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The Problem

Scenario

P holds x , y , z (in a finite field K ) s.t. z = xy

V holds hom. commitments com(x), com(y), com(z), of size κ

V wants to be sure z = xy

P does not want to reveal x , y , z

Commitments

Homomorphic: com(a) · com(b) = com(a + b)
Shorthand: com(·) = [·]
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The Problem

Motivation

Zero Knowledge proofs for satisfiability of Boolean circuits

MPC based on additive secret sharing [BDOZ11, DPSZ12]

Anonymous credentials, group signatures, . . .

Previous and Related Work (Apologies if I forgot any of your papers)

1991 Beaver [Bea91]
1997 Fujisaki, Okamoto [FO97]
1999 Cramer et al., [CDD+99]
2002 Damg̊ard, Fujisaki [DF02]
2009 Cramer, Damg̊ard [CD09]
2012 Ben-Sasson et al. [BSFO12]
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A Well-Known Solution [Bea91]

Protocol

P samples uniform a, b ← K

P computes c = ab, and sends [a], [b], [c] to V

V sends a uniform e ← K

P opens [ex − a], [y − b], define ε := ex − a, δ := y − b

P opens [ez − c − εb − δa− εδ]

V checks that P opened to 0

Properties

Correctness: P honest =⇒ ez − c − εb − δa− εδ = 0
Soundness: P dishonest =⇒ Cheat with prob 1/|K | (guess e)
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Room for Improvement

What if |K | small (e.g. K = F2)?

Constant soundness error probability =⇒ Bad!

Repeating l times =⇒ soundness error 2−l

Communication? O(κ · l)

Basic Field Case

Soundness Error Amortized comm. complexity
Previous solutions: 2−l O(l · κ)

Our work: 2−l O(κ)
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Our Solution

Ingredients

Homomorphic commitments (size = κ)
(for this part:
statistically binding, computationally hiding commitment schemes)

Linear (multi)secret sharing schemes with R-product reconstruction
(share s, share s ′,
reconstruct s · s ′ as linear combo of shares of R players)

commitments: not to reveal x , y , z
homomorphic: to compute sums on committed values!

multi-secret: to use amortization techniques! [CD09].

Amortization: more instances to prove ⇒ better comm. complexity!
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Digression on LSSS (multi-secret variant of Shamir)

How to Share?

Secret: x := (x1, . . . , xl).
Polynomial: fx ← K [X ], with deg(fx) = t + l

fx(−i) = xi for i = 1, . . . , l
Shares: fx(1), . . . , fx(n)

xl xl−1 x1
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Polynomial: fx ← K [X ], with deg(fx) = t + l
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xl xl−1 x1
fx(1)

fx(2)

fx(3)

fx(n)
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Digression on LSSS

Product Reconstruction? (Yes, if n > 2(t + l))

Share x, y

Local products fx(i) · fy (i) for > 2(t + l) i ’s

Reconstruct fx · fy
Evaluate (fx · fy )(−i) for i = 1, . . . , l

Cramer, Damg̊ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 10 / 22



Digression on LSSS

Product Reconstruction? (Yes, if n > 2(t + l))

Share x, y

Local products fx(i) · fy (i) for > 2(t + l) i ’s

Reconstruct fx · fy
Evaluate (fx · fy )(−i) for i = 1, . . . , l

Cramer, Damg̊ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 11 / 22



Digression on LSSS

Product Reconstruction? (Yes, if n > 2(t + l))

Share x, y

Local products fx(i) · fy (i) for > 2(t + l) i ’s

Reconstruct fx · fy
Evaluate (fx · fy )(−i) for i = 1, . . . , l

Cramer, Damg̊ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 12 / 22



Digression on LSSS

Product Reconstruction? (Yes, if n > 2(t + l))

Share x, y

Local products fx(i) · fy (i) for > 2(t + l) i ’s

Reconstruct fx · fy
Evaluate (fx · fy )(−i) for i = 1, . . . , l

Cramer, Damg̊ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 13 / 22



Digression on LSSS

Product Reconstruction? (Yes, if n > 2(t + l))

Share x, y

Local products fx(i) · fy (i) for > 2(t + l) i ’s

Reconstruct fx · fy
Evaluate (fx · fy )(−i) for i = 1, . . . , l

zl zl−1
z1
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Notice:

Fact #1

V holds t evals fx(j) and fy (j)
=⇒ no info on fy (−i), fy (−i), (fx · fy )(−i) revealed to V .

