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I would like to thank Matthias Schütt for the precious discussion we had about
the Mordell-Weil lattices. I thank Ronald van Luijk for improving my way of writing
and presenting mathematical topics.

I would like to thank Marco Garuti for all the help he gave during my master
as an AlGaNT student.

I thank my parents for their support in my decisions and for our endless con-
versations; I especially thank my brother Francesco for his loyalty and for his now-
fashionable hairstyle.

I thank Dung, Liu, and Novi for the glorious food safaris and the neverending
nights spent chatting about our countries. I thank Alberto Vezzani for the trips in
the Netherlands and Michele for the shopping time on many Saturdays. I would
like to thank Giovanni Rosso, Andrea Siviero, Nicola di Pietro, and Liviana for the
nights spent together and the great friendship. Moreover I thank Raffo, Gem, and
Jacopo (and all the other guys) for playing poker with me.
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Introduction

In this master thesis we provide a geometric construction of rational elliptic
surfaces of Mordell-Weil rank four. Most of the techniques we use are similar to
those in [Sal09] and [Fus06] for the construction of rational elliptic surfaces with
higher Mordell-Weil rank.

Elliptic Curves. Elliptic curves are an important object of study in algebraic
geometry, number theory, cryptography, as well as in many other scientific subjects.
In this thesis we always deal with elliptic curves defined over an algebraically closed
field k of characteristic 0 or over a function field over k with finite transcendence
degree over k. An elliptic curve is a pair (E,O), where E is a curve of genus 1 and
O is a point on E such that E has a group structure with O as the zero element.
The simplest way to think of an elliptic curve is in the Weierstrass form: we can
define an elliptic curve as the set of solutions in the projective plane over a given
field k of the equation

y2 = x3 +Ax+B,

where A and B are two parameters in k such that 4 · A3 + 27 · B2 6= 0. In this
shape every elliptic curve has a group structure given by the geometric rule “three
collinear points add up to zero”, and the zero element is given by the point at
infinity.

Even if it is true that all the elliptic curves can be seen in this form, we will
not use this representation, since our approach needs a more general point of view
that fits some different requests.

Rational Elliptic Surfaces: one Object, two Points of View. We work
over an algebraically closed field k with characteristic zero.
An elliptic surface over k is an algebraic surface E over k, equipped with a flat
morphism π : E → B, where B is a projective curve and the following requirements
are satisfied:

• the morphism π is an elliptic fibration: π−1(t) is a curve of genus 1, for
almost all t ∈ B(k);

• there is a zero section, that is a morphism σ0 : B → E such that π ◦ σ0 =
idB .

Moreover, we suppose that there is at least a t ∈ B(k) such that π−1(t) is singular.
Elliptic surfaces constitute an important class of algebraic surfaces, since they

can be seen as elliptic curves over a function field or as families of elliptic curves
over the ground field. This two folded description makes these objects interesting
and simpler to study.

We will deal just with a subclass of elliptic surfaces, focusing our attention on
the rational ones, i.e. elliptic surfaces that are birational to the projective plane.
This restriction implies that the curve B is the projective line. Thus, in terms of
the above description, a rational elliptic surface over k can be seen as an elliptic
surface over the function field k(t) ∼= k(P1) or as a linear pencil of plane cubic
curves.

v



vi INTRODUCTION

From the former point of view we use the theory of elliptic curves over function
fields to describe the invariants of an elliptic surface; the latter gives a natural
geometric construction. Consider a smooth cubic F and a different cubic G. The
map

π : P2 99K P1

(x, y, z) 7−→ (F (x, y, z), G(x, y, z))

is not well-defined at the intersection points of those curves, i.e. the base locus of
the linear pencil of cubics generated by F and G. In order to obtain a morphism,
we blow-up the base points of the pencil. In this way we obtain a rational surface
endowed with a flat morphism such that each fiber is a genus 1 curve, i.e. a rational
elliptic surface.

Every possible rational elliptic surface is isomorphic to the blow-up of P2 at
the base points of a linear pencil of cubics, as shown in [Mir89].

This construction was already used in order to study rational elliptic surfaces:
Shioda gave the construction of rational elliptic surfaces with rank eight in [Shi90],
Fusi gave the construction of those with rank seven and six in [Fus06] and Salgado
gave the construction of those with rank five in [Sal09]. We use the same techniques
to construct rational elliptic surfaces with rank four. In order to determine which
pencils of cubics induce a rational elliptic surface with given rank, we use the
Shioda-Tate formula, which gives a criterion to determine the rank of an elliptic
surface by the number of components of the reducible fibers (these correspond to
the blow-up of singular cubics in the pencil).

Since the Néron-Severi rank is fixed (and equal to ten), the lower the rank the
wider the range of possible fiber types that can occur. In our case there are six
possible fiber-types for rational elliptic surfaces of rank four without torsion and
one for rational elliptic surfaces of rank four with torsion.

Our construction is case-by-case: we focus on a certain fiber type that leads
to a rational elliptic surface with rank four and we find a linear pencil of cubics
inducing that fiber type, via its singular members.

As in the papers that studied higher rank rational elliptic surfaces, we want to
go further with our construction; namely, we want to check whether the exceptional
curves over the base points of the pencil generate the Mordell-Weil group of the
induced surface. The tool to perform this action can be found in [OS91]: for
every rational elliptic surfaces, its Mordell-Weil group, modulo torsion, has a lattice
structure, together with a bilinear symmetric pairing 〈, 〉. For any set of independent
elements {P1, . . . , Pr} in the Mordell-Weil group of a rational elliptic surface of rank
r, we can build a symmetric matrix A whose elements are given by ai,j = 〈Pi, Pj〉.
The determinant of this matrix measures how the considered elements P1, . . . , Pr
are far to generate the Mordell-Weil lattice: the determinant of A is equal to a2

times the determinant of the Mordell-Weil lattice, for some integer a. This integer
a is exactly the index of the sublattice generated by the considered elements if it
is different from zero (if a = 0, the chosen elements are dependent). In this thesis
we always had a = 1, that is, we were always able to generate the full Mordell-Weil
lattice. This implies that in all the non-torsion cases we were able to generate
the Mordell-Weil group; in the torsion case this is true again, since the exceptional
curves above the base points generate the Mordell-Weil lattice (which is a subgroup
of index 2 of the Mordell-Weil group) and they also generate the torsion component
of the Mordell-Weil group.



CHAPTER 1

Preliminaries

In this chapter we list a series of basic results needed for the construction of
rational elliptic surfaces.

1.1. Basic Background and Notation

Let k be an algebraically closed field of characteristic zero. A projective
algebraic set is a subset X of Pn such that there exists a set S of homogeneous
polynomials in n+ 1 variables giving the following equality:

X = {x ∈ Pn | f(x) = 0 for all f ∈ S}.
A projective algebraic set X is said to be irreducible if X cannot be written as the
disjoint union of two proper Zariski-closed subsets.

A projective variety is an irreducible algebraic subset of Pn, with the in-
duced topology. A quasi-projective variety is an open subset of a projective
variety. The dimension of a projective or quasi-projective variety is its dimension
as topological space.
We will mainly focus on varieties of dimension less than or equal to 2, that is:
points, curves and surfaces.

Let X ⊆ Pn be a projective variety. An irreducible algebraic subset of X with
the induced topology is called subvariety of X.

If ϕ : X → Y is a map, for every U ⊆ Y we will denote by ϕ−1(U) the subset
of X consisting of the elements x ∈ X such that ϕ(x) ∈ U . If U = {P}, we will
write ϕ−1(P ) instead of ϕ−1({P}).

A map f : X 99K k is regular at a point P ∈ X if there is an open neighbor-
hood U of P in X and homogeneous polynomials g, h ∈ k[x0, . . . , xn] of the same
degree, such that h does not vanish on U and f = g/h on U . We say that f is a
regular function if it is regular at all P ∈ X.

Let X and Y be two varieties. Let ϕ : X → Y be a continuous function. We say
that ϕ is a morphism if for every open set V ⊆ Y and for every regular function
f : V → k, the function f ◦ ϕ : ϕ−1(V )→ k is regular.

Let ϕ : X → Y be a morphism. If there exists a morphism ψ : Y → X such
that ψ ◦ ϕ = idX and ϕ ◦ ψ = idY , we say that ϕ is an isomorphism.

1.2. Divisors

Let X be a projective variety of dimension n. An irreducible subvariety Y of
X of dimension n − 1 is called a prime divisor on X. The free abelian group
generated by prime divisors is called the divisor group of X. We will denote this
group by Div(X). An element D ∈ Div(X) is called a divisor on X.

For every D ∈ Div(X) one can write

D =
∑
Y

nY Y,

where the sum ranges over prime divisors and nY is an integer, which is equal to
zero for almost all Y .

1



2 1. PRELIMINARIES

If nY ≥ 0 for all prime divisors Y , we say that D is effective.
Let f be a non-zero function on X. For each prime divisor Y of X, we will

denote the valuation of f at Y by vY (f). This number is zero for almost all Y (See
[Har77], page 131). The map

div : k(X)× −→ Div(X)

f 7−→
∑

vY (f)Y

is well defined and, indeed, it is a group morphism whose image defines a subgroup
of Div(X), called the (sub)group of the Principal Divisors on X, denoted by
PDiv(X).
To improve the readability, we will write (f) instead of div(f).

Let D and D′ be two divisors. If

D′ = D + (f), for some f ∈ k(X)×,

we say that D and D′ are linearly equivalent and we write D ∼ D′.
The quotient Div(X)/PDiv(X) is called the Picard Group of X and is de-

noted by Pic(X).
This group fits into an exact sequence

1 −→ Pic0(X) −→ Pic(X) −→ NS(X) −→ 0,

where Pic0(X) is the the group of divisors which are algebraically equivalent to 0
and

NS(X) =
Pic(X)
Pic0(X)

.

This is a finitely generated abelian group, called the Néron-Severi group of X.

1.3. Surfaces

Let X be an algebraic variety. For all open sets U ⊆ X, we denote by O(U)
the ring of regular functions on U . If V is an open subset of U we can define the
map ρU,V : O(U) → O(V ) as the usual restriction. It is easy to check that O is
indeed a sheaf, called sheaf of regular functions on X.
If P is a point on X, we define the local ring of P on X, OP,X to be the ring of
germs of regular functions on X near P , (i.e. the stalk of O at P ).

The theorems below are central in intersection theory on a surface. Let X be
a non-singular projective surface over an algebraically closed field k, C and D be
two curves on X. If P is a point in both C and D, we say that C and D meet
transversally at P if the local equations f of C and g of D generate the maximal
ideal of P in OP,X .

Theorem 1.3.1. Let X be a non-singular projective surface over an alge-
braically closed field k. There is a unique pairing

Div(X)×Div(X) −→ Z
(C,D) 7−→ (C ·D),

such that
(1) if C and D are non-singular curves meeting transversally, then (C ·D) =

#(C ∩D),
(2) it is symmetric: (C ·D) = (D · C),
(3) it is additive: ((C1 + C2) ·D) = (C1 ·D) + (C2 ·D),
(4) it depends only on the linear equivalence classes: if C1 ∼ C2 then (C1 ·

D) = (C2 ·D).

Proof. See [Har77], page 358. �
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Let X be a non-singular projective surface over an algebraically closed field
k. Let C and D be two curves in X with no common irreducible component and
P ∈ C ∩D. We define the intersection multiplicity (C ·D)P of C and D at P as
the dimension of OP,X/(f, g) as a k-vector space. We have the following equality:

(C ·D) =
∑

P∈C∩D
(C ·D)P .

Again, see [Har77] for a complete proof.
We now consider C ∩ D as a scheme. The ideal sheaf defining C (resp D) is

the invertible sheaf OX(−C) (resp OX(−D)); now define

OC∩D =
OX

OX(−C) + OX(−D)
.

For every P ∈ C ∩D we have (OC∩D)P = OP /(f, g). This leads us to the following
equality, using also the equation above:

(C ·D) = dim(H0(X,OC∩D)).

Now, for every sheaf F on X, define the Euler-Poincaré characteristic of F
as:

χ(F ) =
∞∑
i=0

(−1)i dim(Hi(X,F )).

The following theorem is crucial in intersection theory: it enables us to extend the
intersection form to any two divisors on a surface, by letting us replace any of the
two divisors with a linear equivalent one.

Theorem 1.3.2. Let X be a non-singular projective surface over an alge-
braically closed field k. For every F ,G ∈ Pic(X) (seen as the group of isomorphism
classes of invertible sheaves on X) define

(F · G ) = χ(OX)− χ(F−1)− χ(G−1) + χ(F−1 ⊗ G−1).

Then ( . ) is a bilinear form on Pic(X) such that if C and D are two irreducible
curves on X meeting transversally, then

(OX(C) · OX(D)) = (C ·D).

Proof. See [Bea96], page 4. �

This theorem allows us to extend the previous definition of intersection between
transversal divisors to all divisors. We can write (C ·D) in place of (OX(C)·OX(D)),
since those two quantities are equal where (C ·D) is defined.

Corollary 1.3.3. Let X be a non-singular projective surface over an alge-
braically closed field k. Let C be a smooth curve over k. Let f : X → C be a
surjective morphism. Then for every fiber F = f−1(P ) of f we have F 2 = 0.

Proof. See [Bea96], page 4. �

A divisor D on a surface X is numerically equivalent to zero if

(D · E) = 0, for all divisors E.

In this case we write D ≡ 0. We say that D and E are numerically equivalent
if D − E ≡ 0.
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1.4. Blowing Up

We will follow Hartshorne’s construction (see [Har77]). We will first define the
blow-up of An at the origin O. Consider the quasi-projective variety given by the
product An × Pn−1. We will denote by x1, . . . , xn the affine coordinates of An and
by y1, . . . , yn the homogeneous coordinates of Pn−1.

The blow-up of An at O is the closed subset X of An × Pn−1, given by the
equations: 

x1y2 = x2y1

x1y3 = x3y1

... =
...

xiyj = xjyi
... =

...

1.4.1. Properties.
(1) The projection An×Pn−1 → An induces a natural morphism ϕ : X → An.
(2) For every point P ∈ An there is a unique element in ϕ−1(P ), except for

P = O. Indeed, ϕ induces an isomorphism

ϕ : X \ ϕ−1(O) −→ An \O.
(3) ϕ−1(O) ∼= Pn−1

Now, we can define the blow-up for every closed subvariety Y of An at P ∈ Y .
First of all, we can assume that P = O: if this is not the case, we can translate P
to the origin. The blow-up of Y at O is defined as

Ỹ = ϕ−1(Y \O).

In the case n = 2, the curve E = ϕ−1(O) is called the exceptional curve
above the origin. For each curve C in A2 passing through the origin, we define two
other curves: the total inverse image of C is called proper transform of C and
consists of E and another curve C ′, called the strict transform of C. All the
other curves in A2 are isomorphic to their pre-image under the blow-up.
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Figure 1.1. A node Y 2 = X3 +X2 on the left and its blow-up at
(0, 0) on the right. The red line is the exceptional curve above the
origin.

1.5. Elliptic Curves

1.5.1. Assumptions. An elliptic curve over the field k is a pair (E,O),
where E is a curve of genus 1 defined over k and O is a point on E(k). We
generally omit the point O, if understood, and write E/k meaning that E is an
elliptic curve defined over k.

