
Verification of an Off-Line Checker for Priority Queues

Hans de Nivelle, Ruzica Piskac
Max Planck Institut für Informatik

Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany

{nivelle, rpiskac}@mpi-inf.mpg.de

Abstract

We formally verify the result checker for priority queues
that is implemented in LEDA. We have developed a method,
based on the notion of implementation, which links abstract
specifications to concrete implementations. The method al-
lows non-determinism in the abstract specifications that the
concrete implementations have to fill in. We have formally
verified that, if the checker has not reported an error up to
a certain moment, then the structure it checks has behaved
like a priority queue up to that moment. For the verification,
we have used the first-order theorem prover Saturate.

1. Introduction

Everyone who has ever programmed knows that reliable
software is hard to obtain. One of the approaches for obtain-
ing reliability is formal verification. Verifying a program
means giving the formal mathematical proof of its correct-
ness. Verification is theoretically the best approach, because
it guarantees that the program will behave correctly on ev-
ery given input. However, in practice, verification is dif-
ficult. Verifying a program is much harder than writing a
program, and it requires highly specialized skills. Small
changes in the program may require a completely new cor-
rectness proof.

Another approach is program result checking, which was
proposed by Blum [3]. Given some problem f , let P be a
program that computes a solution for f . Let x and y rep-
resent the input and the output of P , respectively. Then a
program result checker for program P is a new program C
which can decide whether y = f(x).

The result checker is run after the original program. The
checker confirms correctness of the program’s output or re-
ports an error. It does not verify whether the program is cor-
rect, it only verifies that the output was correct on a given
input.

Often it is easier to check whether y = f(x) than to
calculate y from x. For example, it is usually easier to check
that x is a root of an equation f(x) = 0, than to calculate x
from the equation.

In order to make checking easier, one may require that
the program should not return only the output y, but also
a correctness proof (so-called witness). The main require-
ment of the introduced witness w is that it should make it
easy to check whether y = f(x). ”Easy” means that the
resource requirements of checking should be lower than the
requirements of the program itself. ”Easy” also means that
the checker should be simple enough so that its correctness
is obvious or that it can be formally verified with present
technology. Moreover, if y �= f(x) then there should ex-
ist no witness w such that the triple (x, y, w) would pass
checking.

The checking of data structures can be seen as a gen-
eralized form of program checking. The user of a data
structure calls functions which update the data structure and
functions that return values depending on the state of the
data structure. Result checking has to done by doing result
checking on the functions that return some output, relative
to the updates of the data structure that have taken place
before.

However, contrary to the input to an algorithm, the se-
quence of updates to a data structure is not bounded in size.
Therefore, the inputs to the functions that check the results
of the data structure are also not bounded. If one wants to
use a witness, then for program correctness checking, the
witness has to be another data structure S′ that is updated in
parallel with the updates on the original data structure S. It
should be constructed in such a way that it is easy to check
whether the values returned by functions of S are correct,
using S′.

Checking data structures is distinctive from checking
programs because a wrong output of a data structure does
not necessarily have to be detected immediately. It is also
acceptable to detect it at a later moment after some more
commands have been executed. Depending on the moment

at which errors are detected, one can distinguish two types
of checkers: on-line and off-line checkers. A checker is
called on-line when an incorrect value is detected at the mo-
ment when it is returned. A checker is called off-line, when
an incorrect value will be detected eventually, but possibly
at a later moment.

Often, off-line checkers are more time-efficient than on-
line checkers. An example of this is the off-line checker for
priority queues that we will define in Section 2.

In this paper we will formally verify the correctness of
an off-line result checker for priority queues that is imple-
mented in LEDA. Although ideally the checker should be so
simple that its correctness is obvious, the checker in LEDA
is quite sophisticated, and it might be useful to verify its
correctness. In [6], the authors write that ’formal verifica-
tion of simple checkers might be a realistic goal in the near
future’.

In Section 2, we briefly introduce LEDA, and explain the
intuition behind the priority queue checker. In Section 3,
we introduce a mathematical model that formally expresses
when an implementation implements a certain specification.
After that, we extend the notion, so that it can express when
a given implementation conditionally implements a given
specification. Using this notion, we can state that a datas-
tructure conditionally implements a priority queue on the
condition that it is run in combination with the checker, and
that the checker accepts its outputs. In Section 4, we give a
formal proof of this statement.

2. An Off-line Priority Queue Checker

LEDA [8] is a C++class library for efficient data types
and algorithms. The priority queue checker implemented in
LEDA [6] uses the encapsulation model for checking data
structures. Sometimes in the literature this model is also
called ”the client-checker-server model” [1, 6]. In such a
model, the priority queue checker is a program layer that
acts as a connection between the user and the priority queue.
The checker monitors the behaviour of the priority queue
and if there was no error, it stays silent. In case of an error,
the checker reports the error to the user. This means that on
the user level, if the priority queue operates correctly, there
is no difference between checked and unchecked priority
queues. Since the checker implemented in LEDA is not an
on-line checker, but an off-line one, a potential error will
not be reported immediately but eventually.

