
MUNCH - Automated Reasoner for Sets and
Multisets

Ruzica Piskac and Viktor Kuncak

Swiss Federal Institute of Technology Lausanne (EPFL)
firstname.lastname@epfl.ch

Abstract. This system description provides an overview of the MUNCH
reasoner for sets and multisets. MUNCH takes as the input a formula in a
logic that supports expressions about sets, multisets, and integers. Con-
straints over collections and integers are connected using the cardinality
operator. Our logic is a fragment of logics of popular interactive theo-
rem provers, and MUNCH is the first fully automated reasoner for this
logic. MUNCH reduces input formulas to equisatisfiable linear integer
arithmetic formulas. MUNCH reasoner is publicly available. It is imple-
mented in the Scala programming language and currently uses the SMT
solver Z3 to solve the generated integer linear arithmetic constraints.

1 Introduction

Applications in software verification and interactive theorem proving often in-
volve reasoning about sets of objects. Cardinality constraints on such collections
also arise in these scenarios. Multisets arise for analogous reasons as sets: ab-
stracting the content of linked data structure with duplicate elements leads to
multisets. Multisets (and sets) are widely present in the theorem proving com-
munity. Interactive theorem provers such as Isabelle [3], Why [1] or KIV [4]
specify theories of multisets with cardinality constraints. They prove a number
of theorems about multisets to enable their use in interactive verification. How-
ever, all those tools require a certain level of interaction. Our tool is the first
automated theorem prover for multisets with cardinality constraints, which can
check satisfiability of formulas belonging to a very expressive logic (defined in
Figure 1) entirely automatically.

This system description presents the implementation of the decision proce-
dure for satisfiability of multisets with cardinality constraints [7]. We evaluated
our implementation by checking the unsatisfiability of negations of verification
conditions for the correctness of mutable data structure implementations. If an
input formula is satisfiable, our tool generates a model, which can be used to
construct a counterexample trace of the checked program.

2 Piskac, Kuncak

2 Description of the MUNCH Implementation

2.1 Input Language

A multiset (bag) is a function m from a fixed finite set E to N, where m(e)
denotes the number of times an element e occurs in the multiset (multiplicity of
e). Our logic includes multiset operations such as multiplicity-preserving union
and the intersection. In addition, our logic supports an infinite family of rela-
tions on multisets defined point-wise, one relation for each Presburger arithmetic
formula. For example, (m1 ∩m2)(e) = min(m1(e),m2(e)) and m1 ⊆ m2 means
∀e.m1(e) ≤ m2(e). Our logic supports using such point-wise operations for arbi-
trary quantifier-free Presburger arithmetic formulas. The logic also supports the
cardinality operator that returns the number of elements in a multiset. Figure
1 summarizes the language of multisets with cardinality constraints (MAPA).
There are two levels at which integer linear arithmetic constraints occur: to de-
fine point-wise operations on multisets (inner formulas) and to define constraints
on cardinalities of multisets (outer formulas). Integer variables from outer for-
mulas cannot occur within inner formulas.

Top-level formulas:
F ::= M=M |M ⊆M | ∀e.Fin | Aout | F ∧ F | ¬F

Outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)=
P

Fin(tin, . . . , tin)

tout ::= k | C | tout + tout | C · tout | ite(Fout, tout, tout) | |M|

Inner linear arithmetic formulas:
Fin ::= tin ≤ tin | tin=tin | Fin ∧ Fin | ¬Fin

tin ::= m(e) | C | tin + tin | C · tin | ite(Fin, tin, tin)
Multiset expressions:

M ::= m | ∅ |M ∩M |M ∪M |M]M |M \M |M \\M | setof(M)

C - integer constant Variables: e - fixed index, k - integer, m - multiset

Fig. 1. Quantifier-Free Multiset Constraints with Cardinality Operator (MAPA)

This logic subsumes the BAPA logic [5]. If a formula reasons only about sets,
this can be added by explicitly stating for each set variable S that it is a set:
∀e.(S(e) = 0 ∨ S(e) = 1).

