a, e, (z, T )) and stop.

We argue that this simulation is perfect: the distribution of a simulated e is the same as a
real one. Also, it is straightforward to see that in a real conversation, given that the prover does
not abort, the vectors zi, ti are uniformly random, subject to ‖zi‖∞ ≤ 8 · s · τ · sec2− τ · sec and
‖ti‖∞ ≤ 8 ·d ·ρ · sec2−ρ · sec. So the simulator chooses zi, ti with exactly the right distribution.
Since the value of a follows deterministically from the e, zi, ti, we have what we wanted.

�
Doing without random oracles. The above protocol can also be executed without using the

Fiat-Shamir heuristic. In this case, the prover starts sec/5 instances of the protocol, computing
a1, . . . ,asec/5. We choose this number of instances because it ensures that the prover fails on all

of them with probability only (1/32)sec/5 = 2−sec. The prover commits to all these values, which
can be done, for instance, with a Merkle hash tree, in which case the commitment is very short,
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and any of the a’s can be opened by sending a piece of information that is only logarithmic in
sec.

The verifier selects e, the prover finds an instance where he would not abort the protocol
with this e, opens the corresponding a and completes that instance.

This is complete and zero-knowledge by the same argument as above plus the hiding property
of the commitment scheme used. Soundness follows from the fact that if the prover succeeds with
probability significantly greater that 2−sec · sec/5 he must be able to answer different challenges
correctly for some fixed instance out of the sec/5 we have. Such answers can be extracted by
rewinding, and then the rest of the argument is the same as above.

2.3. The Preprocessing Phase

2.3.1. A Small Description of the Online Phase. In the online phase each shared
value a ∈ Fpk is represented as follows

〈a〉 := (a1, . . . , an, γ(a)1, . . . , γ(a)n)

where a = a1 + · · · + an and γ(a)1 + · · · + γ(a)n = α · a. Player Pi holds ai, γ(a)i, and the
interpretation is that γ(a) = γ(a)1 + · · ·+ γ(a)n is the MAC authenticating a under the global
key α.

Using the natural component-wise addition of representations, and suppressing the underly-
ing choices of ai, γ(a)i for readability, we clearly have for secret values a, b and public constant
e that

〈a〉+ 〈b〉 = 〈a+ b〉 and e · 〈a〉 = 〈ea〉.
To check the MACs players need the global key α, which is given from the preprocessing in

the following representation:

[[α]] := ((α1, . . . , αn), (βi, γ(α)i1, . . . , γ(α)in)i=1,...,n)),

where α =
∑

i αi and
∑

j γ(α)ji = αβi. Player Pi holds αi, βi, γ(α)i1, . . . , γ(α)in. The idea is that

γ(α)i ←
∑

j γ(α)ji is the MAC authenticating α under Pi’s private key βi. To open [[α]] each

Pj sends to each Pi his share αj of α and his share γ(α)ji of the MAC on α made with Pi’s

private key and then Pi checks that
∑

j γ(α)ji = αβi. (To open the value to only one party Pi,
the other parties simply send their shares only to Pi, who will do the checking. Only shares of
α and αβi are needed.)

Notice that this representation of the global key allows the players to add or subtract public
values to already shared values by first creating an angle representation of the public value as
follows: for a public constant e, each party Pi computes γ(e)i ← e · αi and therefore players
obtain 〈e〉.2

Multiplications are not straightforward: here we use the preprocessing. We would like the
preprocessing to output triples 〈a〉, 〈b〉, 〈c〉, for uniform a, b and where c = ab. However, the
SPDZ preprocessing produces triples which satisfy c = ab+ ∆, where ∆ is an error that can be
introduced by the adversary. Players therefore need to check the validity of each triple before
using it. The check can be done by “sacrificing” another triple 〈f〉, 〈g〉, 〈h〉, where the same
multiplicative equality should hold. Given such a valid triple, multiplications can be performed
as follows: to compute 〈xy〉 players first open 〈x〉 − 〈a〉 to get ε, and 〈y〉 − 〈b〉 to get δ. Then
xy = (a+ ε)(b+ δ) = c+ εb+ δa+ εδ. Thus, the new representation can be computed as

〈x〉 · 〈y〉 = 〈c〉+ ε〈b〉+ δ〈a〉+ εδ.

An important note is that during the online protocol there is no guarantee that players are
working with the correct results, since players do not immediately check the MACs of the opened
values. During the first part of the protocol, parties only do what we define as a partial opening,

2The reader familiar with SPDZ will notice that the 〈·〉 representation that we presented differed from the
one in [DPSZ12], in that we dropped the public constant δ. The observation on how to compute MACs on
public values makes the usage of δ superfluous.
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meaning that for a value 〈a〉, each party Pi sends ai to P1, who computes a = a1 + · · · + an
and broadcasts a to all players. We assume that this is done via P1, for simplicity, whereas in
practice, one would balance the workload over the players.

Finally, the preprocessing also outputs n pairs of a random value r in both of the presented
representations 〈r〉, [[r]]. These pairs are used in the Input phase of the protocol.

2.3.2. The Preprocessing Protocol. In this section we construct the protocol ΠPREP

which securely implements the functionality FPREP (specified in Figure 2.6) in the presence of
functionalities FKeyGenDec (Figure 2.2) and FRand (Figure 2.3).

The preprocessing uses the above abstract cryptosystem with M = (Fpk)s, but the online
phase is designed for messages in Fpk . Therefore, we extend the notation 〈·〉 and [[·]] to messages
in M : since addition and multiplication on M are component-wise, for m = (m1, . . . ,ms), we
define 〈m〉 = (〈m1〉, . . . , 〈ms〉) and similarly [[m]]. Conversely, once a representation (or a pair,
triple) on vectors is produced in the preprocessing, it is disassembled into its coordinates, so that
it can be used in the online phase. In Figures 2.7,2.8 and 2.9, we introduce subprotocols that
are accessed by the main preprocessing protocol in several steps. Note that the subprotocols
are not meant to implement ideal functionalities: their purpose is merely to summarise parts
of the main protocol that are repeated in various occasions.

Theorem 2.3. The protocol ΠPREP (Figure 2.10) implements FPREP with computational se-
curity against any static, active adversary corrupting up to n−1 parties, in the FKeyGen,FRand-
hybrid model when the underlying cryptosystem is admissible3.

Proof.
Recall first that we assume the cryptosystem has an alternative key generation algorithm

KeyGen∗() which is a randomised algorithm that outputs a meaningless public key p̃k with the
property that an encryption of any message Enc

p̃k
(x) is statistically indistinguishable from an

encryption of 0. Furthermore, if we set (pk, sk)← KeyGen() and p̃k← KeyGen∗(), then pk and

p̃k are computationally indistinguishable.
We construct a simulator SPREP for ΠPREP. In a nutshell, the simulator runs a copy of the

protocol. Here, it plays the honest players’ part while the environment Z plays for the corrupt
players. The simulator also internally runs copies of FKeyGen and FRand, in order to simulate
calls to these functionalities. Note that in the following we say that the simulator executes or
performs some part of the protocol as shorthand for the simulator going through that part with
Z. During the protocol execution, whenever Z sends ciphertexts on behalf of corrupt players,
the simulator can obtain the plaintexts, since it knows the secret key. These values are then
used to generate input to FPREP. A precise description is provided in Figure 2.11.

We now need to show that no Z can distinguish between the simulated and the real process.
For the sake of contradiction, we assume that there exists Z that can distinguish these two
cases with significant advantage ε. The output of Z is a single bit, thought of as a guess at one
of the two cases. Concretely, we assume

A(Z) := Pr [“Real”← Z(Real process)]− Pr [“Real”← Z(Simulated process)]

≥ ε.
We show that such a Z can be used to distinguish between a normally generated public key and
a meaningless one with basically the same advantage. This leads to a contradiction, since a key
generated by the normal key generator is computationally indistinguishable from a meaningless
one.

More in detail, we construct an algorithm B that takes as input a public key pk∗ (randomly
chosen as either a normal public key or a meaningless one), sets up a copy of Z, goes through the
protocol with Z and uses its output to guess the type of key it got as input. During the process B

3The definition of admissible cryptosystem demands a decryption protocol that implements FKeyGenDec based
on FKeyGen, hence the theorem only assumes FKeyGen.
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Functionality FPREP

Usage: We first describe two macros, one to produce [[v]] representations and one to produce
〈v〉 representations. We denote by A the set of players controlled by the adversary.

Bracket(v1, . . . ,vn,∆1, . . . ,∆n, β1, . . . , βn):
where v1, . . . ,vn,∆1, . . . ,∆n ∈ (Fpk)s, β1, . . . , βn ∈ Fpk

(1) Let v =
∑n
i=1 vi.

(2) For i = 1, . . . , n
(a) The functionality computes the MAC γ(v)i ← v · βi and sets γi ← γ(v)i + ∆i.

(b) For every corrupt player Pj , j ∈ A the environment specifies a share γji .

(c) The functionality sets each share γji , j /∈ A, uniformly such that
∑n
j=1 γ

j
i = γi.

(3) The functionality sends (vi, (βi, γ
i
1, . . . , γ

i
n)) to each honest player Pi (dishonest play-

ers already have the respective data).
Angle(v1, . . . ,vn,∆, α):

where v1, . . . ,vn,∆ ∈ (Fpk)s, α ∈ Fpk
(1) Let v =

∑n
i=1 vi.

(2) The functionality computes the MAC γ(v)← α · v and sets γ ← γ(v) + ∆.
(3) For every corrupt player Pi, i ∈ A the environment specifies a share γi.
(4) The functionality sets each share γi i /∈ A uniformly such that

∑n
i=1 γi = γ.

(5) The functionality sends (vi, γi) to each honest player Pi (dishonest players already
have the respective data).

Initialise: On input (init , p, k, s) from all players, the functionality stores the prime p and
the integers k, s. It then waits for the environment to call either “stop” or “OK”. In the
first case the functionality sends “fail” to all honest players and stops. In the second case
it does the following:
(1) For each corrupt player Pi, i ∈ A, the environment specifies a share αi.
(2) The functionality sets each share αi, i /∈ A uniformly.
(3) For each corrupt player Pi, i ∈ A, the environment specifies a key βi.
(4) The functionality sets each key βi i /∈ A uniformly.
(5) The environment specifies ∆1, . . . ,∆n ∈ (Fpk)s.
(6) The functionality runs Bracket(Diag(α1), . . . ,Diag(αn),∆1, . . . ,∆n, β1, . . . , βn).

Pair: On input (pair) from all players, the functionality waits for the environment to call
either “stop” or “OK”. In the first case the functionality sends “fail” to all honest players
and stops. In the second case it does the following:
(1) For each corrupt player Pi, i ∈ A, the environment specifies a share ri.
(2) The functionality sets each share ri, i /∈ A uniformly.
(3) The environment specifies ∆,∆1, . . . ,∆n ∈ (Fpk)s.
(4) The functionality runs:

Bracket(r1, . . . , rn,∆1, . . . ,∆n, β1, . . . , βn), Angle(r1, . . . , rn,∆, α).
Triple: On input (triple) from all players, the functionality waits for the environment to call

either “stop” or “OK”. In the first case the functionality sends “fail” to all honest players
and stops. In the second case it does the following:
(1) For each corrupt player Pi, i ∈ A, the environment specifies shares ai,bi.
(2) The functionality sets each share ai,bi, i /∈ A uniformly.

Let a :=
∑n
i=1 ai, b :=

∑n
i=1 bi.

(3) The environment specifies ∆a,∆b, δ ∈ (Fpk)s.
(4) It sets c← a · b + δ.
(5) For each corrupt player Pi, i ∈ A, the environment specifies shares ci.
(6) The functionality sets each share ci, i /∈ A uniformly with the constrain

∑n
i=1 ci = c.

(7) The environment specifies ∆c ∈ (Fpk)s.
(8) The functionality runs:

Angle(a1, . . . ,an,∆a, α), Angle(b1, . . . ,bn,∆b, α), Angle(c1, . . . , cn,∆c, α).

Figure 2.6. The functionality generating the key [[α]], pairs [[r]], 〈r〉 and triples 〈a〉, 〈b〉, 〈c〉.

uniformly chooses a bit (that can be thought as a switch between “Real” and “Simulation”): in
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Protocol Reshare

Usage: The input consists of em, where Decsk(em) = m is a public ciphertext and a param-
eter enc, where enc = NewCiphertext or enc = NoNewCiphertext. The output is a share mi

of m to each player Pi; and if enc = NewCiphertext, a ciphertext e′m. The idea is that em
could be a product of two ciphertexts, which Reshare converts to a “fresh” ciphertext e′m.
Since Reshare uses distributed decryption (that may return an incorrect result), it is not
guaranteed that em and e′m contain the same value, but it is guaranteed that

∑
i mi is the

value contained in e′m.
Reshare(em, enc):

(1) Pi samples a uniform fi ∈ (Fpk)s. Define f :=
∑n
i=1 fi.

(2) Pi computes and broadcasts efi ← Encpk(fi).
(3) Pi runs ΠZKPoPK acting as a prover on efi . The protocol aborts if any proof fails.
(4) The players compute ef ← ef1 � · · ·� efn , and em+f ← em � ef .
(5) The players invoke FKeyGenDec to decrypt em+f and thereby obtain m + f .
(6) P1 sets m1 ←m + f − f1, and each player Pi (i 6= 1) sets mi ← −fi.
(7) If enc = NewCiphertext, all players set e′m ← Encpk(m + f) � ef1 � · · ·� efn , where a

default value for the randomness is used when computing Encpk(m + f).

Figure 2.7. The protocol to share m ∈ (Fpk)s on input em = Encpk(m).

Protocol PBracket

Usage: On input shares v1, . . . ,vn privately held by the players and public ciphertext ev,
this protocol generates [[v]]. It is assumed that

∑
i vi is the plaintext contained in ev.

PBracket(v1, . . . ,vn, ev):
(1) For i = 1, . . . , n

(a) All players set eγi ← eβi
�ev (note that eβi

is generated during the initialisation
process, and known by every player).

(b) Players generate (γ1i , . . . γ
n
i ) ← Reshare(eγi ,NoNewCiphertext), so each player

Pj gets a share γji of v · βi.
(2) Output the representation [[v]] = (v1, . . . ,vn, (βi, γ

i
1, . . . , γ

i
n)i=1,...,n).

Figure 2.8. The sub-protocol for generating [[v]].

Protocol PAngle

Usage: On input shares v1, . . . ,vn privately held by the players and public ciphertext ev,
this protocol generates 〈v〉. It is assumed that

∑
i vi is the plaintext contained in ev.

PAngle(v1, . . . ,vn, ev):
(1) All players set ev·α ← ev � eα (note that eα is generated during the initialisation

process, and known by every player).
(2) Players generate (γ1, . . . , γn) ← Reshare(ev·α,NoNewCiphertext), so each player Pi

gets a share γi of α · v.
(3) Output representation 〈v〉 = (v1, . . . ,vn, γ1, . . . , γn).

Figure 2.9. The sub-protocol for generating 〈v〉.

case pk∗ is correctly computed, if the bit is set to “Real”, Z’s view is indistinguishable from a real
execution of the protocol, while if the bit is set to “Simulation”, Z’s view is indistinguishable
from a simulated run. However, in case pk∗ is meaningless, both choices of the bit lead to
statistically indistinguishable views. Hence, if Z guesses correctly whether B chose “Real” or
“Simulation”, B guesses that pk∗ was a standard public key; otherwise B guesses that pk∗ was
meaningless.

For simplicity we describe the algorithm B for the two-party setting, where there is a corrupt
party P1 and an honest party P2: on input pk∗, where pk∗ is a public key (either meaningless
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Protocol ΠPREP

Usage: The Triple-step is always executed sec times in parallel. This ensures that when
calling ΠZKPoPK, players can always give it the sec ciphertexts it requires as input. In
addition both ΠZKPoPK and ΠPREP can be executed in a SIMD fashion, i.e. they are data-
oblivious bar when they detect an error. Thus players can execute ΠZKPoPK and ΠPREP

on the packed plaintext space (Fpk)s. Thereby, players generate s · sec elements in one go
and then buffer the generated triples, outputting the next unused one on demand.

Initialise: This step generates the global key α and “personal keys” βi.
(1) The players call “start” on FKeyGenDec to obtain the public key pk.
(2) Pi generates a MAC-key βi ∈ Fpk .
(3) Pi generates αi ∈ Fpk . Let α :=

∑n
i=1 αi.

(4) Pi computes and broadcasts eαi ← Encpk(Diag(αi)), eβi ← Encpk(Diag(βi)).
(5) Pi invokes ΠZKPoPK (with diag set to true) acting as prover on input (eαi

, . . . , eαi
)

and on input (eβi
, . . . , eβi

), where eαi
, eβi

are repeated sec times, which is the number
of ciphertexts ΠZKPoPK requires as input. (This is not very efficient, but only needs
to be done once for each player.)

(6) All players compute eα ← eα1 � · · ·� eαn ,
and generate [[Diag(α)]]← PBracket(Diag(α1), . . . ,Diag(αn), eα).

Pair: This step generates a pair [[r]], 〈r〉, and can be used to generate a single value [[r]], by
not performing the call to Pangle.
(1) Pi generates ri ∈ (Fpk)s. Let r :=

∑n
i=1 ri.

(2) Pi computes and broadcasts eri ← Encpk(ri). Let er = er1 � · · ·� ern .
(3) Pi invokes ΠZKPoPK acting as prover on the ciphertext he generated.
(4) Players generate [[r]]← PBracket(r1, . . . , rn, er), 〈r〉 ← PAngle(r1, . . . , rn, er).

Triple: This step generates a multiplicative triple 〈a〉, 〈b〉, 〈c〉.
(1) Pi generates ai,bi ∈ (Fpk)s. Let a :=

∑n
i=1 ai, b :=

∑n
i=1 bi.

(2) Pi computes and broadcasts eai
← Encpk(ai), ebi

← Encpk(bi).
(3) Pi invokes ΠZKPoPK acting as prover on the ciphertexts he generated.
(4) The players set ea ← ea1 � · · ·� ean and eb ← eb1 � · · ·� ebn .
(5) Players generate 〈a〉 ← PAngle(a1, . . . ,an, ea), 〈b〉 ← PAngle(b1, . . . ,bn, eb).
(6) All players compute ec ← ea � eb.
(7) Players set (c1, . . . , cn, e

′
c)← Reshare(ec,NewCiphertext).

(8) Players generate 〈c〉 ← PAngle(c1, . . . , cn, e
′
c).

Figure 2.10. The protocol generating the key [[α]], pairs [[r]], 〈r〉 and triples 〈a〉, 〈b〉, 〈c〉.

or standard), B starts executing the protocol ΠPREP, playing for P2, while Z plays for P1. B
does exactly what the simulator would do, with some exceptions:

(1) It uses the public key it got as input, instead of generating a key pair initially.
(2) B cannot decrypt ciphertexts from P1 since it does not know the secret key (e.g. at

step 4 of Initialise, step 2 of Pair, step 2 of Triple, etc.). Instead, B exploits that P1

and P2 ran the protocol ΠZKPoPK with P1 as prover. That is, P1 proved that he knows
encodings of appropriate size corresponding to the plaintext inside the ciphertexts
broadcast in the previous step. This means B can use the knowledge extractor of the
protocol ΠZKPoPK followed by decoding to extract the shares from P1 (e.g. αi, βi at step
4 of Initialise, etc). At this point B continues the protocol as if it had decrypted. Note
that the knowledge extractor requires rewinding of the prover (which here effectively
is Z). B can do this as it runs its own copy of Z and since it also controls the copy of
FRand used in the protocol, it can issue challenges of its choice to Z.

(3) When P2 gives a ZK proof for a set of ciphertexts, B simulates the proof. This is done
by running the honest verifier simulator to get a transcript (a, e, (z, T )) and letting the
copy of FRand output e that occurs in the simulate transcript.

In the end B uniformly chooses to generate a real or a simulated view. In the first case,
B outputs to Z exactly those values for P2 that were used in the execution of the protocol.
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Simulator SPREP

SReshare(em): This is a subroutine the simulator uses while executing the main steps of the
protocol described below. At any point in ΠPREP when there is a call to Reshare(em), the
simulator proceeds as the protocol does, but it also performs the following extra tasks in
order to retrieve the quantity ∆m:
• On step 2 the simulator decrypts Encpk(f1), . . . ,Encpk(fn) and obtains the values

f1, . . . , fn.
• On step 5 the simulator performs step 2 of FKeyGenDec, and thereby obtains m + f

decrypting em+f , and (m + f)′ from the adversary.
• The simulator sets ∆m ← (m + f)′ − (m + f), that is, ∆m is the difference between

the output chosen by the adversary for the decryption of em+f and the decryption
itself.

• The simulator computes and stores m1 ← (m + f)′ − f1, and mi ← −fi for i 6= 1.
Initialise:

• The simulator performs the initialisation steps of ΠPREP. The call to FKeyGenDec in
step 1 is simulated by running KeyGen to generate the key pair (pk, sk). The simulator
then sends pk to the players and stores sk.

• Steps 2–5 are performed according to the protocol, but the simulator decrypts every
broadcast ciphertext and obtains α1, . . . , αn, β1, . . . , βn.

• Step 6 is performed according to the protocol, but the simulator gets ∆1 ←
SReshare(eγ(α·β1)), . . . ,∆n ← SReshare(eα·βn

).
• The simulator calls Initialise on FPREP with input {αi}i∈A at step 1, {βi}i∈A at step

3 and ∆1, . . . ,∆n at step 5.
Pair:

• The simulator performs step 1 according to the protocol.
• Steps 2–3 are performed according to the protocol, but the simulator decrypts every

broadcast ciphertext and obtains r1, . . . , rn.
• Step 4 is performed according to the protocol, but the simulator gets ∆ ←
SReshare(er·α), ∆1 ← SReshare(er·β1

), . . . ,∆n ← SReshare(er·βn
).

• The simulator calls Pair on FPREP with input {ri}i∈A at step 1, and ∆,∆1, . . . ,∆n

at step 3.
Triple:

• The simulator performs step 1 according to the protocol.
• Steps 2–3 are performed according to the protocol, but the simulator decrypts every

broadcast ciphertext and obtains a1, . . . ,an, b1, . . . ,bn.
• Steps 4–5 are performed according to the protocol, but the simulator gets ∆a ←

SReshare(ea·α), ∆b ← SReshare(eb·α).
• Steps 6–7 are performed according to the protocol, but the simulator gets c1, . . . cn

and δ ← SReshare(ec).
• Step 8 is performed according to the protocol, but the simulator gets ∆c ←
SReshare(ec·α).

• The simulator calls Triple on FPREP with input {ai}i∈A, {bi}i∈A at step 1, ∆a,∆b, δ
at step 3, {ci}i∈A in step 5, and ∆c at step 7.

Figure 2.11. The simulator for FPREP.

In the other case, B generates the output for P2 as FPREP would do. That means that P2’s
shares a2,b2, c2 of a triple 〈a〉, 〈b〉, 〈c〉 will be determined by choosing a,b at random, setting
c← a · b and then letting a2 ← a− aReal1 , b2 ← b− bReal1 , c2 ← c− cReal1 .

It can now be seen that if pk∗ is a normal key, then the view generated by B corresponds
statistically to either a real or a simulated execution: if B chooses the simulation case, the only
differences to the actual simulator are 1) the simulator executes the ZK proofs given by P2

according to the protocol while B simulates them; and 2) the simulator opens the ciphertexts
using the secret key to decrypt, while B uses the extractor for ΠZKPoPK and computes the
plaintexts from its results. As for 1) the ZK proof is statistical ZK so this leads to a statistically
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indistinguishable distribution. As for 2), note that for every ciphertext ex generated by P1,
the extractor for ΠZKPoPK is able (with overwhelming probability) to find an encoding x (resp.
randomness r) smaller than Bplain (resp. Brand), with ex = Encpk(x, r). This follows from
soundness of ΠZKPoPK and admissibility of the cryptosystem. Then, by correctness of the
cryptosystem, computing the plaintexts as B does gives the same result as decrypting, except
with negligible probability. If B chooses the real case, a similar argument shows that the
resulting view is statistically indistinguishable from a real run of the protocol. Hence if pk∗ is
a normal key, Z can guess B’s choice of “Real” or “Simulation” with advantage essentially ε.

On the other hand if pk∗ is a meaningless key, the encryptions contain statistically no
information about the values inside. Moreover, all messages sent in the zero-knowledge protocols
where P2 acts as prover do not depend on the specific values that P2 has, since the proofs are
simulated. We conclude that essentially no information on any value held by P2 is revealed.
This is the case also for step 5 of Reshare(em): m + f is retrieved, but no information on m is
revealed, since f is uniform.

The view Z sees consists of the view of the corrupt player(s) and the output of the honest
player(s). We just argued that the view of the corrupt player is essentially independent of the
internal values B uses for P2, and hence also independent of whether B chooses the real or
the simulated case. Therefore, the output generated for the honest player(s) that is seen by
Z is in both cases a set of (essentially) uniformly and independently chosen shares and MAC
keys. As a result, using a meaningless key, a real execution and a simulated one are statistically
indistinguishable, and the guess of Z equals B’s random choice of “Real” or “Simulation” with
probability essentially 1/2.

An easy calculation now shows that the advantage of B is

A(B) := Pr [“Standard Key”← B(pk)]− Pr
[
“Standard Key”← B(p̃k)

]
≥ A(Z)/2− δ
= ε/2− δ,

for some negligible δ that accounts for the differences between the involved distributions. How-
ever, if ε is non-negligible, then ε/2− δ is also non-negligible, which contradicts the assumption
on that meaningless keys are statistically indistinguishable from standard ones. �

2.4. A Lower Bound for the Preprocessing

In this section we show that any preprocessing matching the properties we have must output
the same amount of data as we do, up to a constant factor. We use the following theorem
for 2-party computation from [WW10], in a setting where the parties A,B have access to a
functionality that gives a random variable U to A and V to B with some guaranteed joint
distribution PUV of U, V . Given this, the parties compute securely a function f : X × Y 7→ Z,
where A holds x ∈ X , and B holds y ∈ Y. This function should have the property that there
exist inputs y1, y2 such that

for all x 6= x′, f(x, y1) 6= f(x′, y1) (2.3)

for all x, x′, f(x, y2) = f(x′, y2). (2.4)

In other words, for some inputs B learns all of A’s input, but for other inputs B learns nothing
new.

Theorem 2.4 (Theorem 2 in [WW10]). Let f : X × Y 7→ Z be a function with property
(2.3) and (2.4). If there exists a protocol that computes f securely with access to PUV and with
error probability ε in the semi-honest model, then

H(V ) ≥ I(U ;V ) ≥ log |X | − 7(ε log |X |+ h(ε)).

We also need the following technical lemma:
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Lemma 2.5. Let R be a random variable defined over the natural numbers. Then there exists
a constant C such that E(R) ≥ H(R)− 1− C.

Proof. Let

I :=

{
i | i ≥ log

(
1

Pr[R = i]

)}
.

Under this definition, the following holds

H(R) =
∑
i∈I

Pr[R = i] · log

(
1

Pr[R = i]

)
+
∑
i/∈I

Pr[R = i] · log

(
1

Pr[R = i]

)
By the construction of I, the first summand is bounded as follows∑

i∈I
Pr[R = i] · log

(
1

Pr[R = i]

)
≤
∑
i∈I

Pr[R = i] · i

≤
∑
i

Pr[R = i] · i

= E(R).

For the second summand a little more work is needed. Let q(i) := log(1/Pr[R = i]). Then∑
i/∈I

Pr[R = i] · log

(
1

Pr[R = i]

)
=
∑
i/∈I

2−q(i) · q(i).

We now claim that
2−q(i) · q(i) ≤ 2i · i, for all 0 6= i /∈ I.

This happens if and only if
2−q(i) · 2log(q(i)) ≤ 2−i · 2log(i).

Taking the logarithm of this relation one gets −q(i)+log(q(i)) ≤ −i+log(i), which is equivalent
to q(i)− log(q(i)) ≥ i− log(i).
Since q(i) = log(1/Pr[R = i]) ≥ i for all i /∈ I, and i ≥ 1, the latter relation is always satisfied.

Therefore, the second summand is bounded by C +
∑

i≥1 2−i · i, where C = 2−q(0) · q(0).

Moreover,
∑

i≥1 2−i · i converges to 1, so the second summand can be bounded by 1 + C.
Finally, from all of the above it follows that∑
i∈I

Pr[R = i] · log

(
1

Pr[R = i]

)
+
∑
i/∈I

Pr[R = i] · log

(
1

Pr[R = i]

)
≤ E(R) + C + 1.

The last inequality implies that H(R) ≤ E(R) + 1 + C �
We can now show a lower bound on the amount of preprocessing data and work required

for a protocol satisfying our specification.

Theorem 2.6. Assume a protocol π in the preprocessing model can compute any circuit
over Fpk of size at most S, with security against active corruption of at most n− 1 players. We
assume that the players supply roughly the same number of inputs (O(S/n) each), and that any
any player may receive output. Then, the preprocessing must output Ω(S log pk) bits to each
player, and for any player Pi, there exists a circuit C satisfying the conditions above, where
secure computation of C requires Pi to execute an expected number of bit operations that is
Ω(S log pk).

Proof. Suppose there exists an online protocol π that satisfies the assumptions in the theorem.
Consider any player Pi and suppose we want to compute the function

fT ((~x, ~x′), y) = y~x+ (1− y)~x′.

Here y ∈ Fpk and ~x, ~x′ are vectors over Fpk of length T . Pi has input y and each Pj , j 6= i has
as input substrings ~xj , ~x

′
j such that the concatenation of all ~xj (~x′j) is ~x (~x′). Finally, only Pi

learns the output fT ((~x, ~x′), y).
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Clearly, fT can be computed using a circuit of size O(T ), and this is the circuit promised in
the theorem. Note that our assumed protocol π can handle circuits of size S and can therefore
compute fT securely where T is Θ(S).

One can transform π to a two-party protocol π′ for parties A and B. A has input ~x, ~x′,
B has input y and B is supposed to learn fT ((~x, ~x′), y). Now, π′ simply consists of running π
where B emulates Pi and A emulates all other players. B is then given whatever Pi gets from
the preprocessing and A gets whatever the other players receive, so this defines the random
variables U and V . Since π is secure if Pi is corrupt and also if all other players are corrupt, it
trivially means that π′ is an actively secure two-party protocol for computing fT .

This implies that π′ also computes fT with passive security. As noted in [WW10], this is
actually not necessarily the case for all functions. The problem is that if the adversary is passive,
then active security guarantees that there is a simulator for this case, but such a simulator is
allowed to change the inputs of corrupted parties. A simulator for the passive case is not allowed
to do this. However, [WW10] observes that for some functions, an active simulator cannot get
away with changing the inputs, as this would make it impossible to simulate correctly. They
show this is the case for Oblivious Transfer, which is essentially fT in the 2-party case. We may
therefore assume π′ is also passively secure.

Finally, we define f ′T (~x, y) = fT ((~x,~0), y) = y~x. Obviously π′ can be used to compute f ′T
securely: A just sets her second input to be ~0. Moreover, f ′T satisfies the conditions in Theorem
2.4. So we get that H(V ) ≥ log |X | − 7(ε log |X |+ h(ε)). If we adopt the standard convention
that the security parameter grows linearly with the input size log |X | then because ε is negligible
in the security parameter, we have that the “error term” 7(ε log |X |+ h(ε)) is o(log |X |).

So we get that H(V ) is Ω(log |X |) = Ω(T log pk) = Ω(S log pk), since T is Θ(S). Recalling
that H(V ) is actually the entropy of the variable Pi received in the original protocol π, we get
the first conclusion of the Theorem.

For the second conclusion about the computational work done, it is tempting to simply
claim that B has to at least read the information he is given and so H(V ) is a lower bound on
the expected number of bit operations. But this is not enough, as it is conceivable that in any
given execution, B might only have to read a small part of the information.

It turns out that this does not happen, however, which can be argued as follows: let B(V )
be the random variable representing the bits of V that B actually reads. By inspection of the
proof of Theorem 2.4, one sees that replacing V by B(V ) the proof still applies. So, we have
H(B(V )) ≥ log |X | − 7(ε log |X | + h(ε)). Now let R be the random variable representing the
number of bits B reads from V .

Conditioning on R, the entropy of B(V ) cannot drop by more than H(R), so

H(B(V )|R) ≥ H(B(V ))−H(R) ≥ log |X | − 7(ε log |X |+ h(ε))−H(R).

Moreover,

H(B(V )|R) =
∑
r

Pr(R = r)H(B(V )|R = r) ≤
∑
r

Pr(R = r)r = E(R)

Putting these two inequalities together, we obtain that

E(R) +H(R) ≥ log |X | − 7(ε log |X |+ h(ε)).

Now, either E(R) ≥ (log |X |−7(ε log |X |+h(ε)))/2, or H(R) ≥ (log |X |−7(ε log |X |+h(ε)))/2.
In the latter case Lemma 2.5 implies that E(R) is much larger than H(R), so we can certainly
conclude that E(R) ≥ (log |X | − 7(ε log |X | + h(ε)))/2 in any case. As above, the error term
depending on ε becomes negligible as the security parameter increases, so we get that E(R) is
Ω(S log pk) as desired. �
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2.5. Concrete Instantiation of the Abstract Scheme Based on LWE

We now describe the concrete scheme, which is based on the somewhat homomorphic en-
cryption scheme of Brakerski and Vaikuntanathan (BV) [BV11]. The main differences are that
we are only interested in evaluation of circuits of multiplicative depth one, we are interested in
performing operations in parallel on multiple data items, and we require a distributed decryp-
tion procedure. In this section we detail the scheme and the distributed decryption procedure;
in Section 3.2 we discuss security of the scheme, and present some sample parameter sizes and
performance figures.

ParamGen(1κ,M): Recall the message space is given by M = (Fpk)s for two integers k and s,
and a prime p, i.e. the message space is s copies of the finite field Fpk . To map this to our
scheme below, one first finds a cyclotomic polynomial F (X) := Φm(X) of degree N := φ(m),
where N is lower bounded by some function of the security parameter κ. The polynomial F (X)
needs to be such that modulo p it factors into l′ irreducible factors of degree k′ where l′ ≥ s
and k divides k′. We then define an algebra Ap as Ap := Fp[X]/F (X) and an embedding of M
into Ap, φ : M → Ap. “Lifting” modulo p gives a natural inclusion ι : Ap → ZN , which maps
the polynomial of degree less than N with coefficients in Fp into the integer vector of length N
with coefficients in the range (−p/2, . . . , p/2]. The encode function is then defined by ι(φ(m))
for m ∈ (Fpk)s, with decode defined by φ−1(x (mod p)) for x ∈ ZN . It is clear, by choice of the
natural inclusion ι, that ‖encode(m)‖∞ ≤ p/2 = τ .