The key idea of the checker is the fact that whenever
we retrieve the minimal element all the remaining elements
in the priority queue must have priority at least as large as
the reported minimum, when the implementation is correct.
Therefore, to each element of the priority queue we can as-
sign a lower bound, which has to be smaller than the ele-
ment itself, if the implementation is not faulty. The lower

bound of the element changes through the time of the pro-
gram execution.

Definition 1. A lower bound of an element at time t is a
maximal priority reported by all del min and find min
operations performed between the moment when the ele-
ment was inserted into the priority queue and the time t.

Initially, when the element is inserted into the priority
queue, its lower bound is set to ⊥. Whenever the user ex-
ecutes the del min or find min command, the checker
updates the existing lower bounds by increasing all lower
bounds which were smaller than the reported minimal to
the value of the reported minimum. Therefore, during the
time of program execution, the lower bound of the element
can only become greater.

The error detection is such that every time some element
of the priority queue is accessed, the checker compares the
element to its lower bound. If the element is greater or equal
to its lower bound, no error is reported and the checker re-
mains silent. But, if the element is strictly smaller than its
lower bound, this indicates that an error occurred during the
code execution and the checker alarms the user.

The resulting checker is an off-line checker: An error
is reported not immediately when a non-minimal element
is returned, but later when a smaller element is found. It
was shown in [6], that there exists no on-line checker whose
running time is less than the running time of the priority
queue itself.

In the following section, we develop an abstract model
for the priority queue and its checkers. We introduce a gen-
eral condition when a concrete program implements an ab-
stract data structure. Using this condition, we show that if
the checked priority queue fails to implement the abstract
queue, then an error will be eventually reported. With the
exception of the generation of induction hypotheses, the
proof has been formally verified using the Saturate system
[2, 11]. Saturate is a first order theorem prover based on
saturation and redundancy. The theoretical basis of Saturate
includes the superposition calculus and the chaining calcu-
lus. Its main focus is on the efficient treatment of transitive
relations by term rewrite techniques and on the restriction
of the search space by applying sophisticated techniques for
detecting redundancy of clauses.

3. A Mathematical Model for Priority Queue
Checkers

In this section, we give a mathematical model for priority
queues, lower bound systems, and priority queue checkers.
The specification technique is very general, and it can be
applied to other abstract data types as well. Its distinguish-
ing feature is that it handles non-determinism in a func-
tional context. Most existing methods for handling speci-

fication of non-determinism use transition relations [5, 9],
because non-determinism is more naturally handled by re-
lations than by functions. However, we preferred to stay as
much as possible within the functional framework, because
it allows to use the rewriting paradigm, and to have exe-
cutable specifications as much as possible. Our method is
closely related to the notion of strong simulation in [4]. The
main difference is that our method allows non-determinism
in the specification and partial operations.

We assume that an object of a data type has to be intro-
duced through a constructor, and that during its existence,
it can be modified only by its methods. As a consequence,
a data type can be considered as an inductively defined set.
For example, a priority queue is defined by a constructor
that constructs an empty priority queue, and its methods that
insert new elements, delete elements, or find the minimal
element. Contrary to fundamental inductive sets in mathe-
matics, data types are usually not freely generated. A set
is freely generated if every element can be obtained in only
one way through its constructors. Examples of freely gener-
ated inductive sets are the natural numbers or lists. It is not
possible to construct the same list in two different ways us-
ing nil and cons. On the other hand, if we insert an element
in a priority queue, and then remove the element again, one
obtains the same priority queue back. (At least in the math-
ematical model, this needs not hold in the implementation)
Depending on the data type, it can be the case that the data
type is freely generated by a subset of its functions, but this
need not always be the case.

First we give an informal definition of priority queues.
After that we introduce some notation, with which we can
introduce our implementation model and formal specifica-
tions of priority queues and priority queue checkers.

A priority queue assumes a quasio-ordered set:

Definition 2. An QOSB (Quasi Ordered Set with Bottom
Element) is a triple (P,≤,⊥), satisfying the following con-
ditions:

• ⊥ ∈ P.

• For all p ∈ P, ⊥ ≤ p.

• Relation ≤ is transitive on P : For all p1, p2, p3 ∈ P,
if p1 ≤ p2 and p2 ≤ p3, then also p1 ≤ p3.

• Relation ≤ is total on P : For each pair p1, p2 ∈ P,
either p1 ≤ p2 or p2 ≤ p1.

• The relation ≤ is reflexive on P : For each p ∈ P, we
have p ≤ p.

We define the relation < from p1 < p2 iff p1 ≤ p2 and
p2 �≤ p1. We define p1 ≡ p2 iff p1 ≤ p2 and p2 ≤ p1.

The bottom element is not used by the priority queue,
but it is needed for the system of lower bounds. Assum-
ing a bottom element causes no loss of generality, since one
can always extend a data type by a new element, and make
this element minimal. We do not require that bottom el-
ements are unique. The difference between a quasi-order
and a usual order is that for usual orders ≡ has to be the
same relation as = .

Definition 3. Let P be an QOSB. A priority queue over P
is a container that is characterized by the following opera-
tions:

• createPQ creates the empty priority queue.

• insert(p) inserts the element p into the queue.

• contains(p) returns true if the priority queue contains
p.

• empty() returns true if the priority queue is empty.