2.2 NP vs NEXPTIME Algorithm in Implementations

Checking satisfiability of MAPA formulas is an NP-complete problem [8]. Our
first implementation was based on the algorithm used to establish this optimal
complexity, but we found that the running times were impractical due to large
constants. MUNCH therefore currently uses the conceptually simpler algorithm

MUNCH - Automated Reasoner for Sets and Multisets 3

in [7]. Despite its NEXPTIME worst-case complexity, we have found that the
algorithm from [7], when combined with additional simplifications, results in a
tool that exhibits acceptable performance. Our implementation often avoids the
worst-case complexity of the most critical task, the computation of semilinear
sets, by leveraging the special structure of formulas that we need to process (see
Section 2.4).

2.3 System Overview

Figure 2 provides a high-level overview of the reasoner.

Fig. 2. Phases in checking formula satisfiability. MUNCH translates the input
formula through several intermediate forms, preserving satisfiability in each step.

Given an input formula (Figure 1), MUNCH converts it into the sum normal
form

P ∧ (u1, . . . , un) = Σe∈E(t1, . . . , tn) ∧ ∀e.F

where

– P is a quantifier-free Presburger arithmetic formula without any multiset
variables, and sharing integer variables only with terms u1, . . . , un

– the variables in t1, . . . , tn and F occur only as expressions of the form m(e)
for m a multiset variable and e the fixed index variable

4 Piskac, Kuncak

The algorithm that reduces a formula to its sum normal form runs in polynomial
time and is applicable to every input formula.

The derived formula is further translated into the logic that we call LIA∗ [8].
LIA∗ is linear integer arithmetic extended with the ∗ operator. The ∗ operator
is defined on sets of vectors by C∗ = {v1 + . . .+vn | v1, . . .vn ∈ C∧n ≥ 0}. The
new atom that we add to the linear integer arithmetic syntax is u ∈ {x | F (x)}∗,
where F is a Presburger arithmetic formula.

A formula in the sum normal form

P ∧ (u1, . . . , un) =
∑
e∈E

(t1, . . . , tn) ∧ ∀e.F

is equisatisfiable with the formula

P ∧ (u1, . . . , un) ∈ {(t′1, . . . , t′n) | F ′}∗

where the terms t′i and the formula F ′ are formed from the terms ti and the
formula F in the following way: for each multiset expression mj(e) we introduce
a fresh new integer variable xj and then we substitute each occurrence of mj(e)
in the terms ti and the formula F with the corresponding variable xj . The
equisatisfiability theorem between the two formulas follows from the definitions.
Given a finite set of vectors (t′1, . . . , t

′
n) such that their sum is (u1, . . . , un), we

define the carrier set E to have as many elements as there are summands and
define mj(e) to have the value of xj in the corresponding summand. We use this
theorem in the model reconstruction.

Model Reconstruction. Our tool outputs a model if an input formula is
satisfiable. After all transformations, we obtain a linear arithmetic formula eq-
uisatisfiable to the input formula. If there is a satisfying assignment for the
final formula, we use the constructive proofs of the equisatisfiability theorems to
construct a model for the original formula.

2.4 Efficient Computation of Semilinear Sets and Elimination of
the ∗ Operator

The elimination of the ∗ operator is done using semilinear sets. Let S ⊆ Zm be
a set of integer vectors and let a ∈ Zm be a integer vector. A linear set LS(a;S)
is defined as LS(a;S) = {a + x1 + . . .+ xn | xi ∈ S ∧ n ≥ 0}. Note that vectors
xj and xj can be equal and this way we can define a multiplication of a vector
with a positive integer constant. A semilinear set Z is defined as a finite union
of linear sets: Z = ∪k

i=1LS(ai;Si).
All vectors belonging to a semilinear set can be described as a solution set

of a Presburger arithmetic formula. A classic result [2] shows that the converse
also holds: the set of satisfying assignments of a Presburger arithmetic formula
is a semilinear set.

Consider the set {(t′1, . . . , t′n) | F ′}∗. The set of all vectors which are the
solution of formula F ′ is a semilinear set. It was shown in in [7,?] that applying

MUNCH - Automated Reasoner for Sets and Multisets 5

the ∗ operator on a semilinear set results in a set which can be described by
a Presburger arithmetic formula. Consequently, applying the star operator on
a semilinear set results in a new semilinear set. Because {(t′1, . . . , t′n) | F ′}∗ is
a semilinear set, checking whether (u1, . . . , un) ∈ {(t′1, . . . , t′n) | F ′}∗ is effec-
tively expressible as a Presburger arithmetic formula. This concludes that the
elimination of the ∗ operator results in a equisatisfiable Presburger arithmetic
formula.