We choose a large integer q, whose size will be determined later, and define the algebra
Aq := (Z/qZ)[X]/F (X), i.e. the ring of integer polynomials modulo reduction by F (X) and
q. In practice we consider the image of encode to lie in Aq, and thus we abuse notation, by
writing addition and multiplication in Aq by + and ·. Note that this means that applying
decode to elements obtained from encode followed by a series of arithmetic operations may not
result in the value in M which one would expect. This corresponds to where our scheme can
only evaluate circuits from a given set C.

The ciphertext space G is defined to be A3
q , with addition � defined component-wise. The

multiplicative operator � is defined as follows

(a0,a1, 0) � (b0,b1, 0) := (a0 · b0,a1 · b0 + a0 · b1,−a1 · b1),

i.e. multiplication is only defined on elements whose third coefficient is zero.
We define Ddρ as follows: the discrete Gaussian DZN ,s, with Gaussian parameter s, is defined

to be the random variable on ZNq (centred around the origin) obtained from sampling x ∈
RN , with probability proportional to exp(−π · ‖x‖2/s2), and then rounding the result to the
nearest lattice point and reducing it modulo q. Note that sampling from the distribution with
probability density function proportional to exp(−π · ‖x‖2/s2) means using a normal variate
with mean zero, and standard deviation r := s/

√
2 · π. In our concrete scheme we set d := 3 ·N

and define Ddρ to be the distribution defined by (DZN ,s)
3. Note, that in the notation Ddρ the

implicit dependence on q has been suppressed to ease readability. We will specify q and r (as
functions of all the other parameters) when we discuss security of the scheme.
KeyGen(): We use the public key version of the Brakerski-Vaikuntanathan scheme [BV11].
Given the above set up, key generation proceeds as follows: first, sample elements a← Aq and
s, e ← DZN ,s. Then, treating s and e as elements of Aq, compute b ← (a · s) + (p · e). The
public and private key are then set to be pk← (a,b) and sk← s.
Encpk(x, r): Given a message x← encode(m) where m ∈M , and r ∈ Ddρ, the encryptor parses r

as (u,v,w) ∈ (ZN )3, computes c0 ← (b · v) + (p ·w) + x and c1 ← (a · v) + (p · u). and finally
returns the ciphertext (c0, c1, 0).
Decsk(c): Given a secret key sk = s and a ciphertext c = (c0, c1, c2) this algorithm computes

the element in Aq satisfying t = c0− (s · c1)− (s · s · c2). On reduction by q the value of ‖t‖∞ is
bounded by a relatively small constant B, assuming that the “noise” within a ciphertext has not
grown too large. We shall refer to the value t mod q as the “noise”, despite it also containing

34



the message to be decrypted. At this point the decryptor simply reduces t modulo p to obtain
the desired plaintext in Aq, which can then be decoded via the decode algorithm.

KeyGen∗(): This simply samples â, b̂← Aq and returns p̂k := (â, b̂).

Following the discussion in [BV11] we see that with this fixed ciphertext space, our scheme
is somewhat homomorphic. It can support a relatively large number of addition operations,
and a single multiplication.
Distributed Version: We now extend the scheme above to enable distributed decryption. We
first set up the distributed keys as follows. After invoking the functionality for key generation,
each player obtains a share ski = (si,1, si,2). These are chosen uniformly such that the master
secret is written as

s = s1,1 + · · ·+ sn,1, s · s = s1,2 + · · ·+ sn,2.

As remarked earlier this one-time setup procedure can be accomplished by standard UC-secure
multiparty computation protocols such as that described in [BDOZ11]. In Section 3.2 we
determine the value of B when the input ciphertext is (Bplain, Brand, C)-admissible, and show
how to choose parameters for the cryptosystem such that the required bound on B is satisfied.

Protocol ΠDDec

Initialise: Each party Pi, on being given the ciphertext c = (c0, c1, c2), and an upper bound
B on the infinity norm of t above, computes

vi ←
{

c0 − (si,1 · c1)− (si,2 · c2) if i = 1
−(si,1 · c1)− (si,2 · c2) if i 6= 1

and sets ti ← vi + p · ri where ri is a random element with infinity norm bounded by
2sec ·B/(n · p).

Public Decryption: All the players are supposed to learn the message.
(1) Each party Pi broadcasts ti
(2) All players compute t′ ← t1 + · · ·+ tn and obtain a message m′ ← decode(t′ mod p).

Private Decryption: Only player Pj is supposed to learn the message.
(1) Each party Pi sends ti to Pj
(2) Pj computes t′ ← t1 + · · ·+ tn and obtain a message m′ ← decode(t′ mod p).

Figure 2.12. The distributed decryption protocol.

Theorem 2.7. In the FKeyGen-hybrid model, the protocol ΠDDec (Figure 2.12) implements
FKeyGenDec with statistical security against any static active adversary corrupting up to n − 1
parties if B + 2sec ·B < q/2.

Proof. The requirement B+2sec·B < q/2 implies that t′ = t mod p, since ‖ri‖∞ < 2sec·B/(n·p)
for i = 1, . . . , n. Therefore the protocol allows players to retrieve the correct message if all the
players are honest.

We now build a simulator SDDec to work on top of FKeyGenDec, such that the adversary can-
not distinguish whether it is playing with the decryption protocol and FKeyGen or the simulator
and FKeyGenDec. Let A denote the set of players controlled by the adversary.

In a simulated decryption the adversary receives pk and (ti)i/∈A,i 6=j , t̃j from SDDec. The
distribution of pk is the same as in a real conversation, since it was sampled using the same al-
gorithm as in a real conversation. The distribution of simulated ti, i 6= j is statistically close to
the real one, since ti was computed correctly using shares of a possible secret key. We therefore
focus on the case where all the players but one are dishonest. We first analyse the simulation
of public decryption, introducing a hybrid machine, and prove its output is statistically indis-
tinguishable from Pj ’s output (in the real protocol) and perfectly indistinguishable from Pj ’s
simulated output.

Hybrid: On input (ski)i=1,...,n, c, reconstruct sk, compute Decsk(c), sample rj uniformly

with infinity norm bounded by 2sec · B/(n · p) and output t̃j ← −
∑

i 6=j vi + p · rj +

encode(m).
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Simulator SDDec

Key Generation: This stage is needed to distribute shares of a secret key.
• Upon “start”, the simulator sends “start” to FKeyGenDec and obtains pk. Moreover,

the simulator obtains (ski)i∈A from the adversary.
• The simulator (internally) sets random (ski)i/∈A such that (ski)i=1,...,n is a full vector

of shares of 0.
• The simulator sends pk to A.

Public Decryption: This stage simulates a public decryption.
• Upon “decrypt c,B”, the simulator sends “decrypt c” to FKeyGenDec and obtains
m = Decsk(c).

• It then computes the value vi for all players except for an honest player Pj .
• It then samples rj uniformly with infinity norm bounded by 2sec · B/(n · p) and

computes

t̃j ← −
∑
i6=j

vi + p · rj + encode(m).

• For each other honest player Pi, it computes ti honestly (using c, ski).

• The simulator broadcasts the values (ti)i/∈A,i6=j , t̃j and obtains (t∗i )i∈A from the ad-
versary.

• It then sends m′ ← decode
((

t̃j +
∑
i∈A t∗i +

∑
i/∈A,i6=j ti

)
mod p

)
to FKeyGenDec so

that the ideal functionality sends “Result m′” to all the players.
Private Decryption: This stage simulates a private decryption.

• Upon “decrypt c,B to Pj”, the simulator sends “decrypt c to Pj” to FKeyGenDec.
• If Pj is corrupt, the simulator obtains c,m = Decsk(c) from FKeyGenDec and acts as

in the simulated public decryption.
• If Pj is honest, the simulator receives c from FKeyGenDec, t∗i from each corrupt player
Pi and ti from each honest player.

– The simulator samples rj uniformly with infinity norm bounded by 2sec ·B/(n ·
p).

– It evaluates t̃j ← −
∑
i 6=j vi + p · rj .

– It computes ε←
(
t̃j +

∑
i∈A t∗i +

∑
i/∈A,i6=j ti

)
mod p

– , it sends δ ← decode(ε) to FKeyGenDec in order to get Decsk(c) + δ to Pj .

Figure 2.13. The simulator for ΠDDec.

Notice that t̃j = vj−t+encode(m)+p·rj . Now, for a distribution X, define ϕ(X) := p·X+
vj . Notice that tj = ϕ(U), where U denotes the uniform distribution over vectors of integral
entries bounded with infinity norm 2sec ·B/(n ·p); moreover, since t−encode(m) is a multiple of

p, one can write t̃j = ϕ(U+(encode(m)−t)/p). Notice that ‖(encode(m)−t)/p‖∞ ≤ (B+p)/p,
so the distribution U + (encode(m) − t)/p is statistically close to U , since the probability of
distinguishing U + (encode(m)− t)/p and U is bounded by the ratio

N · ‖(encode(m)− t)/p‖∞
2sec ·B/(n · p) + (B + p)/p

≤ N · (B + p)/p

2sec ·B/(n · p) + (B + p)/p

= O(N · n · 2−sec),

which is negligible. Therefore t̃j is statistically close to tj .
What is left to prove is that the simulation of private decryption to an honest player Pj is

statistically indistinguishable from the real protocol. In the real protocol Pj computes tj and

m′ ← decode

(∑
i∈A

t∗i +
∑
i/∈A

ti

)
.
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In that case the error m′ −m introduced by the adversary depends only on the value

ε′ :=

(∑
i∈A

(t∗i − ti)

)
mod p

computed using the actual secret key. In the simulation the error introduced by the adversary
is

ε =

t̃j +
∑
i∈A

t∗i +
∑

i/∈A,i 6=j

ti

 mod p =

(∑
i∈A

(t∗i − ti)

)
mod p,

computed using secret shares of 0. Since the secret sharing scheme has privacy threshold n and
the sums involve at most n−1 shares, the quantities ε and ε′ are statistically indistinguishable.

�
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CHAPTER 3

SPDZ – Addenda

3.1. Canonical Embeddings of Cyclotomic Fields

Our concrete instantiation uses some basic results of cyclotomic fields which we now describe;
these results are needed for the main result of this section which is a proof of a “folklore”
result about the relationship between norms in the canonical and polynomial embeddings of a
cyclotomic field. This result is used repeatedly in our main construction to produce estimates
on the sizes of parameters needed.

We first recap on some basic facts about number fields and their canonical embeddings,
focusing particularly on the case of cyclotomic fields.

3.1.1. Number Fields. An algebraic number (resp. algebraic integer) θ ∈ C is the root of
a polynomial (resp. monic polynomial) with coefficients in Q (resp. Z). The minimal polynomial
of θ is the unique monic irreducible polynomial F (X) ∈ Q[X] which has θ as a root.

A number field K = Q(θ) is the field obtained by adjoining powers of an algebraic number θ
to Q. If θ has minimal polynomial F (X) of degree N , then K can be considered as a vector space
over Q of dimension N , with basis {1, θ, . . . , θN−1}. Note that this “coefficient embedding” is
relative to the defining polynomial F (X). Equivalently, K ∼= Q[X]/F (X), i.e. the field of
rational polynomials with degree less than N , modulo the polynomial F (X). Without loss of
generality we can assume that K is defined by a monic irreducible integral polynomial of degree
N . The ring of integers OK of K is defined to be the subring of K consisting of all elements
whose minimal polynomial has integer coefficients.

3.1.2. Canonical Embedding. There are N field morphisms σi : K −→ C which fix
every element of Q. Such a morphism is called a complex embedding and it takes θ to each
distinct complex root of F (X). The number field K is said to have signature (s1, s2) if the
defining polynomial has s1 real roots and s2 non-real, complex conjugate pairs of roots; clearly
N = s1 + 2 · s2. The roots are numbered in the standard way so that σi(θ) ∈ R for 1 ≤ i ≤ s1

and σi+s1+s2(θ) = σi+s1(θ) for 1 ≤ i ≤ s2. We define σ = (σ1, . . . , σN ), which determines the
canonical embedding of K into Rs1 × C2·s2 , where the field operations in K are mapped into
component-wise addition and multiplication in Rs1 ×C2·s2 . For ease of notation we often write
α(i) = σi(α), for α ∈ K.

Let ‖α‖p for p ∈ {1, . . . ,∞} denote the p-norm of α in the coefficient embedding (i.e. the
p-norm of the vector of coefficients) and let ‖σ(α)‖p denote norms in the canonical embedding.

3.1.3. Cyclotomic Fields. We are mainly interested in cyclotomic number fields. The
mth cyclotomic polynomial is given by Φm(X), which is an irreducible polynomial (over Z) of
degree N = φ(m). The number field defined by Φm(X) is said to be a cyclotomic number field,
and is defined by K = Q(ζm), where ζm is an mth root of unity, i.e. a root of Φm(X). The ring
of integers of K is equal to Z[ζm]. The number field K is Galois, and hence (importantly for
us) the polynomial splits modulo p (for any prime p not dividing m) into a product of distinct
irreducible polynomials all of the same degree.

The key fact is that if Φm(X) has factors of degree d modulo the prime p then m divides
pd−1. To see this, notice that if Φm(X) factors into N/d factors each of degree d, then the finite
field Fpd must contain the mth roots of unity and so m divides pd − 1. In the other direction,
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if d is the smallest integer such that m divides pd − 1 then Φm(X) has a degree d factor since
the decomposition group of the prime p in the Galois group has order d.

3.1.4. Relating Norms Between Canonical and Polynomial Embeddings. There
is a distinct difference between the canonical and polynomial embeddings of a number field. In
particular, notice the following expansions upon multiplication, for x, y ∈ OK ,

‖x · y‖∞ ≤ δ∞ · ‖x‖∞ · ‖y‖∞.
‖σ(x · y)‖p ≤ ‖σ(x)‖∞ · ‖σ(y)‖p.

where

δ∞ = sup

{
‖a(X) · b(X) (mod F (X))‖∞

‖a(X)‖∞ · ‖b(X)‖∞
: a, b ∈ Z[X], deg(a),deg(b) < N

}
.

In this section we show that the expansion factors of elements in the polynomial representation
can be more tightly controlled, as long as they are drawn randomly with a discrete Gaussian
distribution. In particular we prove the following theorem; this result is well known among
researchers in ideal lattice theory, but proofs have not yet appeared in any paper.

Theorem 3.1. Let K denote a cyclotomic number field then there is a constant Cm, de-
pending only on m, such that for all α ∈ OK we have

• ‖σ(α)‖∞ ≤ ‖α‖1.
• ‖α‖∞ ≤ Cm · ‖σ(α)‖∞.

We recall some facts about various matrices associated with roots of unity, see [PM08]
and the full version of [LPR11]. First some notation: for any integer m ≥ 2, set ζm =
exp(2 · π ·

√
−1/m) to be a root of unity for an integer m. As usual we let N = φ(m) and

we define Z∗m = {am,i : 0 ≤ i < N} to be a complete set of representatives for Z∗m with
1 ≤ am,i < m. We let A ⊗ B, for matrices A and B, denote the Kronecker product. We let It
denote the t × t identity matrix. All a × b matrices M in this section will have elements mi,j

indexed by 0 ≤ i < a and 0 ≤ j < b. Note that we index from zero: this is to make some of the
expressions neater. The infinity norm for a matrix M = (mi,j) is defined by

‖M‖∞ := max


N−1∑
j=0

|mi,j |


N−1

i=0

.

We define the N ×N CRT matrix as follows:

CRTm :=
(
ζ
am,i·j
m

)
0≤i,j<N

.

Then we define the constant Cm in the above theorem as Cm = ‖CRT−1
m ‖∞. From this, the

proof immediately follows, as below:
Proof. [Theorem 3.1] For a cyclotomic field, the canonical embedding is given by the map
σ(α) = CRTm · α, where α is thought of as the vector of the coefficient embedding of α, i.e. α
considered as a polynomial in θ (a root of F (X) = Φm(X)), and CRTm is the matrix defined
earlier, i.e. it satisfies the following equality

CRTm =

 1 θ(1) . . . θ(1)N−1

...
...

...

1 θ(N) . . . θ(N)N−1

 .

For the first part of the theorem we note that, since α =
∑N−1

i=0 xi · θi, we have∣∣∣α(i)
∣∣∣ =

∣∣∣∣∣∣
N−1∑
j=0

xj · θ(i)j

∣∣∣∣∣∣ ≤
N−1∑
j=0

|xj | · |θ(i)j | =
N−1∑
j=0

|xj | = ‖x‖1 = ‖α‖1.
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For the second part we note that for all β ∈ OK ,

‖β‖∞ = ‖CRT−1
m · σ(β)‖∞ ≤ ‖CRT−1

m ‖∞ · ‖σ(β)‖∞
from which the result follows. �

The key question then is how large can Cm become. So we now turn to this problem, and
we shall give a partial answer.

The m×m DFT matrix is defined by:

DFTm :=
(
ζi·jm
)

0≤i,j<m .

Let m′ be a divisor of m. For i ∈ {0, . . . ,m− 1} we write i0 = i mod m′ and i1 = (i− i0)/m′.
We then define the m×m “twiddle matrix” to be the diagonal matrix defined by

Tm,m′ := Diag
{
ζi0·i1m

}
i=0,...,m−1

.

Finally, we define Lmm′ to be the permutation matrix which fixes the row with index m − 1,
but sends all other rows i, for 0 ≤ i < m − 1, to row i ·m′ mod m − 1. Following [PM08] we
use these matrices to decompose the matrix Dm into D′m and Dk, where m = m′ · k, via the
following identity

DFTm = Lmm′ · (Ik ⊗ DFTm′) · Tm,m′ · (DFTk ⊗ Im′) , (3.1)

This is simply the general Cooley-Tukey decomposition of the DFT for composite m. Consider
the Vandermonde matrix

V (x1, . . . , xm) :=


1 x1 x2

1 . . . xm−1
1

1 x2 x2
2 . . . xm−1

2
...

...
...

...
1 xm x2

m . . . xm−1
m

 .

It is clear that DFTm = V (1, ζm, ζ
2
m, . . . , ζ

m−1
m ).

Lemma 3.2. We have, for any m,

DFT−1
m =

1

m
· V (1, ζ−1

m , ζ−2
m , . . . , ζ1−m

m )

Proof. Let δi,j be defined so that δi,j = 0 if i 6= j and δi,i = 1. We have(
V (1, ζm, ζ

2
m, . . . , ζ

m−1
m ) ·V (1, ζ−1

m , ζ−2
m , . . . , ζ1−m

m )
)
i,j

=
∑

0≤k<m
ζi·kn · ζ−k·jm

=
∑

0≤k<m
ζk·(i−j)m = m · δi,j .

�
This leads to the following lemma which gives shows that the infinity norm of the inverse

of the DFT matrix is always equal to one.

Lemma 3.3. For any m we have ‖DFT−1
m ‖∞ = 1.

Proof. If ζm is an m-th root of unity, it is clear that ‖V (1, ζm, ζ
2
m, . . . , ζ

m−1
m )‖∞ = m. In

addition we have that ψm = 1/ζm is also an m-th root of unity, and thus

‖DFT−1
m ‖∞ =

1

m
· ‖V (1, ψm, ψ

2
m, . . . , ψ

m−1
m )‖∞ =

m

m
= 1.

�
Let m = pe11 · · · p

es
k , r = p1 · · · ps, m1 = m/r. Hence N = φ(m) = φ(r) ·m1. In [LPR11]

the authors specialise the decomposition (3.1) (by selecting appropriate rows and columns) in

41



the case m′ = m1 and k = r, to show that up to a permutation of the rows, the matrix CRTm
is equal to (

Iφ(r) ⊗ DFTm1

)
· T ∗m,m1

· (CRTr ⊗ Im1)

where T ∗m,m1
is another diagonal matrix consisting of roots of unity. We then have that

Lemma 3.4. For an integer m ≥ 2 such that m = pe11 · · · p
ek
k we write r = p1 · · · pk, we then

have Cm ≤ Cr.

Proof. As above we write m1 = m/r. First note that ‖A ⊗ It‖∞ = ‖Is ⊗ A‖∞ = ‖A‖∞ for
any matrix A and any integers s and t. Then also note that since CRTm is given (up to a
permutation of the rows) by the above decomposition, we have that CRT−1

m is given (up to a
permutation of the rows) by the decomposition(

CRT−1
r ⊗ Im1

)
· T−1 ·

(
Iφ(r) ⊗ DFT−1

m1

)
.

So we have

‖CRT−1
m ‖∞ = ‖

(
CRT−1

r ⊗ Im1

)
· T−1 ·

(
Iφ(r) ⊗ DFT−1

m1

)
‖∞,

≤ ‖CRT−1
r ⊗ Im1‖∞ · ‖T−1‖∞ · ‖Iφ(r) ⊗ DFT−1

m1
‖∞,

= ‖CRT−1
r ‖∞ · ‖T−1‖∞ · ‖DFT−1

m1
‖∞ = ‖CRT−1

r ‖∞.
�

This result means that we can bound Cm for infinite families of values of m, by simply
deducing a bound on Cr, where r is the product of all primes dividing m. For example,
notice that CRTr = (1) and hence C2e = C2 = 1 for all values of e. Indeed it is relatively
straightforward to determine the exact value of Cp for a prime p:

Lemma 3.5. If p is a prime then

Cp =
2 · sin(π/p)

p · (cos(π/p)− 1)
.

Proof. 1 First note that it is a standard fact from algebra (by considering inverses of Vander-
monde matrices, for example) that the entries of a row of the matrix CRT−1

p are given by the
coefficients of the polynomial

Φp(X)

Φ′p(ζp) · (X − ζp)
, (3.2)

where each row uses a different root of unity ζp. We then note that

Φ′p(ζp) = (ζp − ζ2
p ) · (ζp − ζ3

p ) · · · (ζp − ζp−1
p )

= ζ−2
p · (1− ζp) · (1− ζ2

p ) · · · (1− ζp−2
p ) · (1− ζp−1

p )

(1− 1/ζp)

=
ζ−2
p p

1− 1/ζp
=

p

ζ2
p − ζp

.

Thus the coefficients of the polynomial in (3.2) are given by ζp · (ζrp − 1)/p for r = 1, . . . , p− 1,
where each row of our matrix is given by a different pth root ζp.

Thus to determine the infinity norm of CRT−1
p we simply need to sum the absolute values

of these coefficients for the first row, since all other rows are equal:

Cp =

p−1∑
r=1

|ζp(ζrp − 1)/p| = 1

p

p−1∑
r=1

√
2− 2 · cos(2rπ/p)

=
1

p

p−1∑
r=1

2 · sin(rπ/p) =
2 · sin(π/p)

p · (cos(π/p)− 1)

1This proof was provided to us by Robin Chapman.
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�
In practice this result means that Cp ≈ 4/π ≈ 1.2732 for all p ≥ 11.
If m is odd then we see that, subject to a permutation of the rows, the matrix CRT2m and

CRTm are identical up to a multiple of −1 for every second column. Thus we have

C2m = Cm for odd values of m.

We find that Cr ≤ 8.6 for square-free r ≤ 400, which provides a relatively small upper bound
on Cm for an infinite family of cyclotomic fields K. It appears that the size of Cm depends
crucially on the number of prime factors of m. Thus it is an interesting open question to provide
a tight upper bound on Cm. Indeed the growth in Cm seems to be closely related to the growth
in the coefficients of the polynomial Φm(X), which also depends on the number of prime factors
of m.

3.1.5. Application of the above bounds. An immediate consequence of Theorem 3.1 is
to provide an upper bound on the value δ∞ for cyclotomic number fields. Let α ∈ OK . Then, by
the standard inequalities between norms, that ‖α‖1 ≤ N · ‖α‖∞. Thus we have, for α, β ∈ OK ,

‖α · β‖∞ ≤ Cm · ‖σ(α · β)‖∞ ≤ Cm · ‖σ(α)‖∞ · ‖σ(β)‖∞
≤ Cm · ‖α‖1 · ‖β‖1
≤ Cm ·N2 · ‖α‖∞ · ‖β‖∞,

i.e. δ∞ ≤ Cm ·N2. When m is a power of two, since Cm = 1 we find the bound δ∞ ≤ φ(m)2;
however, in this case it is known that δ∞ = φ(m), thus the above bound is not tight.

A more interesting application, for our purposes, is to bound the infinity norm in the
polynomial embedding of the product of two elements which have been selected with a discrete
Gaussian.

To demonstrate this result we first need to introduce the following standard tailbound:

Lemma 3.6. Let c ≥ 1 and C = c · exp(1−c2
2 ) < 1 then for any integer N ≥ 1 and real r > 0

we have

Pr
x←DZN,s

[
‖x‖2 ≥ c · s ·

√
N

2 · π

]
≤ CN .

Note that this implies that

Pr
x←DZN,s

[
‖x‖2 ≥ 2 · r ·

√
N
]
≤ 2−N ,

where r = s/
√

2 · π. If we therefore select α, β ∈ DZN ,s, consider them as elements of OK , we

then have, with overwhelming probability that ‖α‖2, ‖β‖2 ≤ 2 · r ·
√
N . We then apply the

standard inequality between the 2- and the 1-norm to deduce ‖α‖1, ‖β‖1 ≤ 2 · r ·N . We then
have that

‖α · β‖∞ ≤ Cm · ‖σ(α · β)‖∞ ≤ Cm · ‖σ(α)‖∞ · ‖σ(β)‖∞
≤ Cm · ‖α‖1 · ‖β‖1
≤ 4 · Cm · r2 ·N2.

3.2. Security, Parameter Choice and Performance

In this section we show that our concrete SHE scheme meets all the security requirements
needed by our MPC protocol, i.e. that it is an admissible cryptosystem. On the way we derive
parameter settings, and finally we present some implementation results for the core operations.

Recall that a cryptosystem is admissible if:

• It is IND-CPA secure.
• It includes function KeyGen∗ as in Section 2.1.
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• It is (Bplain, Brand, C)-correct, where Bplain = N · τ · sec2 · 2sec/2+8, Brand = d · ρ · sec2 ·
2sec/2+8, and where C, the set of functions we can evaluate on ciphertexts, contains
all formulas evaluated in the protocol ΠPREP’ (including the identity function). Note
that here we choose the values for Bplain, Brand that correspond to the most efficient
variant of the ZK proofs.

Recall in the expressions for Bplain and Brand d is the dimension of the randomness space, i.e.
d = 3 ·N , τ is a bound on the infinity norm of valid plaintexts, i.e. p/2; and ρ is a bound on

the infinity norm of the randomness in validly generated ciphertexts, i.e. ρ ≈ 2 · r ·
√
N , by the

tailbound of Lemma 3.6.

3.2.1. IND-CPA and KeyGen∗’s properties: We first turn to discussing security. Since
our scheme is identical (bar the distributed decryption functionality) to that of [BV11], security
can be reduced to the hardness of the following problem.

Definition 3.7 (PLWE Assumption). For all sec ∈ N, let f(X) = fsec(X) ∈ Z[X] be a
polynomial of degree N = N(sec), let q = q(sec) ∈ Z be a prime integer, let R = Z[X]/f(X) and
R = R/qR, and let χ denote a distribution over the ring R. The polynomial LWE assumption
PLWEf,q,χ states that for any l = poly(sec) it holds that

{(ai, ai · s+ ei)}i∈[l] ≈ {(ai, ui)}i∈[l]

where s is sampled from the distribution χ, and ai, ui are uniformly random in Rq. We require
computational indistinguishability to hold given only l samples, for some l = poly(sec).

In particular our scheme is semantically secure if the PLWEΦm(X),q0,DNρ (s)-problem is hard.

The hardness of the same problem also implies that the output from KeyGen() is computationally
indistinguishable from that of KeyGen∗().

Thus, our first task is to derive relationships between the parameters so as to ensure the
first two properties of being admissible are satisfied, i.e. the PLWE problem is actually hard
to solve. The basic parameters of our scheme are the degree of the associated number field
N = φ(m), the standard deviation r of the used Gaussian distribution, and the modulus q. We
first turn to estimating r; we do this by using the “standard” analysis of the underlying LWE
problem.

We first ensure that r is chosen to avoid combinatorial style attacks. Consider the underlying
LWE problem as being given by s · A + e = v, where e is the LWE error vector, and A is a
random N × t matrix over Fq. In [AG11] the authors present a combinatorial attack which

breaks LWE in time 2O(‖e‖2∞) with high probability. Since e is chosen by the discrete Gaussian
with standard deviation r, if we pick r large enough then this attack should be prevented. Thus
choosing r such that r > 3.2 will ensure that r is large enough to avoid combinatorial attacks,
i.e. s ≥ 8.

We now turn to the distinguishing problem, namely: Given v, can we determine whether
it arises from an LWE sample, or from a uniform sample? We determine a lower bound on N .
The natural “attack” against the decision LWE problem is to first find a short vector w in the
dual lattice Λq(A

T)∗ and then check whether w ·vT is close to an integer. If it is then the input
vector is an LWE sample, if not it is random. Thus to ensure security, following the argument
in [MR08][Section 5.4.1], we require

r ≥ 1.5

‖w‖2
.

Following the work of [GN08] we can estimate, for t � N , the size of the output of a lattice
reduction algorithm operating on the lattice Λq(A

T)∗. In particular if the algorithm tries to find
a vector with root Hermite factor δ (thus δ measures the difficulty in breaking the underlying
SHE system, typically one may select δ ≈ 1.005, but see later for other choices) then we expect
to find a vector w of size

1

q
min(q, δt · qN/t).
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Following the analysis of [MR08] the above quantity is minimised when we select t = t′ :=√
N log(q)/ log(δ). This leads us to the deduce the lower bound

r ≥ 1.5 ·max(1 , δ−t
′ · q1−N/t′).

3.2.2. Noise of a Clean Ciphertext: We now turn to determining the bound, in the
infinity norm, of the value obtained in decrypting valid ciphertexts. Consider what happens
when we decrypt a clean ciphertext, encrypted via (c0, c1) = Encpk(x, r), with r = (u,v,w).
This looks like a PLWE sample (c1, c0) where the “noise” term, for a validly generated clean
ciphertext, is given by

t = c0 − s · c1

= x + p · (e · v + w + s · u)

By our estimates in Section 3.1.5 we can bound the infinity norm of t by

‖t‖∞ ≤
p

2
+ p ·

(
4 · Cm · r2 ·N2 + 2 ·

√
N · r + 4 · Cm · r2 ·N2

)
=: Y.

3.2.3. (Bplain, Brand, C)-correctness: Whilst IND-CPA is about security in relation to
validly created ciphertexts, our distributed decryption functionality must be secure even when
some ciphertexts are not completely valid. This was the reason we introduced the notion of
(Bplain, Brand, C)-correctness. We need to pick Bplain and Brand so that Bplain ≥ N · τ · sec2 ·
2sec/2+8 and Brand ≥ d · ρ · sec2 · 2sec/2+8. Since Bplain � Brand we estimate the noise term
associated to such a “clean” ciphertext will be bounded by Y ′ = (Brand/ρ)2 · Y = 9 · N2 ·
sec4 ·2sec+16 ·Y . In our MPC protocol we only need to be able to evaluate functions of the form

(x1 + · · ·+ xn) · (y1 + · · ·+ yn) + (z1 + · · ·+ zn).

We can, via the results in Section 3.1.5, crudely estimate the size of B, from Section 2.5, that
are needed to ensure valid decryption. Our crude (over-) estimate therefore comes out as

B ≤ δ∞ · (n · Y ′) · (n · Y ′) + (n · Y ′)
≤ Cm ·N2 · n2 · Y ′2 + n · Y ′

≤ Cm ·N2 · n2 · c2
sec · Y 2 + n · csec · Y =: Z

where csec = 9 ·N2 ·sec4 ·2sec+8. We take Z as the bound, which we then need to scale by 1+2sec

to ensure we have sufficient space to enable the distributed decryption algorithm. Hence, the
value of q needs to be selected so that Z · (1 + 2sec) < q/2.

In summary, we need to choose parameters such that

q > 2 · Z · (1 + 2sec),

r > max
{

3.2, 1.5 · δ−t′ · q1−N/t′
}
,

where sec is the statistical security parameter, δ is a measure of how hard it is to break the
underlying SHE scheme, and t′ =

√
N log(q)/ log(δ). This leads to a degree of circularity in

the dependency of the parameters, but valid parameter sets can be found by a simple search
technique.

3.2.4. Specific Parameter Sets: To determine parameters for fixed values of (Fpk)s and
n we proceed as follows. There are two interesting cases; one where p is fixed (i.e. p = 2)
and one where we only care that p is larger than some bound (i.e. p > 232, or p > 264). The
latter case of p > 264 is more interesting as numbers of such size can be used more readily in
applications since we can simulate integer arithmetic without overflow with such numbers. In
addition, using such a value of p means we do not need to repeat our ZKPoKs, or replicate the
MACs so as to get a cheating probability of less than 2−40.

Our method in all cases is to first fix p, n, sec and δ, and then search using the above
inequalities for (rough) values of q and N which satisfy the inequalities above. We then search
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for exact values of p and N which satisfy our functional requirements on p (i.e. fixed or
greater than some bound) plus N larger than the bound above, such that N is the degree of
F (X) = Φm(X) and F (X) splits into at least s factors of degree divisible by k over Fp.

Given this precise value for N , we then return to the above inequalities to find exact values
of q and r. In all our examples below we pick n = 3, sec = 40, and δ = 1.0052.
Example 1: We first look at p > 232. Our first (approximate) search reveals we need N > 14300,

q ≈ 2430 and r = 3.2 (assuming Cm ≤ 2). We then try to find an optimal value of N ; this is
done by taking increasing primes p > 232 and factoring p−1. The factors of p−1 correspond to
values of m such that Φm(X) factors into φ(m) factors modulo p. So we want to find a p such
that p− 1 is divisible by an m, so that N = φ(m) > 14300. A quick search reveals candidates
of

(p,N,m) = (232 + 32043, 14656, 14657).

Picking m in this way will maximise the value of s = n, and hence allow us to perform more
operations in parallel. In addition since m is prime we know, by Lemma 3.5, that Cm ≈ 1.2732,
thus justifying our assumption in deriving the bounds of Cm ≤ 2.