• find min() returns a minimal element, if the queue is
not empty.

• remove(p) removes p from the priority queue, if p is
contained in the queue.

• remove min() finds and removes a minimal element, if
the queue is not empty.

Our definition of priority queue follows [10] in the fact
that it requires only a single ordered set. An alternative
would be to define the priority queue over a quasi-ordered
set I and a data type D. The first type would be used for
finding minimal elements, and the second type would be
used for storing additional data in the priority queue. This
approach was taken in LEDA, see [8, 14]. The priority
queue using two types is not more general, because it can
be simulated by the priority queue with single type, if one
replaces the ordered set P by I×D, and extends≤ to I×D
as follows: (i1, d1) ≤ (i2, d2) iff i1 ≤ i2.

Before we can give a formal specification of priority
queues, we introduce some additional notation. In ob-
ject oriented languages, it is standard to use the notation
T p.method() for declaring a method of data type P which
returns a value of type T. Typically, method() does two
things at the same time: it returns an object of type T and it
can also modify p in the process. Therefore, method() de-
fines two functions at the same time. The first function re-
turns an object of type T, and the second function returns an
object of type P. We will keep the notation p.method() for
the first function, and introduce the notation p/method()
for the second function. We assume that / is left associative,
so that one can write p/method1()/method2()/method3()
instead of ((p/method1())/method2())/method3(). Dif-
ferent from the C++-notation, we will use the notation

createP for constructors, in which P is the type being con-
structed. In case there is no confusion about the type, we
will mostly omit the P.

When axiomatizing abstract data types, we will distinguish
between abstract specification of the data type and con-
crete implementations. The concrete implementations will
be connected to the specifications by implementation func-
tions. This method is general enough to prove the correct-
ness of the standard implementation of priority queues, but
also to show that a checked priority queue which does not
report any errors, in fact is a priority queue. The distinc-
tion between abstract and concrete implementation is nec-
essary because the same abstract object may have differ-
ent concrete representations. Although different concrete
representations at first cannot be distinguished by the ab-
stract representation, they may diverge when methods are
applied on them. As a consequence, we have to model a
certain amount of non-determinism in the abstract specifi-
cation that has to be filled in by the implementations. As
an example, consider the heap implementation of priority
queue. We want to assume in the abstract specification that
two priority queues are identical if they contain the same
set of elements. Two identical priority queues may be rep-
resented by different heaps, which can have different (but
equivalent) elements on top. If one calls find min, the two
heaps will return different minimal elements. One could
change the specification s.t. find min is totally specified,
but in our view, non-determinism on the abstract level is
an essential feature of object-oriented specification. Any
attempt to force the specification of the priority queue to
choose between equivalent, but distinct objects, would be
artificial.

In our implementation model, we will model non-
determinism in the specification by allowing the methods
in the specification to have more arguments than the cor-
responding methods in the implementation. For priority
queues, find min in the specification will have signature
find minp, where p is an additional element that specifies
which minimal element will be returned. find minp will
have the precondition that p is in the priority queue, and
minimal. An implementation of priority queues will have
to provide a function find min that behaves like find minp

for some p satisfying the precondition.
Figure 1 gives an axiomatization for priority queues. We

omitted the identities for methods that obviously do not
modify the priority queue. For example, we did not state
pq/empty = pq.

Some methods have preconditions. For example,
remove(p) has precondition that p occurs in the queue. The
preconditions should not be confused with case distinctions,
which are marked by ’if’. In axioms and verification con-
ditions we will usually not mention preconditions, but they
have to be verified as well. Whenever one speaks about

a method application pq.f(p), one has to verify its pre-
condition Π(pq, p). For a method f, the functions pq.f(p)
and pq/f(p) always have the same precondition. We will
mention the precondition only once in specifications. It is
allowed to use other methods in preconditions, but these
methods then should not have preconditions by themselves.

Figure 1. Axioms for priority queues

Method contains(p) has no preconditions.
create.contains(p) = false,
pq/insert(p1).contains(p1) = true,
pq/insert(p1).contains(p2) = pq.contains(p2) if p1 �= p2,

Method empty has no preconditions.
create.empty = true,
pq/insert(p).empty = false,

Method remove(p) has precondition contains(p).
pq/insert(p)/remove(p) = pq,
pq/insert(p1)/remove(p2) = pq/remove(p2)/insert(p1)

if p1 �= p2,

Methods find minp and remove minp have precondition
contains(p) = true and ∀p′ pq.contains(p′) → p ≤ p′.

pq.find minp = p,
pq.remove minp = p,
pq/remove minp = pq/remove(p)

Extensionality:
pq/insert(p1)/insert(p2) = pq/insert(p2)/insert(p1).

The following example from standard mathematics
where the integers are implemented by pairs of natural num-
bers, illustrates the use of embedding functions.

Example 4. It is possible to introduce the integers Z from
the natural numbers N, by representing them as pairs
(n1, n2), with n1, n2 ∈ N, see [7]. The embedding from
N to Z would be defined by I(n1, n2) = n1 − n2. One can
define + and − on Z from (n1, n2) + (m1, m2) = (n1 +
m1, n2+m2), (n1, n2)−(m1, m2) = (n1+m2, n2+m1).