Efficient Computation of Semilinear Sets The problem with this ap-
proach is that computing semilinear sets is expensive. The best know algorithms
still run in the exponential time and are fairly complex [9].

For complexity reasons, we are avoiding to compute semilinear sets. Still, the
exponential running time is unavoidable in this approach. Therefore, instead of
developing an algorithm which computes semilinear sets for an arbitrary Pres-
burger arithmetic formula, we split a formula into simpler parts for which we
can easier compute semilinear sets. Namely, we convert formula F into a dis-
junctive normal form: F ′(t) ≡ A1(t) ∨ . . . ∨ Am(t). This way checking whether
u ∈ {t | F ′(t)}∗ reduces to u = k1 + . . .+km∧

∧m
j=1 kj ∈ {t | Aj(t)}∗. The next

task is to eliminate the ∗ operator for the formula kj ∈ {t | Aj(t)}∗, where Aj is a
conjunction of linear arithmetic atoms. Aj can also be rewritten as a conjunction
of equalities by introducing fresh non-negative variables. In most of the cases,
computing a semilinear set is actually computing a linear set which can be done
effectively, for example, using the Omega-test [10]. Since Aj is a conjunction of
equations, we use simple rewriting rules. The problem of inequalities expressing
that a term is non-negative in most cases is resolved by implicitly using them as
non-negative coefficients. As an illustration, consider formula m0 = y+x, where
all variables have to be non-negative. All solutions are described with a linear set:
(m0, y, x) = (0, 0, 0) + y(1, 1, 0) + x(1, 0, 1), i.e. LS((0, 0, 0), {(1, 1, 0), (1, 0, 1)}).
This approach of using equalities and rewriting is highly efficient and works in
most of the cases. We also support a simple version of the Omega test.

However, our implementation is not complete for the full logic described in
Figure 1. There are cases where one cannot avoid the computation of a semilinear
set. One of the examples where the MUNCH tool cannot find a solution is when
there exists an inner formula of the form ∀e.Fin(e) and Fin(e) is a formula
where none of the variables have coefficient 1. An example of such a formula
is ∀e.5m1(e) + 7m2(e) ≤ 6m3(e). If at least one variable has coefficient 1 after
the simplifications, our tool works. In our experimental results, while processing
formulas derived in verification, we did not encounter such a problem. Notice
also that our tool is always complete for sets, so it can also be used as a complete
reasoner for sets with cardinality constraints (with a doubly exponential worst-
case bound on running time).

To summarize, out of each conjunct we derive an equisatisfiable Presburger
arithmetic formula and this way the initial multiset constraints problem reduces
to satisfiability of quantifier-free Presburger arithmetic formulas. To check sat-
isfiability of such a formula, we invoke the SMT solver Z3 [6] with the option
”-m”. This option ensures that Z3 returns a model in case that the input formula

6 Piskac, Kuncak

is satisfiable. Since all our transformations are satisfiability preserving, we either
return unsat or reconstruct a model for the initial multiset formula from the
model returned by Z3.

3 Examples and Benchmarks

First we illustrate how the MUNCH reasoner works on a simple example, and
then we show some benchmarks that we did.

Consider a simple multiset formula |x]y| = |x|+ |y|. Its validity is proved by
showing that |x] y| 6= |x|+ |y| is unsatisfiable. We chose such a simple formula
so that we can easily present and analyze the tool’s output. The intermediate
formulas in the output correspond to the result of the individual reduction step
described in Section 2.