Selecting m to be the prime 14657 in addition allows us to evaluate s = p− 1 = 14656 runs
of the triple production algorithm in parallel. The message expansion factor, given we require
N · log2(q) bits to represent N elements in Fp, is given by

N · log2(q)

N · log2(p)
=

log2(q)

log2(p)
=

430

32
≈ 13.437.

Example 2: Performing the same analysis for a p > 264, our first naive search of parameters

reveal we need an n ≈ 16700 and q ≈ 2500. We then search for specific parameters and find
p = 264 + 4867 is pretty near to optimum, which results in a prime value of m of 16729. We
find the expansion factor is given by

log2(q)

log2(p)
=

500

64
≈ 7.81.

Example 3: We now look at the case p = 2 and k = 8, i.e. we are looking for parameters which
would allow us to compute AES circuits in parallel; or more generally circuits over F28 . Our
first approximate search reveals that we need N > 12300, q ≈ 2370 and r = 3.2. So we now
need to determine a value m such that

N = φ(m) > 12100 and 2d ≡ 1 (mod m) and d ≡ 0 (mod 8).

A quick search reveals candidates of

(m,N) = (17425, 12800)

since Φ17425(X) factors into s = 320 factors of degree d = 40 modulo 2. Thus using this value of
m we are able to work with s = 320 elements of F28 in parallel. The message expansion factor,
given we require N · log2(q) bits to represent 320 elements in F28 , is given by

N · log2(q)

8 · s
=
d · 370

8
= 1850.0

For this value of m we find C17425 ≈ 9.414.
We present the following run-times we have achieved. We time the operations for encrypting

and decrypting clean ciphertexts, the time to homomorphically compute (cx � cy) � cz, plus
the time to decrypt the said result. The times are given in seconds, and in brackets we present
the amortized time per finite field element. All timings were performed on an Intel Core-2 6420
running at 2.13 GHz.
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Enc Dec (Clean) (cx � cy) � cz Decsk((cx � cy) � cz)
Example Time (s) Time (s) Time (s) Time (s)

1 0.72 {0.00005} 0.35 {0.00002} 1.43 {0.0001} 0.72 {0.00005}
2 3.13 {0.00019} 1.54 {0.00009} 6.27 {0.0004} 3.15 {0.00018}
3 1.26 {0.00394} 0.60 {0.00188} 2.46 {0.0077} 1.23 {0.00384}

3.2.5. Estimating Equivalent Symmetric Security Level: The above examples were
computed using the root Hermite factor of δ = 1.005. Mapping this “hardness” parameter for
the underlying lattice problem to a specific symmetric security level (i.e. 80-bit security, or
128-bit security) is a bit of a “black art” at present.

In [CN11] the authors derive an estimate for the block size needed to obtain a given root
Hermite factor, assuming an efficient BKZ lattice reduction algorithm is used. They then provide
estimates of the run-time needed for a specific enumeration using this block size. As an example
of their analysis: they estimate that a block size of 286 is needed to obtain a root Hermite factor
of δ = 1.005. Then they estimate that the run-time needed to perform the enumeration in a
projected lattice of such dimension (the key sub-procedure of the BKZ algorithm) takes time
roughly between 280 and 2175 operations. Thus a value of δ = 1.005 can be considered secure;
however, their estimates are not precise enough to produce parameters associated with a given
symmetric security level.

In [LP11] the authors take a different approach and simply extrapolate run-times for the
NTL implementation of BKZ. By looking at various LWE instances, they derive the following
equation linking the expected run-time of a distinguishing attack and the root Hermite factor

log2 T =
1.8

log2 δ
− 110.

The problem with this approach is that NTL’s implementation of BKZ is very old, and hence
is not state-of-the-art; on the other hand we are able to derive a direct linkage between δ and
log2 T . Using this equation we find the following equivalences:

log2 T 80 100 128 196 256
δ 1.0066 1.0059 1.0052 1.0041 1.0034

Using these estimates for δ we re-run the above analysis to find approximate values for N
and q in our three example applications, again assuming n = 3 and sec = 40.

Fp : p > 232 Fp : p > 264 F28

N > log2 q ≈ N > log2 q ≈ N > log2 q ≈
δ = 1.0066 11300 430 12900 490 9500 360
δ = 1.0059 12600 430 14700 500 10900 370
δ = 1.0052 14300 430 16700 500 12300 370
δ = 1.0041 18600 440 21100 500 15600 370
δ = 1.0034 22400 440 25500 500 18800 370

As can be seen the security parameter has only marginal impact on log2 q, and results in
a doubling of the size of N as we increase from a security level of 80 bits to 256 bits. As a
comparison if, for security level 128 bits, i.e. δ = 1.0052, we increase the value of sec from 40
to 80 we find the following parameter sizes:

Fp : p > 232 Fp : p > 264 F28

N > log2 q ≈ N > log2 q ≈ N > log2 q ≈
δ = 1.0052 18700 560 21000 630 16700 500

3.3. Running the Online Phase with Small Fields

In this section we face the scenario where one wants to run an online phase with error
probability 2−sec, but log pk is much smaller than sec.

When we consider how to solve this problem, we will at first ignore Step 1 in the Multiply
stage of the online protocol, where one triple is “sacrificed” to check another, as this step could
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be done as part of the preprocessing. Nevertheless, we do not want to ignore the fact that this
step will have a large error probability 1/pk. We could solve this by sacrificing D = d sec

log pk
e

triples instead of one, but we can do much better, and this is described below in Section “A
small sacrifice” below.

Going back to the online phase, we can compensate for the fact that log pk is much smaller
than sec by setting up the preprocessing so it can work over an extension field K of Fpk of
degree D = d sec

log pk
e, i.e. an element in K is represented by d sec

log pk
e elements from Fpk . All MAC

keys and MACs will be generated in K whereas all values to be computed on will still be in Fpk .
The preprocessing can ensure this because the ZK proof can already force a prover to choose
plaintexts that decode to elements in a subfield of K.

Then the error probabilities in the proof of the online phase that were 1/pk before will now
be 1/|K| ≤ 2−sec. The computational complexity of the online phase now has an overhead of
D logD log logD and the overhead for storage and communication is just D.

It is also possible to get error probability 2−sec while having the preprocessing work only
over Fpk . Here the overhead will be larger, namely D2 logD log logD, but this may be the best
option when D is not very large. The idea is to authenticate by doing D MACs in parallel over
Fpk for every authenticated value, using D independent keys.

3.3.1. A Small Sacrifice. In this section we describe an advanced method to check the
multiplicative relation on triples 〈a〉, 〈b〉, 〈c〉, where a, b, c ∈ Fpk . The aim is to decrease
the (amortized) number of triples to sacrifice per check. Our approach resembles a technique
introduced by Ben-Sasson et al. in [BSFO12] and also another by Cramer et al. in [CDP12].

The first step in our construction is to consider a batch of t + 1 triples 〈ai〉, 〈bi〉, 〈ci〉 for
i = 1, . . . , t + 1 at once. There are two main ideas in the construction: the first one is to
interpolate the values and get polynomials A,B,C ∈ Fpk [X] such that A(i) = ai, B(i) = bi,
C(i) = ci; if the triples were correctly generated, one would expect A(x)B(x) = C(x) for all x.
The second idea is to think of A,B,C as polynomials over a field extension K of Fpk , so that one
can check the expected multiplicative relation evaluating A,B,C at a random element z ∈ K;
the probability that the check passes even if some of the triples did not satisfy the relation is
inversely proportional to the size of K. We now present the full construction.

• Let 〈ai〉, 〈bi〉, 〈ci〉, i = 1, . . . , t+ 1, be a batch of triples to check.
• Think of the values a1, . . . , at+1 (resp. b1, . . . , bt+1) as t + 1 evaluations over Fpk of a

unique polynomial A ∈ Fpk [X] (resp. B ∈ Fpk [X]) of degree t. Concretely, define the
polynomial A (resp. B) such that A(i) = ai (resp. B(i) = bi). Since the coefficients
of A (resp. B) can be computed as a linear combination of the ai’s (resp. bi’s), the
players can compute representations of such coefficients by local computation.
• Players can compute 〈at+2〉, . . . , 〈a2t+1〉 such that A(i) = ai, again by local computa-

tion, since evaluating a polynomial is a linear operation.
• Players can engage in the multiplication step of the online phase with input 〈ai〉, 〈bi〉,

and get 〈ci〉 (hopefully ci = aibi) for i = t+ 2, . . . , 2t+ 1. Notice that players call the
multiplication step t times here, so they sacrifice t triples.
• Using only linear computation players can now compute representations of coefficients

of the unique polynomial C ∈ Fpk [X] of degree 2t such that C(i) = ci for i = 1, . . . , 2t+
1.
• Let K be a field extension of Fpk of degree D. It is possible to think of A,B,C as

polynomials over K, by embedding the coefficients via the natural map Fpk −→ K.
Players now evaluate representations for A(z)B(z), and C(z), where z is a public
random element in K, and check if A(z)B(z) = C(z) by outputting A(z)B(z)− C(z)
and checking if the result is zero. This check can be repeated a number of times in
order to lower the error probability. If the check passed for all repetitions, players
consider the original triples to be valid; otherwise, they discard the triples and start
again with fresh triples.
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Notice that in order to compute A(z)B(z) and C(z), players need to compute at most
D2 multiplications over Fpk , since A(z)B(z) can be computed by multiplying a D ×D matrix
(dependent on A(z)) with the vector B(z) (over K, multiplication by a fixed element is an
endomorphism of K as a Fpk -vector space). Notice also that we may use the original method
(presented in the online phase) of sacrificing more than one triple per multiplication to get any
desired error probability for the multiplications over Fpk . We analyse below the error probability
we must require.

For the analysis of the construction, observe that if the multiplicative relation was satisfied
by all the original triples, the polynomials AB and C are equal, so the final test passes. If
the triples do not satisfy the relation, then the polynomials AB and C are different, but since
they are both of degree at most 2t, they can agree in at most 2t points. Therefore, if z is
a root of AB − C, then the test passes, and uniform elements in K are roots of AB − C
with probability at most 2t/|K|. If z is not a root of AB − C, the test passes only if the
multiplication A(z)B(z) happens to give the correct result; hence, provided that we make sure
this happens with probability at most 2t/|K| (by sacrificing enough triples in the process), the
error probability of the construction is bounded by 2t/|K| for a single run of the test. In order
to get negligible error probability we repeat this phase enough times.

An important fact to notice is that in this construction we need 2t+1 ≤ Fpk , since otherwise
there are not enough elements to evaluate the polynomials. This restriction can be circumvented
by applying the above construction with Fpk replaced by an extension Fpk′ with the required
property.

Asymptotically, we see that as we increase the number t + 1 of triples checked, we always
need to sacrifice t triples, and in addition we need to check the multiplication(s) in K. If we
assume that we want to hit the desired error probability with just one iteration of the test, we
have 2−sec = 2t/|K| from which we get log |K| = sec+ log 2t. The degree of the extension to K
is log |K|/ log pk, and the number of basic secure multiplications we need is at most the square of
this number, which is (sec+log 2t)2/(log pk)2. For each of these, we need error essentially 2−sec,
so the number of triples we need, say m, satisfies 2−sec = (1/pk)m, so we get m = sec/ log pk.
This in total grows only poly-logarithmically with t, so we conclude that for a given desired error
probability, the number of triples we need to sacrifice to check t+ 1 triples is O(t+ polylog(t)).

3.3.2. Comparing the Two Approaches: A Concrete Example. Here we compare
the above two approaches for checking triples. Suppose p = 2 and k = 8, so Fpk = F28 . Suppose

there are also t+ 1 = 128 triples to check with security level of 2−80.
Using the latter approach, with K = F216 , we need to sacrifice t = 127 triples to generate

〈ct+2〉, . . . , 〈c2t+1〉; moreover, we need to perform 4 secure multiplications to check if A(z)B(z) =
C(z), since K is a vector space of dimension 2 over F28 . In order for the multiplications to be
secure enough, we need them to be correct up to error probability (2 · 127)/216 ≈ 2−8 for the
entire multiplication A(z)B(z). This will be the case if for each of the 4 small multiplications
we use 3 triples: one to do the actual multiplication and two to check the first one. This gives
a total error probability of at most 4 · 2−16 ≤ 2−8. Since one run of the test leads to an error
probability of ≈ 2−8, we need 10 runs to decrease the error probability to 2−80. Therefore, the
total number of triples to sacrifice is 128 + 4 · 3 · 10 = 248, while with the original approach the
number of triples to sacrifice would have been 128 · 10 = 1280.
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CHAPTER 4

SPDZ2 – Overview

4.1. Practical Challenges

For many decades multiparty computation was a predominantly theoretic endeavour in
cryptography, but in recent years interest has arisen on the practical side. This has resulted
in various improvements on implementations which are becoming more applicable to practical
situations. A key aspect of this transformation from theory to practice is the adaptation of
theoretical protocols by applying implementation techniques so as to significantly improve per-
formance, whilst not sacrificing the level of security required by real world applications. We
follow this modern and practically oriented trend.

Early applied work on MPC focused on the case of protocols secure against passive adver-
saries, both in the case of two-party protocols based on Yao circuits [MNPS04] and that of
many-party protocols, based on secret sharing techniques [BLW08, DGKN09, SIM]. Only
in recent years has work shifted to achieve active security [KSS12, LPS08, PSSW09], which
appears to come at vastly increased cost when dealing with more than two players. On the
other hand, in real applications, active security may be more stringent than one would actually
require. In [AL07, AL10] Aumann and Lindell introduced the notion of covert security; in
this security model an adversary who deviates from the protocol is detected with high (but
not necessarily overwhelming) probability, say 90%, which still translates into an incentive for
the adversary to behave honestly. In contrast, active security achieves the same effect, but the
adversary can only succeed in cheating with negligible probability. There is a strong case to be
made (see [AL07, AL10]) that covert security is a “good enough” security level for practical
application; thus in this work we focus on covert security, but we also provide solutions with
active security.

4.2. Our Approach

As our starting point we take the SPDZ protocol of [DPSZ12]. SPDZ is secure against
active static adversaries in the standard model, and tolerates corruption of n−1 of the n parties.
The SPDZ protocol follows the preprocessing model: in an offline phase some shared randomness
is generated, but neither the function to be computed nor the inputs need be known; in an online
phase the actual secure computation is performed. One of the main advantages of the SPDZ
protocol is that the performance of the online phase scales linearly with the number of players,
and the basic operations are almost as cheap as those used in the passively secure protocols
based on Shamir secret sharing. Thus, it offers the possibility of being both more flexible and
more secure than Shamir-based protocols, while still maintaining low computational cost.

In [DKL+12] an implementation report is given on an adaptation of the SPDZ protocol
in the random oracle model, including performance figures for the offline and online phases for
both an actively secure variant and a covertly secure variant. The implementation is over a
finite field of characteristic two, since the focus is on providing a benchmark for evaluation of
the AES circuit (a common benchmark application in MPC [PSSW09, DK10]).

4.3. Introduction to SPDZ2

We present a number of contributions which extend even further the ability of the SPDZ
protocol to deal with the type of application that is likely to be seen in practice. We support
these improvements with details of an actual implementation.
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Our contributions come in two flavours. First, we present a number of improvements and
extensions to the basic underlying SPDZ protocol. These protocol improvements are supported
with associated security models and proofs. Second, we focus on the implementation layer, and
bring in standard techniques from applied cryptography adapted for MPC.

In more detail, our protocol enhancements, in descending order of importance, are as follows:

(1) In the online phase of the original SPDZ protocol the parties are required to reveal
their shares of a global MAC key in order to verify that the computation has been per-
formed correctly. This is a major problem in practical applications since it means that
unrevealed secret-shared data cannot be re-used in later applications. Our protocol
adopts a method to accomplish the same task without needing to open the underlying
MAC key. This means players can now go on computing on any secret-shared data
they have, so general reactive computation can be performed, rather than just secure
function evaluation. A further advantage of this technique is that some of the verifi-
cation (the so-called “sacrificing” step) can be moved into the offline phase, providing
additional performance improvements in the online phase.

(2) In the original SPDZ protocol [DKL+12, DPSZ12] the authors assume a “magic” key
generation phase for the production of the distributed Somewhat Homomorphic En-
cryption (SHE) scheme public/private keys required by the offline phase. The authors
claim this can be accomplished using standard generic MPC techniques, which are
expensive. We present a key generation protocol for the BGV [BGV12] SHE scheme,
which is secure against covert adversaries. In addition, we generate a “full” BGV key
which supports the modulus switching and key switching used in [GHS12b]. This
new sub-protocol may be of independent interest in other applications which require
distributed decryption in an SHE/FHE scheme.

(3) In [DKL+12] the modification to covert security was essentially ad-hoc, and resulted
in a very weak form of covert security. In addition no security proofs or model were
given to justify the claimed security. We present a completely different approach to
achieving covert security, and provide an extensive security model and full proofs for
the modified offline phase (and the key generation protocol mentioned above).

(4) We introduce a new approach to obtain full active security in the offline phase. In
[DPSZ12], active security was obtained by the use of specially designed ZKPoKs.
We present a different technique, based on a method used in [NNOB12], which has
running time similar to the ZKPoK approach in [DPSZ12], but it allows much stronger
guarantees on the ciphertexts produced by corrupt players: the gap between the size
of the “noise” that honest players put into ciphertexts and what we can force corrupt
players to use was exponential in the security parameter in [DPSZ12], and is essentially
linear in our solution. This yields smaller parameters for the underlying cryptosystem
and makes the protocol more efficient.

It is important to understand that by combining these contributions in different ways, one
can obtain two general MPC protocols: first, since our new online phase still achieves full
active security, it can be combined with our new approach to active security in the offline
phase. This results in a protocol that is “syntactically similar” to the one from [DPSZ12]: it
has full active security assuming access to a functionality for key generation. However, it has
better performance and enhanced functionality, compared to [DPSZ12], in that it can securely
compute reactive functionalities. Second, we can combine our covertly secure protocols for key
generation and the offline phase with the online phase to get a protocol that has covert security
throughout (and in this case it does not assume key generation).

Our covert solutions all make use of the same technique to move from passive to covert secu-
rity, while avoiding the computational cost of performing zero-knowledge proofs. In [DKL+12]
covert security is obtained by only checking a fraction of the resulting proofs, which results in a
weak notion of covert security (the probability of a cheater being detected cannot be made too
large). We adopt a different approach, akin to the cut-and-choose paradigm. We require parties
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to commit to random seeds for a number of runs of a given sub-protocol, then all the runs are
executed in parallel, finally all bar one of the runs are “opened” by the players revealing their
random seeds. If all opened runs are shown to have been performed correctly then the players
assume that the single un-opened run is also correctly executed.

Note that since these checks take place in the offline phase where the inputs are not yet avail-
able, we obtain the strongest flavour of covert security defined in [AL07], where the adversary
learns nothing new if he decides to try to cheat and is caught.

A pleasing side-effect of the replacement of zero-knowledge proofs with our custom mecha-
nism to obtain covert security is that the offline phase can be run in much smaller “batches”.
In [DKL+12, DPSZ12] the need to amortise the cost of the expensive zero-knowledge proofs
meant that the players, on each iteration of the offline protocol, executed a large computation,
which produced a large number of multiplication triples [Bea91] (in the millions). With our
new technique there is no need to amortise executions as much, and so short runs of the offline
phase can be executed if so desired, producing only a few thousand triples per run.

Our second flavour of improvements, at the implementation layer, is more mundane.

(1) We focus on the more practical application scenario of developing MPC where the
base arithmetic domain is a finite field of characteristic p > 2. The reader should think
p ≈ 232, 264, 2128 and the type of operations envisaged in [CS10, DFK+06] etc. For
such applications we can move a lot of computation into the SPDZ offline phase, and
we present the necessary modifications to do so.

(2) Parameters for the underlying BGV scheme are chosen using the analysis used in
[GHS12b] rather than the approach used in [DPSZ12]. In addition we pick specific
parameters which enable us to optimise for our application to SPDZ with the choices
of p above.

(3) We assume the random oracle model throughout: this simplifies a number of the sub-
procedures in [DPSZ12], especially related to aspects of the protocol which require
commitments.

(4) The underlying arithmetic is implemented using Montgomery arithmetic [Mon85], in
contrast to earlier work, which generally used standard libraries (such as NTL) to
provide these operations.

(5) The removal of the need to use libraries such as NTL means the entire protocol can be
implemented in a multi-threaded manner. Thus, it can make use of the multiple cores
on modern microprocessors.

4.4. SPDZ Overview and the Room Left for Improvements

We now present the main components of the SPDZ protocol; in this section, unless otherwise
specified, we are simply recapping on prior work.

For the notation and the basic properties, we refer to Section 2.3.1. We also point out that
from now on we specialise the computation on Fp rather than on Fpk (in contrast to the previous
chapters).

During the protocol, various values which are 〈·〉-shared are “partially opened”, i.e. the
associated values ai are revealed, but not the associated shares of the MAC. Note that linear
operations (addition and scalar multiplication) can be performed on the 〈·〉-sharings with no
interaction required. Computing multiplications, however, is not straightforward.

The goal of the offline phase is to produce a set of “multiplication triples”, which allow
players to compute products. These are a list of sets of three 〈·〉-sharings {〈a〉 , 〈b〉 , 〈c〉} such
that c = a · b. Here, we extend the offline phase to also produce “square pairs”, i.e. a list of
pairs of 〈·〉-sharings {〈a〉 , 〈b〉} such that b = a2, and “shared bits”, i.e. a list of single shares
〈a〉 such that a ∈ {0, 1}.

In the online phase these lists are consumed as MPC operations are performed. The reason
for the introduction of square pairs is that squares can then be computed more efficiently, as
follows. To square the sharing 〈x〉, players take a square pair {〈a〉 , 〈b〉} and partially open
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〈x〉 − 〈a〉 to obtain ε. They then compute the sharing of z = x2 from 〈z〉 ← 〈b〉 + 2 · ε ·
〈x〉 − ε2. The “shared bits” are useful in computing high level operation such as comparison,
bit-decomposition, fixed and floating point operations as in [ABZS13, CS10, DFK+06].

The offline phase produces the triples in the following way, by using a Somewhat Homomor-
phic Encryption (SHE) scheme, which encrypts messages in Fp, supports distributed decryption,
and allows computation of circuits of multiplicative depth one on encrypted data. To gener-
ate a multiplication triple, each player Pi generates encryptions of random values ai and bi
(their shares of a and b). Using the multiplicative property of the SHE scheme an encryption
of c = (a1 + · · · + an) · (b1 + · · · + bn) is produced. The players then use the distributed de-
cryption protocol to obtain sharings of c. The shares of the MACs on a, b and c needed to
complete the 〈·〉-sharing are produced in the same manner. Similar operations are performed
to produce square pairs and shared bits. Clearly the above (vague) outline needs to be fleshed
out to ensure the required covert security level. Moreover, in practice players generate many
triples/pairs/shared-bits at once using the SIMD nature of the BGV SHE scheme.
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CHAPTER 5

SPDZ2 – Preprocessing and Online

5.1. BGV

We now present an overview of the BGV scheme as required by the offline phase. This is
only a sketch: the reader is referred to [BGV12, GHS12a, GHS12b] for more details, as our
goal here is to present enough detail to explain the key generation protocol.

5.1.1. Preliminaries.
Underlying Algebra: Let Rq = (Z/qZ)[X]/Φm(X), for the m-th cyclotomic polynomial Φm(X),
where m is a parameter to be determined later (see Section 6.1).

Note that q may not necessarily be prime. Let R = Z[X]/Φm(X). Set message space to be
Rp for a prime p of approximately 32, 64 or 128-bits in length, and set the ciphertext space to be

either R2
q0 or R2

q1 , for one of two moduli q0 and q1. Specifically, we choose R = Z[X]/(Xm/2 +1)
for m a power of two, and p = 1 (mod m). By picking m and p this way the message space

Rp offers m/2-fold SIMD parallelism, i.e. Rp ∼= Fm/2p . In addition, this implies that the ring
constant cm from [DPSZ12, GHS12b] is equal to one.

We wish to generate a public key for a leveled BGV scheme for which n players each hold a
share, which is itself a “standard” BGV secret key. Dealing with circuits of multiplicative depth
at most one, there is only need for two levels in the moduli chain: q0 = p0 and q1 = p0 · p1. The
modulus p1 also plays the role of P in [GHS12b] for the SwitchKey operation. The value p1

must be chosen so that p1 ≡ 1 (mod p).
Random Values: Each player is assumed to have a secure entropy source. In practice we take
this to be /dev/urandom, which is a non-blocking entropy source found on Unix-like operating
systems. This is not a “true” entropy source, being non-blocking, but provides a practical
balance between entropy production and performance for our purposes. In what follows we
model this source via a procedure s ← Seed(), which generates a new seed from this source of
entropy. Calling this function sets the players global variable cnt to zero. Then, every time a
player generates a new random value in a protocol, the value is constructed by calling PRFs(cnt),
for some pseudo-random function PRF, and then incrementing cnt. In practice, we use AES
under the key s with message cnt to implement PRF.

The point of this method for generating random values is that these values can then be
verified to have been generated honestly by revealing s in the future, recomputing all the
randomness used by a player, and verifying that his output is consistent with s.

From the basic PRF, we define the following “induced” pseudo-random number generators,
which generate elements according to the following distributions but seeded by the seed s:

• HWT s(h, n): This generates a vector of length n with elements chosen uniformly from
{−1, 0, 1} subject to the condition that the number of non-zero elements is equal to h.
• ZOs(0.5, n): This generates a vector of length n with elements chosen from {−1, 0, 1}

such that each entry is equal to r with probability pr, where p−1 = 1/4, p0 = 1/2, and
p1 = 1/4.
• DGs(σ2, n): This generates a vector of length n with elements chosen according to the

discrete Gaussian distribution with variance σ2.
• RCs(0.5, σ2, n): This generates a triple of elements (v, e0, e1) where v is sampled from
ZOs(0.5, n) and e0 and e1 are sampled from DGs(σ2, n).
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• Us(q, n): This generates a vector of length n with elements generated uniformly modulo
q.

Any random values which do not depend on a seed should be assumed to be drawn using a
secure entropy source (again, /dev/urandom in practice). We drop the subscript s from the
notation, whenever the seed is not important.
Broadcast: When broadcasting data we assume two different models. In the online phase during
partial opening players use the method described in [DPSZ12]: they send their data to a
nominated player who then broadcasts the reconstructed value back to the remaining players.
For other applications of broadcast, we assume each party broadcasts their values to all other
parties directly. In all instances, players maintain a running hash of all values sent and received
in a broadcast (with a suitable modification for the variant used for partial opening). At the end
of a protocol run, these running hashes are compared pair-wise. This final comparison ensures
that as long as there are at least two honest parties, the adversary must be consistent in what
he sends to the honest parties.
Commitments: In Figure 5.1 we present an ideal functionality FCommit for commitment, which
is used in all of our protocols.

The Ideal Functionality FCommit

Commit: On input (Commit, v, i, τv) by Pi, or the adversary on his behalf (if Pi is corrupt),
where v is either in a specific domain or ⊥, the ideal functionality stores (v, i, τv) in a list
and outputs (i, τv) to all players and the adversary.

Open: On input (Open, i, τv) by Pi, or the adversary on his behalf (if Pi is corrupt), the
ideal functionality outputs (v, i, τv) to all players and adversary. If (NoOpen, i, τv) is given
by the adversary, and Pi is corrupt, the functionality outputs (⊥, i, τv) to all players.

Figure 5.1. The Ideal Functionality for Commitments.

Our protocols are UC secure, which is possible despite the presence of dishonest majority
because of the random oracle. In particular, a hash function H1 is modelled as a random
oracle and a commitment scheme implements the functionality FCommit as follows: the commit
function Commit(m) generates a random value r and computes c ← H1(m‖r). It returns the
pair (c, o) where o is the opening information m‖r. When the commitment c is opened, the
committer outputs the value o and the receiver runs Open(c, o) which checks whether c = H1(o)
and if so returns m.

The Protocol ΠCommit

Commit:
(1) In order to commit to v, Pi sets o← v||r, where r is chosen uniformly in a determined

domain, and queries the Random Oracle H to get c← H(o).
(2) Pi then broadcasts (c, i, τv), where τv represents a handle for the commitment.

Open:
(1) In order to open a commitment (c, i, τv), where c = H(v||r), player Pi broadcasts

(o = v||r, i, τv).
(2) All players call H on o and check whether H(o) = c. Players accept if and only if this

check passes.

Figure 5.2. The Protocol for Commitments.

Lemma 5.1. In the random oracle model, the protocol ΠCommit implements FCommit with
computational security against any static, active adversary corrupting at most n− 1 parties.

Proof. We describe a simulator such that the environment cannot distinguish whether it is
playing with the real protocol or the functionality composed with the simulator. Note that the
simulator replies to queries to the random oracle H made by the adversary.
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To simulate a Commit call, if the committer Pi is honest, the simulator selects a random
value c and gives (c, i, τv) to the adversary. If, on the other hand, the committer is corrupt,
then it either queries H to get c, or it does not query it. Therefore, on receiving (c∗, i, τv) from
the adversary, the simulator has v (if H was queried) and sets v∗ ← v. If H was not queried,
the simulator sets a dummy input v∗ and sets the internal flag Aborti,τv to true. It then sends
(Commit, v∗, i, τv) to FCommit.

An Open call is simulated as follows. If the committer is honest, the simulator gets (v, i, τv)
when Pi inputs (Open, i, τv) to FCommit. The simulator selects random r and sets o ← v||r. It
can now hand (o, i, τv) to the adversary. If the random oracle is queried on o, the simulator
sends c as response. If the committer is corrupt, the simulator gets (i, τv) from the adversary,
checks whether Aborti,τv is true, and, if so, sends (NoOpen, i, τv) to FCommit. Otherwise, the
simulator sends (Open, i, τi) to FCommit.

The adversary will notice that queries to H are simulated only if o has been queried before
resulting in different c, but as r is random this happens only with negligible probability (assum-
ing that the size of the output domain of H is large enough). Also, in a simulated run, if the
adversary does not query H when committing, the run will be aborted. The probability that
in a real run players do not abort is equivalent to the probability that the adversary correctly
guesses the output of H, which happens with negligible probability.

�

5.1.2. Key Generation. The key generation algorithm generates a public/private key
pair such that the public key is given by pk = (a, b), where a is generated from U(q1, φ(m)) (i.e.
a is uniform in Rq1), and b = a · sk + p · ε where ε is a “small” error term, and sk is the secret
key such that sk = sk1 + · · ·+ skn, where player Pi holds the share ski. Recall that since m is a
power of 2, then φ(m) = m/2.

The public key is also augmented to an extended public key epk by addition of a “quasi-
encryption” of the message −p1 · sk2, i.e. epk contains a pair (ask,sk2 , bsk,sk2) such that bsk,sk2 =

ask,sk2 · sk + p · εsk,sk2 − p1 · sk2, where ask,sk2 ← U(q1, φ(m)) and εsk,sk2 is a “small” error term.
The precise distributions of all these values are determined when we treat the details of the key
generation protocol.

5.1.3. Encryption and Decryption. Encpk(m): To encrypt an element m ∈ Rp, using

the modulus q1, choose one “small polynomial” (with 0,±1 coefficients) and two Gaussian
polynomials (with variance σ2), via (v, e0, e1) ← RCs(0.5, σ2, φ(m)). Then, set c0 = b · v + p ·
e0 +m, c1 = a · v + p · e1, and set the initial ciphertext as c′ = (c0, c1, 1).
SwitchModulus((c0, c1), `): The operation SwitchModulus(c) takes the ciphertext c = ((c0, c1), `)

defined modulo q` and produces a ciphertext c′ = ((c′0, c
′
1), `−1) defined modulo q`−1, such that

[c0 − sk · c1]q` ≡ [c′0 − sk · c′1]q`−1
(mod p). This is done by setting c′i = Scale(ci, q`, q`−1) where

Scale is the function defined in [GHS12b]. Note that we need the more complex function given
in Appendix E of the full version of [GHS12b] if working in dCRT representation, as we need
to fix the scaling modulo p (as opposed to modulo two, which was done in the main body of
[GHS12b]). Since the scheme has two levels, this function can only be called when ` = 1.
Decsk(c): Note that this operation is never actually performed, since the shared secret key

sk is unknown. Decryption of a ciphertext c = (c0, c1, `) at level ` is performed by setting
m′ = [c0 − sk · c1]q` , then converting m′ to coefficient representation and outputting m′ mod p.
DistDecski(c): Decryption is performed by a simplified version of the distributed decryption

procedure described in [DPSZ12], since the final ciphertexts consist of only two elements
as opposed to three as in [DPSZ12]. For an input ciphertext c = (c0, c1, `), P1 computes
v1 = c0 − sk1 · c1 and Pi i 6= 1 computes vi = −ski · c1. Each party Pi then sets ti = vi + p · ri
for a random element ri ∈ R with infinity norm bounded by 2sec · B/(n · p) and the values ti
are broadcast; the precise value B is determined in Section 6.1. Then the message is recovered
as t1 + · · ·+ tn (mod p).
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5.1.4. Operations on Encrypted Data. Homomorphic addition follows trivially from
the methods of [BGV12, GHS12b]. The main remaining task is to deal with multiplication.
We first define a SwitchKey operation.
SwitchKey(d0, d1, d2): This procedure takes as input an extended ciphertext c = (d0, d1, d2)
defined modulo q1; this is a ciphertext which is decrypted via the equation

[d0 − sk · d1 − sk2 · d2]q1 .

The SwitchKey operation also takes the key-switching data enc = (bsk,sk2 , ask,sk2) above and
produces a standard two element ciphertext which encrypts the same message but modulo q0.

• c′0 ← p1 · d0 + bsk,sk2 · d2 (mod q1),

c′1 ← p1 · d1 + ask,sk2 · d2 (mod q1).

• c′′0 ← Scale(c′0, q1, q0),
c′′1 ← Scale(c′1, q1, q0).
• Output ((c′′0, c

′′
1), 0).

Notice the following equality modulo q1:

c′0 − sk · c′1 = (p1 · d0) + d2 · bsk,sk2 − sk ·
(

(p · d1)− d2 · ask,sk2
)

= p1 · (d0 − sk · d1 − sk2d2)− p · d2 · εsk,sk2 ,

The requirement on p1 ≡ 1 (mod p) is from the above equation as this should produce the same
value as d0 − sk · d1 − sk2d2 mod q1 via reduction modulo p.
Mult(c, c′): We only need to execute multiplication on two ciphertexts at level one, thus c =

((c0, c1), 1) and c′ = ((c′0, c
′
1), 1). The output is a ciphertext c′′ at level zero, obtained via the

following steps:

• c← SwitchModulus(c),
c′ ← SwitchModulus(c′).
• (d0, d1, d2)← (c0 · c′0, c1 · c′0 + c0 · c′1,−c1 · c′1).
• c′′ ← SwitchKey(d0, d1, d2).