In order to show that this embedding is correct, one
would have to show that, for z1, z2 ∈ Z, I(z1 + z2) =
I(z1) + I(z2), and I(z1 − z2) = I(z1) − I(z2).

We will give a general definition of when a concrete type
P implements an abstract type P# with implementation
function I. The definition follows Example 4. Assuming
that p.f(y) and y are not of type P, one needs to prove that
for every p ∈ P,

I(p).f(y) = p.f(y) and I(p)/f(y) = I(p/f(y)).

We use implicit overloading of methods. Mathematically
seen, the f in p.f(y) and I(p).f(y) are different functions,
but we reuse the f for both of them, in order to avoid intro-
ducing too many names.

If a parameter is of type P, then it has to be replaced by
a parameter of type P#, and the conditions become

I(p).f(I(y)) = p.f(y) and I(p)/f(I(y)) = I(p/f(y)).

As for non-determinism, consider the case where the ab-
stract type P# has a non-deterministic method fx(y) with
implicit parameter x. Assume that y is not of type P#. The
implementation P has to provide a method f(y), which for
each input y finds an x, and behaves like fx(y). The condi-
tions become

∃x:X I(p).fx(y) = p.f(y) and

∃x:X I(p)/fx(y) = I(p/f(y)).

We have assumed that x has type X, which is distinct from
P# and y has type Y which is also distinct from P#.

We are now ready for the general definition. It covers the
cases we discussed above, and it allows partial methods.

Definition 5. Let P# be some abstract data type. Let f
be a method of P#. We will use subscript notation for the
implicit parameters of f. We assume that the implicit pa-
rameters are not of type P#. Furthermore, we assume that
among the non-implicit parameters, the parameters of type
P# precede the parameters of other types. Hence we can
write fz(x; y) for an occurrence of f. We assume that the x
have type P#, and that the y have types Y , with each type
in Y distinct from P#. Similarly, we assume that the z have
types Z, with each type in Z distinct from P#.
Then a concrete type P implements an abstract type P#

with implementation function I:P → P# if

• for every method fz(x; y) of P# with parameters of
types Z; P#; Y and with precondition Π#(p, x, y, z) :

• there exists a method f(x; y) of P with parame-
ters of type P ; Y , and precondition Π(p, x, y) =
∃z:Z Π#(I(p), I(x), y, z),

such that the following equations hold:

∀p:P ∀x:P ∀y:Y Π(p, x, y) →
∃z:Z Π#(I(p), x, I(y), z) ∧ (1)

I(p).fz(I(x), y) = p.f(x, y).

∀p:P ∀x:P ∀y:Y Π(p, x, y) →
∃z:Z Π#(I(p), x, I(y), z) ∧ (2)

I(p)/fz(I(x), y) = I(p/f(x, y)).

I(createP) = createP# . (3)

Definition 5 can generalized in many ways: for example,
we have assumed that only one type P# is implemented
by another type P. In practice, one often has a family of
abstract types that need to be simultaneously implemented
by concrete types. As an example of this situation, consider
a container and its iterator type.

In addition, one may have a situation where the types in
y:Y depend on P#, without being equal to P#. In that case,
this type has to be interpreted accordingly. As an example
consider the case where one of the methods of P# has a list
of P#’s among its arguments.

Another possible generalization is a situation where the
constructor has parameters, some of which possibly im-
plicit.

In practice, Equations 1 - 3 need to hold only for public
methods.

The standard implementation of priority queues is based
on partially sorted array’s called heaps. A heap over P is a
an array h satisfying the following two conditions:

∀i, j < h.size (j = 2i + 1) → h[i] ≤ h[j], and

∀i, j < h.size (j = 2i + 2) → h[i] ≤ h[j].

find min can be implemented by returning h[0] if h.size >
0. It can be shown that after an insertion or deletion, the
heap property can be restored in time O(log(a.size)).

Let H be the type of heaps over P. An interpretation
from H into PQ# can be obtained by the program:

PQ# pq# = createPQ# ;
for(i = 0; i < h.size; i++)

pq#.insert(h[i]);
return pq#;

The interpretation function I is not injective. Differ-
ent heaps may represent the same priority queue. Differ-
ent heaps representing the same priority queue, may return
different elements when find min is called.

Example 6. We will illustrate Definition 5 for priority
queues. Let PQ be some type. Let I a function from PQ to
PQ#. We discuss the conditions that PQ needs to satisfy
so that it implements PQ# with I.

1. The constructor need to fulfill I(createPQ) =
createPQ# .

2. PQ must have a method insert, s.t. for all pq:PQ and
p:P , I(pq/insert(p)) = I(pq)/insert(p).

3. PQ must have a method contains, s.t. for all pq:PQ
and p:P , pq.contains(p) = I(pq).contains(p).

4. PQ must have a method empty, s.t. for all
pq:PQ, pq.empty = I(pq).empty.

5. The method find minp of PQ# has implicit parameter
p. The precondition is Π#(pq#, p) ≡

pq#.contains(p) and ∀p′:P , pq#.contains(p′) → p ≤ p′.