Using the Riemann-Roch theorem it is possible to describe any elliptic curve
as the locus in P2 of a cubic equation with only one point on the line at ∞; see
[Sil86] for more details. After a scaling of the coordinates the equation of E is of
the following form:

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

and O is the point (0, 1, 0).
We will use the following notation:

k a local field, complete with respect to a discrete valuation v.
R = {x ∈ k | v(x) ≥ 0}, the ring of integers of k.
R× = {x ∈ k | v(x) = 0}, the unit group of R.
M = {x ∈ k | v(x) > 0}, the maximal ideal of R.
π a uniformizer for R, i.e. M = πR.
K the residue field of R.

Let E be an elliptic curve defined over k. We can assume that all the coefficients in
the equation of E lie in a complete discrete valuation ring with perfect residue field
and maximal ideal generated by a prime π. Under these hypotheses, E is given by
an equation of the following type:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.
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We define the following quantities:

b2 = a2
1 + 4 · a2, b4 = a1a3 + 2 · a4, b6 = a2

3 + 4 · a6,

b8 = a2
1a6 − a1a3a4 + 4 · a2a6 + a2a

2
3 − a2

4,

c4 = b22 − 24 · b4, c6 = −b32 + 36 · b2b4 − 216 · b6,
ai,m = ai/π

m, ∆ = −b22b8 − 8 · b34 − 27 · b26 + 9 · b2b4b6, j = c34/∆.

1.5.2. The Group Law. Let (E,O) be an elliptic curve defined over k by a
Weierstrass equation. Thus E consists of the point O at infinity and of the points
(x, y) satisfying the Weierstrass equation. We can define a composition law on E.
Let P,Q be two points on E, let l be the line through P and Q (if P = Q, let l be
the tangent to E at P ) and let R be the third point of intersection of l with E. Let
l′ be the line through R and O. The third point of intersection between E with l′

is denoted by P +Q.
The composition law has the following properties:
(1) if a line l intersects E at P,Q,R, then

(P +Q) +R = O.

(2) P +O = P for all P ∈ E.
(3) P +Q = Q+ P for all P,Q ∈ E.
(4) For every point P ∈ E there exists a point −P such that

P + (−P ) = O.

(5) For every P,Q,R ∈ E the following holds

(P +Q) +R = P + (Q+R).

In other words, (E,+) is an abelian group having O as the zero element.
Notice that if E is an elliptic curve defined over k where O is not an inflection

point, then it is no longer true that three points on a line add up to O. In this case
we have that if P,Q,R are three points of intersection between E and a line then

P +Q+R = q,

where q is the third point of intersection between E and the tangent to E at O.

1.5.3. Good and Bad Reduction. Let E/k be an elliptic curve. The re-
duced curve Ẽ is the image of E via the natural reduction map R→ R/πR. We
can classify E with respect to the type of curve Ẽ is. There are the following cases:

(1) if Ẽ is non-singular, then E has good reduction;
(2) if Ẽ has a node, then E has multiplicative reduction;
(3) if Ẽ has a cusp, then E has additive reduction.

In the latter cases we say that E has bad reduction. If E has multiplicative
reduction, then we say that the reduction is split if the tangents to the node are
in K = R/πR; otherwise we say that the reduction is non-split. We now state a
lemma that helps us to understand the reduction type using the valuation of the
discriminant ∆.

Lemma 1.5.4. Let E/k be an elliptic curve given by a minimal Weierstrass
model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

then
(1) the curve E has good reduction if and only if v(∆) = 0.
(2) the curve E has multiplicative reduction if and only if v(∆) > 0 and

v(c4) = 0. In this case the non-singular K points of Ẽ form the multi-
plicative group K

×
.



1.6. TATE’S ALGORITHM 7

(3) the curve E has additive reduction if and only if v(∆) > 0 and v(c4) > 0.
In this case the non-singular K points of Ẽ form the additive group (K,+).

Proof. See [Sil86] �

Now, we can consider an equation defining E as defining a scheme E over
Spec(R). The resulting scheme may not be non-singular, since if E has bad reduc-
tion at v, the singular point on the special fiber Ẽ of E may be a singular point of
the scheme. By resolving the singularity, we obtain a scheme over Spec(R) whose
generic fiber is E/k and whose special fiber is a union of curves over K.

The list of all the possible special fibers is given in Appendix A.

1.6. Tate’s Algorithm

Tate’s algorithm takes as input an integral model of an elliptic curve over k. The
output is the exponent fv of the conductor, the type of reduction of E with respect
to v, given by the Kodaira symbol (see Appendix A), and the index [E(k) : E0(k)],
where E0(k) denotes the group of k points on E whose reduction is non-singular.
Moreover, we can determine whether the integral model is minimal.

1.6.1. The Algorithm. We will describe the algorithm in steps

(1) If π does not divide ∆, we have that fv = 0, the type is I0 and c = 1.
(2) We make a change of coordinates such that π divides a3, a4 and a6.
(3) If π does not divide b2, then fv = 1, the type is Iv(∆),
(4) else, if π2 does not divide a6, then fv = v(∆), the type is II and c = 1,
(5) else, if π3 does not divide b8, then fv = v(∆) − 1, the type is III and

c = 2,
(6) else, if π3 does not divide b6, then fv = v(∆) − 2, the type is IV and

c = 3,
(7) else, make a change of coordinates such that π divides a1 and a2, π2

divides a3 and a4 and π3 divides a6. Let q be the polynomial defined as

q(t) = t3 + a2,1t
2 + a4,2t+ a6,3.

(8) If q has three distinct roots, then fv = v(∆) − 4, the type is I∗0 and c is
1+ the number of roots of q in k.

(9) If q has a single and a double root, then fv = v(∆)−4−n for some n > 0,
the type is I∗n and c = 2 or c = 4.

(10) The polynomial q has a triple root. We change the coordinates such that
the triple root is zero, so that π2 divides a1, π3 divides a4 and π4 divides
a6. Let r be the polynomial defined as

r(u) = u2 + a3,2u− a6,4

(11) If r has two distinct roots then fv = v(∆)− 6, the type is IV ∗ and c = 3
if the roots are in k and c = 1 otherwise.

(12) The polynomial r has a double root. We change the coordinates so that
it becomes zero. Then π3 divides a3 and π5 divides a6.

(13) If π4 does not divide a4, then fv = v(∆)− 7, the type id III∗ and c = 2,
(14) else, if π6 does not divide a6, then fv = v(∆) − 8, the type is II∗ and

c = 1,
(15) else the equation is not minimal. We divide all the ai’s by πi and start

again with the new equation.
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1.7. Elliptic Surfaces

Let B be a non-singular projective curve defined over an algebraically closed
field k of characteristic zero. An elliptic surface (defined over k) is an algebraic
projective surface E defined over k, endowed with a fibration π : E → B such that

• (elliptic fibration) for almost all t ∈ B(k), π−1(t) is a genus-1 curve;
• (section) there exists a k-morphism σ0 : B → E such that π ◦ σ0 = idB .

We also assume that there exists at least one singular fiber.
An elliptic surface π : E → B is a rational elliptic surface if E is birational

to P2. In this setting B = P1.
For every elliptic surface π : E → B, the section σ0 determines a point Ot on

each fiber Et = π−1(t). The couple (Et, Ot) is an elliptic curve defined over k for
almost all t ∈ B(k).

Moreover, there is another elliptic curve induced by any elliptic surface π : E →
B. Let K be the function field k(B). The algebraic surface E can be seen as an
elliptic curve over K. We denote this object by Eµ and call it the generic fiber of
the elliptic surface.
Notice that in case of a rational elliptic surface we have B = P1, so k(B) = k(t).

The following theorem holds:

Theorem 1.7.1 (Mordell-Weil Theorem for Function Fields). Let π : E → B
be an elliptic surface defined over an algebraically closed field k of characteristic
zero. Let K be the function field k(B). If π : E → B does not split, then the group
Eµ(K) is finitely generated.

Proof. See [Sil94], III. �

In particular, the following equality holds:

Eµ(K) = Zrµ ⊕ T,
where T is a torsion group and rµ is the called the rank of the elliptic curve Eµ/K.
We can relate the group of Eµ(K) with the group of sections on the corresponding
elliptic surface:

Theorem 1.7.2. Let π : E → B be an elliptic surface defined over an alge-
braically closed field k of characteristic zero. Let K be the function field k(B). The
set E (B/k), defined as

E (B/k) = {sections σ : B −→ E such that σ is defined over k},
is an abelian group. Moreover there is a group isomorphism:

Eµ(K) ∼= E (B/k).

Proof. See [Sil94], III. �

From now on the group E (B/k) will be called Mordell-Weil group of E and
will be denoted with MW (E ). Moreover, we will refer to the rank of the generic
fiber of π : E → B as the (Mordell-Weil) rank of E .

1.7.3. Construction. We will briefly explain a method to obtain a rational
elliptic surface.

Let F and G be two homogeneous cubic polynomials in k[x0, x1, x2], describ-
ing two distinct projective plane cubics, with at least one of them being smooth.
Consider the rational map

P2 99K P1

(x, y, z) 7−→ (F (x, y, z), G(x, y, z)).
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This rational map is not defined exactly at the points where both F and G vanish;
by Bézout’s theorem this set consists of nine points, counted with multiplicities.
These nine points are the base points of a pencil of cubic curves, namely the one
generated by F and G. By blowing up these nine points we obtain a rational
surface E , together with a morphism π : E → P1 whose fibers are genus-1 curves
(see [Mir89], I.5.1 for more details).

E

π

��
P2

~~

}}}}}}}}
// P1

Every exceptional curve of this blow up is a section of π. We have then constructed
a rational elliptic surface.

This construction is general; we have the following theorem by Miranda:

Theorem 1.7.4. Let π : E → B be a rational elliptic surface defined over an
algebraically closed field k of characteristic zero. There exists a linear pencil Λ of
plane cubics such that the blow-up of P2 at the base points of Λ is isomorphic to E .

Notice that the fiber type of the obtained surface depends on the configuration
of the base points, thus on the presence of particular members in the pencil of
cubics. For example, if the base points of the pencil are three collinear points and
three other collinear points counted with multiplicity two, then there is a reducible
member in the pencil that splits into a double line and a different line. The induced
rational elliptic surface has a fiber of type I∗0 (See [Mir89]).

1.8. The Shioda-Tate Formula

This section is devoted to find a relation between the Mordell-Weil group and
the Néron-Severi group of an elliptic surface.

Let π : E → B be an elliptic surface. The points in B such that their pre-
image is a non-smooth curve are called bad places. The set of all the bad places
is denoted with R. The pre-image of a bad place is called a bad fiber. If a bad
fiber is a reducible curve, it will be called reducible fiber.

Let π : E → B be an elliptic surface with zero-section σ0. For each v ∈ R, the
following equality holds:

π−1(v) = Θv,0 +
mv−1∑
i=1

µv,iΘv,i,

where Θv,i (0 ≤ i ≤ mv − 1) are the irreducible components of Fv and mv is the
number of components of the fiber. We also define Θv,0 as the unique component of
Fv meeting the zero section; we call Θv,0 the zero component of the fiber π−1(v).

Theorem 1.8.1 (Shioda-Tate Formula). Let T be the subgroup of NS(E ) gen-
erated by the zero section σ0 and all the irreducible components of fibers. We have
the following natural isomorphism

MW (E ) ∼=
NS(E )
T

.

For a complete description of this isomorphism we refer to [Shi90].

1.9. Lattices

We list here some definitions and properties of lattices. For more details, see
[Shi90]. A lattice L is a free Z-module of finite rank, given with a symmetric
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non-degenerate pairing
〈 , 〉 : L× L −→ Q.

When the pairing takes values in Z, we say that L is an integral lattice.
If the rank of L is r and (x1, . . . , xr) is a Z-basis of L we define the determinant

of L as
det(L) = |det(〈xi, xj〉)|.

This number does not depend on the choice of the basis.
We say that a lattice L is even if 〈x, x〉 ∈ 2Z for all x ∈ L and unimodular if

det(L) = 1.
The dual lattice L∗ of a lattice L is defined by

L∗ = {x ∈ L⊗Q | 〈x, y〉 ∈ Z for all y ∈ L}.
Moreover, the following equality holds:

det(L∗) =
1

det(L)
.

A sublattice T of L is a submodule of L such that the restriction of the pairing
to T ×T is non-degenerate. The orthogonal complement T⊥ of T in L is defined
by

T⊥ = {x ∈ L | 〈x, y〉 = 0 for all y ∈ T}.
For every sublattice T of L of finite index we have the following equality:

det(T ) = det(L) · [L : T ].

This formula will help us to check if a given set of elements of a lattice is actually
a set of generators.

1.9.1. The Néron-Severi Lattice. By [Shi90], thm 3.1 the Néron-Severi
group of an elliptic surface becomes an integral lattice with respect to the intersec-
tion pairing, called the Néron-Severi lattice.
Moreover we have that its rank ρ is given by

ρ = r + 2 +
∑
v∈R

(mv − 1) ,

where r denotes the rank of the Mordell-Weil group of the elliptic surface.
Let π : E → B be an elliptic surface. Consider T , the subgroup of NS(E )

generated by the zero section and the irreducible components of the fibers of π.
By [Shi90], Proposition 2.3, we deduce that T is a sublattice of NS(E ), called the
trivial sublattice of NS(E ).

1.9.2. The Mordell-Weil Lattices. By the Shioda-Tate formula (section
1.8), the Mordell-Weil group MW (E ) of an elliptic surface π : E → B is isomorphic
to the quotient NS(E )/T . We want to define a good pairing on MW (E ). The first
thing we do is to embed MW (E ) into NS(E )⊗Q. From [Shi90], Lemma 8.1, for
every P ∈MW (E ), there exists a unique element ϕ(P ) of NS(E )⊗Q such that

• ϕ(P ) ≡ (P ) mod (T ⊗Q) and
• ϕ(P ) ⊥ T .

Moreover, the map ϕ is a group homomorphism and ker(ϕ) = MW (E )tor. For
every P,Q ∈MW (E ) we can define 〈P,Q〉 as

〈P,Q〉 = −(ϕ(P ) · ϕ(Q)).

In this way 〈 , 〉 is a symmetric bilinear pairing on MW (E ), inducing the structure
of a positive definite lattice on MW (E )/MW (E )tor. This pairing will be called
the height pairing and the lattice (MW (E )/MW (E )tor, 〈 , 〉) will be called the
Mordell-Weil lattice of the elliptic surface.
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We have the following explicit formulas to compute the height pairing of any
P,Q ∈MW (E ):

〈P,Q〉 = χ+ (P ·O) + (Q ·O)− (P ·Q)−
∑
v∈R

contrv∈R(P,Q),

where χ is the Euler characteristic of the surface, (P ·Q) is the intersection number
of P and Q and contrv(P,Q) gives the local contribution on v. This number can
be expressed explicitly, but we first need a rule to label the irreducible components
of a reducible fiber.

Let Θv be a fiber with mv simple components. We will denote by Θv,0 the
component intersecting σ0(B). This component is called the zero component.
All the other components of Θv are denoted by Θv,i (i ≤ mv), according to the
following rule.

Θ0

Θn−1Θ1

In

Θ0 Θ1 Θ3Θ2

I∗n

Figure 1.2. Enumeration of the components of a fiber, according
to the fiber type (from [Shi90]).

Now we can write contrv(P,Q) explicitly as

contrv(P,Q) =
{
−(A−1

v )i,j if i, j > 0
0 otherwise; ,

where Av is the negative definite matrix given by

Av = ((Θv,i ·Θv,j)) 1 ≤ i, j ≤ mv − 1.

We now give a table listing the possible contribution numbers of P (meeting Θv,i)
and Q (meeting Θv,j), according to the type of Fv.