5.2. Distributed Key Generation Protocol for BGV

As remarked in the introduction of this chapter, [DPSZ12] assumed a “magic” set-up which
produces not only a distributed sharing of the main BGV secret key, but also a distributed
sharing of the square of the secret key. That was assumed to be done via some other MPC
protocol. The effect of requiring a sharing of the square of the secret key was that even if
there was no need to perform KeySwitching, ciphertexts were 50% bigger than one would
otherwise expect. Here we take a very different approach: we augment the public key with
the KeySwitching data from [GHS12b] and provide an explicit covertly secure key generation
protocol.

Our protocol is covertly secure in the sense that the probability that an adversary can deviate
without being detected is bounded by 1/c, for a positive integer c. The idea behind achieving
covert security is as follows: Each player runs c instances of the basic protocol in parallel, each
with different random seeds, then at the end of the main protocol all bar a random one of the
basic protocol runs are opened, along with the respective random seeds. All parties check that
the opened runs were performed honestly, and if any party finds an inconsistency, the protocol
aborts. If no problem is detected, the parties assume that the single unopened run is correct.
Thus, (intuitively) the adversary can cheat with probability at most 1/c.

5.2.1. Overview. We start by discussing the generation of the main public key pkj in
execution j where j ∈ {1, . . . , c}. To start with, the players generate a uniformly random value
aj ∈ Rq1 . They then each execute the standard BGV key generation procedure, with respect
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The ideal functionality FKeyGen

Generation:
(1) The functionality waits for seeds {si}i∈A from the adversary, and samples a seed si

for every honest player Pi.
(2) It computes ai ← Usi(q1, φ(m)).
(3) It computes ski ← HWT si(h, φ(m)), εi ← DGsi(σ2, φ(m)) and bi ← [a · ski + p · εi]q1 .
(4) It computes b← b1 + · · ·+ bn.
(5) It computes enc′i ← Encpk(−p1 · ski,RCsi(0.5, σ2, φ(m))).
(6) It computes enc′ ← enc′1 + · · ·+ enc′n.
(7) It computes zeroi ← Encpk(0,RCsi(0.5, σ2, φ(m))), and enci ← (ski · enc′) + zeroi.
(8) It leaks ai, bi, enc

′
i, enci to the adversary and waits for either Proceed, Cheat, or Abort.

Proceed: The functionality sends ski, pk = (a, b), epk = (pk, enc) to Pi.
Cheat: On input Cheat, with probability 1− 1/c the functionality leaks NoSuccess and goes

to “Abort”; otherwise:
(1) It leaks the seeds of the honest parties and sends Success to the adversary.
(2) It repeats the following loop:

• It waits for the adversary to input values a∗i , (resp. (sk∗i , b
∗
i ), enc

′
i
∗
, enc∗i ) for

i ∈ A.
• It overwrites ai, (resp. (ski, bi), enc

′
i, enci) for i ∈ A.

• It recomputes a (resp. b, enc′, enc) accordingly.
(3) It waits for Proceed or Abort.

Abort:
(1) The functionality leaks the seeds of the honest parties if it has not already done so.
(2) It then waits for a set S ⊆ A, sends it to the honest players, and aborts.

Figure 5.3. The ideal functionality for key generation.

to the global element aj . Each player Pi chooses a low-weight secret key and then generates an
LWE instance corresponding to that secret key. Following [GHS12b]:

ski,j ← HWT s(h, φ(m)) and εi,j ← DGs(σ2, φ(m)).

Then Pi sets his secret key as ski,j and his “local” public key as (aj , bi,j) where bi,j = [aj · ski,j +
p · εi,j ]q1 .

Note, by a hybrid argument, obtaining n ring-LWE instances for n different secret keys but
the same value of aj is secure if obtaining one ring-LWE instance is secure1. Also note that a key
modulo q1 can be also treated as a key modulo q0, since q0 divides q1 and ski,j has coefficients
in {−1, 0, 1}.

The global public and private key are then set to be pkj = (aj , bj) and skj = sk1,j+· · ·+skn,j ,
where bj = [b1,j + · · · + bn,j ]q1 . This is essentially another BGV key pair, since if εj = ε1,j +
· · ·+ εn,j then

bj =

n∑
i=1

(aj · ski,j + p · εi,j) = aj · skj + p · εj ,

but generated with different distributions for skj and εj , from those of the individual key pairs
above.

The above key generation is then augmented to enable the construction of the KeySwitching
data. Given a public key pkj and a share of the secret key ski,j our method for producing the
extended public key is to produce in turn the following (see Figure 5.4 for the details of how we
create these elements in our protocol):

• enc′i,j ← Encpkj (−p1 · ski,j)
• enc′j ← enc′1,j + · · ·+ enc′n,j .

• zeroi,j ← Encpkj (0)

1In the LWE literature this is called “amortization”.
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• enci,j ← (ski,j · enc′j) + zeroi,j ∈ R2
q1 .

• encj ← enc1,j + · · ·+ encn,j .
• epkj ← (pkj , encj).

Note that enc′i,j is not a valid encryption of −p1 ·ski,j , since −p1 ·ski,j does not lie in the message
space of the encryption scheme. However, because of the dependence on the secret key shares
here, we need to assume a form of circular security: the precise assumption needed is stated in
Subsection 5.2.3. The encryption of zero, zeroi,j , is added on by each player to re-randomise the
ciphertext, preventing an adversary from recovering ski,j from enci,j/enc

′
j . We call the resulting

epkj the extended public key. In [GHS12b] the KeySwitching data encj is computed directly

from sk2
j ; however, in our case parties need the above round-about method since sk2

j is not
available to them.

Finally, players open all bar one of the c executions and check they have been executed
correctly. If all checks pass then the final extended public key epk is output and the players
keep hold of their associated secret key share ski. See Figure 5.4 for full details of the protocol.

The protocol ΠKeyGen

Initialise:
(1) Pi samples uniform ei ← {1, . . . , c} and asks FCommit to broadcast the handle τei ←

Commit(ei) for a commitment to ei.
(2) Pi samples a seed si,j and asks FCommit to broadcast τsi,j ← Commit(si,j).
(3) Pi computes and broadcasts ai,j ← Usi,j (q1, φ(m)).

Stage 1:
(4) All the players compute aj ← a1,j + · · ·+ an,j .
(5) Pi computes ski,j ← HWT si,j (h, φ(m)) and εi,j ← DGsi,j (σ2, φ(m)),

broadcasts bi,j ← [aj · ski,j + p · εi,j ]q1 .
Stage 2:

(6) All the players compute bj ← b1,j + · · ·+ bn,j and set pkj ← (aj , bj)..

(7) Pi computes and broadcasts enc′i,j ← Encpkj (−p1 · ski,j ,RCsi,j (0.5, σ2, φ(m))).
Stage 3:

(8) All the players compute enc′j ← enc′1,j + · · ·+ enc′n,j .

(9) Pi computes zeroi,j ← Encpkj (0,RCsi,j (0.5, σ2, φ(m))).

(10) Pi computes and broadcasts enci,j ← (ski,j · enc′j) + zeroi,j .
Output:

(11) All the players compute encj ← enc1,j + · · ·+ encn,j and set epkj ← (pkj , encj).
(12) Pi calls FCommit with Open(τei ). If any opening failed, the players output the numbers

of the respective players, and the protocol aborts.
(13) All players compute the challenge chall← 1 + ((

∑n
i=1 ei) mod c).

(14) Pi calls FCommit with Open(τsi,j) for j 6= chall. If any opening failed, the players output
the numbers of the respective players, and the protocol aborts.

(15) All players obtain the values committed, compute all the derived values and check
that they are correct.

(16) If any of the checks fail, the players output the numbers of the respective players, and
the protocol aborts. Otherwise, Pi sets
• ski ← ski,chall,
• pk← (achall, bchall), epk← (pk, encchall).

Figure 5.4. The protocol for key generation.

5.2.2. UC Security Proof.

Theorem 5.2. In the FCommit-hybrid model, the protocol ΠKeyGen implements FKeyGen

with computational security against any static adversary corrupting at most n− 1 parties.
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Proof. We build a simulator SKeyGen to work on top of the ideal functionality FKeyGen, such
that the environment cannot distinguish whether it is playing with the protocol ΠKeyGen and
FCommit, or the simulator and FKeyGen. The simulator is given in Figure 5.7.

The procedure CheatSwitch

Pass: Checks were passed for all threads, or there was a successful cheat in earlier stages and
checks now passed for at least all threads except for chall.
• The simulator continues.

Cheat: There was no cheat in previous stages and all checks have now passed except for
those in a single thread j.
• The simulator adds (j, Pi) to a list L, for all players Pi making the check not pass.
• The simulator sends Cheat to FKeyGen, and gets and stores every honest seeds si,chall.
• If the functionality sends NoSuccess:

– If j = chall, it resamples a different chall← {1, . . . , c} \ {chall}.
It continues the simulation according to the protocol.

• If the functionality sends Success: the simulator sets chall = j and continues according
to the protocol.

Abort: In more than one thread checks did not pass (counting also checks in previous stages).
• The simulator adds (j, Pi) to a list L, for all branches j and players Pi making the

check not pass.
• The simulator sends Abort to FKeyGen and it continues the rest of the simulation

according to the protocol.

Figure 5.5. The cheat switch.

The simulator SKeyGen – Initialisation Stage.

Initialise:
• In Step 1 the simulator obtains ei by every corrupt Pi, and broadcasts τei as FCommit

would do. It samples chall uniformly in {1, . . . , c}, and it broadcasts a handle τei for
every honest Pi.

• In Step 2 the simulator sees the random values si,j for i ∈ A.
It inputs {si,chall}i∈A to FKeyGen, therefore obtaining a full transcript of the thread
corresponding to chall.
For the threads j 6= chall, for honest Pi, the simulator samples si,j honestly and
broadcasts a handle τsi,j for every honest Pi for every thread.

• In Step 3, the simulator computes ai,j honestly for i /∈ A and j 6= chall, while it defines
ai,chall for i /∈ A as the values ai obtained from the transcript given by FKeyGen.
It then broadcasts ai,j for honest Pi and waits for broadcasts ai,j by the corrupt
players, and it checks ai,j = Usi,j (q, φ(m)) for all dishonest Pi. For this check the
simulator enters CheatSwitch. If there was a successful cheat on the thread pointed
by chall, the simulator inputs ai,chall to FKeyGen for i ∈ A.

Figure 5.6. The simulator for the key generation functionality.

We now proceed with the analysis of the simulation. Let A denote the set of players
controlled by the adversary. In steps 1 and 2 the simulator sends random handles to the
adversary, as would happen in the real protocol. In steps 3–11 the simulation is perfect for
all the threads where the simulator knows the seeds of the honest players, since those are
generated as in the protocol. In the case that there is no cheating or abortion, the simulation is
also perfect for the thread where the simulator does not know the seeds of the honest players,
since the simulator forwards honest values provided by the functionality. In case of cheating
at the thread determined by chall, the simulator gets the seeds also for the remaining thread
and will replace the honestly precomputed intermediate values ai,chall, ski,chall, bi,chall, enc

′
i,chall,

enci,chall with new values compatible with the deviation of the adversary – the honest values
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The simulator SKeyGen

Stage 1:
• In Step 4 the simulator acts as in the protocol.
• In Step 5 for all the honest seeds that are known by the simulator, the simulator

computes bi,j honestly for i /∈ A.
If the simulator does not know the seeds si,chall for honest Pi, it defines bi,chall for i /∈ A
as the values bi obtained from the transcript given by FKeyGen.
It then broadcasts bi,j for honest Pi and waits for broadcasts bi,j by the corrupt
players. It then checks bi,j = [achall · HWT si,chall(h, φ(m)) + p · RCsi,chall(σ2, φ(m))]q1
for all dishonest Pi. For this check the simulator enters CheatSwitch. If there was a
successful cheat on the thread pointed by chall, the simulator inputs (ski,chall, bi,chall
to FKeyGen for i ∈ A.

Stage 2:
• In Step 6 the simulator acts as in the protocol.
• In Step 7 for all the honest seeds that are known by the simulator, the simulator

computes enc′i,j honestly for i /∈ A.
If the simulator does not know the seeds si,chall for honest Pi, it defines enc′i,chall for

i /∈ A as the values enc′i obtained from the transcript given by FKeyGen.
It then broadcasts enc′i,j for honest Pi and waits for broadcasts enc′i,j by the corrupt

players. It then checks enc′i,j = Encpk(−p1 ·ski,j ,RCsi,j (0.5, σ2, φ(m))) for all dishonest
Pi. For this check the simulator enters CheatSwitch. If there was a successful cheat
on the thread pointed by chall, the simulator inputs enc′i,chall to FKeyGen for i ∈ A.

Stage 3:
• In Step 8, 9 the simulator acts as in the protocol.
• In Step 10 for all the honest seeds that are known by the simulator, the simulator

computes enci,j honestly for i /∈ A.
If the simulator does not know the seeds si,chall for honest Pi, it defines enci,chall for
i /∈ A as the values enci obtained from the transcript given by FKeyGen.
It then broadcasts enci,j for honest Pi and waits for broadcasts enci,j by the corrupt
players. It then checks enci,j = (ski,j · enc′i,j) + zeroi,j for all dishonest Pi. For this
check the simulator enters CheatSwitch. If there was a successful cheat on the thread
pointed by chall, the simulator inputs enci,chall to FKeyGen for i ∈ A.

Figure 5.7. The simulator for the key generation functionality.

computed after a cheat reflect the adversarial behaviour of the real protocol, so a simulated run
is again indistinguishable from a real run of the protocol.

Steps 12, 14 are statistically indistinguishable from a protocol run, since the simulator plays
also the role of FCommit.

Step 15 needs more work: we need to ensure that the success probability in a simulated
run is the same as the one in a real run of the protocol. If the adversary does not deviate,
the protocol succeeds. The same applies for a simulated run, since the simulator goes through
“Pass” at every stage. More in detail, the simulator samples and computes all the values at the
non-challenge threads as in a honest run of the protocol, while values in the challenge thread
are correctly evaluated and sent to the honest players by FKeyGen. If the adversary cheats only
on one thread, in a real execution of the protocol the adversary succeeds in the protocol with
probability 1/c; the same holds in a simulated run, since the simulator goes through Cheat in
CheatSwitch once and with probability 1/c the functionality leaks Success, and the simulation
will not abort. If the adversary deviates on more than one branch (considering all stages), both
the real protocol and the simulation will abort at step 15.

Finally, if the protocol aborts due to failure at the stage of opening commitments, both
the functionality and the players output the number of corrupted players who failed to open
their commitments. If the protocol aborts at step 15, the output is the number of players who
deviated in threads other than chall in both the functionality and the protocol. �
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The simulator SKeyGen – Output Stage

Output:
• Step 11 is performed according to the protocol.
• The simulator samples ei for i /∈ A uniformly such that 1+((

∑n
i=1 ei) mod c) = chall.

• Step 12 is performed according to the protocol, but the simulator opens τei revealing
the values ei for all honest Pi, and if the check fails the simulator sends Abort to
FKeyGen and inputs the set of all players that failed upon opening.

• Step 13 is performed according to the protocol.
• Step 14 is performed according to the protocol, and if the check fails the simulator

sends Abort to FKeyGen and inputs the set of all players that failed upon opening.
• Step 15 is performed according to the protocol, and the simulator defines

S = {i ∈ A | (j, Pi) ∈ L; j ∈ {1, . . . , c}; j 6= chall} ,
i.e. the set of corrupt players who cheated at any thread different from chall.

– If S 6= ∅ (i.e. cheats at a thread which is going to be opened), the simulator
sends Abort to FKeyGen and inputs S.

– If S = ∅ (i.e. successful or no cheats), the simulator sends Proceed to FKeyGen.
• Step 16 is performed according to the protocol.

Figure 5.8. The simulator for the key generation functionality.

Recall that FCommit is a standard functionality for commitment. FKeyGen simply generates
a key pair with a distribution matching what we sketched above, and then sends the values
ai, bi, enc

′
i, enci for every i to all parties, and sends shares of the secret key to the honest players.

5.2.3. Semantic Security Proof. Here we prove the semantic security of the cryptosys-
tem resulting from an execution of FKeyGen, based on the ring-LWE problem and a form of
KDM security for quadratic functions. The ring-LWE assumption we use takes an extra param-
eter h, as our scheme chooses binary secret keys with low Hamming weight for better efficiency
and parameter sizes, but note that the results here also apply to secrets drawn from other
distributions.

Definition 5.3 (Decisional Ring Learning With Errors Assumption). The single sample
decisional ring-LWE assumption RLWEq,σ2,h states that

(a, a · s+ e)
c
≈ (a, u)

where s← HWT (h, φ(m)), e← DG(σ2, φ(m)) and a, u are uniform over Rq.

The KDM security assumption, below, can be viewed as a distributed extension to the usual
key switching assumption for FHE schemes. In this case we need ‘encryptions’ of quadratic
functions of additive shares of the secret key to remain secure. Note that whilst it is easy to
show KDM security for linear functions of the secret [BV11], it is not known how to extend
this to the functions required here without increasing the length of ciphertexts.

Definition 5.4 (KDM Security Assumption). If ski ← HWT (h), sk =
n−1∑
i=0

ski and f is any

degree 2 polynomial then

(a, a · sk + p · e+ f(sk0, . . . , skn−1))
c
≈ (a, a · sk + p · e)

where a, u← U(q, φ(m)), e← DG(σ2, φ(m)).

The following lemma states that distinguishing any number of ‘amortized’ ring-LWE samples
with different, independent, secret keys but common first component a from uniform is as hard
as distinguishing just one ring-LWE sample from uniform. An analogous statement was proven
for the (standard) LWE setting with n = 3 in [PVW08]; here we need a version with ring-LWE
for any n.
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Lemma 5.5 (Adapted from [PVW08, Lemma 7.6]). Suppose a, ui ← U(q, φ(m)), ski ←
HWT (h, φ(m)) and ei ← DG(σ2, φ(m)) for i = 0, . . . , n− 1, n ∈ N. Then

{(a, a · ski + ei)}i
c
≈ {(a, ui)}i

under the single sample ring-LWE assumption RLWEq,σ2,h.

Proof. Suppose an adversary A can distinguish between the above distributions with non-
negligible probability. We construct an adversary B that solves the RLWE problem. Given a
challenge (a, b) from the RLWE oracle, B sets b0 = b and bi = a · ski + ei for i = 1, . . . , n − 1,
where ei ← DG(σ2, φ(m)), ski ← HWT (h, φ(m)). B sends all pairs (a, bi) to A and returns the
output of A in response to the challenge.

Since the values (a, bi) for i = 1, . . . , n − 1 are all valid amortized ring-LWE samples, the
only difference between the view of A and that of a real set of inputs is b0, and so the advantage
of B in solving RLWEq,σ2,h is exactly that of A in solving the amortized ring-LWE problem with
n samples. �

Theorem 5.6. If the functionality FKeyGen is used to produce a public key epk and secret
keys ski for i = 0, . . . , n− 1 then the resulting cryptosystem is semantically secure based on the
hardness of RLWEq1,σ2,h and the KDM security assumption.

Proof.
Suppose there is an adversary A that can interact with FKeyGen and distinguish the public

key (pk, epk) from uniform. We construct an algorithm B that distinguishes amortized ring-LWE
samples from uniform. By Lemma 5.5 this is at least as hard as breaking single sample ring-
LWE. If the public key is pseudorandom, then semantic security of encryption easily follows, as
ciphertexts are just ring-LWE samples. Note that we only consider a non-cheating adversary –
if A cheats then it can trivially break the scheme with (non-negligible) probability 1/c.

The challenger gives B the values ac, bc,0, . . . , bc,n−1. B must now simulate an execution of
FKeyGen with A to determine whether the challenge is uniform or of the form (ac, ac · ski + ei)
for ski ← HWT (h, φ(m)) and ei ← DG(σ2, φ(m)).

To start with, the simulator receives the adversary’s seeds si for every corrupt player i ∈ A.
It simulates the values ai, bi, enc

′
i, enci (for all i) that are leaked to the adversary in FKeyGen:

for corrupt players it simply computes these values according to FKeyGen using the adversary’s
seeds, while for the honest players’ values, it uses the challenge ac, bc,0, . . . , bc,n−1. First it scales
the challenge by p, so that it takes the form (ac, ac · ski + p · ei), if they are genuine RLWE
samples. Since p is coprime to q the new distribution is the same as the one of the original
challenge.

Now B calculates uniform consistent shares ac,i, for every honest player Pi, of ac, and sends
A the pairs ac,i, bc,i. If the challenge values are amortized ring-LWE samples, then these are
consistent with the pairs (ai, bi) computed by FKeyGen, since ai is uniform and bi = ai · ski + ei.

Next, B must provide A with simulations of players’ contributions to the key-switching data
enc′i, enci for all honest players Pi. For both of these sets of values, B simply re-randomises the
pair (ac, bc) and sends this to A. This can be done by, for example, computing an encryption
of zero under the public key (ac, bc) (where bc =

∑
i bc,i). Notice that enc′i is just an encryption

of −p1 · ski under the public key (a, b), and so by the KDM security assumption it is (perfectly)
indistinguishable from a re-randomised version of (a, b). For enci, recall that FKeyGen computes
enci = ski · enc′ + zeroi. Now writing zeroi = (a · vi + p · e0,i, b · vi + p · e1,i) and enc′ =
(a · v + p · e0, b · v + p · e1 − p1 · sk), we see that

enci = (a · v · ski + a · vi + p · (e0 · ski + e0,i), b · v · ski + b · vi + p · (e1 · ski + e1,i)− p1 · sk · ski)

=

(
a · (v · ski + vi)︸ ︷︷ ︸

a′i

+p · (e0 · ski + e0,i)︸ ︷︷ ︸
e′0,i

, a · (v · ski + vi)︸ ︷︷ ︸
a′i

·sk + p · (e1 · ski + e1,i + e)︸ ︷︷ ︸
e′1,i

−p1 · sk · ski

)

=
(
a′i + p · e′0,i, a′i · sk + p · e′1,i − p1 · sk · ski

)
.
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Notice that the first component of enci corresponds to the second half of a ring-LWE sample
(a, a · (v · ski + vi) + p · e0,i) with secret v · ski + vi. The second component of enci corresponds
to a ring-LWE sample with secret sk and first half a′i, with an added quadratic function of the
key −p1 · sk · ski. By the KDM security assumption, this is indistinguishable from a genuine
ring-LWE sample, so enci can also be perfectly simulated by re-randomising (ac, bc).

To finish the simulated execution of FKeyGen, B sends A shares of the secret key for all
Pi where i ∈ A (i.e. all dishonest players), by sampling randomness using the seeds that
were provided to B at the beginning. B then waits for A to give an answer and returns this
in response to the challenger. Notice that throughout the simulation, all values passed to A
were ring-LWE samples derived from the challenge (ac, b0,c, . . . , bn−1,c). We showed that if the
challenge is an amortized ring-LWE sample then A’s input is indistinguishable from the output
of FKeyGen, whereas if the challenge is uniform then so is A’s input. Therefore if A is successful
in distinguishing the resulting public key from uniform then A must have solved the ring-LWE
problem.

�

5.3. EncCommit

The sub-protocol ΠEncCommit replaces the ΠZKPoPK protocol from [DPSZ12]. We introduce
the functionality FSHE and later describe the details of the sub-protocol ΠEncCommit, which
implements FSHE given access to FCommit and FKeyGen.

The ideal functionality FSHE

Usage: The functionality is split into a one-run stage which computes the key material, and
a stage which can be accessed several times and is designed to replace the zero-knowledge
protocols in [DPSZ12].

KeyGen: On input KeyGen the functionality acts as a copy of FKeyGen.
Notice that all the variables used during this call are available for later use.

EncCommit: On input EncCommit the functionality does the following.
Initialise: Denote by A the set of indices of corrupt players. On input Start by all

players, sample, at random, seeds {si}i/∈A and wait for corrupted seeds {si}i∈A from
the adversary.

Computation:
(1) It sets mi ← PRFsi subject to condition cond.
(2) It sets ci = Encpk(mi,RCsi(0.5, σ2, φ(m))) for each player Pi.
(3) It gives {ci}i/∈A to the adversary, and waits for signal Deliver, Cheat or Abort.

Delivery: The functionality sends mi, {cj}j≤n to player Pi.
Cheat: The functionality gives {si}i/∈A to the adversary, then it decides to do one of

the following things:
• With probability 1/c it sends Success to the adversary, waits for {mi, ci}i∈A,

and outputs mi, {cj}i≤n to player Pi.
• Otherwise it sends NoSuccess to the adversary, and goes to abort.

Abort: The functionality waits for the adversary to input S ⊆ A, and outputs S to all
players.

Figure 5.9. The ideal functionality for key generation and ΠEncCommit.

In this section we consider a covertly secure, rather than actively secure, variant; this means
that players controlled by a malicious adversary succeed in deviating from the protocol with a
probability bounded by 1/c. In our experiments we pick c = 5, 10 and 20. In Section 6.3 we
present an actively secure variant of this protocol.

The sub-protocol assumes that players have agreed on the key material for the encryption
scheme, i.e. ΠEncCommit runs in the FKeyGen-hybrid model. The protocol ensures that a party
outputs a validly created ciphertext containing an encryption of some random message m,
where the message m is drawn from a distribution satisfying condition cond. This is done by
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committing to seeds and using the cut-and-choose technique, similarly to the key generation
protocol. The condition cond could either be “uniformly generated from Rp”, or “uniformly
generated from Fp” (i.e. a “diagonal” element in the SIMD representation).

Protocol ΠEncCommit

Usage: The specific distribution of the message is defined by the input parameter cond. The
output is a single message mi private to each player, and a public ciphertext ci from player
Pi. The protocol runs in two phases: a commitment phase, and an opening phase.

KeyGen: The players execute ΠKeyGen to obtain ski, pk, and epk.
Commitment Phase:

(1) Pi samples a uniform ei ← {1, . . . , c}, and queries Commit(ei) to FCommit, which
broadcasts a handle τei .

(2) For j = 1, . . . , c:
(a) Pi samples si,j and queries Commit(si,j) to FCommit, which broadcasts τsi,j .
(b) Pi generates mi,j according to cond using PRFsi,j .
(c) Pi computes and broadcasts ci,j ← Encpk(mi,j) using PRFsi,j to generate the

randomness.
(3) Pi calls FCommit with Open(τei ). All players get ei. If any opening failed, the players

output the numbers of the respective players, and the protocol aborts.
(4) All players compute chall← 1 + ((

∑n
i=1 ei) mod c).

Opening Phase:
(5) Pi calls FCommit with Open(τsi,j) for all j 6= chall so that all players obtain the value

si,j for j 6= chall. If any opening fails, the players output the numbers of the respective
players, and the protocol aborts.

(6) For all j 6= chall and all i′ ≤ n, the players check whether ci′,j was generated correctly
using si′,j . If not, they output the numbers of the respective players i′, and the
protocol aborts.

(7) Otherwise, every player Pi stores {ci′,chall}i′≤n and mi,chall.

Figure 5.10. Protocol that allows ciphertexts to be used as commitments for plaintexts.

Theorem 5.7. In the (FCommit,FKeyGen)-hybrid model, the protocol ΠEncCommit imple-
ments FSHE with computational security against any static adversary corrupting at most n− 1
parties.

Proof. We construct a simulator SSHE (see Figure 5.11) working on top of FSHE such that
the environment cannot distinguish whether it is playing with the real protocol ΠEncCommit and
FKeyGen or with FSHE and SSHE.

Calls to FKeyGen are simulated as in SKeyGen. We now focus on the commitment phase.
Let A be the set of indices of corrupted players. The simulator starts assuming that the

adversary will behave honestly. It samples a uniform j0 ← {1, . . . , c} and seeds {si,j}i/∈A,j 6=j0 .
If the adversary does not deviate, then round j0 will remain unopened: otherwise the simulator
has to adjust this. Round j is simulated as follows. First, the simulator gets corrupted seeds
si,j for i ∈ A when the adversary commits to them in step 2a. It returns random handles τ si,j
on behalf of each honest player Pi.

If j 6= j0, the simulator engages with the adversary in a normal run of steps 2b to 2c using
seeds si,j for honest player Pi. Since the simulator knows the corrupt seeds of the current round
j, it can check whether the adversary behaved honestly. If not, then the simulator stores index
j in the cheating list.

If j = j0, the simulator checks again whether the adversary computed the right encryptions
{ci}i∈A. If it did not, the simulator stores j0 in the cheating list. Then, the simulator calls
EncCommit to FSHE on seeds {si,j0}i∈A and gets back {ci}i/∈A, which are the values computed
by the functionality. It then sets ci,j0 ← ci and passes them onto the adversary in step 2c.

Once the last round is finished, the simulator checks the cheating list. There are three
possibilities:
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The simulator SSHE

KeyGen: SSHE acts as SKeyGen, except that it calls FSHE on query KeyGen, when SKeyGen

would have called FKeyGen.
Commitment Phase:

• The simulator chooses random j0 ← {1, . . . , c} and seeds {si,j}i/∈A,j 6=j0 .
• Acting like the FCommit functionality, in response to query in step 1 and 2a, for
j = 1, . . . , c the simulator samples si,j according to the protocol for i /∈ A and returns
random handles {τei }i≤n, {τsi,j}i≤n.

• For j = 1, . . . , c, the simulator does the following:
– If j 6= j0, it performs steps 2b and 2c according to protocol using honest seeds
si,j for each i /∈ A.

– If j = j0, it calls FSHE on query EncCommit on corrupted seeds {si,j0}i∈A and
gets back honest encryptions {ci}i/∈A. It then sets ci,j0 ← ci for each i /∈ A.

• In step 2c, the simulator receives encryptions c∗i,j for each i ∈ A and j ∈ {1, . . . , c}.
It generates mi,j subject to cond, and ci,j ← Encpk(mi,j), and checks if ci,j = c∗i,j . If
the equality does not hold, it stores j in a (cheating) list.

• The simulator reads the cheating list. There are three possibilities:
– The list is empty. The simulator sets chall← j0.
– The list contains only one index j1. The simulator sends Cheat to FSHE and

gets {si}i/∈A back. It then sets si,j0 ← si for each i /∈ A.
∗ If the functionality returns Success, the simulator sets chall← j1.
∗ If the functionality returns NoSuccess, the simulator samples chall ←
{1, . . . , c} \ {j1}.

– The list contains at least two indices. The simulator sends Abort to FSHE, gets
{si}i/∈A and sets si,j0 ← si for each i /∈ A, and chall← j0.

• For all honest Pi the simulator sets ei uniformly in 1, . . . , c with the constraint 1 +
((
∑n
i=1 ei) mod c) = chall.

• In step 3, the simulator opens the handle τei to the freshly defined value ei, for all
honest Pi. If the adversary fails to open some of the commitments of corrupted
players, the simulator sends Abort and the numbers of the respective players to FSHE,
and it stops.

• Step 4 is performed according to the protocol.
Opening Phase:

• In step 5, the simulator opens the handle τsi,j to si,j for all honest players i /∈ A
and j 6= chall. If the adversary fails to open some of the commitments of corrupted
players, the simulator sends Abort and the numbers of the respective players to FSHE,
and it stops.

• If the cheating list is empty, the simulator sends Deliver to FSHE.
• If the functionality returned Success earlier, the simulator inputs {mi,chall, c

∗
i,chall}i∈A

to the functionality.
• If the functionality returned NoSuccess, or if the cheating list contains at least two

indices, the simulator inputs to the functionality the number of players i ∈ A whose
c∗i,j were computed incorrectly for some j 6= chall.

Figure 5.11. The simulator for FSHE.

• The list is empty. I.e. the adversary behaved honestly. The simulator sets chall← j0,
and sends Deliver to the functionality if all commitments are successfully opened. The
output of FSHE and what the adversary has already seen will be consistent since FSHE

was called in round j0 with the right seeds {si,j0}i∈A.
• The list contains only one index j1. In this case the simulator sends Cheat and gets in

return seeds {si}i/∈A used by the functionality. It sets si,j0 ← si for each honest player
Pi. It then waits for the answer.

– If the functionality returns Success, the simulator has to make the adversary be-
lieve that round j1 will remain unopened. It sets chall ← j1. If all commitments
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are successfully opened, it sends {mi,j1 , ci,j1}i∈A to the functionality in order to
make consistent the players’ outputs and what the adversary has already seen.

– If it returns NoSuccess, the simulator has to make the adversary believe that round
j1 will be opened. Therefore it samples chall← {1, . . . , c} \ {j1}.

• The list contains at least two indices j1, j2. In this case the real protocol would result
in abort, so the simulator sends Abort to the functionality and sets chall← j0.

Later the simulator generates the value ei for each honest player such that

1 +

((
n∑
i=1

ei

)
mod c

)
= chall.

This ensures that once the challenge is computed, it will specify a round in the same fashion as
in a true protocol run. Moreover, opening τ ei to (any) ei does not give any hint to the adversary
as ti whether it is playing in a real run of the protocol or in a simulated one.

In the opening phase, the simulator gives {ei}i/∈A and honest share {si,j}i/∈A,j 6=chall to the
adversary, and if there was an unsuccessful cheating attempt, then it also sends Abort on behalf
of each honest player.

It is clear, from the construction of FSHE, that all the messages generated by the simulator
are indistinguishable from those of a real run of the protocol. The simulator does the same
computations, except in round j0 where the computation is done by the functionality, and the
values are then passed onto the simulator, which forwards them to the adversary.

Finally, if the protocol aborts due to failure at opening commitments, both the functionality
and the players output the numbers of corrupted players who failed to open their commitments.
If the protocol aborts at step 6, the output is the numbers of players who deviated in threads
other than chall in both the functionality and the protocol. �
FSHE offers the same functionality as FKeyGen but can in addition generate correctly formed

ciphertexts where the plaintext satisfies a condition cond as explained above, and where the
plaintext is known to a particular player (even if he is corrupt). Of course, by using the actively
secure version of ΠEncCommit from 6.3, one would get a version of FSHE where the adversary is
not allowed to attempt cheating.
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5.4. MAC Checking

In this section we present our method for checking MACs of partially opened values without
revealing the underlying MAC key. This procedure is mainly useful in the online phase; however,
we shall also use it to verify the output of the offline phase.