It follows that the corresponding method find min of
PQ must have precondition

Π(pq) ≡ ∃p:P , I(pq).contains(p) and

∀p′:P , I(pq).contains(p′) → p ≤ p′.

It can be shown by induction that Π(pq) is equivalent
to I(pq).empty = false, which in turn is equivalent
to pq.empty = false, because of Condition 4 in this
example.

In addition, find min needs to satisfy (1) in Defini-
tion 5:
∀pq:PQ, pq.empty = false →

∃p:P , I(pq).contains(p) and

∀p′:P , I(pq).contains(p′) → p ≤ p′ and

pq.find min = I(pq).find minp.

Using I(pq).find minp = p from the specification of
P#, the last formula is first-order equivalent to

∀pq:PQ, pq.empty = false →
pq.contains(pq.find min) and

∀p′:P , pq.contains(p′) → pq.find min ≤ p′.

This is the standard specification of find min.

6. The method remove min can be analyzed in the same
way.

We will now specify the checked priority queue, and
state the theorem that we formally verified.

Definition 7. The type B boolean consists of two values
false and true. It must be the case that false �= true. Opera-
tions not, and, or are defined as usual.

Definition 8. Let P be an QOSB. A lower bound system
(abbreviated LBS) S is a collection of pairs over P. If the
pair (p, q) occurs in the lower bound system, then p is a
lower bound of q. An LBS supports the following opera-
tions:

• createLBS creates the empty LBS.

• contains(p) returns true if the system contains a lower
bound for p.

• assign(p, q) extends the current system with element p
and sets its lower bound to q.

• lookup(p) is defined on the condition that the system
contains a lower bound for p. In that case, a lower
bound for p is returned.

• remove(p, q) is defined on the condition that the system
contains lower bound q associated to p. In that case, q
is removed as a possible lower bound of p.

• update(q) replaces all lower bounds in the system,
which are less than q, by q.

• contains pair(p, q) returns true if the system contains
p with lower bound q attached to it.

• empty returns true if the system is empty.

Figure 2. Specification of LBS

Method contains(p) has no precondition.
create.contains(p) = false,
s/assign(p, q).contains(p) = true,
s/assign(p1, q).contains(p2) = s.contains(p2)

if p1 �= p2

Method contains pair(p, q) has no precondition.
create.contains pair(p, q) = false,
s/assign(p, q).contains pair(p, q) = true,
s/assign(p1, q1).contains pair(p2, q2) =

s.contains pair(p2, q2) if p1 �= p2 or q1 �= q2.

Method lookupq(p) has precondition contains pair(p, q),
s.lookupq(p) = q,

Method remove(p, q) has precondition contains pair(p, q),
s/assign(p, q)/remove(p, q) = s,
s/assign(p1, q2)/remove(p2, q2) =

s/remove(p2, q2)/assign(p1, q1)
if p1 �= p2 or q1 �= q2.

Method update has no precondition.
create.update(q) = create,
s/assign(p, q1)/update(q2) =

s/update(q2)/assign(p, q2) if q1 < q2

s/assign(p, q1)/update(q2) =
s/update(q2)/assign(p, q1) if q2 ≤ q1

Method empty has no precondition.
create.empty = true,
s.assign(p, q).empty = s.false.

Since our goal is to prove that every implementation of
priority queues that runs within a checked priority queue is
in fact a priority queue, we need the notion of priority queue
pretender.

Definition 9. A priority queue pretender PQP is an object
that has the same signature as a priority queue.

At this moment, we have assumed nothing about
the implementation of the priority queue pretender,
except for the fact that it supports the operations
create, remove, insert, find min and remove min.

Definition 10. A checked priority queue is a triple
(pqp, s, ok), in which pqp is priority queue pretender, s is
an object implementing a system of lower bounds, and ok is
a boolean that remembers whether an error occurred. The
operations are defined as follows:

• create = (createPQP , createLBS , true).

• (pqp, s, ok)/insert(p) =
(pqp/insert(p), s/assign(p,⊥), ok).

• (pqp, s, ok).contains(p) = s.contains(p).

• (pqp, s, ok).size = s.size.

• If s.size = 0, then
(pqp, s, ok)/find min = (pqp, s, false)
and (pqp, s, ok).find min = ⊥.

Otherwise, let p = pqp.find min.
Then (pqp, s, ok).find min = p, and

– if s.contains(p) and s.lookup(p) ≤ p, then
(pqp, s, ok)/find min =

(pqp, s/update(p), ok).

– if s.contains(p) = false or p < s.lookup(p), then
(pqp, s, ok)/find min =

(pqp, s/update(p), false).

• If s.contains(p) = true, then let q = s.lookup(p).
If q ≤ p, then (pqp, s, ok)/remove(p) =

(pqp/remove(p, q), ok).
If q > p, then (pqp, s, ok)/remove(p) =

(pqp, s, false).
If s.contains(p) = false, then

(pqp, s, ok)/remove(p) = (pqp, s, false).

• remove min is composed of find min and remove :
(pqp, s, ok)/remove min =

(pqp, s, ok)/remove((pqp, s, ok).find min).