Kodaira
Symbol

Dynkin
Diagram

i = j i < j

In, III, IV An−1
i(n− i)

n

i(n− j)
n

I∗n Dn+4


1 i = 1

1 +
n

4
i = 2, 3


1
2

i = 1

1
2

+
n

4
i = 2

III∗ E7
3
2

−

IV ∗ E6
4
3

2
3

Table 1.1. The contribution terms for any fiber type (from [Shi90]).

We now define a subgroup of MW (E ) denoted by MW (E )0:

MW (E )0 = {P ∈MW (E ) | P meets Θv,0 for all v ∈ R}.
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This subgroup is torsion-free (see [Shi90]) and can be viewed as a lattice with
respect to the height pairing. This lattice is a positive definite even lattice, called
the narrow Mordell-Weil lattice.
Moreover we have the following equality:

det(MW (E )0) =
det(NS(E )) · [MW (E ) : MW (E )0]2

det(T )
.

1.9.3. Results on Rational Elliptic Surfaces. Let π : E → B be a rational
elliptic surface. In this case the Néron-Severi latticeNS(E ) is unimodular of rank 10
and the Mordell-Weil lattice MW (E )/MW (E )tor is the dual of the narrow Mordell-
Weil lattice MW (E )0.

The relation between the narrow Mordell-Weil lattice, the trivial lattice and
the Mordell-Weil group becomes the following:

det(MW (E )0) =
1 · [MW (E ) : MW (E )0]2

det(T )
.

These conditions give a criterion to decide whether a set of elements in the Mordell-
Weil group is a basis for the Mordell-Weil lattice as soon as we know the structure
of the trivial lattice and the narrow Mordell-Weil lattice.



CHAPTER 2

Construction of Rational Elliptic Surfaces with
Rank 4

2.1. Reducible Fibers on Rational Elliptic Surfaces with Rank 4

Let π : E → P1 be a rational elliptic surface with Mordell-Weil rank 4. Since
the rank of the Néron-Severi group NS(E ) is 10 (see [Shi90]) and the rank of the
Mordell-Weil group is 4, we can use the Shioda-Tate formula (section 1.8) together
with the results on the Néron-Severi lattice

rank(NS(E )) = rank(MW (E )) + 2 +
∑
v∈R

(mv − 1)

to deduce the contribution given by the bad fibers. We have that∑
v∈R

(mv − 1) = 4.

So, only the following cases can occur:
(1) mv = 5: there is a unique bad fiber, with 5 components;
(2) mv1 = 4, mv2 = 2: there are two bad fibers, one with 4 components and

the other with 2 components;
(3) mv1 = 3, mv2 = 3: there are two bad fibers, both with 3 components;
(4) mv1 = 3, mv2 = mv3 = 2: there are three bad fibers, one with 3 com-

ponents and the others with 2 components;
(5) mv1 = · · · = mv4 = 2: there are four bad fibers, all with 2 components.

We will now state a crucial theorem, that helps us to understand each case
listed above:

Theorem 2.1.1 (Oguiso-Shioda). The following table summarizes the possible
lattice structures for the Mordell-Weil group of a rational elliptic surface of rank 4.
We denote by T ′ the lattice associated with the reducible fibers.

T ′ det(T ′) MW (E )0 MW (E )

A4 5 A4 A∗4

D4 4 D4 D∗4

A3 ⊕A1 8 A3 ⊕A1 A∗3 ⊕A∗1
A⊕2

2 9 A⊕2
2 A∗⊕2

2

A2 ⊕A⊕2
1 12


4 1 0 1
−1 2 −1 0
0 −1 2 −1
1 0 −1 2

 1
6


2 1 0 −1
1 5 3 1
0 3 6 3
−1 1 3 5


A⊕4

1 16 A⊕4
1 A∗⊕4

1

A⊕4
1 16 D4 D∗4 ⊕ Z/2Z

13
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Proof. See [OS91]. �

A rational elliptic surface E is isomorphic to the blow-up of a linear pencil Λ
of cubics (theorem 1.7.4). In particular for any bad fiber Fv of E , Λ contains the
image of Fv in P2, which is a curve of degree 3 (since Λ is a pencil of cubics). The
configuration of the base points of Λ must be compatible with the presence of this
member.

For a complete list of all the possible images in P2 of every fiber that can appear
in a rational elliptic surface of rank 4 see Appendix B.

2.2. Technique

For each possible lattice structure of a rational elliptic surface with rank four,
we first find nine points on the plane that are the base points of a linear pencil of
cubics that induce a rational elliptic surface with the given lattice structure.

If the pencil does not obviously have a smooth member, we show that it actually
has a smooth member.

We then find all the non-smooth members of the pencil, in order to be sure
that we are constructing the correct rational elliptic surface.

Later we find the configuration of the exceptional curves above the base points
with respect to each reducible fiber; in other words, we look at the component of
the fiber the exceptional curve is meeting. This is done in order to compute the
height matrix of the exceptional curves above the base points.

Finally, we check that the determinant of the obtained matrix is equal to the
determinant of the Mordell-Weil group of the induced rational elliptic surface. This
implies that the chosen exceptional curves generate the Mordell-Weil group of the
surface.

2.3. A Unique Reducible Bad Fiber

Since the unique bad fiber has 5 components, it must be either a fiber of type
I5 or of type I∗0 (See Appendix A). We will analyze these two cases separately.

2.3.1. A Fiber of Type I5. From section B.2, we know that in order to have
a fiber of type I5 the pencil of cubics must contain a member of one of the following
forms:

(1) A nodal cubic such that the singular point is a base point with multiplicity
5.

(2) A reducible cubic, split into a line and an irreducible conic, such that
either
(a) the intersection points are base points with multiplicity 3 and 2 re-

spectively, or
(b) only one intersection point is a base point and has multiplicity 4.

(3) A reducible cubic, split into 3 non-concurrent lines, such that
(a) one of the three intersection points between the lines is not a base

point, while the others are base points with multiplicity 2.
(b) one intersection point is a base point with multiplicity 3 and the

remaining intersection points are not base points.
2.3.1.1. Construction. We will construct an elliptic surface of rank 4 from a

linear pencil of cubics as in (3)(a).
Let E be a non-singular plane cubic. Take a line l1 on the plane such that it

intersects the curve E at three distinct points p0, p1, p2. Take a line l2, passing
through p0 and such that it intersects E in two other different points p3 and p4.
Suppose that the lines passing through p4 and p1 and the one through p4 and p2

are not tangent to E at p4. Now, let l3 be a line passing through p4, and two other
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different points p5 and p6 such that p5, p6 are each non-collinear with any other
two base points and such that the lines through p0 and one of them are not tangent
to E at p0.

p0

p1

p2

p3

p4

p5

p6

l1

l2

l3

E

Figure 2.1. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with a fiber of type I5.

Consider the linear pencil of cubics Λ, generated by E and R = l1l2l3. This
pencil can be described as the pencil of cubics passing through p0, . . . , p6 with
prescribed tangent at p0 and p4 (the tangent of E at p0 and the tangent of E at
p4, respectively). We now describe all the singular members in Λ.

The base points with multiplicity 2 cannot be singular points of any irreducible
member in Λ, by Bézout’s theorem. Moreover, the unique reducible member is R.
We will show this last statement in detail. If a cubic C in Λ is reducible, it contains
a conic Q, possibly reducible, and a line l.
Suppose by contradiction that the conic Q is irreducible and it is not tangent to
E at p0 nor at p4; then the line l needs to pass through both p0 and p4, so l = l2.
Since l2 is not tangent to E, then Q should pass through all base points, except p3.
This contradicts the fact that Q was irreducible. So Q is reducible or it is tangent
to E at p0 or p4.
Suppose by contradiction that it is irreducible and tangent to E at p0 or p4. If Q
is tangent to only pi, i ∈ {0, 4}, then the line l should pass through p4−i. This
implies that p3 is on Q, otherwise l is l2 and Q would split. Given that p3 is on
Q, then l must be tangent to E at p4−i. By the hypotheses on the tangents to E
at p4−i we have that l does not pass through any other base point. So Q should
pass through pi, p1, p2, p3, p5, p6. This is impossible, since three of them are on a
line and Q was supposed to be irreducible. Then Q is tangent to E at both p0 and
p4. Since Q is irreducible, then it cannot pass through p3. For the same reason it
cannot pass through both p1 and p2 and through both p5 and p6. So three points
among p3, p1, p2, p5, p6 must be on l. This is again impossible, since we supposed
that they are not collinear. This implies that Q is reducible.
Thus, C splits into the product of three lines and by the hypotheses on the collinear-
ity on the base points, C must be R.

Notice that R corresponds to an I5 fiber in the rational elliptic surface given
by the blow-up of P2 at the base points of Λ.
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We denote by P0, . . . , P6 the (−1)-curves above p0, . . . , p6.
Let P,Q be two elements in the Mordell-Weil group of the rational elliptic surface
given by the blow-up of P2 at the base points of Λ. Using the Contribution Table
in section 1.9.2, we find that, if P meets the component Θi, the contribution of the
I5 fiber to 〈P, P 〉 is given by:

contr(P ) =
i(5− i)

5
.

If P meets the component Θi and Q meets the component Θj with i ≤ j, the
contribution of the I5 fiber to 〈P,Q〉 is given by:

contr(P,Q) =
i(5− j)

5
.

We set P0 as the zero section. We now check the intersections between the compo-
nents of the fiber of type I5 and the curves P1, . . . , P6, using the technique described
in section B.1. Since p0 is on l1, the line where p1 and p2 lie, the curves P1 and P2

must intersect either Θ1 or Θ4, say Θ1. Since p0 is also on l2, the point P3 must
intersect either Θ1 or Θ4, but not the same as the one intersecting P1 and P2. So,
P3 must intersect Θ4. Since p4 is blown up twice, the associated (−1)-curve P4 does
not intersect the same component that P3 intersects, and must intersect Θ3. With
a similar argument P5 and P6 intersect Θ2. The configuration of the exceptional
curves in the I5 fiber is the following:

Θ0

Θ3

Θ4

Θ1

Θ2

P0

P1

P2

P3

P4
P5

P6

Figure 2.2. Configuration of the exceptional curves above the
base points of a pencil of cubics as in figure 2.1, inducing a rational
elliptic surface with a fiber of type I5.

Using the above formulas we have:

(contr(Pi, Pj))i,j =


4/5 4/5 1/5 2/5 3/5 3/5
4/5 4/5 1/5 2/5 3/5 3/5
1/5 1/5 4/5 3/5 2/5 2/5
2/5 2/5 3/5 6/5 4/5 4/5
3/5 3/5 2/5 4/5 6/5 6/5
3/5 3/5 2/5 4/5 6/5 6/5

 .

We consider the matrix given by the heights of P1, P3, P4 and P5. The height
matrix is the following:

AI5 =


6/5 4/5 3/5 2/5
4/5 6/5 2/5 3/5
3/5 2/5 4/5 1/5
2/5 3/5 1/5 4/5

 .
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According to theorem 2.1.1, the Mordell-Weil lattice of the induced surface is iso-
morphic to A∗4, in particular it has determinant equal to 1/5. Since the determinant
of the matrix AI5 is equal to 1/5, the elements P1, P3, P4 and P5 generate the full
Mordell-Weil group of the rational elliptic surface.

2.3.1.2. Construction. We will construct an elliptic surface of rank 4 from a
linear pencil of cubic as in (2)(a).

Let E be a non-singular plane cubic curve. Take a point p0 in E such that
the tangent t to E at p0 meets E in a point q 6= p0 and let l be a line passing
through p0, non-tangent to E. Then there exist two distinct points p4 and p5 such
that E and l meet at p0, p4 and p5. Now, take a conic Q passing through p4 and
p0, not passing through q, tangent to E at p0 and not tangent to E in any other
point of intersection. Then, there exist p1, p2 and p3 such that E and Q meet at
p0, p1, p2, p3, p4 and share the tangent at p0. We choose the conic such that p5 is
not collinear with any other couple of points pi, pj except p0, p4 and the tangent to
E at p4 does not meet any other pi.

p0

p4

p5

p3

p2

p1

lQ

E

Figure 2.3. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with a fiber of type I5.

Consider the pencil of cubics Λ generated by E and R = Ql. We now describe
all the singular members in Λ.

The base points p0 and p4 cannot be singular points of any irreducible member
in Λ, by Bézout theorem. We now want to show that R is the only reducible
member. Since the points p0, p4, p5 are the only base points in a line, all the
reducible members in Λ split into a line and an irreducible conic. Since q was not
a base point, the line cannot be tangent to E at p0. This means that the conic
is tangent to E at p0, thus the intersection multiplicity at p0 between E and the
conic is at least 2. In fact, it is exactly 2. If, by contradiction, the intersection
multiplicity between E and the conic at p0 was greater or equal to 3, then the
conic would meet E at three other points at most; then the remaining points of
intersection with E would not be collinear, contradicting the assumption they were
on a line. This means that the intersection multiplicity between E and the conic
is exactly 2 and the line passes through p0. The only line and conic fitting these
hypotheses are Q and l.
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As in the previous construction, we denote by Pi the (−1)-curve above pi and
set P0 as the zero section. The configuration of the exceptional curves on the I5
fiber is the following (notice that all the cubics are tangent to Q at p0):

Θ0

Θ3

Θ4

Θ1

Θ2

P0

P1

P2

P3

P4 P5

Figure 2.4. Configuration of the exceptional curves above the
base points of a pencil of cubics inducing a rational elliptic surface
with a fiber of type I5.

2.3.1.3. Equivalence between the Constructions. We will show that there are
birational maps that change the linear pencil of cubics described in (3)(a) into the
one described in (2)(a) and vice versa.

First we set E as the rational elliptic surface described in construction (2)(a).
We will use the same notation as in that section. Since p0 is a base point of Λ of
multiplicity 3, there are three curves above it in E : the (−1)-curve P0, a (−2)-curve
P ′0 and another curve. After contracting P0, we get a new surface where the image
of the curve P ′0 is a (−1)-curve and can be contracted itself. We will denote by E ′

the surface obtained contracting first P0 and then the image of P ′0. Since p4 is a
base point of Λ of multiplicity 2, there are two curves above it in E : the (−1)-curve
P4 and a (−2)-curve P ′4. Their images in E ′ are isomorphic to the original curves,
so we will denote them with the same letters. After contracting P4 ∈ E ′, we have
that the image of P ′4 can be contracted. We will denote by E ′′ the surface obtained
from E ′ contracting P4 and subsequently the image of P ′4. The image in E ′′ of
the each other exceptional curve Pi is still isomorphic to Pi, so we will denote it
with the same letter. Now, let E1 be the strict transform on E ′′ of the line passing
through p0 and p1, let E2 be the strict transform on E ′′ of the line passing through
p0 and p2 and let E3 be the strict transform on E ′′ of the line passing through p1

and p2. The (−1)-curves P3, P5, E1, E2 and E3 do not intersect each other in E ′′

and contracting them we find a linear pencil of cubics as in (3)(a).
On the other hand, let E be the rational elliptic surface described in (3)(a).