We assume some value a has been 〈·〉-shared and partially opened, which means that players
have revealed shares of the a but not of the associated MAC value γ, which is still additively
shared. Since there is no guarantee that a is correct, we need to check that γ = αa where α
is the global MAC key that is also additively shared. In [DPSZ12], this was done by having
players commit to the shares of the MAC, then open α, and check everything in the clear. This
implies that other shared values become useless because the MAC key becomes public, and the
adversary can manipulate them as he desires.

So, the target is to avoid opening α. Observe that since a is public, the value γ − αa is
a linear function of shared values γ, α, so players can compute shares in this value locally and
can then check if it is 0 without revealing information about α. As in [DPSZ12], players
can optimise the cost of this by checking many MACs in one go, by taking a random linear
combination of a and γ-values and checking only the results of this. The full protocol is given
in Figure 5.12; it is not intended to implement any functionality – it is just a procedure that
can be called in both the offline and online phases.

Protocol MACCheck

Usage: Each player has input αi and (γ(aj)i) for j = 1, . . . , t. All players have a public set of
opened values {a1, . . . , at}; the protocol either succeeds or outputs failure if an inconsistent
MAC value is found.

MACCheck({a1, . . . , at}):
(1) Pi samples a seed si and asks FCommit to broadcast τsi ← Commit(si).
(2) Pi calls FCommit with Open(τsi ) and all players obtain sj for 1 ≤ j ≤ n.
(3) Players set s← s1 + . . .+ sn.
(4) Players sample a random vector r = Us(p, t).

Note that all players obtain the same vector as they have agreed on the seed s.
(5) Each player computes the public value a←

∑t
j=1 rj · aj .

(6) Pi computes γi ←
∑t
j=1 rj · γ(aj)i, and σi ← γi − αi · a.

(7) Pi asks FCommit to broadcast τσi ← Commit(σi).
(8) Pi calls FCommit with Open(τσi ), and all players obtain σj for 1 ≤ j ≤ n.
(9) If σ1 + · · ·+ σn 6= 0, the players output ∅ and abort.

Figure 5.12. Method to check MACs on partially opened values.

Lemma 5.8. The protocol MACCheck is correct, i.e. it accepts if all the values aj and the
corresponding MACs are correctly computed. Moreover, it is sound, i.e. it rejects except with
probability 2/p in case at least one value or MAC is not correctly computed.

Proof.
We here inspect the correctness and the soundness error of the MACCheck protocol. In

order to understand the probability of an adversary being able to cheat, we design the following
security game.

(1) The challenger generates the secret key α← α1 + · · ·+ αn and MACs γ(aj)i ← α · aj
and sends messages a1, . . . , at to the adversary.

(2) The adversary sends back messages a′1, . . . , a
′
t.

(3) The challenger generates random values r1, . . . , rt ← Fp and sends them to the adver-
sary.

(4) The adversary provides an error ∆.

(5) Set a ←
∑t

j=0 rja
′
j , γi ←

∑t
j=0 rjγ(aj)i, and σi ← γi − αi · a. Now, the challenger

checks that σ1 + · · ·+ σn = ∆
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The adversary wins the game if there is an i for which a′i 6= ai and the final check goes
through.

The second step in the game where the adversary sends the a′i’s models the fact that cor-
rupted players can choose to lie about their shares of values opened during the protocol execu-
tion. ∆ models the fact that the adversary is allowed to introduce errors on the macs.

Now, we check the probability of winning the game if the ri’s are randomly chosen. If the
check goes through, the following equalities hold:

∆ =

n∑
i=1

σi =

n∑
i=1

(γi − αi · a)

=

n∑
i=1

 t∑
j=1

rj · γ(aj)i − αi ·
t∑

j=1

rj · a′j


=

n∑
i=1

 t∑
j=1

(
rj · γ(aj)i − αi · rj · a′j

)
=

t∑
j=1

(
rj ·

n∑
i=1

(
γ(aj)i − αi · a′j

))

=
t∑

j=1

rj ·
(
α · aj − α · a′j

)
= α ·

t∑
j=1

rj ·
(
aj − a′j

)

So, the following equality holds:

α ·
t∑

j=0

rj(a
′
j − aj) = ∆. (5.1)

First, if
∑t

j=0 rj(a
′
j − aj) 6= 0, then α = ∆/

∑t
j=0 rj(a

′
j − aj). This implies that being able to

pass the check is equivalent to guessing α. However, since the adversary has no information
about α, this happens with probability 1/|Fp|. What is left is to argue that

∑t
j=0 rj(a

′
j−aj) = 0

also happens with very low probability. This can be seen as follows: define µj := (a′j − aj) and

µ := (µ1, . . . , µt), r := (r1, . . . , rt). Now, fµ(r) := r · µ =
∑t

j=0 rjµj defines a linear mapping,

which is not trivial, since at least one µj 6= 0. Therefore, dim(ker(fµ)) = t− 1 (from the rank-
nullity theorem). Also, since r is random and the adversary does not know r when choosing the
a′i’s, the probability of r ∈ ker(fµ) is |Ft−1

p |/|Ftp| = 1/|Fp|. It follows that the total probability
of winning the game is at most 2/|Fp|.

For correctness, notice that Equation 5.1 holds with probability one if a′j = aj and ∆ = 0

(honest prover). �

5.5. Offline Protocol

The offline phase produces preprocessed data for the online phase (where the secure com-
putation is performed). To ensure security against active adversaries the MAC values of any
partially opened value need to be verified. We use the above method, which overcomes some
limitations of the corresponding method from [DPSZ12].

The offline phase itself runs two distinct sub-phases, described below. To start with, a BGV
key has been distributed according to the key generation procedure described earlier, as well as
the shares of a secret MAC key and an encryption cα of the MAC key as above. Let the output
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The functionality FPREP

Let A be the set of indices of corrupted players. Symbols in bold denote vectors in (Fp)k. Arithmetic
is component-wise.

Initialise: On input (Start, p) from honest players and the adversary, the functionality sets
the internal flag BreakDown to false and then it does the following:
(1) For i ∈ A, the functionality accepts shares αi from the adversary, and it samples

uniform αi for each i /∈ A. Then the functionality sets α← α1 + · · ·+ αn.
(2) The functionality waits for signal Abort, Proceed or Cheat from the adversary.
(3) If it receives Proceed, the functionality outputs αi to Pi.
(4) Otherwise, and if the functionality did not abort in Cheat, it outputs the adversary’s

contribution ∆i to Pi.
Computation: On input DataGen from all honest players and the adversary, and only if

the functionality received Proceed (or BreakDown is true), it executes the data generation
procedures specified in Figure 5.14.

Macro Angle(v1, . . . ,vn,∆γ , k): The following is run by the functionality at several points
to create representations 〈·〉.
(1) The functionality gets {γi}i∈A from the adversary.
(2) Let v = v1 + · · ·+ vn, set γ(v)← α · v + ∆γ .
(3) It samples γi(v)← (Fp)k for i /∈ A, subject to γ(v) =

∑n
i γ(v)i.

(4) It returns (γ(v)1, . . . , γ(v)n).
Cheat: The functionality chooses to do either one of the following:

• It sends, with probability 1/c, Success to the adversary and sets the internal flag
BreakDown to true.
• Otherwise, it sends NoSuccess to the adversary and players, and goes to “Abort”.

Abort: The functionality waits for S ⊆ A from the adversary and then outputs S to all
players.

Figure 5.13. MAC generation and covert procedures to generate auxiliary data.

of the offline phase consist of at least nI input tuples, nm multiplication triples, ns squaring
tuples and nb shared bits.

In the first sub-phase, called the tuple-production sub-phase, players over-produce the vari-
ous multiplication and squaring tuples, plus the shared bits. These are then “sacrificed” in the
tuple-checking phase so as to create at least nm multiplication triples, ns squaring tuples and nb
shared bits. In particular, in the tuple-production phase players produce (at least) 2 ·nm multi-
plication tuples, 2 · ns + nb squaring tuples, and nb shared bits. Tuple-production is performed
by following the protocol in Figure 5.16 and Figure 5.17.
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The functionality FPREP (continued)

Let A be the set of indices of corrupted players. Symbols in bold denote vectors in (Fp)k. Arithmetic
is component-wise.

Input Production: On input DataType = (InputPrep, nI),
(1) The functionality chooses random values I = {r(i) ∈ (Fp)nI | i /∈ A}.
(2) It accepts from the adversary corrupted values {r(i) ∈ (Fp)nI | i ∈ A}, corrupted

shares {r(i)k ∈ (Fp)nI | k ∈ A, i ≤ n}, and offset for data and MACs {∆(i)
r ,∆

(i)
γ ∈

(Fp)nI | i ≤ n}. Then it does the following:

(a) Sample honest shares {r(i)k | k /∈ A, i ≤ n} subject to r(i) + ∆
(i)
r =

∑n
k=1 r

(i)
k .

(b) Run macro Angle(r
(i)
1 , . . . , r

(i)
n ,∆

(i)
γ , nI), for i ≤ n.

(c) Output {r(i), (r(j)i , γi(r
(j)))j≤n} to Pi, or if BreakDown is true, output adver-

sary’s contribution ∆i to Pi.
Multiplication Triples: On input DataType = (Triples, nm),

(1) The functionality chooses 2 · nm honest shares I = {(ai,bi) ∈ (Fp)2·nm | i /∈ A}.
(2) It accepts corrupted shares {(ai,bi, ci) ∈ (Fp)3·nm | i ∈ A} and MAC offsets

{(∆(a)
γ ,∆

(b)
γ ,∆

(c)
γ ) ∈ (Fp)3·nm} from the adversary. It performs the following:

(a) Set c← (a1 + · · ·+ an) · (b1 + · · ·+ bn).
(b) Compute a set of honest shares {ci | i /∈ A} subject to c =

∑n
i=1 ci.

(c) Run the macros:

Angle(a1, . . . ,an,∆
(a)
γ , nm),

Angle(b1, . . . ,bn,∆
(b)
γ , nm),

Angle(c1, . . . , cn,∆
(c)
γ , nm).

(d) Output {(ai, γi(a)), (bi, γi(b)), (ci, γi(c))} to Pi, or if BreakDown is true, out-
put adversary’s contribution ∆i to Pi.

Squaring Tuples: On input DataType = (Squares, ns),
(1) The functionality chooses N = ns honest shares I = {ai ∈ (Fp)ns | i /∈ A}.
(2) It accepts corrupted shares {(ai, si) ∈ (Fp)2·ns | i ∈ A} and MAC offsets

{(∆(a)
γ ,∆

(s)
γ ) ∈ (Fp)2·ns} from the adversary. It does the following:

(a) Set s← (a1 + · · ·+ an) · (a1 + · · ·+ an).
(b) Compute a a set of honest shares {si | i /∈ A} subject to s =

∑n
i=1 si.

(c) Run the macro Angle(a1, . . . ,an,∆
(a)
γ , ns) and Angle(s1, . . . , sn,∆

(s)
γ , ns).

(d) Output {(ai, γi(a)), (si, γi(s))} to Pi, or if BreakDown is true, output adver-
sary’s contribution ∆i to Pi.

Shared Bits: On input DataType = (Bits, nb),

(1) It gets shares {bi ∈ (Fp)nb | i ∈ A} and MAC offsets {∆(b)
γ ∈ (Fp)nb} from the

adversary and does the following:
(a) Uniformly sample nb honest shares I = {bi ∈ (Fp)nb | i /∈ A} subject to the

condition
∑
i bi ∈ {0, 1}nb .

(b) Run the macro Angle(b1, . . . ,bn,∆
(b)
γ , nb).

(c) Output (bi, γi(b)) to Pi, or if BreakDown is true, output adversary’s contribu-
tion ∆i to Pi.

Figure 5.14. Operations to generate auxiliary data for the online phase.
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Protocol Reshare

Usage: Input: cm, where cm = Encpk(m) is a public ciphertext and a parameter enc, where
enc = NewCiphertext or enc = NoNewCiphertext.

Output: a share mi of m to each player Pi; if enc = NewCiphertext, a ciphertext
c′m. The idea is that cm could be a product of two ciphertexts, which Reshare converts to
a “fresh” ciphertext c′m. Since Reshare uses distributed decryption (that may return an
incorrect result), it is not guaranteed that cm and c′m contain the same value, but it is
guaranteed that

∑
i mi is the value contained in c′m.

Reshare(cm, enc):
(1) The players run FSHE on query EncCommit(Rp) so that Pi obtains plaintext fi and

all players obtain cfi , an encryption of fi.
(2) The players compute cf ← cf1 + · · ·+ cfn , and cm+f ← cm + cf . Let f = f1 + · · ·+ fn

(notice that no party can compute f).
(3) The players invoke DistDec to decrypt cm+f and thereby obtain m + f .
(4) P1 sets m1 ←m + f − f1, and each player Pi (i 6= 1) sets mi ← −fi.
(5) If enc = NewCiphertext, all players set c′m ← Encpk(m + f) − cf1 − · · · − cfn , where a

default value for the randomness is used when computing Encpk(m + f).

Figure 5.15. The protocol for sharing m ∈ Rp on input cm = Encpk(m).

Procedure DataGen

Input Production: This produces at least nI · n shared values ri,j for 1 ≤ i ≤ nI and
1 ≤ j ≤ n such that Pj holds the actual value ri,j and all other players hold a sharing of
this value only.
(1) For j ∈ {1, . . . , n} and k ∈ {1, . . . , d2 · nI/me}:

(a) Pj generates r ∈ Rp.
(b) Pj computes c← Encpk(r) and broadcasts the ciphertext to all players.
(c) The players execute Reshare(c,NoNewCiphertext) so that Pi gets share ri of r.
(d) The players compute cγ(r) ← cr · cα.
(e) The players execute Reshare(cγ(r),NoNewCiphertext). to obtain shares γ(r)i.
(f) Pi decomposes the plaintext elements ri and γ(r)i into their m/2 slot values

via the FFT and locally stores the resulting data.
(g) Pj does the same with r to obtain the values r(k−1)·m/2+i,j for i = 1, . . . ,m/2.

Triples: This produces at least 2 · nm 〈·〉-shared values (aj , bj , cj) such that cj = aj · bj .
(1) For k ∈ {1, . . . , d4 · nm/me}:

(a) The players run FSHE on query EncCommit(Rp) so that Pi obtains plaintext ai
and all players obtain cai an encryption of ai.

(b) The players compute ca ← ca1 + · · ·+ can We define a = a1 + · · ·+an, although
no party can compute a.

(c) The players run FSHE on query EncCommit(Rp) so that Pi obtains plaintext bi
and all players obtain cbi

an encryption of bi.
(d) The players compute cb ← cb1 + · · ·+cbn We define b = b1+ · · ·+bn, although

no party can compute b.
(e) The players compute ca·b ← ca · cb.
(f) The players execute Reshare(ca·b,NewCiphertext) so that Pi obtains the share ci

and all players obtain a ciphertext cc encrypting the plaintext c = c1+ · · ·+cn.
(g) The players compute cγ(a) ← ca · cα, cγ(b) ← cb · cα and cγ(c) ← cc · cα.
(h) The players execute:

Reshare(cγ(a),NoNewCiphertext),
Reshare(cγ(b),NoNewCiphertext), and
Reshare(cγ(c),NoNewCiphertext)
to obtain shares γ(a)i, γ(b)i and γ(c)i.

(i) Pi decomposes the various plaintext elements into their m/2 slot values via the
FFT and locally stores the resulting m/2 multiplication triples.

Figure 5.16. Production of tuples and shared bits.
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Procedure DataGen

Squares: This produces at least (2 · ns + nb) 〈·〉-shared values (aj , bj) such that bj = aj · aj .
(1) For k ∈ {1, . . . , d2 · (2 · ns + nb)/me}:

(a) The players run FSHE on query EncCommit(Rp) so that Pi obtains plaintext ai
and all players obtain cai

an encryption of ai.
(b) The players compute ca ← ca1 + · · ·+ can We define a = a1 + · · ·+an, although

no party can compute a.
(c) The players compute ca2 ← ca · ca.
(d) The players execute Reshare(ca2 ,NewCiphertext) so that Pi obtains the share bi

and all players obtain a ciphertext cb encrypting the plaintext b = b1+· · ·+bn.
(e) The players compute cγ(a) ← ca · cα and cγ(b) ← cb · cα.
(f) The players execute:

Reshare(cγ(a),NoNewCiphertext), and Reshare(cγ(b),NoNewCiphertext)
to obtain shares γ(a)i and γ(b)i.

(g) Pi decomposes the various plaintext elements into their m/2 slot values via the
FFT and locally stores the resulting m/2 squaring tuples.

Bits: This produces at least nb 〈·〉-shared values bj such that bj ∈ {0, 1}.
(1) For k ∈ {1, . . . , d2 · nb/me+ 1}:a

(a) The players run FSHE on query EncCommit(Rp) so that Pi obtains plaintext ai
and all players obtain cai an encryption of ai.

(b) The players compute ca ← ca1
+ · · ·+ can

We define a = a1 + · · ·+an, although
no party can compute a.

(c) The players compute ca2 ← ca · ca.
(d) The players invoke protocol DistDec to decrypt ca2 and thereby obtain s = a2.
(e) If any slot position in s is equal to zero then set it to one. .
(f) A fixed square root t of s is taken, say the one for which each slot position is

odd when represented in {1, . . . , p− 1}.
(g) Compute cv ← t−1 · ca, an encryption of v = t−1 · a, a message for which each

slot position contains {−1, 1}, bar the one which we replaced in step (1e).
(h) The players compute cγ(v) ← cv · cα.
(i) The players execute:

Reshare(cv,NoNewCiphertext), and Reshare(cγ(v),NoNewCiphertext)
to obtain shares vi and γ(v)i.

(j) Pi decomposes the various plaintext elements into their slot values via the
FFT, bar the ones replaced in step (1e) to obtain 〈vj〉 for j = 1, . . . , B where
B ≈ m · (p− 1)/(2 · p).

(k) Set 〈bj〉 ← (1/2) · (〈vj〉+ 1) and output 〈bj〉.

a Notice that in the production of shared bits the number of rounds is one more than would be expected
at first glance: this is because some entries of the input vector may be equal to zero, which would render
those entries unusable for the procedure. This event happens with probability 1/p, so the expected number
of bits produced per iteration is m · (p− 1)/(2 · p), rather than m/2 (as in the case that no entries are zero).
Therefore, in order to produce at least nb elements, we add an extra round to the procedure.

Figure 5.17. Production of tuples and shared bits (continued).

74



The tuple production protocol can be run repeatedly, alongside the tuple-checking sub-phase
and the online phase.

The second sub-phase of the offline phase is to check whether the resulting material from
the preceding phase has been produced correctly. This check is needed, because the distributed
decryption procedure needed to produce the tuples and the MACs could allow the adversary to
introduce errors. We solve this problem via a sacrificing technique, as in [DPSZ12], and adapt
it to the case of squaring tuples and bit-sharings. Moreover, this sacrificing is performed in the
offline phase as opposed to in the online phase (as in [DPSZ12]); and the resulting partially
opened values are checked in the offline phase (again as opposed to the online phase). This
is made possible by our protocol MACCheck which allows the verification of MACs without
revealing the MAC key α. The tuple-checking protocol is presented in Figure 5.18.

Procedure DataCheck

Usage: Note that all players have previously agreed on two common random values tm, tsb.
Checking Multiplication Triples: This produces at least nm checked 〈·〉-shared values

(aj , bj , cj) such that cj = aj · bj .
(1) For k ∈ {1, . . . , nm}:

(a) Take two unused multiplication tuples (〈a〉 , 〈b〉 , 〈c〉), (〈f〉 , 〈g〉 , 〈h〉) from the
list determined earlier.

(b) Partially open tm · 〈a〉 − 〈f〉 to obtain ρ and 〈b〉 − 〈g〉 to obtain σ.
(c) Partially open tm · 〈c〉 − 〈h〉 − σ · 〈f〉 − ρ · 〈g〉 − σ · ρ to obtain τ .
(d) If τ 6= 0, output ∅ and abort.
(e) Output (〈a〉 , 〈b〉 , 〈c〉) as a valid multiplication triple.

Checking Squaring Tuples: This produces at least ns checked 〈·〉-shared values (aj , bj)
such that bj = a2j .
(1) For k ∈ {1, . . . , ns}:

(a) Take two unused squaring tuples (〈a〉 , 〈b〉), (〈f〉 , 〈h〉) from the previous list.
(b) Partially open tsb · 〈a〉 − 〈f〉 to obtain ρ.
(c) Partially open t2sb · 〈b〉 − 〈h〉 − ρ · (tsb · 〈a〉+ 〈f〉) to obtain τ .
(d) If τ 6= 0 then output ∅ and abort.
(e) Output (〈a〉 , 〈b〉) as a valid squaring tuple.

Checking Shared Bits: This produces at least nb checked 〈·〉-shared values bj such that
bj ∈ {0, 1}.
(1) For k ∈ {1, . . . , nb}:

(a) Take an unused squaring tuple (〈f〉 , 〈h〉) and an unused bit sharing 〈a〉 from
the lists determined earlier.

(b) Partially open tsb · 〈a〉 − 〈f〉 to obtain ρ.
(c) Partially open t2sb · 〈a〉 − 〈h〉 − ρ · (tsb · 〈a〉+ 〈f〉) to obtain τ .
(d) If τ 6= 0 then output ∅ and abort.
(e) Output 〈a〉 as a valid bit sharing.

Figure 5.18. Checking the output of the data production procedure.
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We show that the resulting protocol ΠPrep, detailed in Figure 5.19, securely implements the
functionality FPREP, which models the offline phase. The functionality FPREP outputs some
desired number of multiplication triples, squaring tuples and shared bits.

Protocol ΠPrep

Usage: Note that DataGeneration can be run in four distinct threads, and DataCheck in two
threads with one thread executing the Square and Shared Bit checking at the same time.
Each thread executes its own check for correct broadcasting using Section 5.1.1.

Initialise: This produces the keys for encryption and MACs. On input (Start, p) from all
the players:
(1) The players call FSHE on query KeyGen so player i obtains (ski, pk, enc).
(2) The players call FSHE on query EncCommit(Fp) so player j obtains a share αj of the

MAC key, and all players get ci, and encryption of αi, for 1 ≤ i ≤ n.
(3) All players set cα ← c1 + · · ·+ cn.

Data Generation: On input (DataGen, nI , nm, ns, nb), the players execute the following
sub-procedures of DataGen from Figure 5.16 and Figure 5.17:
(1) InputProduction(nI)
(2) Triples(nm)
(3) Squares(ns)
(4) Bits(nb)

Data Check: On input DataCheck, the players do the following:
(1) Generate two random values tm, tsb by running the steps below twice:

(a) Pi samples random ti ← Fp and asks FCommit to broadcast τ ti ← Commit(ti).
(b) Pi calls FCommit with Open(τ ti ) and all players obtain tj for 1 ≤ j ≤ n.
(c) Every player sets t← t1 + · · ·+ tn. If t = 0, then repeat the previous steps.

(2) Execute DataCheck(tm, tsb).
Finalise: For the set of partially opened values run protocol MACCheck from Figure 5.12.
Abort: If FSHE outputs a set S of corrupted players at any time, all players output S, and

the protocol aborts.

Figure 5.19. The preprocessing phase.

Theorem 5.9. In the (FSHE,FCommit)-hybrid model, the protocol ΠPrep implements FPREP

with computational security against any static adversary corrupting at most n − 1 parties if p
is exponential in the security parameter.

The security flavour of ΠPrep follows the one of EncCommit, i.e. the covert (resp. active)
version of EncCommit yields to covert (resp. active) security for ΠPrep.
Proof. We construct a simulator SPrep (given in Figure 5.20 and Figure 5.21) such that no
polynomial-time environment can distinguish, with significant probability, a view obtained by
running ΠPrep from a view obtained by running SPrep � FPREP. The environment’s view is the
collection of all intermediate messages that corrupted players send and receive, plus the inputs
and outputs of all players.

In a nutshell, the simulator will run a copy of ΠPrep with the adversary, in which it will
act on behalf of honest players. Keys for the underlying cryptosystem and MACs are generated
by simulating queries KeyGen and EncCommit to FSHE respectively. Note that due to the
distributed decryption, data for the (online) input preparation stage might be incorrectly secret
shared, and any type of data might be incorrectly MAC’d. Since the simulator knows α and sk,
it can compute offsets on the secret sharing and MACs and pass them to FPREP.

First, we explain how the cheat mechanism is handled in the simulation. In the execution of
ΠPrep, the environment may send Cheat either in the initial query KeyGen or in any later query
EncCommit to FSHE. Thus, the success probability depends on the number of cheat attempts.
The simulator ensures two things:

(1) Whenever the environment sends the first Cheat to what it thinks is FSHE, the call is
forwarded to FPREP, which decides whether or not the attempt is successful.
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The simulator SPrep

Initialise:
• The simulator first sends (Start, p) to FPREP and then interacts with the adversary

acting as FSHE on query KeyGen to generate the encryption public key (pk, enc) and
a complete set of shares {sk1, . . . , skn} of the secret key. If the adversary sends Cheat
to FSHE, the simulator forwards it to FPREP. If the cheat is successful, the simulator
sets the flag BreakDown to true; otherwise, it is set to false.

• The generation of the MAC key α is performed as in the protocol, but call-
ing SEncCommit(Fp) instead of FSHE on query EncCommit. The simulator stores
α← α1 + · · ·+ αn for later use.

• Lastly, it gives αi to FPREP for i ∈ A if BreakDown is false, and for i ≤ n otherwise.
• If the simulation of FSHE aborts on KeyGen or EncCommit, it goes to “Abort”.

Command = DataGen: On input (nI , nm, ns, nb), the simulator sets:
• TInput ← SimDataGen(InputPrep, nI),
• TTriples ← SimDataGen(Triples, nm),
• TSquares ← SimDataGen(Squares, ns),
• TBits ← SimDataGen(Bits, nb),

where SimDataGen is specified in Figure 5.21. These calls also return a decision bit. If it
is set to Abort, the simulator goes to “Abort”.

Command = DataCheck:
• Step 1 is executed as in the protocol, but calling to SEncCommit(Rp). The simulator

goes to “Abort” if SEncCommit says so.
• The simulator performs steps (a)-(d) of sub-procedures Triples, Squares, Bits of
DataCheck. In each iteration k, it gets to know the value σk. If any of these values
are non-zero, the simulator sends Abort and ∅ to FPREP. Otherwise, the algebraic
relation between generated data holds with probability 1− 1/p.

Finalise: At this point, the functionality is waiting for instruction Proceed or Abort, or a
complete break down occurred, and the functionality is waiting for command DataGen
upon which it will output values from the adversary.
(1) The simulator engages with the adversary in a normal run of MACCheck on behalf

of each honest Pi. Note that to generate honest σi the simulator uses shares αi. If
σ1 + · · ·+ σn 6= 0, it sends Abort and ∅ to FPREP.

(2) Otherwise, it sends Success to the adversary, and sends to FPREP the following:
• If BreakDown is false, it sends TInput, TTriples, TSquares, TBits.
• If BreakDown is true, it sends all the data (corresponding to honest and corrupt

players) generated in the execution of SimDataGen.
Abort: If the simulated FSHE aborts outputting a set S of corrupt players, the simulator

sends Abort and S to FPREP.

Figure 5.20. The simulator SPrep for the preprocessing phase.

(2) If the cheat was successful, the simulator recreates the success probability that a real
interaction would have. This is needed as otherwise the environment would be able
to distinguish a real interaction. The inner procedure SEncCommit is designed for this
purpose.

We now show indistinguishability. There is one main difference between a simulated run
and a real execution of ΠPrep: in a simulated run, honest shares used in the interaction are
randomly sampled by the simulator. These shares correspond to the MAC key, and shares of
generated data together with the shares of their MACs. At the end of the day, FPREP will
output data using its own honest shares of α, and its own honest shares of data and MACs.

The view of the environment can be divided into four chunks. Namely, messages inter-
changed in DataGen, DataCheck, or MACCheck, and players’ output of FPREP. Clearly, in-
distinguishability of simulated and real views of the DataGen chunk comes from the semantic
security of the underlying cryptosystem. For the DataCheck chunk, note that all opened values
are a combination of output data and sacrificed data. The latter does not form part of the final
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The simulator SPrep

SimDataGen(DataType): This procedure prepares the data to be inputted to FPREP.
DataType = InputPrep:

• The simulator engages in a normal run of steps (a)-(g) calling to SReshare
instead of Reshare. If, at any point, some of the calls returned Abort, the
simulator sets Decision← Abort and TInput ← ∅.
• Otherwise, all the rounds were successful. The simulator sets Decision ←
Continue. Note that in step (c) (after unpacking all the rounds), the simu-

lator gets players’ shares and MAC shares {r̂k(i), γ(i)k ∈ (Fp)2·nI | i, k ≤ n}.
Then, r̂(i) =

∑n
k r̂

(i)
k is (presumably) the input of Pi. The simulator has the

secret key, so it can get the real input r(i) from the broadcast ciphertexts (if
Pi is corrupt), or from what he generated (if Pi is honest). It computes offsets

∆
(i)
r ← r̂(i) − r(i) and ∆

(i)
γ ←

∑n
k γ

(i)
k − α · r(i).

There are two possibilities:
– Flag BreakDown is set to false. This means no cheat has occurred, so the

simulator prepares corrupt inputs, corrupt shares and MAC shares, and

offsets. That is, it sets TInput ← {r(k), r̂(i)k ,∆
(i)
r ,∆

(i)
γ , γ

(i)
k | k ∈ A, i ≤ n}

– Flag BreakDown is set to true. Then, there was at least one successful
cheat, and the functionality is waiting for adversary’s contributions. The
simulator sets TInput to be the output of each player.

DataType = Triples,Squares,Bits: The simulator engages in a normal run of the sub-
procedure specified by DataType, but calling to SEncCommit(Rp) and SReshare(cm)
instead of FEncCommit and Reshare(cm). If any of the above macros returned Abort, the
simulator sets Decision← Abort and TDataType ← ∅. In any other case the simulator
sets Decision← Continue, handles the BreakDown flag as above, and does:

Triples: Set

TTriples ← {(ai,bi, ci, γ(a)i, γ(b)i, γ(c)i,∆
(a)
γ ,∆

(b)
γ ,∆

(c)
γ ) ∈ (Fp)9·(2·nm) | i ≤

n}. The shares are unpacked in step (i): corrupt shares are given by the
adversary, and honest shares are sampled uniformly. MAC shares are produced
after executing SReshare to simulate step (h), and the offsets are computed as
explained earlier.

Squares: Set TSquares ← {(ai,bi, γ(a)i, γ(b)i,∆
(a)
γ ,∆

(b)
γ ) ∈ (Fp)6·(2·ns+nb) | i ≤

n} Shares, MAC shares and offsets are obtained as explained above.

Bits: Set TBits ← {(bi, γi,∆(b)
γ ) ∈ (Fp)3·(2·n

′
b) |i ≤ n}. A number n′b ≥ nb of

binary shares and MACs has been computed, The exact amount n′b is round-
dependent and it is expected to be approximately (nb +m/2) · (p− 1)/p.

Output: The simulator returns (Decision, TDataType).

Figure 5.21. Internal procedures of the simulator SPrep.

output, and therefore by no means can the environment reconstruct the set of opened values
using its view, as it does not know honest shares of the sacrificed data. In other words, openings
are randomised via sacrificing from the environment’s point of view, so the best it can do is
to guess sacrificed honest shares, which has success probability 1/|Fp| for each guess. For the
MACCheck chunk, we refer to the fact that the soundness error of MACCheck is 2/p, as shown in
Lemma 5.8. Both these probabilities are negligible if p is exponential in the security parameter.
Lastly, there is consistency between the output of FPREP and what the environment sees in cor-
rupted transcripts, since the offsets (those quantities denoted by ∆) are simply the difference
between deviated and correctly computed data, and therefore are independent of what data
refers to.

If the protocol aborts in DataCheck or MACCheck, the players output ∅, and so does FPREP

upon the instruction of the simulator. This corresponds to the fact that those protocols do not
reveal the identity of any corrupted party.
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The simulator SPrep

Macro SEncCommit(cond): This macro simulates a call to FSHE on query EncCommit.
• The simulator receives corrupt seeds si from the adversary, when it thinks is interact-

ing with FSHE, and computes mi and cmi
for i ∈ A which are given to the adversary.

Then, the simulator generates uniform mi and ci = Encpk(mi) for i /∈ A, and gives ci
to the adversary. It waits for response Proceed, Cheat or Abort.

• If the adversary gives Proceed, the simulator sets Decision ← Continue, and if the
adversary gives Abort, it sets Decision← Abort and sends Abort to FPREP.

• If the adversary gives (Cheat, {m∗i , c∗i }i∈A), it sets mi ← m∗i , ci ← c∗i for i ∈ A, and
does the following:

(1) If BreakDown is false, it sends Cheat to FPREP and sets BreakDown to true.
There are two possibilities:

(a) The functionality returns Success: the simulator sets Decision← Continue.
(b) The functionality returns NoSuccess: the simulator sets Decision← Abort.

(2) If BreakDown is set to true, with probability 1/c it sets Decision ← Continue;
otherwise Decision← Abort.

• It returns (Decision,m1, . . . ,mn, c1, . . . , cn).
Macro SReshare(cm):

• The simulator sets (f1, . . . , fn, c1, . . . , cn) ← SEncCommit(Rp), f ←
∑
i fi, and

Decision← Abort if SEncCommit says so.
• Otherwise, it sets Decision ← Continue and runs steps 2-5 of Reshare. Note that in

step 3 the simulator might get an invalid value (m + f)∗. It sets m1 ← (m + f)∗ − f1
and mi ← −fi.

• The simulator returns (Decision,m1, . . . ,mn).

Figure 5.22. Internal procedures of the simulator SPrep – Macros.

It remains to show what happens in case Cheat or Abort is sent by the environment. If
the cheat is not successful, the players’ output is a single message S for a set S of corrupted
players in both real and simulated interaction. On the other hand, if the cheat went through,
the functionality FPREP breaks down, and the simulator can decide what MAC key is used
and what data is outputted to every player, so it just gives to FPREP what has been generated
during the interaction. If the environment sends Abort and a set S of corrupted players, this is
simply passed to FPREP, which forwards it to the players.

�

5.6. Online Phase

In this section we describe a protocol ΠOnline that implements FOnline which performs the
secure computation of the desired function, decomposed as a circuit over Fp.