• We need an additional function check, that checks the
lower bounds present in s :

(pqp, createLBS , ok).check = true,
(pqp, s.assign(p, q), ok).check =

(pqp, s, ok).check if q ≤ p
(pqp, s.assign(p, q), ok).check = false if p < q

We intend to use the notion of implementation also for
checked priority queues. We want to state a condition of the
form: If some objects d has been embedded in the checker,
and the checker accepts its behaviour, then d has behaved
like a priority queue. If d is of type D, then we could
try to prove that D implements the abstract type of prior-
ity queues, but that is more than we can prove. We know
nothing about other objects of type D.

What is needed is a notion of partial interpretation. We
don’t know whether the complete D implements a priority
queue, but we know it for the subset D′ of D that occurred
in this run of the checked priority queue.

Definition 11. Let φ be a predicate over P. Let P# be some
abstract type. Let I be an interpretation function from P to
P#. We say that P conditionally implements P# on condi-
tion φ if the following modified versions of equations 1 - 3
hold:

∀p:P ∀x:P ∀y:Y Π(p, x, y) →
φ(p/f(x, y)) →

∃z:Z Π#(I(p), x, I(y), z) ∧ (4)

I(p).fz(I(x), y) = p.f(x, y).

∀p:P ∀x:P ∀y:Y Π(p, x, y) →
φ(p/f(x, y)) →

∃z:Z Π#(I(p), x, I(y), z) ∧ (5)

I(p)/fz(I(x), y) = I(p/f(x, y)).

I(createP) = createP# . (6)

The notion of conditional implementation should not be
confused with the notion of weak simulation in [4]. The
notion of weak simulation is intended for modeling the fact
that only objects up to a certain size can be represented in
computers. The notion of conditional implementation is in-
tended for expressing that we can make claims only about
the behaviour of an implemntation as far as it was checked
by the checker.

Definition 12. Let cpq1 = (pqp1, s1, ok1) and cpq2 =
(pqp2, s2, ok2) be checked priority queues. We say
that cpq1 is a predecessor of cpq2 if there is a (pos-
sibly empty) sequence of operations M1, . . . , Mn, s.t.
cpq1/M1/ · · · /Mn = cpq2. The predecessor relation can
be inductively defined as follows:

• For every checked priority queue cpq, we have cpq ≺
cpq,

• If cpq1 ≺ cpq2, then also cpq1 ≺ cpq2/insert(p).

• If cpq1 ≺ cpq2, then also cpq1 ≺ cpq2/remove(p).

• If cpq1 ≺ cpq2, then also cpq1 ≺ cpq2/find min.

• If cpq1 ≺ cpq2, then also cpq1 ≺ cpq2/remove min.

We do not need to check preconditions in Definition 12,
because checked priority queues are robust against failing
preconditions.

We want to prove that if a checked priority queue
(pqp, s, ok) has ok = true, and checked = true, then pqp
has behaved like a correct priority queue.

Theorem 13. For every cpq′ ∈ CPQ we define φ(cpq′) ≡
∃cpqF (cpq′ ≺ cpqF ∧ cpqF .ok ∧ cpqF .check). The con-
crete data type CPQ conditionally implements an abstract
data type PQ with the condition φ. Here cpqF .ok denotes
the value of the boolean ok of cpqF .

Proof. We need to provide an implementation function
I, that meets the conditions of Definition 5. We obtain
I(pqp, s, ok) by collecting the elements of s into a priority
queue as follows:
I(pqp, createLBS , ok) = createPQ

I(pqp, s/assign(p, q), ok) = I(pqp, s, ok)/insert(p)

The proof consists of validating that the embedding func-
tion I fulfills the requirements of Definition 5. We have
completely verified the proof using the first order theorem
prover Saturate. The details can be found in the next sec-
tion.

4. The Formal Verification

The complete formal proof of Theorem 13 consists of
80 lemmas and theorems. For simplicity reasons we as-
sume that in this section that variables which appear free in
formulas are universally quantified. According to Defini-
tion 11, in Theorem 13 we have to confirm the correctness
of the following equations:

I((pqp, s, ok)/insert(p)) = I(pqp, s, ok)/insert(p) (7)

(pqp, s, ok).contains(p) →
I(pqp, s, ok).contains(p) ∧ (8)

I((pqp, s, ok)/remove(p)) = I((pqp, s, ok))/remove(p)

∃p:P Π(I(pqp, s, ok), p) →
φ((pqp, s, ok)/find min) →

∃p1:P Π(I(pqp, s, ok), p1) ∧
(9)

I((pqp, s, ok)).find minp1 = (pqp, s, ok).find min

∃p:P Π(I(pqp, s, ok), p) →
φ((pqp, s, ok)/find min) →
∃p1:P Π(I(pqp, s, ok), p1) ∧

(10)

I((pqp, s, ok))/remove minp1 = I((pqp, s, ok)/remove min)

∃p:P Π(I(pqp, s, ok), p) →
φ((pqp, s, ok)/find min) →
∃p1:P Π(I(pqp, s, ok), p1) ∧

(11)

I((pqp, s, ok)).remove minp1 = (pqp, s, ok).remove min

I(createPQP , createLBS , true) = createPQ (12)

Very often in automated first-order theorem proving we
cannot prove theorems without interaction between the user
and the prover. The theorem prover needs some advising
which of the previously shown theorems and lemmas are
useful in order to automatically prove the current theorem.
In some cases we needed to add several additional interme-
diate lemmas before the proof of the current theorem could
be completed.