We will use the same notation as in that section. Since p0 is a base point of Λ of
multiplicity 2, there are two curves above it in E : the (−1)-curve P0 and a (−2)-
curve P ′0. After contracting P0, we get a new surface where the image of the curve
P ′0 is a (−1)-curve and can be contracted itself. We will denote by E ′ the surface
obtained contracting first P0 and then the image of P ′0. Since p4 is a base point of
Λ of multiplicity 2, there are two curves above it in E : the (−1)-curve P4 and a
(−2)-curve P ′4. Their images in E ′ are isomorphic to the original curves, so we will
denote them with the same letters. After contracting P4 ∈ E ′, we have that the
image of P ′4 can be contracted. We will denote by E ′′ the surface obtained from
E ′ contracting P4 and subsequently the image of P ′4. The image in E ′′ of the each



2.3. A UNIQUE REDUCIBLE BAD FIBER 19

other exceptional curve Pi is still isomorphic to Pi, so we will denote it with the
same letter. Now, let E1 be the strict transform on E ′′ of the line passing through
p5 and p1, let E2 be the strict transform on E ′′ of the line passing through p5 and p2

and let L1 be the strict transform on E ′′ of l1. The (−1)-curves P3, P4, P6, E1, E2

and L1 do not intersect each other in E ′′ and contracting them we find a linear
pencil of cubics as in (3)(a).

Theorem 2.3.2. Let E be a rational elliptic surface with Mordell-Weil rank
four and MW (E ) ∼= A∗4. Then E arises from a linear pencil of cubic curves as in
construction (3)(a).

Proof. We must show that all the possible constructions of a rational elliptic
surface of rank four with a fiber of type I5 are equivalent to (3)(a). We know from
section B.2 that there are five constructions and we just showed that (3)(a) and
(2)(a) are equivalent. With similar arguments one can show that all the construc-
tions are equivalent.

We now show that (3)(a) and (3)(b) are equivalent.
Suppose we are working in the settings of (3)(a). Let E be the induced rational
elliptic surface. We will use the same notation as in the construction we already
made. Let li,j be the line passing through pi and pj . We can obtain a pencil
as in (3)(b) by contracting both the exceptional curves above p0, one of the two
exceptional curves above p4, the strict transforms of the lines l1,3, of l1,4 and of l3,4
and the curves P2, P5 and P6.

Conversely, suppose we are working in the settings of (3)(b). Let E be the
induced rational elliptic surface. Let p0, . . . , p6 be the base points of the pencil.
Let p0 be the point of multiplicity three, l3 the line of the reducible member not
passing through p0, l1 the line tangent to the smooth members at p0 and l2 the
last line composing the reducible member. Let p1 be a base point in l2 and p2 a
base point in l3. Let li,j be the line passing through pi and pj . We can obtain a
pencil as in (3)(a) by contracting two of the three exceptional curves above p0, the
strict transforms of l0,1, of l0,2 and of l1,2 and every exceptional curve above pi,
i 6= 0, 1, 2.

We now show that (2)(b) and (3)(b) are equivalent.
Suppose we are working in the settings of (2)(b). Let E be the induced rational
elliptic surface. Let p0, . . . , p5 be the base points of the pencil. Let p0 be the point
of multiplicity four, p1 and p2 two base points on the conic belonging to the cubic
inducing the fiber of type I5 and li,j the line passing through pi and pj . We can
obtain a pencil as in (3)(b) by contracting three of the four exceptional curves above
p0, the strict transforms of the lines l0,1, l0,2 and l1,2 and every exceptional curve
above pi, i 6= 0, 1, 2.

Conversely, suppose we are working in the settings of (3)(b). Let E be the
induced rational elliptic surface. Let p0, . . . , p6 be the base points of the pencil.
Let p0 be the point of multiplicity three, l3 the line of the reducible member not
passing through p0, l1 the line tangent to the smooth members at p0 and l2 the last
line composing the reducible member. Let p1 and p2 be base points in l2 and p3

a base point in l3. Let li,j be the line passing through pi and pj . We can obtain
a pencil as in (2)(b) by contracting all the exceptional curves above p0 (three in
total), the strict transforms of the lines l1,3, l2,3 and l2 and every exceptional curve
above pi, i 6= 0, 1, 2, 3.

We now show that (1) and (2)(b) are equivalent.
Suppose we are working in the settings of (1). Let E be the induced rational
elliptic surface. Let p0, . . . , p4 be the base points of the pencil. Let p0 be the point
of multiplicity five, p1 and p2 two base points and li,j the line passing through
pi and pj . We can obtain a pencil as in (2)(b) by contracting four of the five
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exceptional curves above p0, the strict transforms of the lines l0,1, l0,2 and l1,2 and
every exceptional curve above pi, i 6= 0, 1, 2.

Conversely, suppose we are working in the settings of (2)(b). Let E be the
induced rational elliptic surface. Let p0, . . . , p5 be the base points of the pencil.
Let p0 be the point of multiplicity four, p1 and p2 two base points on the line, p3 a
base point on the conic and li,j the line passing through pi and pj . We can obtain
a pencil as in (1) by contracting all the exceptional curves above p0 (four in total),
the strict transforms of the lines l1,2, l1,3 and l2,3 and every exceptional curve above
pi, i 6= 0, 1, 2, 3.

This concludes the proof. �

2.3.3. A Fiber of Type I∗0 . From section B.2, in order to obtain a fiber of
type I∗0 the pencil of cubics must contain a member of the following forms:

(1) A cuspidal cubic, such that the cusp is a base point with multiplicity 5
(2) A reducible cubic, given by the product of an irreducible conic and a line

tangent to that conic, such that the intersection point between them is a
base point with multiplicity 4

(3) A reducible cubic, given by the product of three concurrent lines, such that
the intersection point between those lines is a base point with multiplicity
3

(4) A reducible cubic, given by the product of a double line and a different
line, such that the intersection point is not a base point.

2.3.3.1. Construction. We will construct an elliptic surface with rank 4 as in
(3).

Let E be a smooth cubic curve. Consider a point p0 on it and let l1 be a line
passing through p0 intersecting E at two other distinct points p1 and p2. Take
now a different line l2 passing through p0 and two other distinct points p3 and p4.
Let l3 be a line passing through p0 and two other distinct points p5 and p6, not
collinear with any other two different base points (except p0, p5, p6), and such that
the points p1, . . . , p6 do not lie on a conic.

p0

p1

p2

p3

p4

p5

p6

l1

l2

l3

E

Figure 2.5. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with a fiber of type I∗0 .
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Consider the pencil of cubics Λ generated by E and R = l1l2l3. The point p0

cannot be the singular point of any irreducible member of Λ, by Bézout’s theorem.
We will now show that the cubic R is the only reducible member. Suppose that
there is another reducible member in the pencil. It cannot split into a line and
an irreducible conic: by the assumption that p1, . . . , p6 do not lie in a conic, the
conic should pass through p0 and at least two other collinear points, but this is not
possible for an irreducible conic. Then the cubic must split into 3 lines. Since the
points {p2k−1, p2k}k=1,2,3 are collinear with p0 and no other combination of three
points is on a line, the reducible member is R.

Notice that the unique reducible member R in Λ corresponds to an I∗0 fiber in
E .

We denote with P0, . . . , P6 the (−1)-curves above p0, . . . , p6.
Let P,Q be two elements in the Mordell-Weil group of the rational elliptic surface
given by the blow-up of P2 at the base points of Λ. Using the Contribution Table in
section 1.9.2, we find that, if P meets the component Θi andQmeets the component
Θj with i ≤ j, the contribution of the I∗0 fiber to 〈P,Q〉 is given by:

contr(P,Q) =
{

1 if i = j
0 if i < j.

We set P0 as the zero section. Using the technique described in section B.1, we
can deduce that Pi and Pj , (i < j), intersect the same component if and only if
i = 1, 3, 5 and j = i+ 1 because the blowing-up of p0 separates points on different
lines. So, we get the following matrix:

(contr(Pi, Pj))i,j =


1 1 1/2 1/2 1/2 1/2
1 1 1/2 1/2 1/2 1/2

1/2 1/2 1 1 1/2 1/2
1/2 1/2 1 1 1/2 1/2
1/2 1/2 1/2 1/2 1 1
1/2 1/2 1/2 1/2 1 1


This allows us to compute the height pairing of the points P1, . . . , P6, since the
sections above the base points do not intersect each other. We will consider the
matrix given by the height pairing of P1, P2, P3 and P5. The height matrix is then
the following:

AI∗0 =


1 0 1/2 1/2
0 1 1/2 1/2

1/2 1/2 1 1/2
1/2 1/2 1/2 1

 .

According to theorem 2.1.1, the Mordell-Weil lattice of the induced surface is iso-
morphic to D∗4 , in particular it has determinant equal to 1/4. Since the determinant
of the matrix AI∗0 is equal to 1/4, the elements P1, P2, P3 and P5 generate the full
Mordell-Weil group of the rational elliptic surface.
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2.3.3.2. Construction. We will construct an elliptic surface with rank 4 as in
(4).
Let E be a smooth cubic plane curve. Let l1 be a line intersecting E at three
distinct points p0, p1, p2. Let ti be the tangent line to E at pi i = 0, 1, 2. Let l2 be
another line, not passing through any pi (i = 0, 1, 2), meeting E at three distinct
points p3, p4, p5, such that at least one of them does not lie in any ti.

p0 p1 p2

p4

p3

p5

l1

l2

t0 t1 t2

E

Figure 2.6. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with a fiber of type I∗0 .

Consider the pencil of cubics Λ generated by E and l21l2. The points p0 and p4

cannot be the singular point of any irreducible member of Λ, by Bézout’s theorem.
The only reducible member is l21l2: if a cubic in Λ splits into a conic and a line, the
line must be either l1 or l2, for the collinearity properties we required; hence the
conic must also split and the reducible cubic is l21l2.

2.3.3.3. Equivalence between the Constructions. We want to show that the con-
structions above lead to the same rational elliptic surface; that is, there exist bira-
tional maps that change the rational elliptic surface given in one construction into
the rational elliptic surface given by the other construction.

First, let E be the rational elliptic surface described in construction (4). We
will use the same notation as in that section. Since p0 is a base point of Λ of
multiplicity 2, there are two curves above it: the (−1)-curve P0 and a (−2)-curve
P ′0. After contracting P0, we get a new surface where the image of the curve P ′0 is a
(−1)-curve and can be contracted itself. We will denote by E ′ the surface obtained
contracting first P0 and then the image of P ′0. Each image in E ′ of the exceptional
curve Pi is isomorphic to Pi itself, so it will be called Pi again. Let E1 be the strict
transform on E ′ of the line passing through p1 and p5, E2 be the strict transform
on E ′ of the line passing through p2 and p5 and L1 be the strict transform on E ′

of l1. The (−1)-curves L1, P1, P2, P3, P4, E1, E2 do not intersect each other and
contracting them we find a linear pencil of cubics as in (3).

On the other hand, let E be the rational elliptic surface described in construc-
tion (3). We will use the same notation as in that section. Since p0 is a base
point of Λ of multiplicity 3, there are three curves above it: the (−1)-curve P0, a
(−2)-curve P ′0 and another curve we are not interested in. After contracting P0,
we get a new surface where the image of the curve P ′0 is a (−1)-curve and can be
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contracted itself. We will denote by E ′ the surface obtained contracting first P0 and
then the image of P ′0. Each image in E ′ of the exceptional curve Pi is isomorphic
to Pi itself, so it will be called Pi again. Let E1 be the strict transform on E ′ of
the line passing through p2 and p3. Let L1 be the strict transform of l1 and let L2

be the strict transform of l2. The (−1)-curves P1, P3, P5, P6, L1, L2 and E1 do not
intersect each other and contracting them we get a linear pencil of cubics as in (4).

Theorem 2.3.4. Let E be a rational elliptic surface with Mordell-Weil rank
four and MW (E ) ∼= D∗4. Then E arises from a linear pencil of cubic curves on as
in construction (3).

Proof. We must show that all the possible constructions of a rational elliptic
surface of rank four with a fiber of type I∗0 are equivalent to (3). We know from
section B.2 that there are four constructions; we just showed that (3) and (4) are
equivalent. With similar arguments one can show that all the possible constructions
are equivalent.

We now show that (2) and (3) are equivalent.
Suppose we are working in the settings of (2). Let E be the induced rational elliptic
surface. Let p0, . . . , p5 be the base points of the pencil. Let p0 be the base point of
multiplicity four, p1 and p2 two base points on the conic belonging to the reducible
member inducing the fiber of type I∗0 and li,j the line passing through pi and pj .
We can obtain a pencil as in (3) by contracting three of the four exceptional curves
above p0, the strict transforms of the lines l0,1, l0,2 and l1,2 and every exceptional
curve above pi, i 6= 0, 1, 2.

Conversely, suppose we are working in the settings of (3). Let E be the induced
rational elliptic surface. Let p0, . . . , p6 be the base points of the pencil. Let p0 be
the base point of multiplicity three, p1 and p2 two base points on the same line
l, p3 a base point not in l and li,j the line passing through pi and pj . We can
obtain a pencil as in (2) by contracting all the tree exceptional curves above p0,
the strict transforms of the lines l1,3, l2,3 and l and every exceptional curve above
pi, i 6= 0, 1, 2, 3.

We now show that (1) and (2) are equivalent.
Suppose we are working in the settings of (1). Let E be the induced rational
elliptic surface. Let p0, . . . , p4 be the base points of the pencil. Let p0 be the base
point of multiplicity five, p1 and p2 two other base points and li,j the line passing
through pi and pj . We can obtain a pencil as in (2) by contracting four of the five
exceptional curves above p0, the strict transforms of the lines l0,1, l0,2 and l1,2 and
every exceptional curve above pi, i 6= 0, 1, 2.

Conversely, suppose we are working in the settings of (2). Let E be the induced
rational elliptic surface. Let p0, . . . , p5 be the base points of the pencil. Let p0 be
the base point of multiplicity four, p1 the base point on the line l, tangent to the
conic at p0 and let li,j the line passing through pi and pj . We can obtain the pencil
as in (1) by contracting four exceptional curves above p0, the strict transform of l,
and the strict transforms of all l1,i with i > 1.

This concludes the proof.
�

2.4. Two Reducible Fibers

According to section 2.1, there are two cases:

(1) one bad fiber has 4 components and the other has 2 components;
(2) both bad fibers have 3 components.
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We will start with the first case: from Appendix A we know that the fiber with
4 components can only be of type I4, while the fiber with two components can be
either of type I2 or of type III.

2.4.1. A Fiber of type I4 and a Fiber with two Components. From
section B.3, in order to have a fiber of type I4, the pencil of cubics must have a
member of one of the following forms:

(1) A nodal cubic such that the singular point is a base point with multiplicity
4.

(2) A reducible cubic, split into a line and an irreducible conic, such that
either
(a) the intersection points are base points with multiplicity 2 and 2 re-

spectively, or
(b) only one intersection point is a base point and has multiplicity 3.

(3) A reducible cubic, split into 3 non-concurrent lines, such that one inter-
section point between the lines is base point with multiplicity 2 and the
other intersection points are not base points.

From section B.5, in order to have a fiber with two components, the pencil of cubics
must have a member of one of the following forms: and a member of one of the
following forms:

(1′) A rational irreducible cubic such that the singular point is a base point
with multiplicity 2,

(2′) A reducible cubic, split into an irreducible conic and a line, such that the
intersection points between them are not base points.

2.4.1.1. Construction. We will construct an elliptic surface of rank 4 from a
linear pencil of cubics as in (3) + (2′).

LetQ be an irreducible conic and let l be a line. Let q1 and q2 be the intersection
points between Q and l (q1 = q2 can happen). Let l1 be a line such that the
intersection points with Q are p0 and p1 6= p0 and the intersection point with l is
p2 6= qi, i = 1, 2. Let l2 be a line passing through p0 such that the intersection
points with Q are p0 and p3 6= p0 and the intersection point with l is p4 6= qi,
i = 1, 2. Let l3 be a line such that the intersection points with Q are p5, p6 and the
intersection point with l is p7 6= qi, i = 1, 2. We will choose l3 such that p5, p6, p7

are not equal to any other point pi and they are not collinear to any couple of other
points pi. Let t be the tangent to Q at p0.