The online protocol makes use of the preprocessed data coming from FPREP in order to
input, add, multiply or square values. Our protocol is similar to the one described in [DPSZ12];
however, it brings a series of improvements (the “sacrificing” can be moved to the preprocessing
phase, the online phase contains special procedures for squaring, etc., and the MAC-checking
method allows the computation of reactive functionalities). The method for checking the MACs
is simply the MACCheck protocol on all partially opened values; note that this method has a
lower soundness error than that proposed in [DPSZ12], since the linear combination of partially
opened values is truly random in our case, while in [DPSZ12] it has lower entropy.

The following theorem shows that the protocol ΠOnline, given in Figure 5.24, securely im-
plements the functionality FOnline, which models the online phase.

Theorem 5.10. In the FPREP-hybrid model, the protocol ΠOnline implements FOnline with
computational security against any static adversary corrupting at most n − 1 parties if p is
exponential in the security parameter.

Proof.
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Functionality FOnline

Initialise: On input (init , p, k) from all parties, the functionality stores (domain, p, k) and
waits for an input from the environment. Depending on this, the functionality does the
following:

Proceed: It sets BreakDown to false and continues.
Cheat: With probability 1/c, it sets BreakDown to true, outputs Success to the environ-

ment and continues. Otherwise, it outputs NoSuccess and proceeds as in Abort.
Abort: It waits for the environment to input a set S of corrupt players, outputs it to the

players, and aborts.
Input: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from all other parties,

with varid a fresh identifier, the functionality stores (varid , x). If BreakDown is true, it
also outputs x to the environment.

Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2 are present
in memory and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores
(varid3, x+ y).

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if varid1, varid2 are
present in memory and varid3 is not), the functionality retrieves (varid1, x), (varid2, y)
and stores (varid3, x · y).

Square: On input (square, varid1, varid2) from all parties (if varid1 is present in memory
and varid2 is not), the functionality retrieves (varid1, x), and stores (varid2, x

2).
Output: On input (output , varid) from all honest parties (if varid is present in memory),

the functionality retrieves (varid , y) and outputs it to the environment.
• If BreakDown is false, the functionality waits for an input from the environment. If

this input is Deliver then y is output to all players. Otherwise ∅ is output to all
players.

• If BreakDown is true, the functionality waits for y∗ from the environment and outputs
it to all players.

Figure 5.23. The ideal functionality for MPC.

We construct a simulator SOnline to work on top of the ideal functionality FOnline, such that
the adversary cannot distinguish whether it is playing with the protocol ΠOnline and FPREP,
or the simulator and FOnline.

We now proceed with the analysis of the simulation, by first arguing that all the steps before
the output are perfectly simulated and finally showing that the simulated output is statistically
close to that of the protocol.

During initialisation, the simulator merely acts as FPREP would, with the difference that
the decision about the success of a cheating attempt is made by FOnline. If the cheating was
successful, FOnline will output all honest inputs, and the simulator can determine all outputs.
Therefore, the simulation will precisely agree with the protocol. For the rest of the proof, we
will assume that there was no cheating attempt.

In the input stage the values broadcast by the honest players are uniform in the protocol as
well as in the simulation. Addition does not involve communication, while multiplication and
squaring involve partial openings: in the protocol a partial opening reveals uniform values, and
the same happens also in a simulated run. Moreover, MACs carry the same distribution in both
the protocol and the simulation.

In the output stage of both the real and simulated run if the output y is delivered, the
environment sees y and the honest players’ shares, which are uniform and compatible with y
and its MAC. Moreover, in a simulated run the output y is a correct evaluation of the function
on the inputs provided by the players in the input phase. In order to conclude, we need to make
sure that the same applies to the real protocol with overwhelming probability. As shown in
Lemma 5.8, the adversary was able to cheat in one MACCheck call with probability 2/p. Thus,
the overall cheating probability is negligible since p is assumed to be exponential in the security
parameter. This concludes the proof.
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Protocol ΠOnline

Initialise: The parties call FPREP to get the shares αi of the MAC key, a number of multipli-
cation triples (〈a〉 , 〈b〉 , 〈c〉), squares (〈a〉 , 〈b〉), bits 〈b〉, and mask values (ri, 〈ri〉) as needed
for the circuit being evaluated. If FPREP aborts outputting a set S of corrupt players, the
players output S and abort. Then the operations specified below are performed according
to the circuit.

Input: To share his input xi, Pi takes an available mask value (ri, 〈ri〉) and does the following:
(1) Broadcast ε← xi − ri.
(2) The players compute 〈xi〉 ← 〈ri〉+ ε.

Add: On input (〈x〉 , 〈y〉), the players locally compute 〈x+ y〉 ← 〈x〉+ 〈y〉.
Multiply: On input (〈x〉 , 〈y〉), the players do the following:

(1) In case the preprocessing outputs non-verified triples and random values [[t]]:
(a) Take two unused multiplication tuples (〈a〉 , 〈b〉 , 〈c〉), (〈f〉 , 〈g〉 , 〈h〉).
(b) Open a random value [[t]].
(c) Partially open t · 〈a〉 − 〈f〉 to obtain ρ and 〈b〉 − 〈g〉 to obtain σ.
(d) Evaluate and partially open 〈τ〉 ← t · 〈c〉 − 〈h〉 − σ · 〈f〉 − ρ · 〈g〉 − σ · ρ.
(e) If τ 6= 0 then output ∅ and abort.
(f) Output (〈a〉 , 〈b〉 , 〈c〉) as a valid multiplication triple.

(2) Take a valid multiplication triple (〈a〉 , 〈b〉 , 〈c〉) and open 〈x〉 − 〈a〉 , 〈y〉 − 〈b〉 to get
ε, ρ respectively.

(3) Locally each player sets 〈z〉 ← 〈c〉+ ε · 〈b〉+ ρ · 〈a〉+ ε · ρ
Square: On input 〈x〉 the players do the following:

(1) Take a square pair (〈a〉 , 〈b〉) and partially open 〈x〉 − 〈a〉 so all players get ε.
(2) All players locally compute 〈z〉 ← 〈b〉+ 2 · ε · 〈x〉 − ε2.

Output: This procedure is entered once the players have finished the circuit evaluation, but
still the final output 〈y〉 has not yet been opened.
(1) The players call the MACCheck protocol on input all opened values so far. If it fails,

they output ∅ and abort. ∅ represents the fact that the corrupt players remain
undetected in this case.

(2) The players open 〈y〉 and call MACCheck on input y to verify its MAC. If the check
fails, they output ∅ and abort; otherwise they accept y as a valid output.

Figure 5.24. Operations for secure function evaluation.

�
The observant reader will be wondering where the shared bits produced in the offline phase

are used. These will be used in “higher level” versions of the online phase (i.e. versions which do
not just evaluate an arithmetic circuit) which implement different types of operations presented
in [CS10, DFK+06].
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Simulator SOnline

Initialise: The simulation of the initialisation procedure is performed running a local copy
of FPREP. Notice that all the data given to the adversary is known by the simulator.

If the environment inputs Proceed, Cheat, or Abort to the copy of FPREP, the simulator
does so to FOnline and forwards the output of FOnline to the environment. If the output
is Success, the simulator sets BreakDown to true and uses the environment’s inputs as
preprocessed data. If FOnline outputs NoSuccess of the input was Abort, the simulator
waits for input S from the environment, forwards it to FOnline, and aborts.

Input:
• If BreakDown is false, honest input is performed according to the protocol, with a

dummy input, for example zero.
• If BreakDown is true, FOnline outputs the inputs of honest players, which then can be

used in the simulation.
For inputs given by a corrupt player Pi, the simulator waits for Pi to broadcast the (possibly
incorrect) value ε′, computes x′i ← ri + ε′ and uses x′i as input to FOnline.

Add/Multiply/Square: These procedures are performed according to the protocol. The
simulator also calls the respective procedure to FOnline.

Output: FOnline outputs y to the simulator.
• If BreakDown is false, the simulator now has to provide the honest players’ shares of

such a value; it already computed an output value y′, using the dummy inputs for the
honest players, so it can select a random honest player and modify its share adding
y−y′ and modify the MAC adding α(y−y′), which is possible for the simulator, since
it knows α. After that, the simulator is ready to open y according to the protocol. If
y passes the check, the simulator sends Deliver to FOnline.
• If BreakDown is true, the simulator inputs the result of the simulation to FOnline.

Figure 5.25. Simulator for the online phase.
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CHAPTER 6

SPDZ2 – Addenda

6.1. Parameters of the BGV Scheme

In this section we present an analysis of the parameters needed by the BGV to ensure that
the distributed decryption procedure can decrypt the ciphertexts produced in the offline phase
and that the scheme is “secure”. Unlike [DPSZ12], which presents a worst case analysis, we
use the expected case analysis used in [GHS12b].

6.1.1. Expected Values of Norms. Given an element a ∈ R (represented as a polyno-
mial) let ‖a‖p be the standard p-norm of the coefficient vector (usually for p = 1, 2 or ∞). Let

‖a‖canp be the p-norm of the same element when mapped into the canonical embedding i.e.

‖a‖canp = ‖κ(a)‖p
where κ(a) : R −→ Cφ(m) is the canonical embedding. The two key relationships are that

‖a‖∞ ≤ cm · ‖a‖
can
∞ and ‖a‖can∞ ≤ ‖a‖1,

for some constant cm depending on m. Since m is a power of two then we have cm = 1.
The canonical embedding norm reduced modulo q of an element a ∈ R is the smallest canon-

ical embedding norm of any a′ which is congruent to a modulo q. It is denoted as

|a|canq = min{ ‖a′‖can∞ : a′ ∈ R, a′ ≡ a (mod q) }.
We also denote the polynomial where the minimum is obtained by [a]canq , and call it the canonical
reduction of a modulo q.

Following [GHS12b][Appendix A.5] we examine the variances of the different distributions
used in our protocol. Let ζm denote any complex primitive m-th root of unity. Sampling
a ∈ R from HWT (h, φ(m)) and looking at a(ζm) produces a random variable with variance h;
sampling from ZO(0.5, φ(m)) with variance φ(m)/2; sampling from DG(σ2, φ(m)) with variance
σ2 ·φ(m), and sampling from U(q, φ(m)) with variance q2 ·φ(m)/12. By the law of large numbers

we can use 6 ·
√
V , where V is the above variance, as a high probability bound on the size of

a(ζm), and this provides a bound on the canonical embedding norm of a.
If we take a product of two, three, or four such elements with variances V1, V2, . . . , V4 we

use 16 ·
√
V1 · V2, 9.6 ·

√
V1 · V2 · V3 and 7.3 ·

√
V1 · V2 · V3 · V4 as the resulting bounds since

erfc(4)2 ≈ erfc(3.1)3 ≈ erfc(2.7)4 ≈ 2−50.

6.1.2. Key Generation. We first need to establish the rough distributions (i.e. variances)
of the resulting keys arising from our key generation procedure. For our purposes we are only
interested in the variance of the associated distributions in the canonical embedding.

Var(κ(skj)) = n · Var(κ(ski,j)) = n · h,
Var(κ(aj)) = q2

1 · φ(m)/12,

Var(κ(εj)) = n · Var(κ(εi,j)) = n · σ2 · φ(m).

We also need to analyse the distributions of the randomness needed to produce encj . Here
we assume that all parties follow the protocol and we are only interested in the output final
extended public key: thus we write (dropping the j to avoid overloading the reader)

enc = (bsk,sk2 , ask,sk2)
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where

bsk,sk2 = ask,sk2 · sk + p · esk,sk2 − p1 · sk2.

We also have

enc′i = (b · vi + p · e0,i − p1 · ski, a · vi + p · e1,i)

zeroi = (b · v′i + p · e′0,i, a · v′i + p · e′1,i)

where (vi, e0,i, e1,i)← RCs(0.5, σ2, φ(m)) and (v′i, e
′
0,i, e

′
1,i)← RCs(0.5, σ2, φ(m)). Therefore

ask,sk2 =
n∑
i=1

ski ·

 n∑
j=1

a · vj + p · e1,j

+
n∑
i=1

(a · v′i + p · e′1,i),

and

bsk,sk2 =

n∑
i=1

ski ·

(
n∑
j=1

b · vj + p · e0,j − p1 · skj

)
+

n∑
i=1

(b · v′i + p · e′0,i)

= ask,sk2 · sk− sk ·
n∑
i=1

ski ·

(
n∑
j=1

a · vj + p · e1,j

)
+

n∑
i=1

ski ·

(
n∑
j=1

b · vj + p · e0,j − p1 · skj

)

+

n∑
i=1

(
(a · sk + p · ε) · v′i + p · e′0,i

)
− sk ·

n∑
i=1

(a · v′i + p · e′1,i)

= ask,sk2 · sk +

n∑
i=1

(
n∑
j=1

b · vj · ski + p · e0,j · ski − p1 · ski · skj − sk · ski · a · vj − sk · ski · p · e1,j

)

+ p ·
n∑
i=1

(
ε · v′i + e′0,i − e′1,i · sk

)
= ask,sk2 · sk + p ·

n∑
i=1

(
n∑
j=1

(ε · vj · ski + e0,j · ski − sk · ski · e1,j) + ε · v′i + e′0,i − e′1,i · sk

)
− p1 · sk2

= ask,sk2 · sk + p · esk,sk2 − p1 · sk
2

where

esk,sk2 =
n∑
i=1

 n∑
j=1

(ε · vj · ski + e0,j · ski − sk · ski · e1,j) + ε · v′i + e′0,i − e′1,i · sk

 . (6.1)

Thus the values enc are indeed genuine “quasi-encryptions” of −p1 · sk2 with respect to the
secret key sk and the modulus q1. Equation 6.1 will be used later to establish the properties of
the output of the SwitchKey procedure.

6.1.3. BGV Procedures. The “noise” of a given ciphertext c = (c0, c1, `) is an upper
bound on the value

‖c0 − sk · c1‖can∞ .

Encpk(m): Given a fresh ciphertext (c0, c1, 1), a bound (with high probability) on the output

noise is

‖c0 − sk · c1‖∞ ≤ ‖c0 − sk · c1‖can∞
= ‖((a · sk + p · ε) · v + p · e0 + m− (a · v + p · e1) · sk‖can∞
= ‖m + p · (ε · v + e0 − e1 · sk)‖can∞
≤ ‖m‖can∞ + p ·

(
‖ε · v‖can∞ + ‖e0‖can∞ + ‖e1 · sk‖can∞

)
≤ φ(m) · p/2 + p · σ ·

(
16 · φ(m) ·

√
n/2 + 6 ·

√
φ(m) + 16 ·

√
n · h · φ(m)

)
= Bclean.

Note this value of Bclean is different from that in [GHS12b] due to the different distributions
resulting from the distributed key generation.
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SwitchModulus((c0, c1), `): If the input ciphertext has noise ν then the output ciphertext has

noise ν ′ where
ν ′ =

ν

p`
+Bscale.

The value Bscale is an upper bound on the quantity ‖τ0 + τ1 · sk‖can∞ , where κ(τi) is drawn from a
distribution which is close to a complex Gaussian with variance φ(m) · p2/12. We can therefore
take the upper bound to be (with high probability)

Bscale = 6 · p ·
√
φ(m)/12 + 16 · p ·

√
n · φ(m) · h/12,

= p ·
√

3 · φ(m) ·
(

1 + 8 ·
√
n · h/3

)
.

Again, note the dependence on n (compared to [GHS12b]) as the secret key sk is selected from
a distribution with variance n · h, and not just h. Also note the dependence on p due to the
plaintext space being defined mod p as opposed to mod 2 in [GHS12b].
Decsk(c): As explained in [DPSZ12, GHS12b] this procedure works when the noise ν associated

with a ciphertext satisfies ν = cm · ν < q`/2.
DistDecski(c): The value B is an upper bound on the noise ν associated with a ciphertext we

decrypt in our protocols. To ensure valid distributed decryption we require

2 · (1 + 2sec) ·B < q`.

Given a value of B, we obtain a lower bound on p0 by the above inequality. The addition of
a random term with infinity norm bounded by 2sec · B/(n · p) in the distributed decryption
procedure ensures that the individual coefficients of the sum t1 + · · ·+ tn are statistically indis-
tinguishable from random, with probability 2−sec. This does not imply that the adversary has
this probability of distinguishing the simulated execution in [DPSZ12] from the real execution,
since each run consists of the exchange of φ(m) coefficients, and the protocol is executed many
times over the execution of the whole protocol. However, we feel that setting concentrating
solely on the statistical indistinguishability of the coefficients is valid in a practical context.
SwitchKey(d0, d1, d2): In order to estimate the size of the output noise term we need first to
estimate the size of the term

‖p · d2 · εsk,sk2‖
can

∞ .

Using Equation 6.1 we find that

‖p · d2 · esk,sk2)‖can∞ /q0 ≤ p ·
√
φ(m)

12
·
[
n2 · σ ·

(
7.3 ·

√
n · h · φ(m)2/2 + 9.6 ·

√
h · φ(m)

+7.3 · h ·
√
n · φ(m)

)
+n ·

(
9.6 · σ ·

√
n · φ(m)2/2 + 16 · σ ·

√
φ(m)

+7.6 · σ ·
√
φ(m) · n · h

)]
≤ p · φ(m) · σ ·

[
n2.5 · (1.49 ·

√
h · φ(m) + 2.11 · h) + 2.77 · n2 ·

√
h

+n1.5 · (1.96 ·
√
φ(m) + 2.77 ·

√
h) + 4.62 · n

]
= BKS.

Then if the input to SwitchKey has noise bounded by ν, the output noise value is bounded by

ν +
BKS · q0

p1
+Bscale.

Mult(c, c′): Combining all of the above, if we take two ciphertexts of level one with input noise

bounded by ν and ν ′, the output noise level from multiplication is bounded by

ν ′′ =

(
ν

p1
+Bscale

)
·
(
ν ′

p1
+Bscale

)
+
BKS

p1
+Bscale.
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6.1.4. Application to the Offline Phase. In all of our protocols we evaluate the follow-
ing circuit: we first add n ciphertexts together and perform a multiplication, giving a ciphertext
with respect to modulus p0 with noise

U1 =

(
n ·Bclean

p1
+Bscale

)2

+
BKS · p0

p2
+Bscale.

We then add on another n ciphertexts, which are added at level one and then reduced to level
zero. We therefore obtain a final upper bound on the noise for our adversarially generated
ciphertexts of

U2 = U1 +
n ·Bclean

p1
+Bscale.

To ensure valid (distributed) decryption, we require

2 · U2 · (1 + 2sec) < p0,

i.e. we take B = U2 in our distributed decryption protocol.
This ensures valid decryption in our offline phase; however, we still need to select the

parameters to ensure security. Following the analysis in [GHS12b] of the BGV scheme we set,
for 128-bit security,

φ(m) ≥ 33.1 · log
(q1

σ

)
.

Combining the various inequalities together, we can fix the σ = 3.2, sec = 40 and h = 64;
several choices of p, n yield the estimates in tables 6.1, 6.2 and 6.3 – these are the parameters
choices which we use to generate the primes and rings in our implementation.

n φ(m) log2 p0 log2 p1 log2 q1 log2(U2)
2 8192 130 104 234 89
3 8192 132 104 236 90
4 8192 132 104 236 91
5 8192 132 106 238 90
6 8192 132 106 238 91
7 8192 132 108 240 91
8 8192 132 108 240 91
9 8192 132 110 242 91
10 8192 132 110 242 91
20 8192 134 110 244 93
50 8192 136 114 250 94
100 8192 136 116 252 95

Table 6.1. Parameters for p ≈ 232.
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n φ(m) log2 p0 log2 p1 log2 q1 log2(U2)
2 16384 196 136 332 154
3 16384 196 138 334 154
4 16384 196 140 336 155
5 16384 196 142 338 155
6 16384 198 140 338 156
7 16384 198 140 338 156
8 16384 198 140 338 157
9 16384 198 142 340 156
10 16384 198 142 340 156
20 16384 198 146 344 157
50 16384 200 148 348 158
100 16384 202 150 352 160

Table 6.2. Parameters for p ≈ 264.

n φ(m) log2 p0 log2 p1 log2 q1 log2(U2)
2 32768 324 202 526 283
3 32768 326 202 528 285
4 32768 326 204 530 284
5 32768 326 204 530 285
6 32768 326 206 532 284
7 32768 326 206 532 285
8 32768 326 208 534 285
9 32768 326 208 534 285
10 32768 326 208 534 285
20 32768 328 210 538 286
50 32768 330 212 542 289
100 32768 330 216 546 288

Table 6.3. Parameters for p ≈ 2128.
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6.2. Experimental Results

6.2.1. KeyGen and Offline Protocols. To present performance numbers for our key
generation and new variant of the offline phase for SPDZ we first need to define secure parameter
sizes for the underlying BGV scheme (and in particular how it is used in our protocols). This
is done in Section 6.1, by the method of Appendices A.4, A.5 and B of [GHS12b], for various
choices of n (the number of players) and p (the field size).

We implemented the preceding protocols in C++ on top of the MPIR library for multi-
precision arithmetic. Modular arithmetic was implemented with bespoke code using Mont-
gomery arithmetic [Mon85] and calls to the underlying mpn_ functions in MPIR. The offline
phase was implemented in a multi-threaded manner, with four cores producing initial multi-
plication triples, square pairs, shared bits and input preparation mask values. Then two cores
performed the sacrificing for the multiplication triples, square pairs and shared bits.

In Table 6.4 we present execution times (in wall time measured in seconds) for key gener-
ation and for an offline phase which produces 100000 each of the multiplication tuples, square
pairs, shared bits and 1000 input sharings. We also present the average time to produce a
multiplication triple for an offline phase running on one core and producing 100000 multiplica-
tion triples only. The run-times are given for various values of n, p and c, and all timings were
obtained on 2.80 GHz Intel Core i7 machines with 4 GB RAM, running on a local network.

Run Times Time per

n p ≈ c KeyGen Offline Triple (sec)

2 232 5 2.4 156 0.00140

2 232 10 5.1 277 0.00256
2 232 20 10.4 512 0.00483

2 264 5 5.9 202 0.00194
2 264 10 12.5 377 0.00333

2 264 20 25.6 682 0.00634

2 2128 5 16.2 307 0.00271
2 2128 10 33.6 561 0.00489
2 2128 20 74.5 1114 0.00937

Run Times Time per

n p ≈ c KeyGen Offline Triple(sec)

3 232 5 3.0 292 0.00204

3 232 10 6.4 413 0.00380
3 232 20 13.3 790 0.00731

3 264 5 7.7 292 0.00267
3 264 10 16.3 568 0.00497

3 264 20 33.7 1108 0.01004

3 2128 5 21.0 462 0.00402
3 2128 10 44.4 889 0.00759
3 2128 20 99.4 2030 0.01487

Table 6.4. Execution Times For Key Gen and Offline Phase (Covert Security)

In the case of covert security the authors of [DKL+12] report figures of 0.002 seconds per
(un-checked) 64-bit multiplication triple for both two and three players; however, the probability
of cheating being detected was lower bounded by 1/2 for two players, and 1/4 for three players,
in contrast to our probabilities of 4/5, 9/10 and 19/20. Since the triples in [DKL+12] were
unchecked we need to scale their run-times by a factor of two, yielding to an estimate of 0.004
seconds per multiplication triple. Thus for covert security we see that our protocol for checked
tuples is superior in terms of error probabilities for a comparable run-time.

For the active security variant we aimed for a cheating probability of 2−40, so as to be
able to compare with run times previously obtained in [DKL+12], which used the method
from [DPSZ12]. Again we performed two experiments: one where four cores produced 100000
multiplication triples, squaring pairs and shared bits, plus 1000 input sharings, and one where
one core produced just 100000 multiplication triples (in order to estimate the average cost for
a triple). The results are in Table 6.5.

n = 2 n = 3
p ≈ Offline Time per Triple Offline Time per Triple

232 2366 0.01955 3668 0.02868
264 3751 0.02749 5495 0.04107

2128 6302 0.04252 10063 0.06317

Table 6.5. Execution Times For Offline Phase (Active Security)
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For comparison: for a prime of 64 bits, the authors of [DKL+12] report on an implemen-
tation which takes 0.006 seconds to produce an (un-checked) multiplication triple for the case
of two parties and active security, and 0.008 seconds per multiplication triple for the case of
three parties and active security. Since we produce checked triples, the cost per triple for the
results in [DKL+12] need to be (at least) doubled, to give totals of 0.012 and 0.016 seconds
respectively.

Thus, in this test, our new active protocol has running time about twice that of the previous
active protocol from [DPSZ12] based on ZKPoKs. From analysis of the protocols, we do expect
that the new method will be faster, but only if we produce the output in large enough batches.
Due to memory constraints we were so far unable to do this, but we can extrapolate from these
results: in the test we generated 12 ciphertexts in one go, and if we were able to increase this
by a factor of about 10, then we would get results better than those of [DPSZ12, DKL+12],
all other things being equal. More information can be found in Section 6.3.

6.2.2. Online. For the new online phase we have developed a purpose-built bytecode in-
terpreter, which reads and executes pre-generated sequences of instructions in a multi-threaded
manner. Our runtime supports parallelism on two different levels: independent rounds of com-
munication can be merged together to reduce network overhead, and multiple threads can be
executed at once to allow for optimal usage of modern multi-core processors.

Each bytecode instruction is either some local computation (e.g. addition of secret shared
values) or an ‘open’ instruction, which initiates the protocol to reveal a shared value. The data
from independent open instructions can be merged together to save on communication costs.
Each player may run up to four different bytecode files in parallel in distinct threads, with each
such thread having access to some shared memory resource. The advantage of this approach is
that bytecode files can be pre-compiled and optimized, and then quickly loaded at runtime –
the online phase runtime is itself oblivious to the nature of the programs being run.

In Table 6.6 we present timings (again in elapsed wall time for a player) for multiplying two
secret shared values. Results are given for three different varieties of multiplication, reflecting
the possibilities available: purely sequential multiplications, parallel multiplications with com-
munication merged into one round (50 per round), and parallel multiplications running in 4
independent threads (50 per round, per thread). The experiments were carried out on the same
machines as were used for the offline phase, running over a local network with a ping of around
0.27ms. For comparison, the original implementation of the online phase in [DPSZ12] gave an
amortized rate of 20000 multiplications per second over a 64-bit prime field, with three players.

Multiplications/sec
Sequential 50 in Parallel

n p ≈ Single Thread Single Thread Four Threads

2 232 7500 134000 398000

2 264 7500 130000 395000
2 2128 7500 120000 358000

3 232 4700 100000 292000

3 264 4700 98000 287000

3 2128 4600 90000 260000

Table 6.6. Online Times

6.3. Active Security

The following is a sketch of a method for an actively secure version of ΠEncCommit. More
specifically, we assume players have access to an ideal functionality FAKeyGen which generates
the key material like FKeyGen, but it models active security rather than covert security. More
concretely, this just means that there is no “cheat option” that the adversary can choose. The
purpose of this section is therefore to describe a protocol ΠA

EncCommit which securely implements
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an ideal functionality FASHE in the FAKeyGen-hybrid model, where FASHE behaves as FSHE, but,
again, models active security.

The protocol is inspired by the protocol from [NO09] where a particularly efficient variant
of the cut-and-choose approach was developed.

Let Pi be the player producing ciphertexts to be verified by the other players. The protocol
is parametrized by two natural numbers T, b where b divides T . We set t = T/b. The protocol
produces as output t ciphertexts c0, . . . , ct−1.

Each such ciphertext is generated according to the algorithm described earlier, and is there-
fore created from the public key and four polynomials m, v, e0 and e1. To make the notation
easier to deal with below, we rename these as f1, f2, f3, f4. We can then observe that there
exist ρl, for l = 1, . . . , 4 such that ‖fl‖∞ ≤ ρl except with negligible probability. Concretely, we
can use ρ1 = p/2, ρ2 = 1 and ρ3 = ρ4 = ρ where ρ can be determined by a tail-bound on the
Gaussian distribution used for generating f3, f4.

Each player Pi also creates a set of random reference ciphertexts d0, . . . , d2T−1 that are
used to verify that c0, . . . , ct−1 are well-formed and that Pi knows what they contain. Each dj is
created from 4 polynomials g1, . . . , g4 in the same way as above, but the polynomials are created
with a different distribution. Namely, they are random subject to ‖gi‖∞ ≤ 4 · δ · ρi · T · φ(m),
where δ > 1 is some constant.

The protocol proceeds as follows:

(1) Pi is given some number of attempts to prove that his ciphertexts are correctly formed.
The protocol is parametrised by a number M which is the maximal number of allowed
attempts. We start by setting a counter v = 1.

(2) Pi broadcasts the ciphertexts c0, . . . , ct−1 and the reference ciphertexts d0, . . . , d2T−1

containing plaintexts. These ciphertexts should be generated from seeds s0, . . . , s2T−1

that are first sent through the random oracle whose output is used to generate the
plaintext and randomness for the encryptions.

(3) A random index subset of size T is chosen, and Pi must broadcast si for i ∈ T . Players
check that each opened si indeed induces the ciphertext di, and abort if this is not the
case.

(4) A random permutation π on T items is generated and the unopened ciphertexts are
permuted according to π. We renumber the permuted ciphertexts and call them
d0, . . . , dT−1.

(5) Now, for each ci, the subset of ciphertexts {dbi+j | j = 0, . . . , b − 1} is used to demon-
strate that ci is correctly formed. This is called the block of ciphertexts assigned to ci.
We do as follows:
(a) For each i, j do the following: let f1, . . . , f4 and g1, . . . , g4 be the polynomials used

to form ci, respectively dbi+j . Define zl = fl + gl, for l = 1, . . . , 4.
(b) Player Pi checks that ‖zl‖∞ ≤ 4 · δ · ρl · T · φ(m) − ρl. If this is the case, he

broadcasts zl, for l = 1, . . . , 4. Otherwise he broadcasts ⊥.
(c) In the former case players check that ‖zl‖∞ is in range for l = 1, . . . , 4 and that

the zl’s induce the ciphertext ci + dbi+j .
(d) At the end, players verify that for each ci, Pi has correctly opened ci + dbi+j for

all ciphertexts in the block assigned to ci.
(e) If all checks go through, output c0, . . . , ct−1 and exit. Else, if v < M , increment v

and go to step 2. Finally, if v = M , the prover has failed to convince us M times,
so abort the protocol.

It is possible to adapt the protocol for proving that the plaintexts in ci satisfy certain
special properties. For instance, assume we want to ensure that the plaintext polynomial f1 is
a constant polynomial, i.e., only the degree-0 coefficient is non-zero. We do this by generating
the reference ciphertexts such that for each di, the polynomial g1 is also a constant polynomial.
When opening we check that the plaintext polynomial is always constant. The proof of security
is trivially adapted for this case.

90



Some intuition for why this works: after half the reference ciphertexts are opened, we know
that except with exponentially small probability, almost all the unopened ciphertexts are well
formed. A simulator will be able to extract randomness and plaintext for all the well formed
ones. When we split the unopened dj ’s randomly in blocks of b ciphertexts, it is therefore very
unlikely that some block contains only bad ciphertexts. It can be shown that the probability
that this happens is at most t1−b · (e · ln(2))−b [NO09].

Assume Pi is corrupt: now, if he survives one iteration of the test, and no block was
completely bad, it follows that for every ci, he has opened opened at least one ci + dbi+j where
dbi+j was well formed. The simulator can therefore extract a way to open ci since ci = (ci +
dbi+j)− dbi+j . It will be able to compute polynomials fl for ci with ‖fl‖∞ ≤ 8 · δ · ρl · T · φ(m).
Therefore, if some ci is not of this form, the prover can survive one iteration of the test with
probability at most t1−b · (e · ln(2))−b. To survive the entire protocol, the prover needs to win in
at least one of the M iterations, and this happens with probability at most M ·t1−b ·(e · ln(2))−b,
by the union bound.

Assume Pi is honest: then when he decides whether to open a given ciphertext, the proba-
bility that a single coefficient is in range is 1

4·δ·φ(m)·T . There are 4 · φ(m) coefficients in a single

ciphertext and up to T ciphertexts to open, so by a union bound, Pi will not need to send ⊥
at all, except with probability 1/δ. The probability that an honest prover fails to complete the
protocol is hence (1/δ)M . We therefore see that the completeness error vanishes exponentially
with increasing M , and in the soundness probability, we only lose logM bits of security.

It is easy to see that for each opening done by an honest prover, the polynomials zl will
have coefficients that are uniformly distributed in the expected range, so the protocol can be
simulated.

Finally, note that in a normal run of the protocol, only one iteration is required, except
with probability 1/δ. So in practice, what counts for the efficiency is the time we spend on one
iteration.

In our experiments we implemented the above protocol with the following parameter choices:
δ = 256, M = 5, t = 12 and b = 16. This guaranteed a cheating probability of 2−40, as well
as the probability of an honest prover failing of 2−40. In addition, the choice of t = 12 was to
ensure that each run of the protocol created enough ciphertexts to be run in two executions of
the main loop of the multiplication triple production protocol. By increasing t and decreasing b
one can improve the amortized complexity of the protocol while keeping the error probabilities
the same. This comes at the cost of increased memory usage, primarily because decreasing b
by, say, a half means that t needs to be replaced by essentially t2. On our test machines t = 12
seemed to provide the best compromise.
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Part 2

Zero-Knowledge Protocols





CHAPTER 7

Zero-Knowledge Protocols for Multiplicative Relations

7.1. Introduction

The notions of commitment schemes and zero-knowledge proofs (ZK proofs) are among
the most fundamental in the theory and practice of cryptographic protocols. Intuitively, a
commitment scheme provides a way for a prover to put a value x in a locked box and commit
to x by giving this box [x] to a verifier. Later the prover can choose to open the box by giving
away the key to the box.

In a zero-knowledge protocol, a prover wants to convince a verifier that some statement is
true, such that the verifier learns nothing except the validity of the assertion. Typically, the
prover claims that an input string u is in a language L, and after the interaction, the verifier
accepts or rejects. We assume the reader is familiar with the basic theory of zero-knowledge
protocols and just recall the most important notions informally: the protocol is an interactive
zero-knowledge proof system for L if it is complete, i.e. if u ∈ L, then the verifier accepts –
and sound, i.e. if u 6∈ L then no matter what the prover does, the verifier accepts with at most
probability ε, where ε is called the soundness error of the protocol. Finally, zero-knowledge
means that given only that u ∈ L, conversations between the honest prover and an arbitrary
poly-time verifier can be efficiently simulated and are indistinguishable from real conversations.