Fact #2

f 6= g ∈ K [X ],
deg(f ) = 2(t + l) = deg(g)
=⇒ f and g agree on at most 2(t + l) points.
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Back to the Original Problem. What if . . . ?

Toy Protocol – Basic Field Scenario

P samples fx , fy ← K [X ], with
deg(fx) = t + l = deg(fy ), fx(−i) = xi , fy (−i) = yi

P computes fz = fx · fy
P commits [fx ], [fy ], [fz ]

V chooses t indices O ⊂ {1, . . . , n}
P opens [fx ](j), [fy ](j), [fz ](j) for j ∈ O

V accepts iff fx(j) · fy (j) = fz(j)

Private xi , yi , zi
Fact #1 ⇒ no info revealed on secrets!

Soundness Error

Fact #2 & Choice of O ⇒ soundness error ≤
(

2(t+l)
n

)t
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V accepts iff fx(j) · fy (j) = fz(j)

Private xi , yi , zi
Fact #1 ⇒ no info revealed on secrets!

Soundness Error

Fact #2 & Choice of O ⇒ s.e. ≤
(

2(t+l)
n

)t
= 2−l , if t, l = Θ(n)
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The General Result

Shamir: n < |K | =⇒ general LSSS?

Basic Field Case

Using a linear (multi)secret sharing scheme over K with

K a finite field

d players

t privacy

l secrets

R product reconstruction

A zero-knowledge protocol for the language{
(com(xi ), com(yi ), com(zi ))li=1 | xi , yi , zi ∈ K ; xi · yi = zi

}
,

with soundness error
(
R−1
d

)t
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Parameters

Choice of parameters to get negligible soundness error:

Basic Field Case

Using a linear (multi)secret sharing scheme over K with

K a finite field

d players d = Θ(l)

t privacy t = Θ(l)

l secrets

R product reconstruction R = Θ(l)

A zero-knowledge protocol for the language{
(com(xi ), com(yi ), com(zi ))li=1 | xi , yi , zi ∈ K ; xi · yi = zi

}
,

with soundness error
(
R−1
d

)t
= 2−l . Amo.Comm.: O(κ)
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Comparisons & Extensions

Basic Field Case

Soundness Error Amortized comm. complexity
Our work: 2−l O(κ)

Previous solutions: 2−l O(l · κ)

Let’s play!
What if values were integers (rather than in a finite field)?
We have a solution!

k-bit Integers Case

Security Notion
Our work: Factoring

Previous solutions: Strong-RSA
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Comparisons & Extensions - General Field Case

Basic field case: x · y = z .
General field case: D(x1, . . . , xv ) = z .

Extension of protocol: to prove any algebraic rel. on committed values.
Formally, a zero knowledge protocol for the language{

(com(x1,i ), . . . , com(xv ,i ), com(zi ))li=1 |

x1,i , . . . , xv ,i , zi ∈ K ;D(x1,i , . . . , xv ,i ) = zi

}
,

where D is an algebraic circuit.
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Final Slide

Q: Standard commitments: cheating?

A: We also consider commitments of the following form

[v ] :

{
P : v , mv = a · v + bv
V : a, bv

given by some setup,
e.g. the preprocessing phase of [BDOZ11], or [DPSZ12].

Such commitments:

Homomorphic (that is all we need!)

Information theoretically secure

NEW! Can be used over the integers!

Thanks! — Merci!
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