Formula f3:

NOT (|y PLUS x| = |y| + |x|)

Normalized formula f3:

NOT (k0 = k1 + k2) AND FOR ALL e IN E. (m0(e) = y(e) + x(e)) AND

(k0, k1, k2) = SUM {e in E, TRUE } (m0(e), y(e), x(e))

Translated formula f3:

NOT (k0 = k1 + k2) AND (k0, k1, k2) IN {(m0, y, x) | m0 = y + x }*

No more disjunctions:

NOT (k0 = k1 + k2) AND k0 = u0 AND k1 = u1 AND k2 = u2 AND

(u0, u1, u2) IN {(m0, y, x) | m0 = y + x }*

Semilinear set computation :

(m0, y, x) | m0 = y + x,

semilinear set describing it is:

List(0, 0, 0), List(List(1, 1, 0), List(1, 0, 1))

No more stars:

NOT (k0 = k1 + k2) AND k0 = u0 AND k1 = u1 AND k2 = u2 AND

u2 = 0 + 1*nu1 + 0 AND u1 = 0 + 0 + 1*nu0 AND u0 = 0 + 1*nu1 + 1*nu0

AND (NOT (mu0 = 0) OR (nu1 = 0 AND nu0 = 0))

This formula is unsat

The main problem we are facing for a more comprehensive evaluation of our
tool is the lack of similar tools and benchmarks. Most benchmarks we were using
are originally derived for reasoning about sets. Sometimes those formulas contain
conditions that we do not need to consider when reasoning about multisets. This
can especially be seen in Figure 3. Checking that an invariant on the size field
of a data structure that implements a multiset is preserved after inserting 3
objects requires 0.4 seconds. Checking the same property for a data structure
implementing a set requires 3.23 seconds.

We could also not compare the MUNCH tool with interactive theorem provers
since our tool is completely automated and does not require any interaction.

In the future we plan to integrate our tool into theorem provers for expres-
sive higher-order logics and to incorporate it into software verification systems.

MUNCH - Automated Reasoner for Sets and Multisets 7

Property #set vars #multiset vars time (s)

Correctness of efficient emptiness check 1 0 0.40
Correctness of efficient emptiness check 0 1 0.40
Size invariant after inserting an element in a list 2 1 0.46
Size invariant after inserting an element in a list 0 2 0.40
Size invariant after deleting an element from a list 0 2 0.35
Allocating and inserting 3 objects into a container 5 0 3.23
Allocating and inserting 3 objects into a container 0 5 0.40
Allocating and inserting 4 objects into a container 6 0 8.35

Fig. 3. Measurement of running times for checking verification conditions that
arise in proving correctness of container data structures. Please see tool web
page for more details.

This will also enable us to obtain further sets of benchmarks. Our tool and the
presented examples can be found at the following URL:

http://icwww.epfl.ch/~piskac/software/MUNCH/

References

1. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: CAV. pp. 173–177 (2007),
http://www.lri.fr/~filliatr/ftp/publis/cav07.pdf

2. Ginsburg, S., Spanier, E.: Semigroups, Pressburger formulas and languages.
Pacific Journal of Mathematics 16(2), 285–296 (1966)

3. Isabelle: Isabelle - a generic proof assistant.
http://www.cl.cam.ac.uk/research/hvg/Isabelle/

4. KIV: KIV (Karlsruhe Interactive Verifier)
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/

5. Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with
Presburger Arithmetic. J. of Automated Reasoning (2006),
http://dx.doi.org/10.1007/s10817-006-9042-1

6. Lugiez, D.: Multitree automata that count. Theor. Comput. Sci. 333(1-2),
225–263 (2005)

7. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. pp. 337–340
(2008), http://dx.doi.org/10.1007/978-3-540-78800-3_24

8. Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality
constraints. In: VMCAI. No. 4905 in LNCS (2008)

9. Piskac, R., Kuncak, V.: Linear arithmetic with stars. In: CAV (2008)
10. Pottier, L.: Minimal solutions of linear diophantine systems: Bounds and

algorithms. In: RTA. LNCS, vol. 488 (1991)
11. Pugh, W.: A practical algorithm for exact array dependence analysis. Commun.

ACM 35(8), 102–114 (1992)

http://icwww.epfl.ch/~piskac/software/MUNCH/
http://www.lri.fr/~filliatr/ftp/publis/cav07.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
http://dx.doi.org/10.1007/s10817-006-9042-1
http://dx.doi.org/10.1007/978-3-540-78800-3_24

	MUNCH - Automated Reasoner for Sets and Multisets
	Ruzica Piskac and Viktor Kuncak