In this chapter we concentrate on commitments to elements in a finite field K, or to in-
tegers and we assume that commitments are also homomorphic, i.e. both commitments and
randomness are chosen from (finite) groups, and [x] · [y] = [x+y] (we will describe this property
more in detail in Sections 7.2.1 and 7.2.2). For K = Fq for a prime q, such commitments can,
for instance, be constructed from any q-invertible group homomorphism [CD98] that exists, if
factoring or discrete log are hard problems. One can show using known – but perhaps less well
known – techniques that homomorphic commitments with unconditional hiding and binding can
be built assuming preprocessing; e.g. the committer gets random field elements and information
theoretic MACs and the receiver gets corresponding keys. More details on this shall be given
later (see Section 7.2.1). Finally, homomorphic commitments to integers based on factoring
were proposed in [FO97, DF02].

In typical applications of these commitment schemes, the prover needs to convince the veri-
fier that the values he commits to satisfy a certain algebraic relation. A general way to state this
is that the prover commits to x1, . . . , xv, and the verifier wants to know that D(x1, . . . , xv) = 0
for an algebraic circuit D defined over K or over the integers. If D uses only linear opera-
tions, the verifier can himself compute a commitment to D(x1, . . . , xv) (using the homomorphic
properties of the commitment scheme) and the prover opens this linear combination to reveal
0. However, if D uses multiplications, we need a zero-knowledge protocol where the prover
convinces the verifier that three committed values x, y, z satisfy xy = z.

In [CDD+99], such a multiplication protocol was proposed for homomorphic commitments
over any finite field K. The soundness error for that protocol is 1/|K|, which is not necessarily
negligible – for example when K is a field with small size (constant or logarithmic in the security
parameter). The only known way to have a smaller error is to repeat the protocol. This solution
leads to a protocol with communication complexity Θ(κl) for soundness error 2−l and where
commitments have size κ bits.

Likewise, a multiplication protocol for integer commitments was proposed in [FO97, DF02].
This protocol has essentially optimal communication complexity Θ(κ+ l+k), where k is the size
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in bits of the prover’s secret integers, but it requires an extra assumption, namely the strong
RSA assumption. The best known complexity for protocols based on commitment schemes
requiring only factoring is Θ((κ+ k)l).

An approach to improving this state of affairs was proposed in [CD09], where it was sug-
gested to take advantage of the fact that many applications require the prover to make many
ZK proofs of similar statements. The idea is to make the amortized complexity per proof be
small by combining all the proofs into one protocol. In our case, this would mean that the
prover commits to xi, yi, zi for i = 1, . . . , l and wants to convince the verifier that xiyi = zi for
all i. The technique from [CD09] yields a protocol with amortized complexity Θ(κ + l) but,
unfortunately, requires that all xi’s are equal (or all yi’s are equal), and in most applications,
this condition is not satisfied.

7.1.1. Our Contribution. In this chapter, we construct a new zero-knowledge protocol
that works for arbitrary xi, yi, zi, and uses black-box access to any homomorphic commitment
scheme. If we instantiate the commitments by a standard unconditionally binding and compu-
tationally hiding scheme, the amortized complexity is O(ul · κ) bits for error probability 2−u.
In particular, for l = u, we get O(κ). Therefore, when the committed values are from a field of
small constant size, we improve the complexity of previous solutions by a factor of l. We also pro-
pose (based on standard techniques) a way to implement unconditionally secure homomorphic
commitments assuming preprocessing. Using this implementation, the amortized complexity
is O(ul · u). In particular, for both types of commitments and any fixed error probability, the
amortized overhead vanishes as we increase l.

We generalise our approach to obtain a protocol that verifies l instances of an algebraic
circuit D over K with v inputs, in the following sense: given committed values xi,j and zi, with
i = 1, . . . , l and j = 1, . . . , v, the prover shows that D(xi,1, . . . , xi,v) = zi for i = 1, . . . , l (the
protocol easily generalises to circuits with more than one output). The amortized cost to verify
one circuit with multiplicative depth δ is O(2δκ + vκ + δ log l) bits for an error probability of
2−l and so does not depend on the circuit size. For circuits with small multiplicative depth
(sometimes known as the classes K-SAC0 or K-SAC1), this approach is better than using our
first protocol; in fact, the amortized communication cost can be asymptotically smaller than
the number of multiplications in D.

Another interesting feature of this protocol is that prover and verifier can execute it given
only black-box access to an algorithm computing the function implemented by D. This is a
notable contrast from standard protocols where the parties work their way through the circuit
and must therefore agree on the layout. Our protocol would, for instance, allow the verifier to
outsource computation of the function to a third party. Provided that the verifier chooses the
random challenge in the protocol, this would be secure if the prover is malicious and the third
party is semi-honest.

Our final result is a zero-knowledge protocol using black-box access to homomorphic com-
mitments to k-bit integers. For checking l integer multiplications and error probability 2−l, the
amortized complexity is O(κ+ k+ l log(l)). When instantiating the commitments using a stan-
dard computationally secure scheme, this improves security of previous solutions that needed
the strong RSA assumption, while we need no assumption other than what the underlying com-
mitment scheme requires (typically factoring). We also show a new technique for implementing
unconditionally secure homomorphic commitments to integers based on preprocessing. This
makes the protocol be much more efficient, as only a constant number of multiplications per
commitment is required.

When using information theoretically secure commitments based on preprocessing, our pro-
tocols are perfect zero-knowledge against general verifiers. When using standard computa-
tionally secure commitments, they are only honest verifier zero-knowledge, but can be made
zero-knowledge in general using standard techniques.

Our technique is somewhat related to the “MPC-in-the-head” technique from [IKOS09],
but with an important difference: both strategies make use of “virtual players”, that is, the
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prover in his head imagines n players that receive shares of his secret values and he must later
reveal information to the verifier relating to these shares. The protocol from [IKOS09] has
complexity linear in n, because the prover must commit to the view of each virtual player. We
use a different approach, exploiting the homomorphic property of the commitment scheme to
get a protocol with complexity logarithmic in n. This is the reason our amortized overhead
vanishes instead of being constant, as it would be using MPC-in-the-head. On the other hand,
we show that a combination of “multiparty computation in the head” and our protocol for veri-
fying algebraic circuits can actually improve the communication complexity for some parameter
values. In concurrent and independent work, Ben-Sasson et al. [BSFO12] show a multiparty
protocol for honest majority that checks several multiplicative relations on secret-shared values
with low amortized complexity. The technique is somewhat related in that it is based on secret
sharing, but the checking works in a different way since in that setting there is no single prover
who knows all values.

7.1.2. Applications. One obvious application of our protocol is to give ZK proofs for
satisfiability of a Boolean circuit C: the prover commits to the bits on each wire in the circuit,
opens the output as a 1 and shows that, for each AND-gate, the corresponding multiplicative
relation holds for the committed bits. To explain how this compares to previous work, we
define the (computational or communication) overhead of a protocol to be its (computational or
communication) complexity divided by |C|. One can think of this as the overhead factor one has
to pay to get security, compared to an insecure implementation. Now, in the ideal commitment
model (i.e. assuming access to a ideal commitment functionality) [IKOS09] obtained constant
communication overhead and polynomial computation overhead, as a function of the security
parameter u, for error probability 2−u. Later, [DIK10] showed how to make both overheads
poly-logarithmic. For both protocols, the ideal commitments can be implemented by doing
preprocessing, and the resulting “on-line” protocol still has the same complexity.

As mentioned, our protocol can be thought of as working in the ideal homomorphic commit-
ment model where the commitment functionality can do linear operations on committed bits
(but where we of course charge for the cost of these operations). In this model our protocol
achieves constant computational and communication overhead.

We may then instantiate the commitments using the information theoretically secure ho-
momorphic scheme. This incurs an extra cost for local computing, so as a result we obtain
a ZK-protocol with constant communication overhead and polynomial computation overhead
(essentially O(u log u)). Asymptotically, the overheads match those of [IKOS09], but the in-
volved constants are smaller in our case because we do not need the “detour” via a multiparty
protocol. Finally, we pay no communication for linear operations, which seems hard to achieve
in the protocol from [IKOS09].

Another application area where our result can improve the state of the art is the following:
as shown in [CDN01], general multiparty computation can be based on additively homomor-
phic encryption schemes. Many such schemes are known, and in several cases, the plaintext
space is a small field. One example is the Goldwasser-Micali (GM)-scheme [GM84], where
the plaintext space is F2. Supplying inputs to such a protocol amounts to sending them in
encrypted form to all players and proving knowledge of the corresponding plaintexts. However,
in many applications one would want to check that inputs satisfy certain conditions, e.g. an
auction may require that bids are numbers in a certain interval. Since ciphertexts in such an
additively homomorphic scheme can be thought of as homomorphic commitments over the field,
our protocol can be used by a player to prove that his input satisfies a given condition much
more efficiently than by previous techniques.

A final type of application is in the area of anonymous credentials and group signatures.
Such constructions are often based on zero-knowledge proofs that are made non-interactive using
the Fiat-Shamir heuristic. If the proof requires showing that a committed number is in a given
interval, the standard solution is to “transfer” the values to an integer commitment scheme
and use the proof technique of Boudot [Bou00]. This in turn requires multiplication proofs,

97



so if sufficiently many proofs are to be given in parallel, one can use our technique for integer
commitments. Assuming preprocessing and our information theoretically secure commitments
this can be very efficient, requiring only a constant number of multiplications per commitment.

7.2. Preliminaries

7.2.1. Information Theoretic Commitments. In this section we assume a setup that
allows commitments to be unconditionally secure. We use [v] as shorthand for a commitment
to v. Operations on commitments are supposed to be multiplicative, while values that are
committed lie in an additive group. Therefore a commitment scheme is homomorphic if [v]·[v′] =
[v + v′] for all v, v′ in the relevant domain (either a finite field K or the integers). Also, if
v = (v1, . . . , vm) is a vector with entries in K (or in the integers), [v] denotes a vector of
commitments, one for each coordinate in v. If u = (u1, . . . , um) is a vector of the same length
as v, then [v]u means [v]u =

∏
i[vi]

ui , which is a commitment containing the inner product of
u and v. Moreover [u]∗[v] refers to the component-wise product.
Field Scenario:

Let K be a finite field and L be an extension of K. Although the set-up is general, we will
think of K as a small constant size field. Let a ∈ L be a private value held by the verifier. We
suppose that the prover has a list A of uniform values u1, . . . , ui, . . . ∈ K and for each ui he
also has a value mui = a · ui + bui , where bui is uniform in L and privately held by the verifier.
One can think of mui as an information theoretic message authentication code on ui, and of
(a, bui) as the key to open such a MAC on ui. It is possible to achieve this situation assuming a
functionality for the preprocessing phase of a multiparty computation protocol, such as in the
ones in [BDOZ11, DPSZ12, DKL+13].

With this setup, commitments can be made as follows: in order for the prover to commit
to v ∈ K, the prover sends u − v to the verifier and sets mv = mu = a · u + bu, where u is
the first unused value in the list A; the verifier then updates the corresponding key bu into
bv = bu + a · (u− v). A commitment to v can therefore expressed by the following data (where
P denotes the prover, and V denotes the verifier);

[v] =

{
P : v, u, mv = a · u+ bu
V : u− v, a, bv = bu + a · (u− v)

In order to open commitment [v], the prover sends v,mv to the verifier, who checks whether
a · v + bv equals mv.

Commitments of this form are unconditionally binding: a prover committing to v can send
an opening ṽ, m̃ with ṽ 6= v if and only if a · ṽ + bv = m̃. This is equivalent to the prover
being able to sample two distinct points (Px, Py) = (v,mv), (Qx, Qy) = (ṽ, m̃) from the line
Y = a · u + bv; which is equivalent to the prover having knowledge of the key (a, bv), that is
privately held by the verifier. This shows that the probability of a prover succeeding in opening
to a incorrect value is bounded by the probability of guessing a random element in a line over
L, which is equals 1/|L|. Since we want to have a negligible probability of breaking the binding

property of the commitment scheme, we require |L| = 2Θ(κ), where κ is the security parameter.
In particular, this means that in the (unfortunate) case where K is a field with constant size,
L is an extension of K of degree linear in κ.

These commitments are also unconditionally hiding: a verifier receiving a commitment u−v
only knows a and bu1 , . . . , bui , . . ., which are all independent of v.

Moreover, the above commitments are homomorphic (meaning [v] · [v′] = [v + v′]), where
[v] · [v′] is defined as follows:

[v] · [v′] :=

{
P : v + v′, u+ u′, mv+v′ = mu +mu′

V : (u− v) + (u′ − v′), a, bv+v′ = bu + bu′ + a · (u− v + u′ − v′)
Integers Scenario:

We here give a construction of unconditionally secure commitments on k-bit integers. Unlike
the previous construction, this construction is new, to the best of our knowledge. Let a be a
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prime in the interval [−2κ, . . . , 2κ], that is privately held by the verifier. We assume the prover
has a list A of integer values u1, . . . , ui, . . . uniform in [−2k+κ, . . . , 2k+κ] and for each ui he also
has an integer mui = a · ui + bui , where bui is a uniform integer in [−2k+3κ, . . . , 2k+3κ] privately
held by the verifier.

With this setup, commitments can be made as follows: in order for the prover to commit to
the integer v ∈ [−2k, . . . , 2k], the prover sends u−v to the verifier and sets mv = mu = a ·u+bu,
where u is the first unused value in the list A; the verifier then updates the key corresponding to
bu by setting bv = bu + a · (u− v). A commitment to v can therefore expressed by the following
data (where P denotes the prover, and V denotes the verifier);

[v] =

{
P : v, u, mv = a · u+ bu
V : u− v, a, bv = bu + a · (u− v)

In order to open commitment [v], the prover sends v,mv to the verifier, who checks if a · v + bv
equals mv.

Commitments of this form are homomorphic, unconditionally hiding (by the same arguments
as above) and unconditionally binding: a prover committing to v can send an opening ṽ, m̃ with
ṽ 6= v if and only if a · ṽ+bv = m̃. Subtracting the latter equation to the relation mv = a ·v+bv,
we obtain m̃−mv = a ·(ṽ−v), so the prover must know a multiple of a of length k+κ bits. Any
(k + κ)-bit integer can be thought of as its factorization, and the prover can break the binding
property if he knows a (k+κ)-bit integer where a appears in its factorization. Since a (k+κ)-bit
integer contains at most (k + κ)/κ prime factors of length κ and the number of κ-bit primes is
Θ(2κ/κ), the error probability of the scheme is equal to Θ(((k+κ)/κ) ·(κ/2κ)) = Θ((k+κ)/2κ).
If k = O(κ), the error probability is O(κ/2κ).

7.2.2. Commitment Schemes Based on Computational Assumptions. We consider
two kinds of commitment schemes: the first one is over a finite field K and can be viewed as
a function compk : K × H → G where H,G are finite groups and pk is a public key (this
includes the examples suggested in [CD98]). The second scheme is over the integers, and
compk : Z× Z→ G.

The public key pk is generated by a PPT algorithm G on input a security parameter κ. To
commit to a value x ∈ K or an integer x, the prover chooses r uniformly in H (or, in case of
integer commitments, in some appropriate interval) and sends C = compk(x, r) to the verifier.
A commitment is opened by sending x, r. We assume that the scheme is homomorphic, i.e.
compk(x, r) · compk(y, s) = compk(x + y, rs). For simplicity, we assume throughout that K is
a prime field. Then, by repeated addition, that we also have compk(x, r)

y = compk(xy, r
y) for

any y ∈ K. We also use [x] as shorthand for a commitment to x in the following, and hence
suppress the randomness from the notation.

We consider computationally hiding schemes: for any two values x, x′ the distributions
of pk, compk(x, r) and pk, compk(x

′, s) must be computationally indistinguishable, where pk
is generated by G on input security parameter κ. Such schemes are usually unconditionally
binding, meaning that for any pk that can be output from G, there does not exist x, r, x′, s with
x 6= x′ such that compk(x, r) = compk(x

′, s). For such schemes, the prover usually runs G, sends
pk to the verifier and may have to convince him that pk was correctly generated before the
scheme is used.

One may also consider unconditionally hiding and computationally binding schemes, where
pk, compk(x, r) and pk, compk(x

′, s) must be statistically indistinguishable, and where it must
be infeasible to find x, r, x′, s with x 6= x′ such that compk(x, r) = compk(x

′, s).

7.2.3. Linear Secret Sharing Schemes. The model of linear secret sharing schemes we
consider here is essentially equivalent to both the monotone span program formalism [KW93,
CDM00] and the linear code based formalism [CCG+07]. However, we generalise to schemes
where several values from the underlying field can be shared simultaneously. The model is
designed to facilitate clear description of the protocol.
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Let K be a finite field and let m be a positive integer. Consider the m-dimensional K-vector
space Km. Consider the index set I = {1, 2, . . . ,m}, and write x = (xi)i∈I for the coordinates of
x ∈ Km. In the following we consider linear functions between finite spaces. It is useful to recall
that because such functions are (additive) group homomorphisms, they are always regular; that
is, each element in the image has the same number of pre-images, namely the cardinality of the
kernel.

For a non-empty set A ⊆ I, the restriction to A is the K-linear function

πA : Km −→ K |A|

x 7−→ (xi)i∈A.

Let C ⊆ Km be a K-linear subspace which we keep fixed throughout this section. Let
A,S ∈ I be non-empty sets. We say that S offers uniformity if πS(C) = K |S|. Note that by

regularity of πS , if c is uniform in C, then πS(c) is uniform in K |S|.
Jumping ahead, we will use the subspace C for secret sharing by choosing a random vector

c ∈ C such that πS(c) = s where S is a set offering uniformity and s is the vector of secret
values to be shared. The shares are then the coordinates of c that are not in S.

We say that A determines S if there is a function f : K |A| → K |S| such that, for all c ∈ C,
(f ◦ πA) (c) = πS(c). Note that such an f is K-linear if it exists. Note that if c is uniformly
chosen from C and if A determines S, then πA(c) determines πS(c) with probability 1.

We say that A and S are mutually independent if the K-linear function

φA,S : C −→ πA(C)× πS(C)

c 7−→ (πA(c), πS(c))

is surjective. Note that πS(C) = {0} is the only condition under which it occurs that both
A and S are independent and A determines S. In particular, if c is uniformly chosen from
C, then πS(C) 6= {0} and if A and S are independent, then πA(c) and πS(c) are distributed
independently.

Suppose S offers uniformity. Let e be a positive integer and let

g : K |S|+e −→ C

be a surjective K-linear function. Define πg : K |S|+e → K |S| as the projection to the first |S|
coordinates. We say that g is an S-generator for C if πg = πS ◦ g, that is, if the first |S|
coordinates of ρ ∈ K |S|+e are the same as the coordinates of g(ρ) designated by S. Such an
S-generator always exists, by elementary linear algebra, with |B|+ ρ = dimK(C).

For any S-generator g we have that if s ∈ K |S| is fixed and if ρs is uniformly chosen in K |S|+e

subject to πg(ρs) = s, then g(ρs) has the uniform distribution on the subset of C consisting of
those c ∈ C with πS(c) = s.

We are now ready to define linear secret sharing schemes in our model: Let S ⊂ I be non-
empty and proper. Write S∗ = I \ S. The tuple (C, S) is a linear secret sharing scheme if
S offers uniformity and if S∗ determines S.

If that is the case, S∗ is called the player set, πS(C) is the secret-space, and πS∗(C) is
the share-space. If j ∈ S∗, then πj(C) is called the share-space for the j-th player. If l = |S|,
the scheme is said to be l-multi-secret. For A ⊆ S∗, we say that the scheme has A-privacy
(or A is an unqualified set) if A = ∅ or if A and S are independent. There is A-reconstruction
(or A is qualified) if A is non-empty and if A determines S. The scheme offers t-privacy if, for
all A in the player set with |A| = t, there is A-privacy. The scheme offers r-reconstruction if,
for all A in the player set with |A| = r, there is A-reconstruction.
Note that 0 ≤ t < r ≤ |S∗| if there is t-privacy and r-reconstruction. A generator for (C, S) is
an S-generator for C.

Let (C, S) be a secret sharing scheme, and let g be a generator. If s ∈ K |S| is the secret,
shares for the players in S∗ are computed as follows. Select a vector ρs according to the uniform
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probability distribution on K |S|+e, subject to πg(ρs) = s and compute c = g(ρs). The “full
vector of shares” is the vector πS∗(c).

In the following, where we write ρs, it will usually be understood that it holds that πg(ρs) =
s, and we say that ρs is consistent with the secret s.
Multiplication Properties:

For any x,y ∈ Km, their Schur-product (or component-wise product) is the element
(x ∗ y) ∈ Km defined as (x ∗ y) = (xj · yj)j∈I . If C ⊂ Km is a K-linear subspace, then

its Schur-product transform is the subspace Ĉ ⊂ Km defined as the K-linear subspace
generated by all elements of the form c ∗ c′, where c, c′ ∈ C.

Note that if (C, S) is a linear secret sharing scheme, then S offers uniformity in Ĉ as well.

But in general it does not hold that S∗ determines S in Ĉ. However, suppose that it does (so

(Ĉ, S) is a linear secret sharing scheme). Then (C, S) is said to offer r̂-product reconstruction

if (Ĉ, S) offers r̂-reconstruction.
Sweeping vectors:

Let (C, S) be a linear secret sharing scheme, let g be a generator for it and let A be an
unqualified set. Since A and S are mutually independent so that φA,S is surjective, it follows
that for any index j ∈ S, there exists cA,j ∈ C such that φA,S(cA,j) = (0, ej) where ej is the
vector with a 1 in position j and zeros elsewhere. Note that since the generator g is surjective
on C we can choose wA,j such that g(wA,j) = cA,j , and πg(wA,j) = ej . The vector wA,j is
called a jth sweeping vector.

To see the purpose of these vectors, suppose we have shared a vector of |S| zeros, so we have
c0 = g(ρ0). It is now easy to see that the vector

ρ0 +

|S|∑
j=1

xjwA,j

is consistent with the secret (x1, . . . , x|S|). Moreover, if we apply g to this vector, the player set
A gets the same shares as when 0’s were shared.

7.3. A Protocol for the Field Scenario

We are now ready to solve the problem mentioned in the introduction: namely, the prover
holds values x = (x1, . . . , xl),y = (y1, . . . , yl), z = (z1, . . . , zl), has sent commitments [x], [y], [z]
to the verifier and now wants to convince the verifier that xiyi = zi for i = 1, . . . , l, i.e., that
x ∗ y = z.

Suppose that both the prover and the verifier agreed on using an l-multisecret linear secret
sharing scheme (C, S), for d players, offering r̂-product reconstruction, and with privacy thresh-

old t. Fix a generator g : K l+e → C. Moreover, suppose that ĝ : K l+ê → Ĉ is a generator for

(Ĉ, S) and that a public basis for K l+e (respectively for K l+ê) has been chosen such that the

linear mapping g (resp. ĝ) can be computed as the action of a matrix M (resp. M̂).
The idea of the protocol is as follows: the prover secret shares x and y using (C, S) and

z using (Ĉ, S), in such a way that the resulting vectors of shares cx, cy, ĉz satisfy cx ∗ cy =
ĉz, which is possible since (C, S) offers product reconstruction. The prover commits to the
randomness used in all sharings, which, by the homomorphic property, allows the verifier to
compute commitments to any desired share. The verifier now chooses t coordinate positions
randomly and asks the prover to open the commitments to the shares in those positions. The
verifier can then check that the shares in x,y multiply to the shares in z. This is secure for the
prover since any t shares reveal no information; and, on the other hand, if the prover’s claim is
false, i.e. x ∗ y 6= z, then cx ∗ cy and ĉz can be equal in at most r̂ positions, so the verifier has
a good chance of finding a position that reveals the cheat. More formally, the protocol goes as
follows:
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Protocol Verify Multiplication

(1) The prover chooses two vectors rx, ry ∈ Ke, and sets ρx = (x, rx), ρy = (y, ry). Define

cx = Mρx, cy = Mρy. Now, the prover computes ρ̂z ∈ Kl+ê such that ρ̂z is consistent

with secret z and such that M̂ρ̂z = cx ∗ cy (Note that this is possible by solving a system of

linear equations, exactly because x ∗ y = z.) We then write ρ̂z = (z, r̂z) for some r̂z ∈ K ê.

Set ĉz = M̂ρ̂z.
(2) The prover sends vectors of commitments [rx], [ry], [r̂z] to the verifier. Together with the

commitments to x,y and z, the verifier now holds vectors of commitments [ρx], [ρy], [ρ̂z].
(3) The verifier chooses t uniform indices O ⊂ S∗ and sends them to the prover.

(4) Let mi be the ith row of M and m̂i the ith row of M̂ . For each i ∈ O, using the homo-
morphic property of the commitments, both prover and verifier compute commitments

[(cx)i] = [ρx]mi , [(cy)i] = [ρy]mi , [(ĉz)i] = [ρ̂x]m̂i .

The prover opens these commitments to the verifier.
(5) The verifier accepts if and only if the opened values satisfy (cx)i ·(cy)i = (ĉz)i for all i ∈ O.

Figure 7.1. Protocol to verify a multiplicative relation

Theorem 7.1. Assume the commitment scheme used is the one described in Section 7.2.1.
Then protocol Verify Multiplication is perfect zero-knowledge, and if for some i, xiyi 6= zi, the
verifier accepts with probability at most ((r̂ − 1)/d)t + 1/|L|.

Proof. For soundness, we suppose that the prover is dishonest (so xiyi 6= zi for some i)
and we compute the probability that the protocol accepts. Note first that, from the prover’s
commitments, vectors cx, cy, ĉz are determined, where we know that x,y and z respectively
appear in coordinates designated by S. Since xiyi 6= zi for some i, it follows that cx ∗ cy 6= ĉz.

Denote by T ⊂ S∗ the index set in the share space where the vectors cx ∗ cy and ĉz agree.
Note that the cardinality of T is at most r̂ − 1, because cx ∗ cy and ĉz are consistent with

different secrets. In order for the prover to be successful, one of the following must hold:

• All t entries the verifier asks the prover to unveil are in T .
In this case the prover can behave honestly, since the choice of the verifier points to
values that already satisfy the expected multiplicative relation.
• The prover can break the binding property of the commitment scheme.

In this case the prover can open commitments to arbitrary values.

For the first case: the probability that one entry chosen by the verifier is in T is at most equal
to (r̂−1)/d, since the choice is uniform. Repeating this argument t times implies that the event
that all t entries asked by the verifier are in T happens with probability equal to ((r̂ − 1)/d)t.

If this event does not happen, there is at least an entry chosen by the verifier that lies outside
T . The prover can still pass the check by opening to values that satisfy the multiplicative relation
expected by the verifier, even for those entries that lie outside T . Since there is at least one
entry outside T , the prover must break the binding property of the commitment scheme to
succeed, and this event happens with probability 1/|L|, as shown in Section 7.2.1. Therefore,
the soundness error of the protocol is bounded by (r̂ − 1)/d+ 1/|L|.

To show zero-knowledge, we build the following simulator.

• For the setup, the simulator runs a local copy of the ideal functionality for the prepro-
cessing, obtaining values

– (u1,mu1), . . . , (ui,mui), . . . ∈ K × L and
– (au1 , bu1), . . . , (aui , bui), . . . ∈ L× L

such that

mui = aui · ui + bui , for all i.

The simulator sends the values (au1 , bu1), . . . , (aui , bui), . . . to the verifier.
• The simulator runs the protocol exactly as a honest prover would until step 3.

102



• In step 4, in order to open each value [(cx)i] = [ρx]mi (respectively [(cy)i]), the sim-
ulator first computes the corresponding key (a, b(cx)i) (respectively (a, b(cy)i)), sam-

ples a uniform x′i ∈ K (respectively y′), computes mx′i
= a · x′i + b(cx)i (respectively

my′i
= a · y′i + b(cy)i) and sends (x′i,mx′i

) (respectively (y′i,my′i
)) as the opened value.

To open [(ĉz)i] the simulator computes the corresponding key (a, b(ĉz)i , sets z′i = x′i ·y′i,
computes mz′i

= a · z′i + b(ĉz)i and sends (z′i,mz′i
) as the opened value.

The simulation is clearly polynomial time. The distribution of the messages sent to the verifier
is the same as in a real execution of the protocol until step 3. In step 4 the opened values
have the same distribution as in the real protocol (x′i, y

′
i are uniform, and z′i = x′i · y′i), and the

openings are valid, since they pairs sent satisfy the linear relation expected by the verifier. �
Representing a Sequence of Points:

We here compare two approaches to represent a sequence O of t elements drawn uniformly
and independently from a set S∗ = {1, . . . , d}. This comparison helps us to find the best
communication complexity achievable by our protocols, since in all of them there is one step in
which such O has to be sent between players.

One method is to send the sequence of points in O: this procedure would require log d bits
per point, so the total amount of bits is t · log d. An alternative method is to send a bit-vector
of dimension d, where its ith coordinate is equal to 1 if and only if i ∈ O; the total amount of
bits is then d.

In the proceedings version of our paper [CDP12], we assume that the communication
between players was performed using the first method, while in the full version we take advantage
of the most convenient method: when the choice of the parameters is such that d < t · log d
holds, we use the latter (in the protocol for verification of a single multiplication, both for finite
fields and for the integers), and if not we use the former (in the protocol for verification of a
circuit).
Demands upon the Secret Sharing Schemes:

Above, we have described the protocol for a fixed secret sharing scheme, but what we really
want is to look at is the asymptotic behaviour as a function of l, the number of secrets we
handle in one execution, and u, where we want error probability 2−u. For this, we need a family
of secret sharing schemes, parametrised by l and u, which makes t, d, e, r̂ and ê be functions of
l, u.

Let’s say that committing requires sending κc bits, while opening requires κo bits. For
standard computationally secure commitments, it is usually the case that κc is Θ(κo), but
this is not the case for the information theoretically secure commitments, where κc can be
much smaller than κo. Using this notation, the communication complexity of the protocol is
O(κc(e+ ê) + κot+ d) bits.

Now, suppose we can build a family of secret sharing schemes, where e, ê are O(u) and
r̂ is O(l + u), t is Θ(u) and (r̂ − 1)/d is O(1). This allows d to be O(l + u) and so we can
achieve the complexities promised earlier: for standard computationally hiding commitments,
we get soundness error 2−αu for some constant α > 0 for one instance of the protocol. For the
information theoretically secure commitments, we get the same if we set |L| = 2Θ(u). In any
case, if necessary, we can achieve 2−u by repeating the protocol in parallel a constant number
of times. Inserting into the above expression, and dividing by l, we get the complexity per
multiplicative relation: O(ul (κc + κo)). For standard commitments we have κc = κo = κ, and
for information theoretically secure commitments we have κc = O(1) and κo = O(u). So this
gives us the complexities promised in the Introduction.

We show in Section 7.3.1 how to construct a secret sharing scheme with the desired prop-
erties.
Application to Zero-Knowledge Proofs for Circuit Satisfiability:

An obvious application of our protocol is to give ZK proofs for Boolean circuit satisfiability:
the prover commits to the bits on each wire in the circuit C, opens the output as a 1 and shows
that, for each AND-gate, the corresponding multiplicative relation holds for the committed bits.
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We can apply the Verify Multiplication protocol to do this. Then we have that l is O(|C|).
If we run the protocol with error probability 2−u, our expression for the total communication
complexity becomes O(|C|κc + u(κc + κo)), note that we have to add the cost of committing to
the bits in the circuit.

Now we note that if we use the information-theoretic commitments as described above, then
κc = 1 and κo is O(u). Therefore the complexity is actually O(|C|+u2)) bits, and when dividing
by |C| we get communication overhead O(1), as promised in the introduction.

7.3.1. A Concrete Example. In this section we explain how to design a secret-sharing
scheme meeting the demands we stated earlier. For simplicity we first show the details for the
case of u = l.

As a stepping stone, we consider the following scheme based on Shamir’s scheme. Suppose
2(t + l − 1) < d and d + l ≤ |K|. Choose pairwise distinct elements q1, . . . , ql, p1, . . . , pd ∈ K,
and define

C = {(f(q1), . . . , f(ql), f(p1), . . . , f(pd)) | f ∈ K[X]≤t+l−1} ⊂ K l+d,

where K[X]≤t+l−1 denotes the K-vector space of polynomials with coefficients in K and of
degree at most t + l − 1. Let S correspond to the first l coordinates. Then, by Lagrange
interpolation, it is straightforward to verify that (C, S) is an l-multi-secret K-linear secret
sharing scheme of length d, with t-privacy and (2t + 2l − 1)-product reconstruction. So if we
set t = l (and hence the degrees are at most 2l − 1), d = 8l, and |K| ≥ 9l, then 2(t + l − 1) =
4l − 2 < 8l = d, d + l = 9l ≤ |K|, and r̂ = 2t + 2l − 1 = 4l − 1 < 4l = d/2. In particular,
r̂−1
d < 1

2 . Moreover, e = 2l, and ê = 4l− 1. So all requirements are satisfied, except for the fact
that in this approach |K| = Ω(log l).

Before we present a scheme which works over a constant size field, yet asymptotically meets
all requirements, we describe a simple, useful lifting technique. Suppose the finite field of
interest K, i.e. the field over which our zero-knowledge problem is defined, does not readily
admit the required secret sharing scheme, but that some degree-u extension L of K does. Then
we may choose a K-basis of L of the form 1, x, . . . , xu−1 for some x ∈ L. It is then easy to “lift”
the commitment scheme and to obtain one that is L-homomorphic instead: simply consider
the elements of L as coordinate-vectors over K, according to the basis selected above, and
commit to such a vector by committing separately to each coordinate. This scheme is clearly
homomorphic with respect to addition in L. Multiplication by (publicly known) scalars from
L is easily seen to correspond to applying an appropriate (publicly known) K-linear form to
the vector of K-homomorphic commitments. Furthermore, K is embedded into L by mapping
a ∈ K to a+0 ·x+ . . .+0 ·xu−1. When committing to a ∈ K, simply commit to a in the original
commitment scheme, and append u − 1 “default commitments to 0.” This way, the protocol
problem can be solved over K, with a secret sharing scheme over L. However, communication-
wise, even though all further parameters may be satisfied, there are now O(ul) commitments,
instead of O(l) as required.

For example, if the above secret sharing scheme is implemented, then since K is of constant
size, the field L over which the secret sharing is defined must grow proportionally to log l. Hence,
the total communication is a logarithmic factor off of our target. This is resolved as follows,
by using a technique that allows passing to an extension whose degree u is constant instead of
logarithmic.