Consider the pencil of cubics Λ passing through p0, p1, p2, p3, p4, p5, p6, p7, with
prescribed tangent t at p0. This pencil contains a smooth member, as shown in
section C.2. The point p0 cannot be a singular point of any irreducible member
of Λ, by Bézout theorem. We now analyze the presence of reducible members in
Λ. Any reducible member that splits into the product of three lines must be the
product l1l2l3, for the collinearity relation we stated. Any reducible member that
splits into the product of an irreducible conic and a line is Ql, since the line should
pass through three distinct points and any choice of three collinear points different
from p2, p4, p7 determines a cubic split into three lines.

We denote by P0, . . . , P6 the (−1)-curves above p0, . . . , p6.
We will analyze the two reducible fibers separately. Let P,Q be two elements in
the Mordell-Weil group of the rational elliptic surface given by the blow-up of P2

at the base points of Λ. Using the Contribution Table in section 1.9.2, we find
that, if P meets the component Θi and Q meets the component Θj with i ≤ j, the
contribution of the I4 fiber to 〈P,Q〉 is given by:

contr(P,Q) =
i(4− j)

4
.
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Figure 2.7. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with a fiber of type I4 and a
fiber with two components.

We set P0 as the zero section. Using the technique described in section B.1 we find
that, since p0, p1 and p2 lie in the same line, then P1 and P2 intersect either Θ1 or
Θ3. Suppose they intersect Θ1. Then, for the same reason, P3 and P4 must intersect
the component Θ3 and all the other Pi’s intersect the fiber at the component Θ2.
We get the following matrix:

(contr4(Pi, Pj))i,j =



3/4 3/4 1/4 1/4 1/2 1/2 1/2
3/4 3/4 1/4 1/4 1/2 1/2 1/2
1/4 1/4 3/4 3/4 1/2 1/2 1/2
1/4 1/4 3/4 3/4 1/2 1/2 1/2
1/2 1/2 1/2 1/2 1 1 1
1/2 1/2 1/2 1/2 1 1 1
1/2 1/2 1/2 1/2 1 1 1


For the fiber with two components we will proceed similarly. Using the Con-

tribution Table in section 1.9.2, we find that, if P meets the component Θi and Q
meets the component Θj with i ≤ j, the contribution of the fiber to 〈P,Q〉 is given
by:

contr(P,Q) =
i(2− j)

2
=
{

0 if i = 0
1/2 if i = j = 1.

Using the technique described in section B.1, since p2, p4 and p7 are in the same
line, and they are not in the conic where p0 is, then P2, P4 and P7 must intersect
the component Θ1. All the other Pi’s intersect the zero component. We have the
following matrix:

(contr2(Pi, Pj))i,j =



0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 1/2
0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 1/2
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 1/2
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This allows us to compute the height pairing of the points P1, . . . , P6.
We will consider the matrix given by the height pairing of P4, P5, P6 and P7. The
height matrix is then the following:

A4,2 =


3/4 1/2 1/2 0
1/2 1 0 0
1/2 0 1 0
0 0 0 1/2

 .

According to theorem 2.1.1, the Mordell-Weil lattice of the induced surface is iso-
morphic to A∗3 ⊕ A∗1; in particular it has determinant equal to 1/8. Since the
determinant of the matrix A4,2 is equal to 1/8, the elements P4, P5, P6 and P7

generate the full Mordell-Weil group of the rational elliptic surface.

Theorem 2.4.2. Let E be a rational elliptic surface with Mordell-Weil rank
four and MW (E ) ∼= A∗3 ⊕ A∗1. Then E arises from a linear pencil of cubic curves
on as in construction (3) + (2′).

Proof. We must show that all the possible constructions of a rational elliptic
surface of rank four with a fiber of type I4 and a fiber with two components are
equivalent to (3) + (2′).

For all the constructions where the fiber with two components is induced by
an irreducible fiber, we can reduce to [Sal09], theorem 3.2, using the procedure
described in section B.6. In fact, the configurations of the base points we have to
deal with are similar to the ones treated in that theorem: the only difference is that
in our cases there is a base point p with an infinitely near point, where p corresponds
to the singular point of the member inducing the fiber with two components. This
point p lies smoothly on the cubic inducing the I4 fiber. Moreover, the equivalences
we are looking for are given applying the Cremona transformations mentioned in
that paper, being careful that the point p is not involved in the choices of the lines
to contract.

All the equivalences will be proven as summarized in the following diagram (as
we said, the first column of equivalences is granted):

(1) + (1′)
KS

��

(i) +3 (1) + (2′)

(ii)

��
(2)(b) + (1′)

KS

��

(2)(b) + (2′)
KS

(iii)

��
(iv)

s{

(2)(a) + (1′)
KS

��

(2)(a) + (2′)

(3) + (1′) ks (v)
(3) + (2′)

We now prove implication (i). Suppose we are working in the settings of con-
struction (1) + (1′). Let p0, . . . , p4 be the base points of Λ and let li,j be the line
passing through pi and pj . Let p0 be the base point of Λ with multiplicity 4 and let
p1 be the base point of Λ with multiplicity 2. Let p2, p3 be two other base points.
Let E be the rational elliptic surface induced from Λ. Let Pi be the (−1)-curve
above pi in E . It is possible to obtain a linear pencil of cubics as in (1) + (2′)
contracting all the exceptional curves above p0 (4 in total), the strict transforms of
l1,2, l1,3 and l2,3, and the (−1)-curves Pi, with i 6= 2, 3.

We now prove implication (ii). Suppose we are working in the settings of
construction (1) + (2′). Let p0, . . . , p5 be the base points of Λ and let li,j be the
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line passing through pi and pj . Let p0 be the base point of Λ with multiplicity 4
and let p1, p2 be two base points on the conic belonging to the reducible member
of Λ inducing the fiber with 2 components. Let E be the rational elliptic surface
induced from Λ. Let Pi be the (−1)-curve above pi in E . It is possible to obtain
a linear pencil of cubics as in (2) + (2′) contracting three of the four exceptional
curves above p0, the strict transforms of l0,1 and of l0,2 and each exceptional curve
Pi with i 6= 1, 2.

We now prove the equivalence (iii). Suppose we are working in the settings of
construction (2)(b) + (2′). Let p0, . . . , p6 be the base points of Λ and let li,j be the
line passing through pi and pj . Let p0 be the base point of Λ with multiplicity 3.
We suppose that the conics belonging to the reducible members of Λ are tangent to
each other at p0. Let p1 be the base point of Λ realized as the intersection point of
the line composing the cubic inducing the fiber of type I4 and the conic composing
the cubic inducing the fiber with two components. Let p2 be a base point belonging
to both those conics. Let E be the rational elliptic surface induced from Λ. Let Pi
be the (−1)-curve above pi in E . It is possible to obtain a linear pencil of cubics as
in (2)(a) + (2′) contracting two of the three exceptional curves above p0, the strict
transforms of l0,2 and of l1,2 and each exceptional curve Pi with i 6= 1, 2.
Vice versa, suppose we are working in the settings of construction (2)(a) + (2′).
Let p0, . . . , p6 be the base points of Λ and let li,j be the line passing through pi
and pj . Let p0 and p1 be the base points of Λ with multiplicity 2 and let p2 be
the base point of Λ collinear with p0 and p2. Let p3 and p4 be two base points
belonging to both the conics composing the reducible members of Λ. Let E be the
rational elliptic surface induced from Λ. Let Pi be the (−1)-curve above pi in E . It
is possible to obtain a linear pencil of cubics as in (2)(b) + (2′) contracting all the
exceptional curves above p0 (2 in total), the strict transforms of l1,2, of l1,3, of l1,4,
of l2,3, and of l2,4 and the (two) remaining exceptional curves above pi with i > 4.

We now prove implication (iv). Suppose we are working in the settings of
construction (2)(b) + (2′). Let p0, . . . , p6 be the base points of Λ and let li,j be the
line passing through pi and pj . Let p0 be the base point of Λ with multiplicity 3. We
suppose that the conics belonging to the reducible members of Λ have a common
tangent at p0. Let p1 be a base point belonging to both the conics composing the
reducible members of Λ. Let p2 be one of the two points of intersection between
the line composing the cubic inducing the fiber with two components and the conic
composing the cubic inducing the fiber of type I4. Let E be the rational elliptic
surface induced from Λ. Let Pi be the (−1)-curve above pi in E . It is possible
to obtain a linear pencil of cubics as in (3) + (2′) contracting two of the three
exceptional curves above p0, the strict transforms of l0,1, of l0,2, and of l1,2 and all
the exceptional curves Pi with i > 2.

We now prove implication (v). Suppose we are working in the settings of
construction (3) + (2′). We use exactly the same notation as the one used in that
construction. Let li,j be the line passing through pi and pj . Let E be the rational
elliptic surface induced from Λ. Let Pi be the (−1)-curve above pi in E . It is possible
to obtain a linear pencil of cubics as in (3) + (1′) contracting all the exceptional
curves above p0 (2 in total), all the curves P1, P3, P5, P7 and the strict transforms
of l2,4, of l2,6, and of l4,6. �

2.4.3. Two Fibers with three Components. According to section B.4, in
order to have two fibers with three components, the pencil of cubics must have two
members of one of the following forms:

(1) A rational irreducible cubic such that the singular point is a base point
with multiplicity 3,
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(2) A reducible cubic, split into a line and an irreducible conic, such that
only one of the intersection points between them is a base point and has
multiplicity 2,

(3) A reducible cubic, split into 3 lines, such that no intersection points are
base points.

2.4.3.1. Construction. We will construct an elliptic surface of rank 4 from a
linear pencil of cubics as in (3) + (3).

Let E be a smooth cubic curve. Let l1 be a line meeting E at three distinct
points p0, p1, p2. Let l2 be another line intersecting l1 at a point different from any
pi. We require also that

• the line l2 meets E at three distinct points p3, p4, p5 (all different from the
previous pi’s),

• any line mi = pi−1pi+2 (i = 1, 2, 3) is not tangent to E,
• the intersection points between mi and mj (i 6= j = 1, 2, 3) are three

distinct points not on E, and
• the new points pi+5’s given by the intersection between any mi and E

(different from the previous pj ’s) are not collinear to any non-trivial com-
bination of the pj ’s j < 6.

There exists a line l3 passing through p6, p7, p8.

p0

p1

p2

p3

p4p5

p6

p7

p8

l1

l2

l3

m1

m2

m3

Figure 2.8. Configuration of the base points of a pencil of cu-
bics inducing a rational elliptic surface with two fibers with three
components each.

This holds if and only if p6 + p7 + p8 = q in the group law of E, where q is the
third point of intersection between E and the tangent line to E at O. Using the
collinearity relations:

p0 + p1 + p2 = q, p3 + p4 + p5 = q

and
p0 + p3 + p6 = q, p1 + p4 + p7 = q, p2 + p5 + p8 = q,
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we have

p6 + p7 + p8 = q − p0 − p3 + q − p1 − p4 + q − p2 − p5

= q + q − p0 − p1 − p2 + q − p3 − p4 − p5

= q +O +O = q.

This choice grants that the pencil of cubics Λ, generated by l1l2l3 and E contains
m1m2m3. We will show that l1l2l3 and m1m2m3 are the only reducible members
in Λ. In fact, from the assumptions on the (non) collinearity of the pi’s the only
lines passing through three of them are the one mentioned before. This shows that
the only reducible members are l1l2l3 and m1m2m3. Moreover the base points of
Λ cannot be the singular points of any irreducible cubic, by Bézout’s theorem.

Notice that the reducible members of Λ correspond to fibers with three compo-
nents in the rational elliptic surface given by the blow-up of P2 at the base points
of Λ.

We denote by P0, . . . , P8 the (−1)-curves above p0, . . . , p8.
We denote by Fl the fiber induced by l1l2l3 and by Fm the fiber induced by
m1m2m3. We will analyze the two reducible fibers separately. Let P,Q be two
elements in the Mordell-Weil group of the rational elliptic surface given by the
blow-up of P2 at the base points of Λ. Using the contribution table in section 1.9.2,
we find that, if P meets the component Θi (of any of the two reducible fibers) and
Q meets the component Θj with i ≤ j, the contribution of the fiber to 〈P,Q〉 is
given by:

contr(P,Q) =
i(3− j)

3
.

We set P0 as the zero section. We are analyze the fiber Fl. Using the technique
described in section B.1, since the points p0, p1 and p2 lie in the same line, then
P1 and P2 meet the zero component of the fiber, Θ0; the points p3, p4 and p5 lie in
the same line, so P3, P4 and P5 meet the same component, which can be either Θ1

or Θ2; without loss of generality, we fix it to be Θ1; the points p6, p7 and p8 lie in
the same line, then P6, P7 and P8 meet Θ2. We get the following matrix:

(contrFl(Pi, Pj))i,j =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 2/3 2/3 2/3 1/3 1/3 1/3
0 0 2/3 2/3 2/3 1/3 1/3 1/3
0 0 2/3 2/3 2/3 1/3 1/3 1/3
0 0 1/3 1/3 1/3 2/3 2/3 2/3
0 0 1/3 1/3 1/3 2/3 2/3 2/3
0 0 1/3 1/3 1/3 2/3 2/3 2/3


Now, we are analyzing the fiber Fm. The structure is similar to the previous

one. We get the following matrix:

(contrFm(Pi, Pj))i,j =



2/3 1/3 0 2/3 1/3 0 2/3 1/3
1/3 2/3 0 1/3 2/3 0 1/3 2/3
0 0 0 0 0 0 0 0

2/3 1/3 0 2/3 1/3 0 2/3 1/3
1/3 2/3 0 1/3 2/3 0 1/3 2/3
0 0 0 0 0 0 0 0

2/3 1/3 0 2/3 1/3 0 2/3 1/3
1/3 2/3 0 1/3 2/3 0 1/3 2/3
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We consider the matrix given by the height pairing of P1, P3, P5 and P6. The
height matrix is the following:

A3,3 =


4/3 1 2/3 1
1 4/3 1/3 2/3

2/3 1/3 2/3 2/3
1/3 2/3 2/3 4/3

 .

According to theorem 2.1.1, the Mordell-Weil lattice of the induced surface is iso-
morphic to A∗⊕2

2 ; in particular it has determinant equal to 1/9. Since the deter-
minant of the matrix A3,3 is equal to 1/9, the elements P1, P3, P5 and P6 generate
the full Mordell-Weil group of the rational elliptic surface.

Theorem 2.4.4. Let E be a rational elliptic surface with Mordell-Weil rank
four and MW (E ) ∼= A∗⊕2

2 . Then E arises from a linear pencil of cubic curves as
in construction (3).