Sometimes the reason for the insertion of new lemmas is
strictly technical. Very often, the complete theory in which
we have to prove the theorem, is too large for Saturate. It
exceeded the maximal number of clauses and terminated
without finding a proof.

Another problem we had to deal with were induction
hypotheses. Saturate is a first-order theorem prover and
therefore every induction hypothesis had to be generated
by hand. Since most of our data structures are inductively
defined, for every lemma about data structures which was
proved directly, we had to state and prove induction basis
and induction step as separate theorems.

Preconditions Π for formula (9) are defined as:

Π(pq, p) = pq.contains(p) ∧
∀p′:P pq.contains(p′) → p ≤ p′

Saturate needed some asistence in finding the proof
for formula (9), namely we had to include as an inter-
mediate lemma the fact that under the assumption that
φ((pqp, s, ok)/find min) holds, the element returned by
priority queue checker is contained in the priority queue and
it is also the smallest element. Here we use the term “small-
est” in the sense that the element belongs to the equivalence
class of the smallest elements. Using the definition of Π for
find min, we have stated this as:

φ((pqp, s, ok)/find min) →
Π(I(pqp, s, ok), (pqp, s, ok).find min) (13)

Formula (13) was proved by expanding the definition of
Π, i.e. we have inserted the following intermediate lemmas:

φ((pqp, s, ok)/find min) →
I(pqp, s, ok).contains((pqp, s, ok).find min) (14)

φ((pqp, s, ok)/find min) →
∀p′:P I(pqp, s, ok).contains(p′) →

(pqp, s, ok).find min ≤ p′
(15)

Let us first explain the proof of the formula (14). Al-
though we had to use more lemmas to prove it, the most
important ones are:

¬(pqp, s, ok).contains((pqp, s, ok).find min) →
(pqp, s, ok)/find min = (∗, ∗, false)

(16)

(pqp, s, false) → ¬φ(pqp, s, false) (17)

Formula (16) is an easy consequence of the axioms spec-
ifying behaviour of find min command, while formula (17)
requires more complex proof. Saturate uses formula (18)
and concludes that for any cpq, (pqp, s, false) ≺ cpq,
cpq.ok does not hold, i.e. every successor of (pqp, s, false)
has the form (∗, ∗, false) and therefore φ(pqp, s, false) also
cannot hold.

¬cpq.ok → ∀cpq′:CPQ cpq ≺ cpq′ → ¬cpq′.ok (18)

In order to prove formula (18), we were using the induc-
tion principle used in Coq [13] for defining ≤ on the natural
numbers. Let N be the set of natural numbers. Let s be the
usual successor function. One can define ≤ as the smallest
predicate which satisfies the following axioms:

1. x ≤ x

2. x ≤ y → x ≤ s(y)

The induction principle for some property P over ≤ is for-
malized as:

∀x:N
(
P (x) ∧ ∀y:N x ≤ y → (P (y) → P (s(y))) →

∀y:S x ≤ y → P (y)
)

(19)
The predicate ≺ of Definition 12 has similar structure as

≤ on N. Instead of one successor function, ≺ is defined by
multiple successor functions. In order to verify correctness
of formula (18), we define P (x) = ¬x.ok and verify

¬cpq.ok → ¬(cpq/insert(p)).ok (20)

¬cpq.ok → ¬(cpq/remove(p)).ok (21)

¬cpq.ok → ¬(cpq/find min).ok (22)

¬cpq.ok → ¬(cpq/remove min).ok (23)

More detailed proofs of the mentioned formulas are
available in [12].

Let us now describe the proof of formula (15). It was
proved by contraposition; together with some trivial facts
we used the following lemma:

(pqp, s, ok).contains(p) ∧
p < (pqp, s, ok).find min →

¬φ((pqp, s, ok)/find min)
(24)

In order to prove (24), we used the following reason-
ing: if there exists an element in the checked priority queue
cpq which is strictly smaller then returned minimal ele-
ment, then this element will have the lower bound greater
than itself and (cpq/find min).check cannot hold. But, if
(cpq/find min).check does not hold, then we know that for
every checked priority queue cpq′, cpq ≺ cpq′, cpq′.check
or cpq′.ok cannot hold and therefore φ(cpq/find min) does
not hold. We formalized this reasoning by the following
lemmas:

cpq.contains(p) ∧ p < cpq.find min →
¬(cpq/find min).check

(25)

¬cpq.check → ∀cpq′:CPQ cpq ≺ cpq′ →
(¬cpq′.check ∨ ¬cpq′.ok) (26)

For the proof of formula (26), we again applied the prin-
ciple of Coq induction, as described above and easily we
have reduced formula (26) to the following formulas:

¬cpq.check →
¬s(cpq).check ∨ ¬s(cpq).ok,

(27)

where s(cpq) stands for the immediate successor func-
tions cpq as defined in Definition 12. This time it was not a
straightforward proof as in the case of formulas (20) - (23):
formula (27) was proved using 23 additional lemmas.