Let F be an algebraic function field over the finite field Fq with q elements. Write g for its
genus and n for its number of rational points. Suppose 2g + 2(t + l − 1) < d and d + l ≤ n.
Choose pairwise distinct rational points Q1, . . . , Ql, P1, . . . , Pd ∈ F , and define

C = {(f(Q1), . . . , f(Ql), f(P1), . . . , f(Pd)) | f ∈ L(G)} ⊂ Fl+dq ,

where G is a divisor of degree 2g+ t+ l− 1 whose support does not contain any of the Qj ’s nor
any of the Pi’s, and where L(G) is the Riemann-Roch space of G. As before, let S correspond
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to the first l coordinates. Using a similar result as in [CC06], we prove, using the Riemann-
Roch Theorem, that (C, S) is an l-multi-secret Fq-linear secret sharing scheme of length d,
with t-privacy and (2g + 2t + 2l − 1)-product reconstruction. Moreover, e = g + t + l and
ê ≤ 3g + 2t + 2l − 1. Asymptotically, using this result in combination with optimal towers
over the fixed finite field Fq where q ≥ 49 is a square, we get g/n = 1√

q−1 < 1/6. Hence, if we

set, for example, t = l = n/20 and d = 19/20n, then there is Ω(l)-privacy, r̂−1
d < c < 1 for

some constant c, and e = Ω(l), ê = Ω(l). Therefore, at most a degree 6 extension of the field
of interest is required, as the maximum is attained for K = F2 with the extension being F64.
Finally, these schemes can be implemented efficiently.

The more general case where u and l are independent parameters follows easily from the
above and we leave the details to the reader. The basic reason that it works is that the number
of required random field elements for a sharing (e, ê) is linear in the required privacy threshold
which we want to be Θ(u), and furthermore the reconstruction threshold (r̂) is linear in the
sum of the length of the secret vector and the privacy threshold, which here is l + Θ(u).

7.3.2. Verify Multiplication Protocol for Standard Commitments.

Theorem 7.2. Assume the commitment scheme used is unconditionally binding and com-
putationally hiding. Then the Verify Multiplication protocol is a computationally honest-verifier
zero-knowledge interactive proof system for the language{

([xi], [yi], [zi])
l
i=1 | xiyi = zi, for i = 1, . . . , l

}
with soundness error ((r̂ − 1)/d)t.

Proof. The proof of soundness follows the same structure as that of Theorem 7.1.
To show (honest-verifier) zero-knowledge, the idea is to “execute the protocol” exactly as

the honest prover would have done, but assuming that all secret values are 0. After that, we
adjust the relevant values so they become consistent with the actual values of x,y and z.

So we first generate random vectors ρx0 = (0, rx0), ρy0 = (0, ry0), both consistent with sharing

the all-0 vector. We compute ρ̂z0 = (0, rz0) such that M̂ρ̂z0 = (Mρx0)∗(Mρy0). We then choose

a random subset A ⊂ S∗ of t indices. Note that we have (Mρx0)i(Mρy0)i = (M̂ρ̂z0)i for i ∈ A,
and these shares have the same distribution as in the real conversation, since any t shares are
distributed independently of the actual secrets. We then form random vectors of commitments
[rx0], [ry0], [rz0]. Note that since the commitment function is a homomorphism from K × H to
G, the neutral element 1G is a commitment to 0 ∈ K. Therefore we can form vectors of
commitments as follows:

[ρx0] = ((1G, . . . , 1G), [rx0]), [ρy0] = ((1G, . . . , 1G), [ry0]), [ρ̂z0] = ((1G, . . . , 1G), [rz0]).

As described above, we can assume existence of sweeping vectors wA,j and ŵA,j for the

secret sharing schemes (C, S) and (Ĉ, S), respectively, and we know that the vectors

ρx = ρx0 +
l∑

j=1

xj ·wA,j , ρy = ρy0 +
l∑

j=1

yj ·wA,j , ρ̂z = ρ̂z0 +
l∑

j=1

zj · ŵA,j

are consistent with sharing x,y and z, respectively, but where the subset A gets the same
shares as when 0’s were shared. The simulator cannot compute ρx, ρy, ρ̂z, but it can compute
commitments to them. Using the fact that the commitments [xj ], [yj ], [zj ] are given and the
sweeping vectors are public, it can compute, for instance, a vector of commitments [xi ·wA,j ]
and hence

[ρx] = [ρx0]

l∏
j=1

[xj ·wA,j ], [ρy] = [ρy0]

l∏
j=1

[yj ·wA,j ], [ρ̂z] = [ρ̂z0]

l∏
j=1

[zj · ŵA,j ].
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It is easy to verify that because we used neutral elements 1G as the first entries in [ρx0], [ρy0], [ρ̂z0],
the first l entries of [ρx], [ρy], [ρ̂z] as computed above are [x], [y] and [z]. The simulator therefore
extracts the last e commitments from [ρx] and [ρy], and the last ê commitments from [ρ̂z], and
uses these to simulate the commitments sent in Step 2.

It then outputs the index set A as simulation of step 3.
For step 4, note that the simulator may compute and open commitments to

[(Mρx)i] = [(Mρx0)i], [(Mρy)i] = [(Mρy0)i], [(M̂ρz0)i],

for i ∈ A, where these equalities follow by the sweeping vector properties. By construction, the
opened values satisfy the multiplicative property expected by the verifier.

This simulation is clearly polynomial time, and we argued that the distribution of all values
that are opened are exactly as in a real conversation. The commitments [ρx] and [ρy] are also
distributed correctly. Therefore, the only difference between simulation and conversation lies
in the distribution of ρ̂z hidden in [ρ̂z] (in a real conversation, the choice of ρ̂z ensures that the
resulting ĉz satisfies (cx)i(cy)i = (ĉz)i for all indices i, whereas for the simulation this only holds
for i ∈ A). It therefore follows from the hiding property of commitments and a standard hybrid
argument that simulation is computationally indistinguishable from real conversations. �

7.3.3. Verify Multiplication Protocol for Unconditionally Hiding Commitments.
We briefly sketch how to modify the protocol to work for an unconditionally hiding and com-
putationally binding commitment scheme. The protocol would then be a proof of knowledge
that the prover can open his input commitments to reveal strings x,y, z with x ∗ y = z. We
need to add in Step 2 that the prover must prove that he knows how to open all the commit-
ments [x], [y], [z], [rx], [ry], [r̂z]. This can be done by simply invoking the amortized efficient
zero-knowledge protocol from [CD09] since the commitment function we assume is exactly of
the form this protocol can handle. The overhead introduced by this is only a constant factor.

The proof of zero-knowledge is exactly the same, except that we get perfectly (statistical)
zero-knowledge if the commitment scheme is perfect (statistically) hiding.

For soundness, we argue that parameters are chosen such that ((r̂ − 1)/d)t is negligible in
the security parameter, and if the prover convinces the verifier with non-negligible probability,
then there exists a knowledge extractor that uses the prover to compute openings of his input
commitments to strings x,y, z with x∗y = z (except with negligible probability). This algorithm
would first invoke the knowledge extractor for the protocol from [CD09] to get opening of all the
prover’s initial commitments, to strings x,y, z, rx, ry, r̂z. We claim that except with negligible
probability, we have x ∗ y = z.

This follows since, as we now argue, if x ∗ y 6= z then we could break the binding property
of the commitments. To see this, notice that from the openings we know of the prover’s initial
commitments, we can use the homomorphic property to compute openings of any commitment
to a share that the prover can be asked to open in Step 4. Call these the predetermined openings.
Note that the shares in question are consistent with secret sharing the strings x,y, z.

Now we send a random challenge to the prover, and by assumption on the prover, his reply
passes the verifier’s test with non-negligible probability, i.e., for all i ∈ O, the opened values
sx,i, sy,i, sz,i satisfy sx,isy,i = sz,i. However, this is not the case for the predetermined openings of
the same commitments: it immediately follows from the soundness proof of the previous theorem
that because the predetermined openings are consistent with actually secret sharing x,y, z, these
openings satisfy the multiplicative relation with only negligible probability ((r̂ − 1)/d)t (over
the choice of the verifier’s challenge). It follows that with non-negligible probability, there is
at least one commitment to a share for which the predetermined opening is different from the
opening done by the prover in response to the challenge. We have therefore broken the binding
property.
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7.4. A More General Approach

In this section we define linear secret sharing with a more general multiplicative property,
and we use the notation from Section 7.2.3. Let D be an arithmetic circuit over K with v inputs
and one output. Then for c1, . . . , cv ∈ Km, we define D(c1, . . . , cv) ∈ Km as the vector whose
jth coordinate is D((c1)j , . . . , (cv)j), i.e., we simply apply D to the jth coordinate of all input
vectors.

If C ⊂ Km is a linear subspace, then CD is defined as the K-linear subspace generated by
all vectors of form D(c1, . . . , cv) where c1, . . . , cv ∈ C. Just as for the standard multiplication
property, if (C, S) is a secret sharing scheme, then S offers uniformity in CD, but in general it
does not necessarily hold that S∗ determines S in CD. If it does, however, so that (CD, S) is a
linear secret sharing scheme, then we say that (C, S) offers (r̃, D)-product reconstruction if
(CD, S) offers r̃-product reconstruction.

As a concrete example of this, consider Shamir secret sharing. Here, each ci is a sequence
of evaluations of a polynomial fi at a fixed set of points. Then D(c1, . . . , cv) denotes the vector
having coordinates of the form D(f1(j), . . . , fv(j)) for j in the set of evaluation points. These
coordinates can be thought as the evaluations of the polynomial D(f1, . . . , fv) (defined in the
natural way), of which sufficiently many will determine D(f1, . . . , fv) uniquely.

Based on this more general notion, we can design a protocol where a prover commits to
vectors x1, . . . ,xv, z and wants to prove that D(x1, . . . ,xv) = z.

Similarly to our approach for the first protocol, we suppose that both the prover and the
verifier agreed on using an l-multisecret linear secret sharing scheme (C, S), for d players, with
(r̃, D)-product reconstruction, and t-privacy. We fix a generator g : K l+e → C. Moreover, we
suppose that g̃ : K l+ẽ → CD is a generator for (CD, S) and that a public basis for K l+e (re-
spectively for K l+ẽ) has been chosen such that the linear mapping g (resp. g̃) can be computed

as the action of a matrix M (resp. M̃). The protocol goes as follows:

Protocol Verify Circuit

(1) The prover chooses v vectors r1, . . . , rv ∈ Ke, and sets ρj = (xj , rj) for j = 1, . . . , v. Define

cj = Mρj . Now, the prover computes ρ̃z ∈ Kl+ẽ such that ρ̃z is consistent with secret

z and such that M̃ρ̃z = D(x1, . . . ,xv) (Note that this is possible by solving a system of
linear equations, because D(x1, . . . ,xv) = z.) We then write ρ̃z = (z, r̃z) for some r̃z ∈ K ẽ.

Set c̃z = M̃ρ̃z.
(2) The prover sends vectors of commitments [rj ], j = 1, . . . , v and [r̃z] to the verifier. Together

with the commitments to xj and z, the verifier now holds vectors of commitments [ρj ],
j = 1, . . . , v, and [ρ̃z].

(3) The verifier chooses t uniform indices O ⊂ S∗ and sends them to the prover.

(4) Let mi be the ith row of M and let m̃i be the ith row of M̃ . For each i ∈ O, using the ho-
momorphic property of the commitments, both prover and verifier compute commitments

[(cj)i] = [ρj ]
mi , for j = 1, . . . , v, [(c̃z)i] = [ρ̃z]m̃i .

The prover opens these commitments to the verifier.
(5) The verifier accepts if and only if the opened values satisfy

D((c1)i, . . . , (cv)i) = (c̃z)i for all i ∈ O.

Figure 7.2. Protocol to verify a circuit

Using a similar proof as for Theorem 7.1, it is easy to show the following.

Theorem 7.3. Assume the commitment scheme used is the one described in section 7.2.1.
Then the protocol Verify Circuit is perfect honest-verifier zero-knowledge and if D(x1, . . . ,xv) 6=
z, the verifier accepts with probability at most ((r̃ − 1)/d)t + 1/|L|.

The interesting question is whether we can build secret sharing schemes with this type of
D-reconstruction and whether the resulting more general protocol offers advantages over the
first one.
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The answer to the first question is positive, and the construction was already hinted at above:
we can base a scheme on Shamir secret sharing extended à la Franklin and Yung [FY92] to share
blocks of l secrets. This requires polynomials of degree e = l + t− 1. Since each multiplication
in D doubles the degree of the polynomials, the degree after applying D is 2δt where δ is the
multiplicative depth of D. This means that ẽ = r̃ = 2δt for this construction, and d should be
a constant factor larger than r̃ to get exponentially small error probability.

We assume for simplicity that the cardinality of K is larger than d+ l, in order to have the
required number of evaluation points. If this is not the case, we can pass to an extension field
at cost of a logarithmic factor, as explained in the previous section. Note that the algebraic
geometric approach presented in Section 7.2.3 does not give any non-constant improvement over
the Shamir-based approach in the setting of D-reconstruction. However, it appears that the
algebraic geometric approach can be extended to get a non-trivial improvement here as well,
using more advanced techniques.

We can now compare two natural approaches to verifying that committed vectors x1, . . . ,xv,
z satisfy D(x1, . . . ,xv) = z:

The first approach is to perform the Verify Circuit protocol using the secret sharing scheme
we sketched. If we go for error probability 2−l and therefore choose t to be Θ(l), and representing
the index set O in the most convenient way (see “Representing s Sequence of Points” in section
7.3), simple inspection of the protocol shows:

Lemma 7.4. Using the Verify Circuit Protocol, the amortized communication complexity to
verify one instance of a circuit with multiplicative depth δ and v inputs is O(2δκ+ vκ+ δ log l)
bits for an error probability of 2−l.

Note that, except for the cost of committing to the inputs, the communication complexity
only depends on the depth of the circuit.

The second approach is to use the Verify Multiplication protocol. The prover will, for every
multiplication gate T in D, commit to a vector zT where (zT )i is the output from T in the
instance of D where the inputs are (x1)i, . . . , (xv)i. Now, for every multiplication gate T the
verifier can compute vectors of commitments [xT ], [yT ] to the inputs to T (since any linear
operations in D “between multiplication gates” can be done by the verifier alone). We then use
the Verify Multiplication protocol to check that xT ∗ yT = zT . Using this protocol verifying a
multiplication has communication cost O(κ) bits, so the total cost to verify one instance of the
circuit corresponds to O(µκ+ vκ) bits, where µ is the number of multiplication gates in D.

Notice that large fan-out comes at no cost in our model, and that linear operations with
large fan-in are also for free. Moreover, both approaches generalize easily to circuits with several
outputs. Therefore, there is no fixed relation between µ and δ, and in particular, we could
consider families of circuits where δ is constant or logarithmic in the input size, but µ grows
faster than 2δ. In such a case, using the Verify Circuit protocol is better: it has the interesting
property that the amortized cost of verifying a single instance of D can be asymptotically
smaller than the number of multiplication gates in D.

Theorem 7.5. Assume the commitment scheme used is unconditionally binding and com-
putationally hiding. Then the protocol Verify Circuit is a computationally honest-verifier zero-
knowledge interactive proof system for the language

{([x1], . . . , [xv], [z]) | D(x1, . . . ,xv) = z}

with soundness error ((r̃ − 1)/d)t.

7.4.1. Using MPC in the Head for the Verify Circuit Protocol. We now sketch
a final variant of the Verify Circuit protocol that leads to a complexity that is in general
incomparable to the first one, and for reasonable parameter values gives an improvement.

The idea is as follows: instead of committing to the values in r̃z in the usual way, the
prover simply sends the required commitments to shares [(c̃z)i] and use the “MPC in the head”
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approach from [IKOS09] (the IKOS compiler) to prove to the verifier that the commitments
contain the correct shares.

To use this approach, we first specify a multiparty protocol that creates the desired output,
the IKOS compiler produces a 2 party zero-knowledge protocol proving the result is correct,
assuming also a suitable commitment scheme (not necessarily that used in the basic protocol).

The multiparty protocol goes as follows: we have a ∈ Θ(l) players, of which a constant
fraction may be actively corrupted. The first step is to generate a set of random secret shared
values r1, . . . , rẽ, shared among the a players using standard Shamir sharing over K. Using a
simple variant of the protocol by Hirt and Berliova based on hyperinvertible matrices, this can
be done in total communication complexity O(ẽlk) bits where k is the size of a field element. We
now set r̃z = (r1, . . . , rẽ) and we let the shares of these values be ru,j , u = 1, . . . , ẽ, j = 1, . . . , a.
Let ni be the last ẽ entries of mi. Then each player outputs a commitment to the inner product
[ti,j ] = [(r1,j , . . . , rẽ,j) · ni].

Let λ1, . . . , λa be the Lagrange coefficients to reconstruct the secret given correct shares.
Everybody can now compute [ti] =

∏
j [ti,j ]

λj .
Note that we do not yet know if the value is correct, but if all virtual players output correct

commitments, then the desired commitment to (c̃z)i can be computed as a “linear combination”
of the commitments z and [ti].

Note that the ti,j ’s are in fact Shamir shares in ti, and they are all correct, except for a
constant fraction. Therefore, it follows that ti is correct if all ti,j are on a polynomial of low
enough degree. We check this by computing commitments to the “syndrome” of the set of ti,j ’s:
these commitments should contain all 0’s. In a normal multiparty situation, we could not open
these commitments, but in our case a prover is executing the protocol in his head, so we can
just ask the prover to open these.

When we compile this protocol to a 2-party protocol, the idea is, as mentioned, that the
prover executes the protocol in his head and commits to the views of all players. We do this
with a separate commitment scheme that does not need to be homomorphic. The verifier asks
the prover to open the views of a randomly chosen unqualified subset of players and checks the
views for consistency. The IKOS results show that if the protocol has not worked correctly,
the verifier rejects, except with probability 2−Θ(a). As a result, we get the commitments to the
shares we wanted.

Since a and t, the number of opened shares are Θ(l), the cost of this is O(l2κ) bits for the
commitments and ẽl2k bits for the views of virtual players.

This new protocol should be compared to the normal one where the cost is O((ẽ+ l)κ). We
see that if κ > l2k and ẽ > l2 then the new solution has smaller cost.
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7.5. Proving Integer Multiplication

In the following, we show a protocol designed for the case where the prover’s secret values are
integers. We make use of a specific integer linear secret sharing scheme based on polynomials and
assume that the underlying commitment scheme is computationally binding and unconditionally
hiding. The idea of the protocol is similar to the one for finite fields.

Let

∆ =
∏

i,j=1,...,d,
i 6=j

(i− j),

where d is the number of players. Assume that the secrets s1, . . . , sl to be shared satisfy
si ∈ {−2k, . . . , 2k} for all i, for some k. In order to share them, sample random integers
a1, . . . , at ∈ {−l2k+u∆d!, . . . , l2k+u∆d!} (where u is the security parameter) and use Lagrange
interpolation over the rationals to find g ∈ Q[X] such that

g(−i) = si and g(−l − j) = aj ,

for i = 1, . . . , l and j = 1, . . . , t. Since there are t+ l points to interpolate, g has degree (less or)
equal to t+ l. Define f = ∆ · g. It follows that f is indeed a polynomial over the integers, since
∆ is a multiple of each denominator appearing in the coefficients of g. The shares are then the
values f(1), . . . , f(d). Given at least t+ l+ 1 shares, one can reconstruct the secrets, simply by
doing Lagrange interpolation over Q.

Moreover, any set of at most t shares has distribution statistically independent of s1, . . . , sl:
let A be an index set designating t players. By Lagrange interpolation we can construct a
polynomial w′A,i of degree at most t + l with rational coefficients such that w′A,i(−i) = 1 and

w′A,i(j) = 0 for i = 1, . . . , l and for j ∈ A. From the standard construction of w′A,i, it follows that

wA,i = ∆w′A,i has integer coefficients, and that wA,i(−l−1), . . . , wA,i(−l− t) are all numerically
at most ∆d!.

Now suppose we have shared the secret consisting of l 0’s using a polynomial h. Then

f = h +
∑l

i=1 siwA,i is a polynomial consistent with sharing the secrets s1, . . . , sl, but the
shares rising from f received by player set A are the same as the ones rising from h. If f is
such that f(−l− 1), . . . , f(−l− t) are in the correct interval we conclude that the set of shares
in question will be chosen for A with the same probability whether the secrets are 0, . . . , 0 or
s1, . . . , sl. But the evaluations h(−l − 1), . . . , h(−l − t) were chosen in an interval a factor 2u

larger than the size of the the evaluations of
∑l

i=1 siwA,i, and hence h and f are both legal,
except with probability negligible in u. Hence the distribution of shares seen by A is, for any
tuple of secrets, statistically indistinguishable from the distribution for the zeros tuple.

7.5.1. A Protocol to Prove Integer Multiplication. In this section, we give a protocol
allowing the prover to show that committed vectors x,y, z with integer entries satisfy x ∗ y = z
where, as in the previous section, an honest prover will choose the committed integers from
{−2k, . . . , 2k}. We use the secret sharing scheme from the preceding section where we set the
security parameter u to be l (this is consistent with previous sections where we have used l as
the parameter controlling error probabilities). We use the same notation for commitments as
in previous sections, and as an example of the concrete commitment scheme based on compu-
tational assumptions, the reader may think of the factoring based scheme from [FO97, DF02].
As an example of the the unconditionally secure commitment scheme, we refer to section 7.2.1.

Before stating the actual protocol, we fix some notation. Let f be a polynomial of degree
equal to m. Write f(X) =

∑m
j=0 fjX

j . Define f = (f0, . . . , fm) and ev(i) = (1, i, . . . , im).
Notice that

f(i) =

m∑
j=0

fj · ij = f · ev(i), and [f(i)] =

m∏
j=0

[fj ]
ij = [f ]ev(i).
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The formulation on the right hand side of these equations is the one used in the protocol, which
proceeds as follows. Note that the protocol differs depending on the kind of commitment scheme
used (based on computational assumptions or unconditionally secure).

The prover holds values x = (x1, . . . , xl),y = (y1, . . . , yl) and z = (z1, . . . , zl), and has sent
commitments [x], [y] and [z] to the verifier. We assume they both agreed in using the linear
secret sharing scheme described in section 7.5. In case they are using a commitment scheme
based on computational assumptions, we suppose there exists an interactive zero-knowledge
proof of knowledge PC for the relation

C = {(a,w) | a = compk(x, r), w = (x, r)} .

Moreover, we assume this interactive proof of knowledge is a Σ-protocol that can prove knowl-
edge of opening for l commitments at once, with knowledge error 2−l. Conversations in such a
protocol have form (a, e, z) where e is random challenge issued by the verifier. Because com-
mitments are homomorphic, such a proof of knowledge follows immediately from the techniques
described in [CD09]. In the protocol below, we execute a variant of our protocol from the pre-
vious sections in parallel with PC . Thus the overall protocol will have the form of a Σ-protocol,
which simplifies the proof of soundness.

Protocol Verify Multiplication for Integers
Note! Text in italic font denotes actions performed only if using a commitment scheme
based on computational assumptions.

(1) The prover chooses ax,ay ∈ Zt and uses Lagrange interpolation (over the rationals) to
generate two polynomials gx, gy, having degree t+ l, such that

gx(−i) = xi, gx(−l − j) = (ax)j , gy(−i) = yi, gy(−l − j) = (ay)j ,

for i = 1, . . . , l and j = 1, . . . , t. The prover now sets ĝz = gx · gy, fx = ∆gx, fy = ∆gy and

f̂z = ∆2ĝz. As explained above, fx and fy are polynomials with integral coefficients and

have degree at most t + l. Notice that f̂z is also a polynomial with integral coefficients,
but has degree at most 2(t+ l).

(2) The prover sends commitments [fx], [fy] and [̂fz].

(3) The verifier checks that [x], [y] and [z] are consistent with fx, fy and f̂z: namely, for all
i = 1, . . . , l it computes

[fx]ev(−i)[∆xi]
−1, [fy]ev(−i)[∆yi]

−1, [̂fz]ev(−i)[∆2zi]
−1,

and asks the prover to open these commitments to zero. If any of these openings do not
agree with the commitments, the verifier quits.

(4) The prover defines the vector xC = ([x], [y], [z], [fx], [fy], [̂fz]) containing committed values.
We think of xC as a vector of instances for the protocol PC . The prover computes a vector
aC as the first message for the protocol PC with instance xC . The prover sends aC to the
verifier.

(5) The verifier chooses t uniform indices O ⊂ {1, . . . , d}. Similarly as above, the verifier
computes

[fx]ev(i) = [(bx)i], [fy]ev(i) = [(by)i], [̂fz]ev(i) = [(b̂z)i],

for i ∈ O. The verifier generates a vector eC as a challenge on (xC , aC) according to PC .
The verifier sends eC together with the index set O to the prover.

(6) The prover computes the vector zC as a reply for (xC , aC , eC) according to PC . The prover

sends zC together with the openings of [(bx)i], [(by)i] and [(b̂z)i] for i ∈ O.
(7) The verifier accepts if and only if (xC , aC , eC , zC) is an accepted conversation for PC and

the opened values satisfy (bx)i · (by)i = (b̂z)i for i ∈ O.

Figure 7.3. Protocol to verify a multiplicative relation over the integers

Using a proof similar to the one of theorem 7.1 we obtain the following result:
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Theorem 7.6. Assume the commitment scheme used is the one described in section 7.2.1.
Then protocol above is perfect zero-knowledge, and if for some i, xiyi 6= zi, the verifier accepts
with probability at most (2(t+ l)/d)t + κ/2κ.

In the theorem below, we show soundness and honest verifier zero-knowledge for the above
protocol. It may seem strange at first sight that the theorem does not assume that commitments
are binding. This is because we show that the protocol unconditionally is a proof of knowledge
that either the prover knows x,y, z with the expected multiplicative relation, or he knows a
commitment that he can open in two different ways. Using this result in an application, one
would apply the knowledge extractor and then argue that because the commitment scheme is
computationally binding, the event that the prover breaks the binding property occurs with
negligible probability. Since the primary example we know of integer commitments ([FO97,
DF02]) has binding based on factoring, applications of this result only need to assume factoring
is hard, in contrast to earlier techniques where strong RSA was required.

Theorem 7.7. Assume the homomorphic commitment scheme used is unconditionally hid-
ing. Then the above protocol is a statistical honest-verifier zero-knowledge interactive proof of
knowledge for the relation

M ={(a,w) | a = (pk,Ai, Bi, Ci)
l
i=1 , w = (xi, ri, yi, si, zi, ti)

l
i=1 :

compk(xi, ri) = Ai, compk(yi, si) = Bi, compk(zi, ti) = Ci, zi = xiyi for i = 1, . . . , l}∪
{(a,w) | a = (pk,A) , w = (v, r, v′, r′) : compk(v, r) = A = compk(v

′, r′), v 6= v′}

with knowledge error keM = max{(2(t+ l)/d)t, 2−l}.

Proof. For soundness, for any prover P ∗ that makes the protocol accept with probability p we
build a knowledge extractor EM having running time (p− keM )−1poly(u), where keM is equal
to max{(2(t+ l)/d)t, 2−l}. The latter equality allows us to assume p > (2(t+ l)/d)t. Note that
by the result from [BG06], we may assume that P ∗ is deterministic. Therefore p is simply the
fraction of challenges eC , O that P ∗ answers correctly.

(i) EM runs the protocol with P ∗ until step 3; EM stores each opening (v, r) in a list L.
(ii) EM continues the protocol. It receives aC during step 4.
(iii) EM sends eC , O computed according to the protocol at step 5.

(iv) During step 6 EM receives zC and the openings of [(bx)i], [(by)i] and [(b̂z)i] for i ∈ O.
EM rewinds the prover to step 5 and goes to (iii) until it sees two conversations
(xC , aC , eC , zC), (xC , aC , e

′
C , z

′
C) valid for PC and such that eC 6= e′C . At this point

EM can retrieve the witness for xC , namely the values and the randomness used to
make the commitments.

(v) EM checks whether x ∗ y = z. If that is the case, it outputs w = (xi, yi, zi, ri, si, ti)
l
i=1

as a witness for the committed values [x],[y] and [z] and quits.
(vi) EM performs the check of step 3 on its own, using the retrieved values and randomness.

Each result (v′, r′) is stored on a list L′, using the same ordering as the one for L (i.e.
for each possible j, the j-th entry of L and of L′ correspond to the opening of the
same commitment). If there exists an index j such that Lj = (v, r), L′j = (v′, r′) and

v 6= v′, then EM outputs w = (v, r, v′, r′) as a witness for compk(v, r) = compk(v
′, r′)

and quits.
(vii) EM defines T as i ∈ T if and only if xiyi = zi. Then, EM rewinds the prover to step 5

and sends eC , O according to the protocol.
(viii) During step 6, if for some index i /∈ T the prover outputs (x′i, r

′
i, y
′
i, s
′
i, z
′
i, t
′
i) such that

x′iy
′
i = z′i, then EM outputs w = (xi, ri, x

′
i, r
′
i) if xi 6= x′i, w = (yi, si, y

′
i, s
′
i) if yi 6= y′i,

or w = (zi, ti, z
′
i, t
′
i) if zi 6= z′i and quits. Else EM rewinds the prover to step 5 and

repeats this step.

The expected running time of this algorithm can be analyzed as follows:
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• Step (i) runs in polynomial time, since EM stores a polynomial amount of data. Notice
that the check at step 3 must pass, since p is bigger than zero.
• Step (ii), (iii), (iv) run in polynomial time. The number of rewindings to pass step (iv)

is bounded by 2(p−2−l)−1, which is under the constrains. Retrieving the commitments
requires polynomial time (from the special soundness property of sigma protocols).
• Step (v) runs in polynomial time (l multiplications).
• Step (vi) runs in polynomial time, since it requires to perform a polynomial amount of

linear operations and multiplications.
• Step (vii) runs in polynomial time.
• Step (viii) happens if P ∗ makes the test x ∗ y = z fail. We now bound the probability
p that P ∗ succeeds in the protocol in such a situation. In order for P ∗ to be successful,

it had to open the values pointed in O correctly. Since x ∗ y 6= z, then fxfy 6= f̂z.

Notice that fxfx and f̂z are both polynomials of degree 2(t + l) and since they are
distinct, they have at most 2(t+ l) roots in common. This implies that one way for P ∗

to succeed is that all the entries in O point to common roots (that is, O ⊂ T ). Since
the choice of O is uniform and independent from P ∗’s choices, the probability that
O ⊂ T is (2(t + l)/d)t. Since p is assumed to be greater than (2(t + l)/d)t, it means
there exists some set O 6⊂ T that make P ∗ succeed. The probability that a uniform
O makes P ∗ succeed and O 6⊂ T is equal to p − (2(t + l)/d)t. This implies that the
expected number of rewinds in step (viii) is equal to (p− (2(t+ l)/d)t)−1, so the total
running time of the algorithm is within the constraints even if it terminates in step
(viii).

To show (honest-verifier) zero-knowledge we use the same technique we exploit in the field
scenario. The simulator samples two random polynomials hx, hy of degree t + l such that
hx(−i) = 0 = hy(−i), that is hx, hy are both consistent with sharing the secret consisting of

l zeros. It then computes ĥz = hxhy. Let A ⊂ {1, . . . , d} be a subset of players of size t.

Notice that hx(i)hy(i) = ĥz(i) for all i ∈ A and that these shares have distribution statistically
indistinguishable from a real conversation, since any t shares are essentially independent of the
actual secrets. Using the polynomials wA,i, i = 1, . . . , l we define

fx = hx +

l∑
i=1

xiwA,i, fy = hy +

l∑
i=1

yiwA,i, f̂z = ĥz +

l∑
i=1

∆ziwA,i.

These three polynomials are consistent with sharing x,y and z, and the subset A gets the same
shares as when 0’s were shared. The simulator cannot compute these polynomials, but it can
compute commitments to the coefficients. Using the fact that the commitments [x], [y] and [z]
are given, and the polynomials wA,i are public, it can compute commitments

[fx] = [hx]
l∏

k=1

[xk ·wA,k], [fy] = [hy]
l∏

k=1

[yk ·wA,k], [̂fz] = [ĥz]
l∏

k=1

[zk ·∆wA,k].

Step 2 is simulated sending commitments [fx], [fy] and [̂fz]. The verifier in step 3 checks the
consistency of the received data and the check passes. Here we prove it for xi (with a similar
proof one shows the check passes for yi, zi, for i = 1, . . . , l). The verifier can use the homomorphic
properties of the commitment schemes to check whether

[fx]ev(−i) · [∆xi]−1 = [0].
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From the construction of fx, it follows that

[fx]ev(−i) · [∆xi]−1 =

(
[hx]ev(−i) ·

l∏
k=1

[xk ·wA,k]ev(−i)

)
· [∆xi]−1

= [hx(−i)] ·
l∏

k=1

[xk · wA,k(−i)] · [∆xi]−1

= [0] · [∆xi] · [∆xi]−1 = [0].

For step 4, the simulator can compute and open commitments

[(fx)i] = [(hx)i], [(fy)i] = [(hy)i], [(f̂z)i] = [(ĥz)i],

for i ∈ A. By construction, the opened values satisfy the multiplicative property expected by
the verifier.

This simulation is clearly polynomial time, and we argued underway that the distribution of
all values that are opened is statistically close to that of a real conversation. The commitments
[fx] and [fy] are also distributed correctly. Therefore, the only difference between simulation

and conversation lies in the distribution of f̂z hidden in [̂fz] (in a real conversation, the choice

of f̂z ensures that the resulting b̂z satisfies (bx)i(by)i = (b̂z)i for all indices i, whereas for the
simulation this only holds for i ∈ A). Since commitments are statistically hiding, it follows that
the simulation is computationally indistinguishable from a real conversation. �
On the complexity of the protocol:

We now examine the complexity of the integer multiplication protocol assuming we want a
knowledge error that is exponentially small in l, as in previous sections. It is easy to see that
this can be arranged if we choose the parameters t and d to be Θ(l). Recall also that we already
chose the statistical security parameter of the secret sharing scheme to be Θ(l). With these
parameter choices, simple inspection of the protocol and secret sharing scheme shows that the
amortized complexity per multiplication proved is O(κ+ k). This also includes the cost of the
proof PC : this can be verified by a direct inspection of the technique from [CD98], for a case
where a proof is given for l commitments in parallel and where the statistical security parameter
of the proof is also set to l.
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