Proof. We have to show that all the constructions are equivalent. Using the
procedure described in section B.6, as for theorem 2.4.2, we can use an argument
similar to the one used in [Fus06] to prove the equalities between the pencils having
an irreducible member inducing a fiber with three components. All the equivalences
will be proven as summarized in the following diagram:

(1) + (1)
KS

��
(1) + (2)

KS

��

ks (i) +3 (2) + (2)

(1) + (3) ks (ii) +3 (2) + (3) ks (iii) +3 (3) + (3)

We now show equivalence (i). Suppose we are in the setting of (1) + (2). We
denote by p0, . . . , p5 the base points of the pencil and by li,j the line passing through
pi and pj . Let E be the induced rational elliptic surface. We denote by Pi the (−1)-
curve above pi. Let p0 be the base point of multiplicity 3. We suppose that the
conic belonging to the cubic inducing one of the reducible fibers passes through p0.
Let p1 be the base point with multiplicity 2. Let p2 be a base point on the conic
belonging to the cubic inducing one of the reducible fibers and let p3 be a base point
on the line belonging to the cubic inducing one of the reducible fibers. We obtain a
linear pencil of cubics as in (2)+(2) contracting two of the three exceptional curves
above p0, both the exceptional curves above p1, the strict transforms of l0,1, of l0,2
and of l1,2 and all the curves Pi with i > 2.
Vice versa, suppose we are working in the setting of (2) + (2). We denote by
p0, . . . , p6 the base points of the pencil and by li,j the line passing through pi and
pj . Let E be the induced rational elliptic surface. We denote by Pi the (−1)-
curve above pi. Both the reducible members of the pencil are split into a line and
an irreducible conic. Let p0, p1, p2 be the base points on one of the two lines, let
p2, p3, p4 be the three base points on the other line (p2 is the intersection point
between those lines) and let p5, p6 be the remaining base points (base points which
are intersection points between the two conics different from p0 and p1). We suppose
that p0 and p3 are the base points with multiplicity 2. We obtain a linear pencil of
cubics as in (1) + (2) contracting all the exceptional curves above p0 and p1 (4 in
total), the strict transforms of l1,4, of l1,5, of l4,5 and of l0,1 and P6.

We now prove equivalence (ii). Suppose we are in the setting of (1) + (3).
We denote by p0, . . . , p6 the base points of the pencil and by li,j the line passing
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through pi and pj . Let E be the induced rational elliptic surface. We denote by Pi
the (−1)-curve above pi. Let p0 be the base point of multiplicity 3. Let p1, p2, p3

three collinear base points and let p4, p5, p6 be three other collinear base points.
We can obtain a linear pencil of cubics as in (2) + (3) contracting two of the three
exceptional curves above p0, the strict transforms of l0,1, of l0,4 and of l1,4 and the
curves P2, P3, P5, P6.
Vice versa, suppose we are in the setting of (2) + (3). We denote by p0, . . . , p7 the
base points of the pencil and by li,j the line passing through pi and pj . Let E be
the induced rational elliptic surface. We denote by Pi the (−1)-curve above pi. Let
p0 be the base point of multiplicity 2. Let p1 be the base point on the tangent at p0

to the irreducible cubics of the pencil and let p2, p3 be the two base points collinear
to p0. We can obtain a linear pencil of cubics as in (1) + (3) contracting both the
exceptional curves above p0, the strict transforms of l1,2, of l1,3 and of l2,3 and all
the curves Pi with i > 2.

We now show equivalence (iii). Suppose we are in the setting of (2) + (3).
We denote by p0, . . . , p7 the base points of the pencil and by li,j the line passing
through pi and pj . Let E be the induced rational elliptic surface. We denote by
Pi the (−1)-curve above pi. Let p0 be the base point of multiplicity 2. Let p1 be
the base point on the tangent at p0 to the irreducible cubics of the pencil and let
p2, p3 be the two base points collinear to p0. Let p3, p4, p5 be three collinear base
points and let p2, p6, p7 be three collinear base points. We obtain a linear pencil of
cubics as in (3) + (3) contracting one of the two exceptional curves above p0, the
strict transforms of l0,5, of l0,7 and of l5,7 and the curves P1, P2, P3, P4, P6.
Vice versa, suppose we are working in the setting of (3) + (3). We use the same
notation used in that construction. We denote by li,j the line passing through pi
and pj . Let E be the induced rational elliptic surface. We denote by Pi the (−1)-
curve above pi. We can obtain a linear pencil of cubics as in (2)+(3) contracting P0,
the strict transforms of l2,3, of l2,6 and of l3,6 and the curves P1, P4, P5, P7, P8. �

2.5. Three Reducible Fibers

According to section 2.1 one reducible fiber has three components and the other
two have two components. Appendix A tells us that the former fiber can be a of
type IV or I3 and latter ones of type I2 or III.

2.5.1. A Fiber with three Components and two Fibers with two Com-
ponents. In order to have a fiber with three components and two fibers with two,
the pencil of cubics must contain one member of the following forms (see section
B.4):

(1) A rational irreducible cubic such that the singular point is a base point
with multiplicity 3,

(2) A reducible cubic, split into a line and an irreducible conic, such that
only one of the intersection points between them is a base point and has
multiplicity 2,

(3) A reducible cubic, split into 3 lines, such that no intersection points are
base points;

and two members of the following forms (see section B.5):

(1′) A rational irreducible cubic such that the singular point is a base point
with multiplicity 2,

(2′) A reducible cubic, split into an irreducible conic and a line, such that the
intersection points between them are not base points.



32 2. CONSTRUCTION OF RATIONAL ELLIPTIC SURFACES WITH RANK 4

2.5.1.1. Construction. We will construct an elliptic surface of rank 4 from a
linear pencil of cubics as in (3) + (2′) + (2′).

Let Qa be an irreducible conic. Let p1, . . . , p6 be six distinct points on Qa such
that the point p0, given by the intersection of the line lb = p5p6 and n3 = p2p3

is not collinear with the points p1 and p4. We now define two lines n1 = p6p1

and n2 = p4p5. Take a point p7 in n2 and the point p8 = n1 ∩ p0p7. By Pascal’s
theorem there exists a (unique) conic Qb passing through p1, . . . , p4, p7, p8. This
conic is irreducible if p7 is a general point in n2, that is p7 /∈ p3p4. Now, call la the
line p7p8.

n1

n2

n3

la

lb

QaQbp0

p1

p2

p3

p4

p5

p6

p7

p8

Figure 2.9. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with three reducible fibers.

Consider the pencil of cubics Λ, passing through p0, . . . , p8. We show in section
C.3 that Λ contains a smooth member. We now prove that the unique reducible
members are n1n2n3, Qala and Qblb. Suppose by contradiction that there exists a
reducible member in Λ different from Qala, Qblb and n1n2n3. It cannot split into
three lines, since the only lines passing through point p0 and two other base points
are components of the above reducible members. This implies that this member is
split into a line and an irreducible conic and p0 is a point on that conic. This conic
should pass through five other base points, such that no combination of those five
points and p0 leads to a reducible conic. This implies that the remaining three base
points are not collinear, thus the line composing the member does not exists.

We will denote by P0, . . . , P8 the (−1)-curves above p0, . . . , p8.
We set P0 as the zero section. The cubic n1n2n3 determines a fiber of type I3.
Since there are nine distinct base points, the configuration of the these points easily
determines the intersection between the exceptional curves and the components of
the fiber, giving the following matrix, using the Contribution Table in section 1.9.2
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in the case of a fiber with three components:

(contr3(Pi, Pj))i,j =



2/3 0 0 1/3 1/3 2/3 1/3 2/3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1/3 0 0 2/3 2/3 1/3 2/3 1/3
1/3 0 0 2/3 2/3 1/3 2/3 1/3
2/3 0 0 1/3 1/3 2/3 1/3 2/3
1/3 0 0 2/3 2/3 1/3 2/3 1/3
2/3 0 0 1/3 1/3 2/3 1/3 2/3


.

The cubic Qala determines a fiber with two components. We can associate the
following matrix:

(contra2(Pi, Pj))i,j =



1/2 1/2 1/2 1/2 1/2 1/2 0 0
1/2 1/2 1/2 1/2 1/2 1/2 0 0
1/2 1/2 1/2 1/2 1/2 1/2 0 0
1/2 1/2 1/2 1/2 1/2 1/2 0 0
1/2 1/2 1/2 1/2 1/2 1/2 0 0
1/2 1/2 1/2 1/2 1/2 1/2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

The cubic Qblb determines a fiber with two components. We can associate the
following matrix:

(
contrb2(Pi, Pj)

)
i,j

=



1/2 1/2 1/2 1/2 0 0 1/2 1/2
1/2 1/2 1/2 1/2 0 0 1/2 1/2
1/2 1/2 1/2 1/2 0 0 1/2 1/2
1/2 1/2 1/2 1/2 0 0 1/2 1/2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1/2 1/2 1/2 1/2 0 0 1/2 1/2
1/2 1/2 1/2 1/2 0 0 1/2 1/2


.

We will consider the matrix given by the height pairing of P1, P3, P5 and P7. The
height matrix is the following:

A3,2,2 =


1/3 0 1/6 1/6
0 1 1/2 1/2

1/6 1/2 5/6 1/3
1/6 1/2 1/3 5/6

 .

According to theorem 2.1.1, the Mordell-Weil lattice of the induced surface has
determinant equal to 1/12. Since the determinant of the matrix A3,3 is the same,
the elements P1, P3, P5 and P7 generate the full Mordell-Weil group of the rational
elliptic surface.

Theorem 2.5.2. Let E be a rational elliptic surface with Mordell-Weil rank
four with three reducible fibers. Then E arises from a linear pencil of cubic curves
on as in construction (3) + (2′) + (2′).

Proof. We have to prove that all the constructions of a rational elliptic surface
with rank four and three reducible fibers are equivalent. As for theorem 2.4.2,
we can use some results from [Sal09] and [Fus06], according to the procedure
explained in section B.6: in fact, we can show that all the pencils having two
irreducible members inducing the two fiber with two components are equivalent
using the same reasoning used in [Fus06], in the context of a unique fiber with
three component (we must be careful not to involve the singular points of the
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irreducible cubics inducing the fiber with two components in the choice of the lines
to contract). For the same reason, we can reduce to [Sal09] for the equivalences
between pencils with exactly one irreducible member inducing a fiber with two
components and we can reduce to [Fus06] for the equivalences between pencils
with an irreducible member inducing the fiber with three components.

All the equivalences will be proven as summarized in the following diagram (we
denote by f i the technique of [Fus06] in the context of i reducible fibers and by s2

the technique of [Sal09] in the context of two reducible fibers):

(1) + (1′) + (1′)
KS

f1

��

ks f2
+3 (1) + (1′) + (2′)

KS

s2

��

ks f2
+3 (1) + (2′) + (2′)

KS

(i)

��
(2) + (1′) + (1′)

KS

f1

��

(2) + (1′) + (2′)
KS

s2

��

(2) + (2′) + (2′)
KS

(ii)

��
(3) + (1′) + (1′) (3) + (1′) + (2′) (3) + (2′) + (2′)

We now prove equivalence (i). Suppose we are in the setting of (1) + (2′) + (2′).
We denote by p0, . . . , p6 the base points of the pencil and by li,j the line passing
through pi and pj . Let E be the induced rational elliptic surface. We denote by
Pi the (−1)-curve above pi. Let p0 be the base point of multiplicity 3. Let Ci be
the reducible cubic in the pencil, split into the conic Qi and the line li. Let p1 be
the base point given by one of the intersection points of Q1 and l2 and let p2 be
the base point given by one of the intersection points of Q2 and l1. It is possible
to obtain a pencil as in (2) + (2′) + (2′) contracting two of the three exceptional
curves above p0, the strict transforms of l0,1, of l0,2 and of l1,2 and P3, P4, P5.
Vice versa, suppose we are working in the setting of (2) + (2′) + (2′). We denote by
p0, . . . , p7 the base points of the pencil and by li,j the line passing through pi and
pj . Let E be the induced rational elliptic surface. We denote by Pi the (−1)-curve
above pi. Let p0 be the base point of multiplicity 2. Let p1 be a base point given by
the intersection of three conics each one of them belongs to a reducible member in
the pencil. Let p2 and p3 be the two base points collinear with p0. It is possible to
obtain a linear pencil as in (1) + (2′) + (2′) contracting both the exceptional curves
above p0, the strict transforms of l1,2, of l1,3 and of l2,3 and the curves P4, P5, P6, P7.

We now prove equivalence (ii). Suppose we are working in the setting of (2) +
(2′) + (2′). We denote by p0, . . . , p7 the base points of the pencil and by li,j the
line passing through pi and pj . Let E be the induced rational elliptic surface. We
denote by Pi the (−1)-curve above pi. Let p0 be the base point of multiplicity 2.
Denote by Ci the reducible cubic of the pencil, split into a conic Qi and a line
li, inducing a fiber with two components. Let p1 and p2 be the two base points
collinear with p0. Let p3 be a base point given by an intersection point of l1 and
Q2 and let p4 be a base point given by an intersection point of l2 and Q1. It i
possible to obtain a linear pencil of cubics as in (3) + (2′) + (2′) contracting only
one exceptional curve above p0, the strict transforms of l0,3, of l0,4 and of l3,4 and
P1, P2, P5, P6, P7.
Vice versa, suppose we are in the setting of (3) + (2′) + (2′). We use the same
notation of that construction. We denote by li,j the line passing through pi and pj
and by Pi the (−1)-curve above pi. It is possible to obtain a linear pencil of cubics
as in (2) + (2′) + (2′) contracting the strict transforms of l3,6, of l3,8 and of l6,8 and
P0, P1, P2, P4, P5, P7. �
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2.6. Four Reducible Fibers

According to section 2.1 all the reducible fibers have two components. From
section A, each reducible fiber can be of type I2 or III. We also recall that either
the Mordell-Weil group has torsion, or it is torsion-free and both cases may happen
(see theorem 2.1.1).

In order to have four fibers with two components, the pencil of cubics must
contain four members of the following forms (see section B.5):

(1) A rational irreducible cubic such that the singular point is a base point
with multiplicity 2,

(2) A reducible cubic, split into an irreducible conic and a line, such that the
intersection points between them are not base points.

We first deal with the non-torsion case and a full section will be devoted for
the torsion case.

2.6.1. The Non-Torsion Case. We are now trying to construct a rational
elliptic surface of rank four with four reducible fibers without torsion.
We will build it as the blow-up of a linear pencil of cubics containing four reducible
members split into a line and an irreducible conic.

First take two conics Qa and Qb, intersecting at four points p1, p2, p3, p4. Let
ld be the line passing through p1 and p2 and lc be the line passing through p3 and
p4. Let p0 be the point of intersection between lc and ld. Now, take two points p7

and p8 on Qb and two points p5 and p6 on Qa satisfying the following requirements:
• the points p0, p7 and p8 are collinear,
• the points p0, p5 and p6 are collinear,
• the points p1, p2, p5, p6, p7 and p8 are on an irreducible conic Qc and
• the points p3, p4, p5, p6, p7 and p8 are on an irreducible conic Qd.

We will denote by la the line passing through p7 and p8 and by lb the line passing
through p5 and p6.

Consider the linear pencil of cubics Λ passing through p0, . . . , p8. We prove
in section C.4 that Λ contains a smooth member. Now we analyze the presence
of reducible members. The reducible members in Λ split into a line and a conic.
Since the base points of Λ are nine distinct points, any line should pass through
three base points. The only possibility for that line is to be one among la, . . . , ld,
since there cannot be other collinearity relations between the pi’s, otherwise at least
one among Qa, . . . , Qd would be a reducible conic. This shows that Λ has exactly
Qala, . . . , Qdld as reducible members.