For the proof of formula (25), Saturate needed some as-
sistance in order to apply the following reasoning: let p∗ be
an element returned by priority queue checker as the mini-
mal one. If there exists an element p, contained in the prior-
ity queue such that p < p∗, let q denote the lower bound of
p. If q < p∗, then the lower bound of p in cpq/find min
will be p∗. But if p∗ ≤ q, then the lower bound of p
in cpq/find min will not change. Which means that in
cpq/find min there is an element whose lower bound is
strictly bigger than the element itself. Using this reasoning,
formalized as a theorem, and the check-characterization
lemma (28), formula (25) was successfully verified.

(pqp, s, ok).check ⇔
∀p:P ∀q:P s.contains pair(p, q) → q ≤ p

(28)

Formula (28) is implicitly universally quantified, there-
fore we need to verify that it holds for every pqp, s and

ok. Since the system of lower bounds is inductively de-
fined with create and assign, we have generated by hand
the induction basis and the induction step for formula (28)
and using Saturate we have verified both.

We stop now with the proof for formula (9). Although
the complete proofs are not given here, they can be found in
[12], together with the proof schemes for all other formulas.

5. Ongoing and Future Work

In this section, we briefly describe the actual implementa-
tion of the lower bound system in LEDA. We intend to re-
fine our model, so that we can verify the real implemen-
tation. In order to obtain a superefficient checker, i.e. a
checker that is more efficient than the priority queue it-
self, the checker needs to be implemented in the way that
is drawn in Figure 3. Structure L is a C++-style linked list.
A linked list is a container which has iterators that support
efficient insertion and deletion, and traversal of lists, but no
efficient indexing. There is also no efficient lookup of el-
ements. The priority queue PQ over P has to be replaced
by a priority queue over P × I, where I is the type of iter-
ators over L. In addition to L one needs a union find data
structure which maintains equivalence classes of elements
that have the same lower bound. The indices to the union
find are stored in L. Each block of the union find again con-
tains a pair of type P × I. The first element represents the
lower bound, and the second element is an iterator of L, that
points to the last element in the equivalence class. Figure 3
shows a possible representation of the lower bound sys-
tem ((3,⊥), (9,⊥), (5,⊥), (2,−1), (4, 3), (3, 3)). Figure 3
is not completely accurate because in real the numbers are
stored in the priority queue, and only union find indices are
stored in L. It can be checked, see [8] that, using this repre-
sentation, all operations of Figure 2 take constant amortized
time.

Figure 3. Implementation of a lower bound
system

L

UF

3 5 2 49 3

3−1

T

In order to verify the improved implementation, we will
need specifications of union find and of lists with iterators.

6. Conclusions

The goal of this paper was two-fold: the first goal was to
formally verify the algorithm used for the priority queue
checker. The second goal was to determine what can be
the role of saturation-based theorem proving in verification.
The first goal was fulfilled successfully; we managed to de-
velop the specification and using this specification, we were
able to prove the correctness of the checker. As for the
second goal, we have learnt that saturation-based theorem
proving is useful for verification, but still Saturate needed
a lot of guidance and all induction hypotheses had to be
generated by hand. In order to assess the usefulness of
first-order theorem proving, a possibility would be to repro-
duce the verification in an interactive verification system,
as for example PVS, and compare the amount of interaction
needed.

References

[1] N. M. Amato and M. C. Loui. Checking linked data struc-
tures. In Proceedings of The 24th International Sympo-
sium on Fault Tolerant Computing (FTCS-24), pages 164–
73, 1994.

[2] L. Bachmair and H. Ganzinger. Rewrite-based equational
theorem proving with selection and simplification. Journal
of Logic and Computation, 4(3):217–247, 1994.

[3] M. Blum and S. Kannan. Designing programs that check
their work. In Proceedings of the 21st annual ACM sym-
posium on Theory of computing, pages 86–97. ACM Press,
1989.

[4] O.-J. Dahl. Verifiable Programming. Prentice Hall, 1992.
[5] W.-P. de Roever and K. Engelhardt. Model-Oriented Proof

Methods and their Comparison. Cambridge University
Press, 1998.

[6] U. Finkler and K. Mehlhorn. Checking priority queues. In
Proceedings of the 10th annual ACM-SIAM symposium on
Discrete algorithms (SODA’99), pages 901–902. Society for
Industrial and Applied Mathematics, 1999.

[7] E. Landau. Grundlagen der Analysis, (das Rechnen mit
ganzen, rationalen, irrationalen und komplexen Zahlen).
Akademischer Verlagsgesellschaft M.B.H, 1930.

[8] K. Mehlhorn and S. Näher. LEDA: A Platform for Combi-
natorial and Geometric Computing. Cambridge University
Press, 1999.

[9] T. Nipkow. Non-deterministic data types: Models and im-
plementations. Acta Informatica, 22:629–661, 1986.

[10] B. Stroustrup. The C++ Programming Language, third edi-
tion. Addison-Wesley, 1997.

[11] http://www.mpi-inf.mpg.de/SATURATE/.
[12] http://www.mpi-inf.mpg.de/˜rpiskac/

queues/.
[13] http://coq.inria.fr/.
[14] http://www.algorithmic-solutions.com/.