Let P0, . . . , P8 be the (−1)-curves above p0, . . . , p8. Set P0 as the zero section.
Every reducible member in Λ determines a fiber with two components. Using the
same reasoning as in the previous constructions, we can deduce the contribution
of each fiber to each pairing between the Pi’s. The height matrix associated to
P1, . . . , P8 is the following:

1/2 1/2 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0
0 0 1/2 1/2 0 0 0 0
0 0 1/2 1/2 0 0 0 0
0 0 0 0 1/2 1/2 0 0
0 0 0 0 1/2 1/2 0 0
0 0 0 0 0 0 1/2 1/2
0 0 0 0 0 0 1/2 1/2


.

Taking the submatrix given by the pairing of the exceptional curves above four base
points such that any two of them are not on any line la, lb, lc or ld, we get a matrix
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Figure 2.10. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with four reducible fibers.

of the following form: 
1/2 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1/2

 .

This matrix has determinant equal to 1/16, which is exactly the determinant asso-
ciated to the Mordell-Weil group of the induced rational elliptic surface. Thus the
exceptional curves generate the full Mordell-Weil lattice of the surface. Moreover
the possibility that the surface has torsion is excluded: in the case of a rational
elliptic surface with rank four with torsion, the determinant of the height matrix
of any four elements is equal to 1/4 times a square integer. This happens because
the determinant of the associated Mordell-Weil lattice is 1/4.
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2.7. The Torsion Case

2.7.1. Construction. In this section we will construct a linear pencil of cubics
with four reducible members, split into a line and an irreducible conic such that
the induced rational elliptic surface has torsion.

To improve readability we will use the notation r ∩ s for “r intersected with s”
and p ∪ q for “the line passing through p and q”.

First, take five points p1, p2, a, b and c. Let β be the line

β = ((p2 ∪ a) ∩ (p1 ∪ c)) ∪ ((p1 ∪ b) ∩ (p2 ∪ c)).
Let α and δ be two lines defined by

α = a ∪ ((p1 ∪ c) ∩ (p2 ∪ b)),

δ = b ∪ ((p1 ∪ a) ∩ (p2 ∪ c)).

p1

p2

c

a

b

β

α

δ

Figure 2.11. Construction of the Pascal’s lines.

The blue lines, denoted by Greek letters, will be crucial in proving the presence
of four conics passing through six points. In this step we will build the first two
lines appearing as components of two of the reducible members of the pencil of
cubics.
Let p0 be the point

((β ∩ δ) ∪ p1) ∩ ((β ∩ α) ∪ p2).
Let la be the line

((p0 ∪ p1) ∩ α) ∪ ((p1 ∪ a) ∩ (p2 ∪ b))
and let lb be the line

((p0 ∪ p2) ∩ δ) ∪ ((p1 ∪ a) ∩ (p2 ∪ b)).
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p1

p2

c

a

b

β

α

δ

p0

la

lb

Figure 2.12. Setting the first collinear base points.

In this stage we will complete the set of base points. Let lc be the line

(la ∩ (p1 ∪ b)) ∪ (lb ∩ (p1 ∪ c))
and let ld be the line

(lb ∩ (p2 ∪ a)) ∪ (la ∩ (p2 ∪ c)).

p1

p2

c

a

b

p0

β

α

δ
la

lb

lc

ld

Figure 2.13. The final setup.
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We label the intersection points of the li’s as follows:

p3 = la ∩ lb, p4 = la ∩ ld, p5 = lb ∩ lc,
p6 = lc ∩ ld, p7 = la ∩ lc, p8 = lb ∩ ld.

We fixed the position of nine points in P2. In section D.2 we prove that the
pi’s are base points of a pencil of cubics with four reducible members split into a
line and an irreducible conic. We check that the pencil contains at least a smooth
member in section C.5.

2.7.2. The Mordell-Weil Group. We just showed that it is possible to
choose nine distinct points p0, . . . , p8 on P2 such that there are four lines la, . . . , ld
and four irreducible conics Qa, . . . , Qd with the following properties:

p3, p5, p8 ∈ la, p3, p4, p7 ∈ lb, p5, p6, p7 ∈ lc, p4, p6, p8 ∈ ld,
p0, p1, p2, p4, p6, p7 ∈ Qa, p0, p1, p2, p5, p6, p8 ∈ Qb,
p0, p1, p2, p3, p4, p8 ∈ Qc, p0, p1, p2, p3, p5, p7 ∈ Qd,

any three other combination of the pi’s is not on a line and any other combination
of six of the pi’s is not on an irreducible conic.

Consider the pencil Λ determined by p0, . . . , p8. The unique reducible members
are Qala, Qblb, Qclc and Qdld, since for every other conic passing through six of the
pi’s the remaining three base points are not collinear.

We will denote by P0, . . . , P8 the exceptional curves above p0, . . . , p8. We set
P0 as the zero section. Every reducible member of Λ determines a fiber with 2
components. With the same method used in the other constructions, it is possible
to get the intersection matrices for every reducible fibers and combine them in order
to get the height matrix of the Pi’s (i 6= 0). The height matrix is the following:

A =



2 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1
1 1 1 1/2 1/2 1 1/2 1/2
1 1 1/2 1 1 1/2 1/2 1/2
1 1 1/2 1 1 1/2 1/2 1/2
1 1 1 1/2 1/2 1 1/2 1/2
1 1 1/2 1/2 1/2 1/2 1 1
1 1 1/2 1/2 1/2 1/2 1 1


.

As for the other constructions, we would like to show that the exceptional
curves above the pi’s generate the full Mordell-Weil group associated to the pencil
of cubics. In our case the Mordell-Weil group is isomorphic to D∗4 ⊕ Z/2Z (see
theorem 2.1.1). This means that in order to generate the Mordell-Weil group, we
need to find four exceptional curves above the base points of the pencil that generate
the Mordell-Weil lattice D∗4 (since the rank of the rational elliptic surface is four)
and check that there is a linear combination of the exceptional curves that leads to
a non-zero 2-torsion element.

For the latter part, one can check that 2(P3 − P6) = O (and 2(P4 − P5) = O,
2(P7 − P8) = O), as done in subsection C.5.1. For the first part, we choose any
submatrix of A given by four independent elements and get one of the following
matrices (the first one if we choose only one between P1 and P2 and three indepen-
dent Pi’s, i > 2; the second one if we choose both P1 and P2 and two independent
Pi’s, i > 2):

B1 =


2 1 1 1
1 1 1/2 1/2
1 1/2 1 1/2
1 1/2 1/2 1

 , B2 =


2 1 1 1
1 2 1 1
1 1 1 1/2
1 1 1/2 1

 .
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In both cases the determinant is 1/4. This shows that the elements we chose
generate the Mordell-Weil lattice, since

det(Bi) =
1
4

= det(D∗4),

and implies that the exceptional curves above the base points of the linear pencil
of cubics generate the full Mordell-Weil group.



APPENDIX A

Fiber Configuration

In this section we will list all possible special fibers that can occur in a rational
elliptic surface, together with the Kodaira symbol, the order and the number of
irreducible components.

Kodaira
Symbol

ordv(∆v) # irreducible
components

Drawing

I0 0 1

In n n

II 2 1

III 3 2

IV 4 3

Table A.1. Fibers and properties 1/2.

41



42 A. FIBER CONFIGURATION

Kodaira
Symbol

ordv(∆v) # irreducible
components

Drawing

I∗0 6 5 2

1

1

1

1

I∗n 6 + n 5 + n

1 1

1 1

2
2

2
2

IV ∗ 8 7

1

1

1

2

2

2

3

III∗ 9 8

1

1
2

2

2

3

3

4

II∗ 10 9

12

2

3

3

4

4

5

6

Table A.2. Fibers and properties 2/2.



APPENDIX B

Singular Cubics

B.1. Description of the Fibers

From section 1.7, each rational elliptic surface π : E → P1 is obtained as the
blow-up of P2 at the base points of a linear pencil of cubics Λ. This correspondence
yields a more specific relation: namely, for each fiber π−1(t) we can associate a
specific member Λt whose image after the blow-up is exactly π−1(t).

First, define mp as the multiplicity of p as a base point of the pencil; that is,
mp = i means that p is a base point having i − 1 infinitely-near base points. In
order to obtain the fiber of π corresponding to the curve C, we do the following for
each base point p of Λ:

• if mp > 0, we blow-up the point; otherwise we quit.
• we set p′ as the strict transform of p in the proper transform C ′ of C. the

value of mp′ is mp− 1. The curve C ′ is the strict transform of C together
with the exceptional curve E above p counted with multiplicity mC(p)−1.

• we re-label p′ as p and C ′ as C and start again the procedure.
The final shape of the fiber associated to the original curve C is determined by
applying this procedure to each base point of Λ. Thus, the fiber is given by the
strict transform of the original curve C plus all the (−2)-curves gained by the
procedures.

B.1.1. Example. In order to make the reader familiar with this technique
(that we use very often), we give an example of an I5 fiber induced by a member
in Λ split into three lines.

Suppose that the linear pencil Λ contains a member C, given by the product
of three non-concurrent lines, and only one of the three intersection points between
them is a base point a with ma = 3 and all the other base points p have mp = 1.
Since ma = 3, one of the lines composing C a belongs to is tangent at a to all the
smooth cubics in Λ. Let l be this line. The shape of this curve is given in Figure
B.1, by Bézout’s theorem (numbers correspond to multiplicities as base points).
We are going to first analyze the blow-up at the point a, in Figure B.2. After the
first blow-up, a′ will be the intersection point between (the image of) l and the
exceptional curve E1 above a (E1 is a (−1)-curve at this stage). The curve C ′ is
given by the strict transform of C plus the exceptional curve E1 above a, counted
with multiplicity 1.
After re-labeling and blowing-up the second time, a′ is a general point on the
exceptional curve E2 above a (E2 is a (−1)-curve); (the image of) the curve E1 is
now a (−2)-curve (denoted by E1, again); the curve C ′ is the strict transform of C
plus the exceptional curve E2 above a, counted with multiplicity 1.

Now, all (the images via the blow-ups of) the base points have multiplicity 1,
so their blow-up do not affect the shape of the fiber. The blow-up of each point
p among these points will just give a (−1)-curve intersecting (the strict transform
of) the component of the fiber p belonged to. The final configuration is given in
Figure B.3.
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3

1
1

l

1

1 1 1

Figure B.1. Position of the base points on the curve C.

E1
2

1
1

1

1 1 1

E2

E1

1

1
1

1

1 1 1

Figure B.2. Position of the base points on the blow-ups at the
point a.

E2

E1

Figure B.3. Position of the (−1)-curves over the base points on
the fiber.
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B.2. A Fiber with Five Components

In the following table we summarize the possible cubics in Λ that can be the
image of a fiber with 5 components; from section A, we know that such fiber can be
a fiber of type I5 or I∗0 . The table shows the whole procedure, so the actual cubics
in P2 are divided from the curves that are not cubics, in order to immediately see
the possible members in Λ.

I5 I∗0

2

A fiber of type I5. A fiber of type I∗0 .
↓ ↓

2
2 2

2

4 non concurrent lines; one
intersection point is double.

4 concurrent lines or a double line and
two non concurrent lines (the latter

after 2 contractions).
↓ ↓

3 2

2

3

1 1 1

2
2
2

3 non concurrent lines.
3 concurrent lines or a double line and

a single line.
↓ ↓

4 3

2

4

An irreducible conic and a non
tangent line.

An irreducible conic and a tangent
line.

↓ ↓

5 5

A node. A cusp.
Table B.1. Fibers with five components.
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B.3. A Fiber with Four Components

In the following table we summarize the possible cubics in Λ that can be the
image of a fiber with 4 components; from section A, we know that such fiber can
only be a fiber of type I4. The table shows the whole procedure, so the actual cubics
in P2 are divided from the curves that are not cubics, in order to immediately see
the possible members in Λ.

I4

A fiber of type I4.
↓

2

3 non concurrent lines.
↓

3 2

2
An irreducible conic and a non

tangent line.
↓

4

A node.
Table B.2. A fiber with four components.
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B.4. A Fiber with Three Components

In the following table we summarize the possible cubics in Λ that can be the
image of a fiber with 3 components; from section A, we know that such fiber can
be a fiber of type I3 or IV .

I3 IV

A fiber of type I3. A fiber of type IV .
↓ ↓

2 2

An irreducible conic and a non
tangent line.

An irreducible conic and a tangent
line.

↓ ↓

3 3

A node. A cusp.
Table B.3. Fibers with three components.
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B.5. A Fiber with Two Components

In the following table we summarize the possible cubics in Λ that can be the
image of a fiber with 2 components; from section A, we know that such fiber can
be a fiber of type I2 or III.

I2 III

A fiber of type I2. A fiber of type III.
↓ ↓

2 2

A node. A cusp.
Table B.4. Fibers with two components.

B.6. Reduction to Other Papers

In this section we give a brief description of how to reduce a proof of an equiv-
alence to another equivalence between pencils of higher rank.

We say that two pencils are equivalent if they are birational to each other.
In the papers dealing with higher rank rational elliptic surfaces, as well as in

this thesis, equivalences between pencils are proven using Cremona transformations.
The goal is to separate infinitely near base points of the pencil and/or to merge
distinct base points of the pencil. In both cases, we can reach the result changing
the choice of the (−1)-curves to contract on the induced rational elliptic surface.

If we want to separate one infinitely near base point from a base point p having
mp − 1 infinitely near base points, we contract all the exceptional curves above p
except one (there are mp exceptional curves; we contract mp−1 of them) and then
we contract the strict transforms of the lines pa, pb and ab, where a and b are two
other distinct base points having both no infinitely near base points. We do not
contract the (−1)-curves above a and b, neither the last exceptional curve above p.
Every exceptional curve above the other base points is contracted as before.

If in the original pencil there is a base point c different not lying in any line pa,
pb or ab that has mc − 1 infinitely near base points, there is a base point c′ having
mc − 1 infinitely near points also in the resulting pencil.

This procedure can be used in order to save some work: suppose that two linear
pencils of cubics Λa and Λb were proven to be equivalent. Suppose that a1, . . . , at
are the base points of Λa and b1, . . . , bt are the base points of Λb and that in the
proof of the equivalence between Λa and Λb the birational maps (described above)
involve just the choice of a1, . . . , ak and b1, . . . , bk (3 < k < t − 1). That proof
holds also for the equivalence of Λa′ and Λb′ having a1, . . . , ak, a

′
k+1, . . . , a

′
t and

b1, . . . , bk, b
′
k+1, . . . , b

′
t respectively as base points, with the only restrictions that

the points a′k+1, . . . , a
′
t have the same configuration of b′k+1, . . . , b

′
t.
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This fact allows us to use the proofs in [Sal09] and [Fus06] whenever the
conditions on the pencils are met. In the reductions we make, we often use the
equivalence between Λa and Λb where the birational maps involve only the points
a1, . . . , ak and b1, . . . , bk (k < 8) in order to prove that the pencils Λa′ and Λb′
are equivalent, where a′i = ai and b′i = bi for all i = 1, . . . , t and a′t = a′t+1 (and
b′t = b′t+a, consequently).





APPENDIX C

Pencils of Cubics from Reducible Generators

In this chapter we will prove that our constructions of linear pencils of cubics
with reducible generators actually produce smooth pencils of elliptic curves.
We need to prove that the pencils we construct have at least a smooth generator.
When we constructed rational elliptic surfaces with only one reducible fiber, we
built pencils with a smooth generator, so in these cases there is nothing to prove.
This is true also in the case of rational elliptic surfaces with two reducible fibers
with three components. The only cases left are the ones with two reducible fibers
with four and two components, the one with three reducible fibers and the cases
with four reducible fibers. In all the cases we will use the same procedure.

C.1. Technique

Let Λ be a linear pencil of cubics. Denote its base points by p0, . . . , p8. To show
that there exists a smooth cubic passing through the nine points pi’s, we will take
an elliptic curve (E,O) over eight of them (this is possible in all constructions) and
then, using the group structure of E, we prove that the ninth point is on E. This
shows that the nine points we had at the beginning determine a smooth pencil of
cubics.

First we should check that there exists an elliptic curve through eight points
among the base points of a linear pencil coming from the constructions we want to
deal with. This is always the case, since there are not more than three points on a
line and not more than six points on a conic; Bézout’s theorem grants the existence
of a pencil of smooth cubics through those eight points.

C.1.1. The Group Law. The group law of a plane elliptic curve (E,O) can
be explained geometrically. From now on we denote by q the third point of inter-
section between E and the tangent to E at O. Three collinear points a, b, c add up
to q.

In particular, for an elliptic curve in Weierstrass form, O is an inflection point
and we have that q = O: this leads to the usual group law (“three collinear points
add up to zero”).

The following Lemma describes the only further property of the group law that
we need for specialized configurations of base points.

Lemma C.1.2. Let (E,O) be a plane elliptic curve. Let q be the third point of
intersection between E and the tangent to E at O. Let Q be a conic.

Then, the six intersection points between E and Q add up to 2q.

Proof. We know that in the divisor group of an elliptic curve the sum of three
collinear points a, b, c is linearly equivalent to the sum of any three collinear points.
In particular (taking the tangent line at O) we have the following equality in the
Picard group:

a+ b+ c = 2 ·O + q = q.

Consider now the relations given by the hyperplane sections of degree 2; that is,
the relations between sums of divisors of intersection between the elliptic curve and
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conics. Let Q be any conic. Let p1, . . . , p6 be the intersection points between Q
and the elliptic curve. Consider now the conic given by twice the tangent line to
the elliptic curve at O. Using linear equivalence again, we obtain the result:

p1 + p2 + p3 + p4 + p5 + p6 = 2 · (2 ·O + q) = 2 · q.

�

C.1.3. Notation. In the next sections, we need to write some relations. We
will write them as equations (in the group determined by E) and sometimes we
will put an extra label after the equation, to explain from which membership it is
determined. For example, if l is a line,

a+ b+ c = q (l)

means that a, b, c are the three points of intersection between E and the line l; if
Q is a conic

a+ b+ c+ d+ e+ f = 2q (Q)

means that a, b, c, d, e, f are the six points of intersection between E and the conic
Q.

We will also add or subtract such equations; we will keep track of these opera-
tions on the labels: for example,

d+ e+ f = q (Q)− (l)

means that subtracting (l) to (Q) we get that the points d, e, f add up to q; this
also implies that they are collinear (the conic Q is reducible).

C.2. A Pencil with two Reducible Members

In this section we prove that the construction in subsection 2.4.1 leads to a
pencil containing a smooth cubic. We will use the same notation of that construc-
tion.

Suppose we fixed all the base points pi’s as described in subsection 2.4.1. We
want to show that all the cubics passing through eight pi’s pass also through the
ninth one.

Suppose that E is any smooth cubic passing through p0, . . . , p6 with tangent t
at p0. We want to show that E passes through p7. We denote by pn the point of
intersection between E and lc that is not p5 nor p6 and pl the point of intersection
between E and l that is not p2 nor p4. Restating our problem, we need to show
that pn = pl. We will use the following relations:

p0 + p1 + p2 = q (la),
p0 + p3 + p4 = q (lb),
p5 + p6 + pn = q (lc),

2p0 + p1 + p3 + p5 + p6 = 2q (Q),
p2 + p4 + pl = q (l).

Now, subtracting (Q) to (lc) and adding (la) and (lb) we get that

p2 + p4 + pn = q.

This implies that pn = pl and the proof is concluded.

C.3. A Pencil with three Reducible Members

In this section we prove that the construction in section 2.5 leads to a pencil
containing a smooth cubic. We will use the same notation of that construction.

Suppose we fixed all the base points pi’s as described in section 2.5. We want
to show that all the cubics passing through eight pi’s pass also through the ninth
one.
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Suppose that E is any smooth cubic passing through p1, . . . , p8. There exist
three points pn, pa, pb such that

n3 ∩ E = p2 + p3 + pn

la ∩ E = p7 + p8 + pa

lb ∩ E = p5 + p6 + pb.

We need to show that pn = pa = pb (= p0).
We will use the group law on E. Denote by q the third point of intersection between
E and the tangent to E at 0. Then, according to the notation explained in section
C.1.3, we can rewrite the above formulas as

p2 + p3 + pn = q (n3), p7 + p8 + pa = q (la), p5 + p6 + pb = q (lb)

and all the previous relations (points on lines and points on conics) as

p1 + p6 + p8 = q (n1), p1 + p2 + p3 + p4 + p5 + p6 = 2q (Qa),

p4 + p5 + p7 = q (n2), p1 + p2 + p3 + p4 + p7 + p8 = 2q (Qb).

Subtracting (lb) from (Qa), we get that

p1 + p2 + p3 + p4 − pb = q

and subtracting (la) from (Qb), we get that

p1 + p2 + p3 + p4 − pa = q.

Thus pa = pb. We still have to show that pn is the same point as pa and pb. This
can be proved combining some previous relations; we start from (n3) + (n1) + (n2):

pn + p2 + p3 + p1 + p6 + p8 + p4 + p5 + p7 = 3q

and subtract (Qa)
pn + p7 + p8 = q.

This implies pn = pa, subtracting (la). We have shown that pn, pa and pb are
actually the same point, so they coincide with p0. This shows that the cubic E
passes through the ninth base point of Λ and the proof is concluded.

C.4. A Pencil with four Reducible Members: the non-Torsion Case

In this section we prove that the construction in subsection 2.6.1 leads to a
pencil containing a smooth cubic. We will use the same notation of that construc-
tion.

Suppose we fixed the base points p0, . . . , p8. We want to show that any cubic
passing through eight of them passes through the ninth one. Let E be a smooth
cubic passing through p0, . . . , p7. There exist four points xa, . . . , xd such that (ac-
cording to the notation explained in section C.1.3):

p0 + p7 + xa = q (la),

p1 + p2 + p3 + p4 + p7 + xb = 2q (Qb),

p1 + p2 + p5 + p6 + p7 + xc = 2q (Qc),

p3 + p4 + p5 + p6 + p7 + xd = 2q (Qd).

Moreover:

p0 + p1 + p2 = q (ld),

p0 + p3 + p4 = q (lc),

p0 + p5 + p6 = q (lb),

p1 + p2 + p3 + p4 + p5 + p6 = 2q (Qa).
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Adding (la), (lb) and (lc) and subtracting (Qa), we get that 3p0 = q. Plugging this
information in (Qb), (Qc) and (Qd) we get that xa = · · · = xd. This concludes the
proof.

C.5. A Pencil with four Reducible Members: the Torsion Case

In this section we prove that the construction in section 2.7.1 leads to a pencil
containing a smooth cubic. We will use the same notation of that construction.

Suppose we fixed all the base points pi’s as described in sections 2.7.1 and 2.7.
We want to show that all the cubics passing through eight pi’s pass also through
the ninth one.

Suppose that E is any smooth cubic passing through p1, . . . , p8. There exist
four points xa, xb, xc and xd such that (according to the notation explained in
section C.1.3):

xa + p1 + p2 + p5 + p6 + p8 = 2q (Qa),

xb + p1 + p2 + p4 + p6 + p7 = 2q (Qb),

xc + p1 + p2 + p3 + p4 + p8 = 2q (Qc),

xd + p1 + p2 + p3 + p5 + p7 = 2q (Qd).

Moreover, the lines la, . . . , ld give the following relations

p3 + p4 + p7 = q (la),

p3 + p5 + p8 = q (lb),

p5 + p6 + p7 = q (lc),

p4 + p6 + p8 = q (ld).

Now, we can gather all the information we have and conclude. First we will show
that xb = xa: we start by subtracting (la) from (Qb). This gives the following:

xb + p1 + p2 + p6 − p3 = q.

We can now add (lb) and obtain

xb + p1 + p2 + p5 + p6 + p8 = 2q,

which implies xa = xb, after subtracting (Qa). In a similar way we can conclude
that xa = xc (computing (Qc) − (la) + (lc) − (Qa)), and xa = xd (computing
(Qd)− (la) + (ld)− (Qa)). Hence xa = xb = xc = xd and concludes the proof.

C.5.1. Torsion. This the best place to prove that the construction made in
section 2.7.1 actually leads to a rational elliptic surface with torsion. We will use
the notation introduced in subsection C.1.3. We will show that for every elliptic
curve (E,O) passing through p0, . . . , p8 there exists an explicit point p 6= O such
that 2 · p = O.

It is enough to use the relations and the fact that p0 = xa = xb = xc = xd,
exhibited previously in this section. We first take (Qb), subtract (ld) and (lc) and
get

O = p0 + p1 + p2 + p4 + p6 + p7 − (p4 + p6 + p8)− (p5 + p6 + p7)
= p0 + p1 + p2 − p5 − p6 − p8.

Adding (Qa) we get
2 · (p0 + p1 + p2) = 2q;

This is equivalent to
2 · (p0 + p1 + p2 − q) = O,

so the point p = p0 + p1 + p2 − q is a 2-torsion point for every (E,O) in the pencil
determined by p0, . . . , p8.
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We still have to show that p is not O itself. Since p0, p1 and p2 are not collinear,
we have that p0 + p1 + p2 6= q. This implies that p 6= O.

Similarly, one can prove that 2·(p3−p6) = O, 2·(p4−p5) = O and 2·(p7−p8) =
O.
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Four Reducible Fibers: the Torsion Case

D.1. Concurrency

From the construction of a rational elliptic surface with four reducible fibers,
given by four reducible members in a linear pencil of cubics, it remains to prove
that lc ∩ β = α∩ β and ld ∩ β = δ ∩ β. We will prove it now, using some properties
of the projective plane. We use the same notation used in that construction.

Up to projectivities, we can always choose

p1 = (0, 1, 0), p2 = (0, 0, 1), c = (1, 0, 0).

Then, the points a and b are of the following forms:

a = (1, ax, ay), b = (1, bx, by).

We can exclude that a and b have zero as the first coordinate, since they are general
points on the plane (so not collinear to p1 and p2). In this setting, the lines α, β, δ
are given by Plücker equations:

α = (−aybx, ay,−ax + bx), β = (axby,−by,−ax), δ = (aybx,−ay + by,−bx).

These allow us to compute the points α ∩ β and β ∩ δ:

α ∩ β = (−axay − axby + bxby,−axaybx − a2
xby + axbxby,−axayby + aybxby),

β ∩ δ = (−axay + axby + bxby,−axaybx + axbxby,−axayby + aybxby + axb
2
y).

Now, we can deduce the equations for p0 ∪ p1 and p0 ∪ p2:

p0 ∪ p1 = (−axayby + aybxby + axb
2
y, 0, axay − axby − bxby),

p0 ∪ p2 = (axaybx + a2
xby − axbxby,−axay − axby + bxby, 0).

Intersecting p0 ∪ p1 with α and p0 ∪ p2 with δ, we get two points that allow us to
construct la and lb, given by:

la = (axa3
ybx + a2

xa
2
yby − 4axa2

ybxby + a2
yb

2
xby − a2

xayb
2
y + 2axaybxb2y,

− axa3
y + 2axa2

yby − axayb2y,−a2
xayby + 2axaybxby − ayb2xby + a2

xb
2
y − axbxb2y),

lb = (−axa2
yb

2
x − 2a2

xaybxby + 4axayb2xby − ayb3xby + a2
xbxb

2
y − axb2xb2y,

axa
2
ybx + a2

xayby − 2axaybxby − a2
xb

2
y + axbxb

2
y, a

2
xbxby − 2axb2xby + b3xby).

Now we can compute the lines lc and ld:

lc = (−axa3
yb

2
x − 2a2

xa
2
ybxby + 4axa2

yb
2
xby − a2

yb
3
xby + a2

xaybxb
2
y − axayb2xb2y,

axa
3
ybx + a2

xa
2
yby − 2axa2

ybxby − a2
xayb

2
y + axaybxb

2
y,

− a3
xayby + 4a2

xaybxby − 4axayb2xby + ayb
3
xby + a3

xb
2
y − 2a2

xbxb
2
y + axb

2
xb

2
y),

ld = (−axa3
yb

2
x − a2

xa
2
ybxby + 4axa2

yb
2
xby − a2

yb
3
xby + a2

xaybxb
2
y − 2axayb2xb

2
y,

axa
3
ybx + a2

xa
2
yby − 4axa2

ybxby − 2a2
xayb

2
y + 4axaybxb2y + a2

xb
3
y − axbxb3y,

a2
xaybxby − 2axayb2xby + ayb

3
xby − a2

xbxb
2
y + axb

2
xb

2
y).
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Now we can check if lc ∩ β = α ∩ β and ld ∩ β = δ ∩ β: this is true, since

lc ∩ β = (−axay − axby + bxby,−axaybx − a2
xby + axbxby,−axayby + aybxby),

ld ∩ β = (−axay + axby + bxby,−axaybx + axbxby,−axayby + aybxby + axb
2
y).

This concludes the proof.

D.2. Members

In this section we will show that the construction in subsection 2.7.1 leads to
a linear pencil of cubics with four reducible members, all given by a line and an
irreducible conic.

We will use Pascal’s Theorem several times: consider p0, p1, p2 and the three
intersection points given by 3 of the four green lines. Those six points determine an
hexagon (meaning a 6-tuple of points); from the configuration of the base points,
the opposite sides of this hexagon meet at three points on one of the blue lines; this
implies that the hexagon is inscribed into a conic. In the following drawings we
underline each hexagon in red and label its points in order, so that the intersection
points between opposite sides are given by

(n ∪ n+ 1) ∩ (n+ 3 ∪ n+ 4), all modulo 6.

The first hexagon is given by (p2, p0, p1, p5, p6, p8) and the opposite sides meet
at β ∩ lc, β ∩ ld and (p1 ∪ c) ∩ (p2 ∪ a). These three points are collinear, since they
belong to β.

1
2

3 4
5

6

Figure D.1. A reducible member.

We will denote by Qa the conic passing through p0, p1, p2, p5, p6, p8.
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The second hexagon is given by (p2, p0, p1, p7, p6, p4) and the opposite sides
meet at β ∩ lc, β ∩ ld and (p2 ∪ c)∩ (p1 ∪ b). These three points are collinear, since
they belong to β.

1
2

3
4

5
6

Figure D.2. A reducible member.

We will denote by Qb the conic passing through p0, p1, p2, p4, p6, p7.
The third hexagon is given by (p2, p0, p1, p3, p8, p4) and the opposite sides meet

at δ ∩ lb, δ ∩ ld and (p1 ∪ a) ∩ (p2 ∪ c). These three points are collinear, since they
belong to δ.

1
2

3
4

5

6

Figure D.3. A reducible member.

We will denote by Qc the conic passing through p0, p1, p2, p3, p4, p8.



60 D. FOUR REDUCIBLE FIBERS: THE TORSION CASE

The fourth hexagon is given by (p2, p0, p1, p5, p3, p7) and the opposite sides meet
at α ∩ lc, α ∩ la and (p1 ∪ c) ∩ (p2 ∪ b). These three points are collinear, since they
belong to α.

1
2

3 4
5

6

Figure D.4. A reducible member.

We will denote by Qd the conic passing through p0, p1, p2, p3, p5, p7.
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